EP1977154B1 - Hydrospeicher - Google Patents

Hydrospeicher Download PDF

Info

Publication number
EP1977154B1
EP1977154B1 EP06792276A EP06792276A EP1977154B1 EP 1977154 B1 EP1977154 B1 EP 1977154B1 EP 06792276 A EP06792276 A EP 06792276A EP 06792276 A EP06792276 A EP 06792276A EP 1977154 B1 EP1977154 B1 EP 1977154B1
Authority
EP
European Patent Office
Prior art keywords
support ring
plastic
outer support
hydraulic accumulator
bladder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06792276A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1977154A1 (de
Inventor
Norbert Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydac Technology GmbH
Original Assignee
Hydac Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Technology GmbH filed Critical Hydac Technology GmbH
Publication of EP1977154A1 publication Critical patent/EP1977154A1/de
Application granted granted Critical
Publication of EP1977154B1 publication Critical patent/EP1977154B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0176Shape variable
    • F17C2201/018Shape variable with bladders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • F17C2203/018Suspension means by attachment at the neck
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2145Moulding by rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0447Composition; Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/036Avoiding leaks

Definitions

  • the invention relates to a hydraulic accumulator, in the form of a bladder accumulator, for receiving at least one fluid medium with a pressure vessel, with a first plastic sheath and a second plastic sheath at least partially comprising the first plastic sheath, wherein the first plastic sheath has a collar part at least at one end, the one Opening for the media supply and removal, wherein the collar part and the second plastic shell are supported on an intermediate outer support ring, which tapers in the direction of a gap opening between said sheaths, and wherein the gap opening between the shells is brought to a location in which the coats are in coaxial arrangement in abutment with each other.
  • EP 1 248 929 B1 is reinforced with a fiber plastic composite plastic core container known as an inner plastic jacket for storing liquid and / or gaseous media under pressure, the core container having one or more fittings in the neck and / or bottom and / or cylindrical container part, of which at least a connecting piece for receiving a screw-threaded or cylindrical threaded conical feed line, such as a valve or a pipe connection is formed.
  • a fiber plastic composite plastic core container known as an inner plastic jacket for storing liquid and / or gaseous media under pressure
  • the core container having one or more fittings in the neck and / or bottom and / or cylindrical container part, of which at least a connecting piece for receiving a screw-threaded or cylindrical threaded conical feed line, such as a valve or a pipe connection is formed.
  • a cylindrical insert is mounted with a collar end at the end of the connecting pin or circumferential, at least two seals are arranged in such a way that at least one seal between the insert and the inner surface of the plastic connecting pin of the plastic core container and at least one further seal between insert and pressure line feed is arranged. This is to ensure a high and long-lasting tightness at the connector even with extreme, changing thermal and mechanical operating stresses.
  • a composite pressure vessel for storing gaseous media under pressure with a liner made of plastic as the inner or first plastic shell known with two neck portions arranged in the neck and with a liner reinforcing winding of a fiber composite material as a second plastic sheath.
  • a throttle valve receiving neckpiece a screwed into this neckpiece clamping ring is provided which has a threaded portion on the outer shell, to which a thread-free, truncated cone-like Section adjoins and disposed between the female threaded portions of the neck piece annular groove for receiving a sealing ring extends radially into the neck piece and on the outside of the respective neck piece.
  • the arrangement is provided with at least one bead extending radially outwards over the entire circumference.
  • the wedge-like taper of the outer support ring extends only along the inner peripheral portion of the neck along a horizontal plane formed by the liner, which in turn opens at a sharp right angle deflected into the collar part, the gas supply via said Valve includes.
  • a hydraulic accumulator in the manner of a pressure vessel bottle for receiving at least one fluid medium, wherein the known pressure vessel is provided with a first plastic sheath and the first plastic sheath at least partially comprehensive second plastic sheath.
  • the inner shell is separated from the outer shell by an outer support ring which tapers in the direction of a gap opening between said shrouds, the gap opening between the sheaths being brought to a location where the shells co-abut each other are.
  • the first plastic sheath is folded towards its free end towards its inlet point in this area arcuate outwards and to a sealing ring in the connecting device for the purpose of sealing contact with the outer support ring pressed against the connection device.
  • the known storage solution thus serves to accommodate a fluid which can develop a pressure within the container or in advance already has this pressure.
  • the known solution does not relate to a hydraulic accumulator in the form of a bladder accumulator with a poppet valve to be actuated by means of the accumulator bladder for controlling the supply and removal of media to and from the bladder accumulator.
  • the invention has the object to further improve the known solutions to the effect that a hydraulic accumulator application is achieved as a bladder in a cost effective manner with a reduced manufacturing cost and that the bladder is characterized by a high reliability.
  • This object is achieved by a hydraulic accumulator in the form of a bladder accumulator having the features of patent claim 1 in its entirety.
  • the poppet valve used can be brought into a full closed position by means of a storage bubble, wherein the accumulator bubble is accommodated on its upper side in a membrane holder, which leaves a passage point for further media supply and removal via a Media supply valve, for which the membrane holder, the free end the outer surface of the outer support ring is provided in the direction of the gap opening with a convex curvature, wherein the opposite inner contour of the outer support ring, starting from the gap opening in a rectilinear slope, which at the point of entry of the collar part in a bearing surface parallel to the longitudinal axis of the container opens, wherein the collar part of the first shell on the inner peripheral side is supported on a further contact surface of the inner support ring, and wherein the inner support ring is guided in the outer support ring such that a common boundary wall is provided with the membrane holder, is a dense storage arrangement created, which is feasible with low production costs
  • the hydraulic accumulator according to the invention can be used for a variety of applications and the fact that up to the outer peripheral region of the two coats into the support via the wedge-like tapered outer support ring, any relative movements between the plastic shells over the outer support ring are intercepted and damaging Delaminiervone are such a form avoided between the sensitive plastic materials. Furthermore, this creates a stable and secure support for the poppet valve in the opening region of the pressure vessel, so that it is possible for the first time to use accumulators constructed completely of plastic layers for bladder hydraulic accumulator solutions, which also have an extremely large volume. Furthermore, by the wedge-like intermediate support for the plastic shells Standard Kunststofftoffmaterialien, for example in the form of polymeric materials, are used, which in turn helps reduce the manufacturing costs. Also, a particularly favorable force introduction of the loads of the inner shell in reaches the outer support ring, which is supported so far by the outer plastic shell by wrapping on.
  • the mutually facing contour surfaces of the first and second plastic sheath can be due to the wedge-like leadership of the outer support ring, which leads into the outer peripheral region of the arrangement, realize without sharp deflections and without sudden changes in direction, which allows a particularly gentle introduction of force for said plastic shells.
  • a particularly favorable introduction of force results when the outer support ring is integrally formed and then preferably consists of a plastically deformable plastic material, in particular of a polymer material.
  • good results can also be achieved if the outer support ring is composed of at least two individual segments, for example in the form of individual rings, as a rigid support part body, which in turn simplifies production and thus reduces the production costs.
  • the outer support ring provided that it supports the collar part of the liner, be constructed of metal material and the Wedge-like taper region between the plastic shells made of a plastic material, for example in the form of a plastically deformable buffer ring made of polymeric material.
  • the pertinently plastically deformable plastic can also be injected or poured into the predetermined gap. If the buffer ring or the outer support ring as a whole consists of a plastic material, this leads to a significant reduction in weight, which increases the possible applications of the hydraulic accumulator, for example in the aerospace industry.
  • the reproduced in the drawing hydraulic accumulator in the form of a bubble store is used to store liquid or gaseous fluid media that can be under a pressure of up to several thousand bar. It is provided at both ends with connection openings 10 for a media supply and removal, are connected to the respective valves, which will be explained in more detail in detail.
  • the actual pressure tank of the hydraulic accumulator has a first plastic shell 12 and a first plastic shell 12 at least partially comprehensive second plastic shell 14.
  • the pertinent first plastic shell 12 is also referred to technical terms with plastic core container or liner. It preferably consists of polyamide and is obtained by means of a bubble-forming process or by rotational sintering. The pertinent production methods are customary, so that will not be discussed further here at this point.
  • the addressed liner 12 is reinforced on the outer peripheral side by an externally wound fiber winding as a second plastic sheath 14.
  • the reinforcing wrap consists of a fiber reinforcement, such as carbon, aramid, gas, boron, Al 2 O 3 fibers or mixtures thereof, which are also referred to as hybrid yarns, which in a basic matrix of thermosets, such as epoxy or phenolic resins or in thermoplastics, for example in the form of PA12, PA6, PP etc. embedded.
  • a fiber reinforcement such as carbon, aramid, gas, boron, Al 2 O 3 fibers or mixtures thereof, which are also referred to as hybrid yarns, which in a basic matrix of thermosets, such as epoxy or phenolic resins or in thermoplastics, for example in the form of PA12, PA6, PP etc. embedded.
  • the fiber composite forming the support shell thus contains intersecting fiber strands embedded in synthetic resin which extend substantially in the longitudinal and circumferential directions.
  • the fiber composite forming the supporting sheath may additionally or alternatively also comprise fiber strands crossing one another, which may be inclined in the longitudinal and circumferential direction and associated with each other in an expedient configuration of the longitudinal axis of the plastic core container.
  • the longitudinal and circumferential forces can thereby be absorbed in an optimum manner by the pressure vessel.
  • the possibilities are improved, the ratio of the opening cross-section of an end opening with respect to the inner diameter of the plastic core container to large values of at least 30%, preferably from set at least 50% without causing any functional impairment.
  • the hydraulic accumulator shown is formed substantially rotationally symmetrical and extends along its central circumference 18 with coaxial arrangement of its two shells 12,14 along its longitudinal axis 20. In the direction of this longitudinal axis 20 opens the free end of the second plastic sheath 14 opens above the respective collar portion 16 of the first Plastic jacket 12 off, which has proven to be initiated forces during operation of the container to be favorable.
  • the collar part 16 of the first plastic sheath 12 and the second plastic sheath 14 are supported, moreover, on an outer support ring 22 located between them.
  • the outer support ring 22 tapers in the direction of a gap opening 24 between said sheaths 12,14.
  • said gap opening 24 between the sheaths 12,14 is brought to a point at which the coats 12,14 in coaxial arrangement with the longitudinal axis 20 of the memory in abutment with each other, up to this point the Wedge-like taper 26 of the outer support ring 22 leads, which is either integrally formed, which is not shown in detail, or as shown, composed of at least two annular individual segments 28,30, wherein the single segment 28 consists of a conventional metal material and the single ring 30 consists of a plastic material, preferably formed in the manner of a buffer ring made of a plastically deformable polymer material.
  • the two individual segments 28,30 could also occur more individual segments; also in the manner of a sandwich construction or the outer support ring 22 instead a one-piece training of metal from such a plastic construction.
  • the outer contour 32 of the outer support ring 22 is provided in the direction of the gap opening 24 with a convex curvature and its opposite inner contour 34 extends, starting from the gap opening 24, in a straight bevel, at the location of entry of the collar part 16 opens into a parallel to the longitudinal axis 20 of the hydraulic accumulator contact surface.
  • the curvature of the outer contour 32 increases in the direction of the free end of the second plastic sheath 14.
  • the liner runs in the form of plastic sheath 12 parallel to the rectilinear oblique contour the inside of the outer support ring 22, with the result that the deflection of the liner in the direction of the collar member 16 is parallel to the longitudinal axis 20 of the hydraulic accumulator at an angle greater than 90 °, so far that sharp deflections are avoided for the sensitive liner.
  • the outer support ring 22 consists of individual segments, at least one of the two individual segments 28 or 30 in the peripheral region have a projection which opens in a kind of attack in a peripheral radial recess of the other single segment.
  • a particularly good adhesion of both individual segments to each other is possible. Seen in cross-section according to the figures, is therefore the one single segment 30 in the manner of a jib and the other single segment 28 formed to the free end of the respective collar member 16 in the manner of a parallelogram.
  • the respective collar part 16 of the first jacket 12 is supported on the inner peripheral side on a further contact surface of an inner support ring 36, which is preferably formed as a rigid metal ring.
  • an inner support ring 36 which is preferably formed as a rigid metal ring.
  • the inner support ring 36 need not be the same for the two ends of the hydraulic accumulator; However, it is characteristic that the respective inner support ring 36 has an annular groove along its outer circumferential surface for receiving an O-sealing ring 38, which serves to seal the respective media supply and removal. Further, it is characteristic that the inner support ring 36 is supported in the outer support ring 22 such that a common boundary wall for the media supply and removal is provided.
  • the indicated inner support ring 36 is provided in the direction of the interior of the pressure vessel with a contact slope, the inclination of the inclination of the slope of the inner contour 34 of the outer support ring 22 is adapted, which corresponds in particular to this.
  • the pertinent slope serves in particular as a later contact surface for the valve arrangements of the hydraulic accumulator, which will be explained in more detail below.
  • the outer contour 32 of the outer support ring 22 is provided with an annular recess 40, in which the assignable end of the second plastic sheath 14 terminates under abutment.
  • the second plastic sheath 14 has at least one additional winding layer 42, which on the one hand helps to increase the bursting pressure and on the other hand ensures that in case of bursting any massive internal parts of the pressure vessel or pressure accumulator can not escape like a bullet to the outside, but rather of the additional winding 42 are retained.
  • the pertinent additional winding 42 can only be present simply or multiple times at discrete intervals.
  • Said outer support ring 22 is capable of uniformly distributing stress peaks occurring in the manner of a pressure buffer and to introduce them into the two plastic shells 12,14. Such a bulging of the pressure vessel is effectively avoided.
  • the indicated cross-sectional wedge shape of the outer support ring 22 is favorable insofar as it effectively counteracts the said relative displacements, for which purpose the different configuration of the outer contour 32 to the inner contour 34 cooperates.
  • a so-called. Poppet valve 50 is inserted.
  • the plate of the poppet valve 50 is shown in the Fig.2 held by a compression spring 52 in its open position and the rest of the plate is supported by an actuating rod 54 which passes through the compression spring 52 and which is provided to limit the maximum opening stroke on its underside with a stop 56 which, according to the representation of Fig.2 on web walls 58 abuts a guide, which in the axial direction parallel to the longitudinal axis 20 of the hydraulic accumulator diametrically opposite each other Fluid passages 60 leaves free.
  • the said fluid passages 60 open in the direction of the Fig.
  • fluid-carrying connector 62 seen at its lower end in a fluid-carrying connector 62 in the manner of a standardized SAE flange and at its opposite end open into the fluid space 64 of said hydraulic accumulator.
  • the pertinent fluid space 64 is separated by an elastomeric separation membrane in the form of a reservoir bladder 66 from another gas-carrying working chamber 68.
  • the resilient diaphragm 66 expands under the pressure of the working gas, for example in the form of nitrogen, and pushes out in sight the Fig.2 seen the plate of the poppet valve 50 down to a maximum in the full closed position of the plate comes into abutment with the conical closing surfaces 70 of said SAE flange, which so far protrudes into the fluid space 64.
  • a hydraulic medium such as oil
  • said SAE fitting protrudes into the fluid space 64, it is adjacent to the conical closing surfaces 70 and includes an elastically yielding abutment surface 72 held by a crimped collar 74 on said flange.
  • the pertinent collar piece 74 With its underside, the pertinent collar piece 74 is supported on the inner contour of the inclined liner 12. Further, the collar piece 74 is held on its inner peripheral side to the SAE flange, which extent widens on the outer peripheral side in diameter via a projection.
  • the pertinent SAE flange in the penetration area is cylindrical and is supported in the direction of the Fig.2 seen on the underside of the outer support ring 22 via a support sleeve 76 from the outer peripheral side is in planar contact with the inner peripheral sides of outer support ring 22 and inner support ring 36.
  • a threaded ring 78 said arrangement, which is so far clamped via an external thread on the SAE flange.
  • the SAE flange is penetrated by two diametrically opposite holes 80, which can serve, for example, to accommodate sensors which can serve, inter alia, the pressure measurement, the temperature measurement, the viscosity measurement and the like.
  • the looking in the direction of Fig.2 shown, pressure sensor 82 shown on the right in the manner of a screw-in is recorded integrally in the bore 80 shown on the left.
  • the collar piece 74 may be constructed as a multi-part, in particular two-part ring.
  • the SAE flange facing in the direction of the Fig.2 seen at its front-side underside an annular recess 84 which serves to receive an O-ring, not shown, so far as the SAE flange is connected in a sealing manner to the fluid circuit of a hydraulic system, not shown.
  • the membrane wall of the reservoir bladder 66 is accommodated at its top in a membrane holder 86, which is engageable with its underside in a transverse wall 88 of the storage bladder assembly; In the rest, however, also in this transverse wall region, a passage point 10 leaves open for the gas supply via the Rulezu slaughterventil 90.
  • the pertinent valve 90 is of conventional design, so that at this point will not be discussed in more detail and the valve 90 can be via a corresponding external thread in a Screw in the internal thread of the membrane holder 86.
  • the membrane holder 86 passes through the connecting piece 22 with a slight projection and is fixed in position by means of a counter-holding ring 92.
  • the plastic core container has an inner diameter of 240 mm and the connecting ring one of 140 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Valve Device For Special Equipments (AREA)
  • Lubricants (AREA)
  • Check Valves (AREA)
  • Lift Valve (AREA)
EP06792276A 2006-01-25 2006-09-26 Hydrospeicher Active EP1977154B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006004120A DE102006004120A1 (de) 2006-01-25 2006-01-25 Hydrospeicher
PCT/EP2006/009332 WO2007085277A1 (de) 2006-01-25 2006-09-26 Hydrospeicher

Publications (2)

Publication Number Publication Date
EP1977154A1 EP1977154A1 (de) 2008-10-08
EP1977154B1 true EP1977154B1 (de) 2009-10-14

Family

ID=37745179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792276A Active EP1977154B1 (de) 2006-01-25 2006-09-26 Hydrospeicher

Country Status (9)

Country Link
US (1) US7637285B2 (ja)
EP (1) EP1977154B1 (ja)
JP (1) JP5129157B2 (ja)
CN (1) CN101331355B (ja)
AT (1) ATE445803T1 (ja)
DE (2) DE102006004120A1 (ja)
ES (1) ES2333818T3 (ja)
HK (1) HK1125442A1 (ja)
WO (1) WO2007085277A1 (ja)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227564B (zh) * 2008-10-03 2015-08-19 伊顿公司 液压蓄能器和制造方法
DE102008062837A1 (de) 2008-12-23 2010-07-01 Hydac Technology Gmbh Hydrospeicher
WO2010117853A1 (en) * 2009-04-06 2010-10-14 Vanderbilt University High energy density elastic accumulator and method of use thereof
US20120017578A1 (en) 2010-03-05 2012-01-26 Johnson Daniel S Power transfer system
AT515343B1 (de) * 2010-08-09 2016-01-15 Faber Ind Spa Gaszylinder
CN102381513B (zh) * 2010-09-03 2013-11-13 北京红海科技开发有限公司 一种盛放液体的容器
US9010101B2 (en) 2011-02-03 2015-04-21 Vanderbilt University Multiple accumulator systems and methods of use thereof
DE102011010869A1 (de) * 2011-02-10 2012-08-16 MR Dienstleistungen GbR Druckspeichervorrichtung, Druckgas- und Evakuierungsanlage
CN102086891B (zh) * 2011-03-17 2012-11-28 严啸伟 一种囊式蓄能器
US20120273076A1 (en) * 2011-04-28 2012-11-01 Robert Bosch Gmbh Compact hydraulic accumulator
DE102011100532A1 (de) 2011-05-05 2012-11-08 Hydac Technology Gmbh Medientrennvorrichtung, insbesondere Hydrospeicher einschließlich zugehöriger Messeinrichtung und Messverfahren
DE102011105813A1 (de) 2011-05-05 2012-11-08 Hydac Technology Gmbh Sensorvorrichtung zum Detektieren von strömungsfähigen Medien, eine Druckeinrichtung und ein Messverfahren
DE102011103424A1 (de) 2011-06-07 2012-12-13 Hydac Technology Gmbh Druckbehälter
DE102011111098A1 (de) * 2011-08-19 2013-05-16 Hydac Technology Gmbh Druckbehälter
JP5785835B2 (ja) * 2011-09-16 2015-09-30 川崎重工業株式会社 燃料タンク用バルブ
BE1020615A5 (nl) * 2011-12-05 2014-01-07 Resilux Behouderverpakking voor verpakking onder druk van vulgoed i.h.b. half vloeibaar, en werkwijze hiervoor.
PL2791030T3 (pl) * 2011-12-05 2017-08-31 Resilux N.V. Plastikowy zbiornik do ciśnieniowego pakowania produktów i sposób jego wytwarzania
BE1025052B1 (nl) * 2012-10-10 2018-10-05 Tradidec Nv Behouder voor verpakking onder druk van continuüm vulproduct, en productiewerkwijze hiervoor
US9249847B2 (en) 2011-12-16 2016-02-02 Vanderbilt University Distributed piston elastomeric accumulator
US8701398B2 (en) 2012-03-20 2014-04-22 Robert Bosch Gmbh Strain energy accumulator
CN102758804B (zh) * 2012-07-27 2015-09-30 北京精密机电控制设备研究所 一种一体化永久贮气蓄能器
DE102013202294A1 (de) 2013-02-13 2014-08-14 Robert Bosch Gmbh Energiespeicher
DE102013202307A1 (de) 2013-02-13 2014-08-14 Robert Bosch Gmbh Kolbenspeicher
DE102013206397A1 (de) 2013-04-11 2014-10-16 Robert Bosch Gmbh Energiespeicher
US9541236B2 (en) 2013-07-12 2017-01-10 Whirlpool Corporation Multi-stage home refueling appliance and method for supplying compressed natural gas
DE102013218125A1 (de) 2013-09-11 2015-03-12 Robert Bosch Gmbh Verfahren zum Betreiben einer Hochdruckspeicheranordnung
DE102013225465A1 (de) 2013-09-27 2015-04-02 Robert Bosch Gmbh Energiespeicher
DE102013219607A1 (de) 2013-09-27 2015-04-02 Robert Bosch Gmbh Energiespeicher
DE102013219618A1 (de) 2013-09-27 2015-04-02 Robert Bosch Gmbh Energiespeicher
DE102013219598A1 (de) 2013-09-27 2015-04-02 Robert Bosch Gmbh Energiespeicher
DE102013219579A1 (de) 2013-09-27 2015-04-02 Robert Bosch Gmbh Energiespeicher
EP3055601B1 (en) * 2013-10-08 2020-03-04 Performance Pulsation Control, Inc. Composite pulsation dampener
DE102013221552A1 (de) 2013-10-23 2015-04-23 Robert Bosch Gmbh Energiespeicher
DE102013225371A1 (de) 2013-12-10 2015-06-11 Robert Bosch Gmbh Energiespeicher
DE102014202290A1 (de) 2014-02-07 2015-08-13 Robert Bosch Gmbh Energiespeicher
DE102014203709A1 (de) 2014-02-28 2015-09-03 Robert Bosch Gmbh Energiespeicher
FR3020417A1 (fr) * 2014-04-23 2015-10-30 Inergy Automotive Systems Res Accumulateur de pression
US9683700B2 (en) * 2014-05-20 2017-06-20 Steelhead Composites, Llc. Metallic liner pressure vessel comprising polar boss
CA2949827C (en) * 2014-05-28 2022-01-11 Flexcon Industries, Inc. Through wall connector for a multi-chamber pressure vessel
DE102015003673A1 (de) * 2015-03-20 2016-09-22 Hydac Technology Gmbh Verfahren zum Herstellen eines Schaumkörpers
CN104832465B (zh) * 2015-05-20 2016-11-30 张正明 一种带有限位机构的隔膜式缓冲器
ITUB20150975A1 (it) * 2015-05-28 2016-11-28 Zilmet S P A Vaso di espansione con raccordo migliorato
DE102015007684A1 (de) * 2015-06-09 2016-12-15 Hydac Technology Gmbh Verfahren zum Herstellen eines Blasenspeichers und nach dem Verfahren hergestellter Blasenspeicher
USD797169S1 (en) * 2015-08-08 2017-09-12 Abduz Zahid Pulsation dampener bladder
JP6356172B2 (ja) * 2016-03-15 2018-07-11 本田技研工業株式会社 高圧タンク
EP3521211A4 (en) * 2016-09-28 2020-05-06 The Yokohama Rubber Co., Ltd. WATER TANK AND METHOD FOR THE PRODUCTION THEREOF
CN107882780B (zh) * 2016-09-30 2019-12-17 南京梅山冶金发展有限公司 蓄能器皮囊在线更换装置及更换方法
DE102017204707A1 (de) * 2017-03-21 2018-09-27 Volkswagen Aktiengesellschaft Behälter zum Speichern eines fluiden Mediums sowie Fahrzeug mit einem derartigen Behälter
DE102017006715B4 (de) 2017-07-14 2020-03-19 Hydac Accessories Gmbh Vorrichtung zur Bildung einer Lagerung
JP7014060B2 (ja) * 2018-06-21 2022-02-01 トヨタ自動車株式会社 高圧タンク、高圧タンク搭載装置、および高圧タンクの製造方法
DE102018007279A1 (de) 2018-09-14 2020-03-19 Hydac Technology Gmbh Balgspeicher
WO2020069783A1 (en) * 2018-10-02 2020-04-09 Sulzer Mixpac Ag Cartridge, dispensing assembly and method of manufacturing a cartridge
CN110107428A (zh) * 2019-05-28 2019-08-09 西安航天动力研究所 一种高排空率高压起动箱
CN112682688B (zh) * 2020-12-24 2022-11-15 西安向阳航天材料股份有限公司 一种全复合材料气囊式压力罐及其制作方法
KR102460141B1 (ko) * 2021-01-04 2022-11-01 주식회사 성우하이텍 압력 용기
CN117780699B (zh) * 2024-02-26 2024-04-19 栖霞市大力矿山机械有限公司 一种用于地下无轨设备的蓄能器自动泄压装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230975A (en) * 1959-12-09 1966-01-25 Mercier Olaer Patent Corp Composite movable partition for pressure vessel
NL287097A (ja) * 1961-12-29
FR1476700A (fr) * 1966-02-16 1967-04-14 Quercia Flaminaire Sa Perfectionnements apportés aux flacons de multirecharge d'un gaz liquéfié sous pression
FR2193953B1 (ja) 1972-07-27 1975-09-05 Air Liquide
US3874544A (en) * 1973-03-21 1975-04-01 Amolga Corp Pressure vessel with liner
US3969812A (en) * 1974-04-19 1976-07-20 Martin Marietta Corporation Method of manufacturing an overwrapped pressure vessel
FR2301746A1 (fr) * 1975-02-24 1976-09-17 Luchaire Sa Recipient, t
US4785956A (en) * 1982-08-23 1988-11-22 Essef Industries, Inc. Tank fitting for a filament-wound vessel
DE3601773A1 (de) * 1985-01-28 1986-07-31 Fawcett Engineering Ltd., Bromborough, Wirral Dichtung und dichtungseinrichtungen
FR2582570B1 (fr) 1985-06-03 1988-02-12 Commissariat Energie Atomique Procede de fabrication d'une enceinte en un materiau composite et enceinte a haute pression realisee selon ce procede
JPH01176898A (ja) * 1987-12-30 1989-07-13 Honda Motor Co Ltd 高圧容器
DE4035785C2 (de) * 1990-11-10 1994-09-08 Bosch Gmbh Robert Blasenspeicher
DE69206114T2 (de) * 1992-01-10 1996-04-18 Technical Products Group Inc Polstück für ein fasergewickeltes Druckgefäss.
JPH066701U (ja) * 1992-03-20 1994-01-28 エヌオーケー株式会社 アキュムレータ
FR2744517B1 (fr) * 1996-02-01 1998-04-03 Aquitaine Composites Reservoir composite pour fluide sous pression et son procede de realisation
US5938209A (en) * 1997-02-14 1999-08-17 Alternative Fuel Systems, Inc. Seal system for fluid pressure vessels
JPH1113995A (ja) * 1997-06-23 1999-01-22 Kobe Steel Ltd プラスチックライナーfrp圧力容器の口金構造
DE19751411C1 (de) * 1997-11-14 1999-01-14 Mannesmann Ag Composite-Druckbehälter zur Speicherung von gasförmigen Medien unter Druck mit einem Liner aus Kunststoff
NZ513489A (en) * 1999-02-16 2002-12-20 Alliant Techsystems Inc Closure assembly for lined tanks, and vehicles equipped with the same
DE10000705A1 (de) * 2000-01-10 2001-07-19 Ralph Funck Druckbehälter zur Speicherung von flüssigen und/oder gasförmigen Medien unter Druck bestehend aus einem Kunststoff-Kernbehälter der mit faserverstärkten Kunststoffen verstärkt ist und Verfahren zu dessen Herstellung
US6484900B1 (en) * 2000-01-19 2002-11-26 W. C. Bradley Company Transparent fuel canister
AU2004244652B2 (en) * 2004-01-06 2011-09-29 Eaton Corporation Trapped gas removal in liquid-gas accumulator
US20080128439A1 (en) * 2004-02-06 2008-06-05 Han-Chin Lai Sealing mechanism for diaphragm tank
US7108016B2 (en) * 2004-03-08 2006-09-19 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Lightweight low permeation piston-in-sleeve accumulator
GB2419381A (en) * 2004-10-19 2006-04-26 Silvertown U K Ltd Blow moulded bladder for hydraulic accumulator
US7493916B2 (en) * 2005-12-12 2009-02-24 Bosch Rexroth Corporation Pressure vessel with accumulator isolation device

Also Published As

Publication number Publication date
JP2009524778A (ja) 2009-07-02
CN101331355A (zh) 2008-12-24
DE502006005144D1 (de) 2009-11-26
DE102006004120A1 (de) 2007-07-26
ATE445803T1 (de) 2009-10-15
EP1977154A1 (de) 2008-10-08
JP5129157B2 (ja) 2013-01-23
WO2007085277A1 (de) 2007-08-02
ES2333818T3 (es) 2010-03-01
US7637285B2 (en) 2009-12-29
US20090107570A1 (en) 2009-04-30
HK1125442A1 (en) 2009-08-07
CN101331355B (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
EP1977154B1 (de) Hydrospeicher
EP1977153B1 (de) Druckbehälter
EP1989477B1 (de) Druckbehälter zur speicherung von flüssigen oder gasförmigen medien
EP1200768B1 (de) Druckbehälter und verfahren zu seiner herstellung
DE102007011211B3 (de) Druckbehälter zur Speicherung von flüssigen oder gasförmigen Medien
EP2718570B1 (de) Druckbehälter
EP3374685B1 (de) Verbesserter antistatischer drucktank
WO2001051844A2 (de) Druckbehälter zur speicherung von flüssigen und/oder gasförmigen medien unter druck, bestehend aus einem kunststoff-kernbehälter, der mit faserverstärkten kunststoffen verstärkt ist und verfahren zu dessen herstellung
DE102010018700A1 (de) Druckbehälter
EP2742273A1 (de) Vorrichtung zur speicherung und abgabe von flüssigen und/oder gasförmigen medien unter druck sowie kraftstoffenergieumwandlungsvorrichtung und verfahren zur montage einer vorrichtung zur speicherung und abgabe von flüssigen und/oder gasförmigen medien unter druck
WO2012151709A1 (de) Zylinderschotthalterung
WO2022136045A1 (de) Drucktank für gasbetriebenes fahrzeug
EP3555484A1 (de) Zylinder-kolben-vorrichtung mit einem aus einem faserverbundwerkstoff gefertigten zylinder
DE2506928B2 (de) Gebirgsschlagventil für hydraulische Grubenstempel
EP0367721B1 (de) Verschliessbares Gefäss, insbesondere Druckgefäss
DE102014013249B4 (de) Druckbehälter
DE102011120041A1 (de) Druckbehälter zur Speicherung von fluiden Medien und Verfahren zur Herstellung eines derartigen Druckbehälters sowie Anschlussstück für einen Druckbehälter
EP4174358B1 (de) Druckbehälter mit mehreren seitlichen ausströmöffnungen
EP4341589A1 (de) Dichtungseinrichtung für eine stange
EP2189703B1 (de) Sicherheitseinrichtung an einem Hochdruckanschluss für ein Hydraulikgerät
EP1651859B1 (de) Hydraulischer koppler und kraftstoffeinspritzventil
EP3067570A1 (de) Kolbenspeicher
DE102013007514A1 (de) Druckbehälter zur Speicherung von fluiden Medien
EP0987475B1 (de) Restdruckventil
CH704908A2 (de) Wirkzylinder.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006005144

Country of ref document: DE

Date of ref document: 20091126

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2333818

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091014

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

26N No opposition filed

Effective date: 20100715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100115

BERE Be: lapsed

Owner name: HYDAC TECHNOLOGY G.M.B.H.

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100415

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130923

Year of fee payment: 8

Ref country code: ES

Payment date: 20130902

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140924

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140908

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 445803

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140926

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150926

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230726

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230906

Year of fee payment: 18

Ref country code: DE

Payment date: 20230930

Year of fee payment: 18