Beschreibung
Titel
Anlage zur trockenen Umwandlung eines Material -Gefüges von Halbzeugen
Die vorliegende Erfindung betrifft eine Anlage zur trockenen Umwandlung eines Material- Gefüges von Halbzeugen nach dem Anspruch 1.
Stand der Technik
Zur Verbesserung der Materialeigenschaften metallischer Bauelemente ist es bekannt, mittels Wärmebehandlungsverfahren deren Materialgefüge zu beeinflussen. Neben einer ganzen Vielzahl von Metallen eignen sich für solche Behandlungsverfahren insbesondere Stähle, von denen wiederum beispielsweise 10006 gerne mit solchen Zwischenstufenvergütungsverfahren behandelt wird.
Bezogen auf 100Cr6 wird beispielsweise zuerst eine Erhitzung des Materials in einen Temperaturbereich von etwa 850 °C durchgeführt, so dass sich in dem Material das so genannte Austenit- Gefüge einstellt. Anschließend müssen die so erhitzten Bauteile rasch auf die Zwischenstufen-Vergütungstemperatur abgeschreckt werden. Bevorzugt wird hier ein Temperaturbereich von ca. 220 °C, bei dem sich das so genannte Bainit-Gefüge einstellt. Diese Temperatur liegt jedoch nur geringfügig oberhalb der so genannten Martensit- Starttemperatur, auf die die Werkstücke während des Gefügeumwandlungsprozesses auf keinen Fall abkühlen dürfen, da dies massive Störungen des gewünschten, besonders vorteilhaften Bainit- Gefüges zur Folge haben würde.
Aus der DE 100 44 362 C2 geht dazu ein Anlagenkonzept hervor, bei welchem die zu vergütenden Bauteile, welche auch als Halbzeuge bezeichnet werden, nach dem Abschrecken und geregeltem Abfangen bei Umwandlungstemperatur in einem beheizten Transportwagen umgesetzt und mit diesem zu einem Glühofen transportiert werden.
Die Bauteile werden dazu beim Umsetzen aus der unter Gas-Überdruck stehenden Abschreckkammer entnommen und mit Hilfe eines Transportwagens zu der im Prozessfluss nachfolgend angeordneten Umwandlungskammer transportiert, eingesetzt und darin in der Temperatur konstant gehalten.
Beim Umsetzen der Bauteile aus der Abschreckkammer besteht dabei einerseits die Gefahr, dass aufgrund zu niedriger Umgebungs-Gastemperatur die Außenbereiche der Bauteile, insbesondere dünnwandige Abschnitte der Bauteile, zu stark abgekühlt werden. Es kann daher nicht ausgeschlossen werden, dass die Gastemperatur kurzzeitig die Marten- sit- Starttemperatur unterschreitet und damit die Gefügeausbildung z. B. von Bainit in den Bauteilen zumindest gefährdet, wenn nicht sogar verhindert. Dies deshalb, da die Randbereiche eines Bauteils, insbesondere dünnwandige Stellen, Ecken oder Gewindegänge sehr schnell die Gastemperatur annehmen.
Andererseits besteht die Gefahr, dass beim Umsetzen durch die in den Bauteilen einsetzende Gefügeumwandlung ein unzulässiges Ansteigen der Bauteiletemperatur aufgrund der dabei hervorgerufenen, exothermen Prozesse eintritt, was durch dabei einsetzende Gefügeumwandlung in Perlit und/oder kontinuierliches Bainit ebenfalls massive Störungen bei der Umwandlung des Materialgefüges hervorruft.
Aufgabe und Vorteile der vorliegenden Erfindung
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Anlage zur trockenen Umwandlung eines Material-Gefüges von Halbzeugen zu verbessern.
Diese Aufgabe wird ausgehend von einer Anlage zur trockenen Umwandlung eines Material-Gefüges der einleitend genannten Art durch die Merkmale des Anspruchs 1 gelöst. Durch die in den Unteransprüchen genannten Merkmale sind vorteilhafte Ausführungen und Weiterbildungen der Erfindung möglich.
Dementsprechend kann eine Anlage zur trockenen Umwandlung eines Materialgefüges von Halbzeugen, insbesondere zum trockenen Bainitisieren, eine Abschreckkammer und eine im Bearbeitungsfluss nachfolgend angeordneten Gefüge-Umwandlungskammer umfassen, wobei jeweils ein Innenraum der beiden Kammern zumindest während des betreffenden Verfahrensschrittes zur Umwandlung des Materialgefüges mit Gasüberdruck be-
aufschlagt ist. Erfindungsgemäß ist dabei vorgesehen, dass Mittel zur Aufrecherhaltung eines auf das Halbzeug wirkenden Mindestgasüberdrucks während eines Umsetzens des Halbzeugs aus der Abschreckkammer in die Gefüge-Umwandlungskammer vorgesehen sind.
Dieser Vorgehensweise liegt die Erkenntnis zugrunde, dass durch Vermeidung einer drastischen Entspannung eines unter Druck stehenden Gases sicher gestellt ist, dass im Umgebungsbereich der Halbzeuge die Gastemperatur und infolgedessen auch die Temperatur der Halbzeuge nicht unerwünscht tief abfallen kann.
Ein weiterer Grund für Überdruck in der Umwandlungskammer ist die bessere Wärmeabfuhr der Bauteile während der Gefügeumwandlung. Dadurch kann die Bauteiltemperatur konstant gehalten werden.
In einer ersten Ausführungsform der vorliegenden Erfindung können die Mittel zur Aufrecherhaltung eines Mindestgasdrucks auf die Halbzeuge beim Umsetzen der Halbzeuge daher eine Trennwand mit einer Tür zwischen der Abschreckkammer und der Gefüge- Umwandlungskammer umfassen.
Dazu können die Abschreck- und Gefüge-Umwandlungskammer derart aneinander angrenzend angeordnet sein, so dass nach Ende des Abschreckvorgangs nur die Tür in der Trennwand zwischen den beiden unter Druck stehenden Kammern geöffnet werden muss, um eine Charge abzuschreckenden Halbzeugs aus der unter Gas-Überdruck stehenden Abschreckkammer unmittelbar in die ebenfalls unter Gas-Überdruck stehende Gefüge-Umwandlungskammer umsetzen zu können. Es ist hierbei also nicht mehr notwendig, das die Halbzeuge umgebende Gas bis auf den Umgebungsdruck zu entspannen. Somit entfällt auch die Gefahr einer unzulässigen Temperaturabsenkung, die ggf. den Umwandlungsprozess gefährden könnte. Weiterhin ist mit dieser Ausführungsform unmittelbar benachbarter Kammern auch ein derart rasches Umsetzen der Halbzeuge gewährleistet, dass die Halbzeuge bereits in der Gefüge-Umwandlungskammer sind, bevor ein markanter Temperaturanstieg aufgrund des darin einsetzenden exothermen Prozesses erfolgen kann.
In einer davon abgewandelten Ausführungsform ist es weiterhin vorstellbar, dass eine einzelne Abschreckkammer mit mehreren Gefüge-Umwandlungskammern entsprechend der ersten Ausführungsform verbunden ist. Dies ist insbesondere dann vorteilhaft, wenn
- A -
die Verweildauer des Halbzeuges für die Zwischenstufenvergütung in einer Gefüge- Umwandlungskammer verhältnismäßig groß ist.
Bei einer derartig aufgebauten Anlage kann die sie umfassende Abschreckkammer, jeweils nach erfolgtem Abschreckvorgang, nach und nach verschiedene, ihr zugeordnete Gefüge-Umwandlungskammern mit entsprechenden Chargen umzuwandelnden Halbzeuges in der Form entsprechender Bauteile versorgen. Damit ist eine zeit- und kostenoptimierte Prozessführung möglich.
In einer weiteren Ausführungsform ist es beispielsweise auch vorstellbar, dass die Mittel zur Aufrechterhaltung des Mindestgasdrucks auf die Halbzeuge beim Umsetzen der Halbzeuge eine separat verfahrbare Druckkammer zwischen der Abschreckkammer und der Gefüge-Umwandlungskammer umfassen. Diese könnten beispielsweise in der Form einer fahrbaren Schleuse ausgebildet sein, die vorzugsweise mit entsprechenden Mitteln ausgestattet ist, wie sie auch die Gefüge-Umwandlungskammer aufweist. Damit kann sicher gestellt werden, dass, wie in den oben vorgeschlagenen Ausführungsformen, einerseits keine Druckreduzierung des die Halbzeuge umgebenden Gasdruckes bis auf den Umgebungsdruck erforderlich ist, und somit keine unzulässige Abkühlung des Gases eintreten kann. Andererseits ist auch gewährleistet, dass bei bereits einsetzendem Temperaturanstieg aufgrund des in den Halbzeugen ablaufenden exothermen Prozesses die dabei entstehende Wärme in ausreichendem Maße abgeführt wird, so dass auch keine Probleme in der Gefüge-Umwandlung aufgrund zu hoher Temperaturen entstehen können.
Mit einem derart ausgebildeten Mittel zur Aufrechterhaltung eines auf das Halbzeug wirkenden Mindestgasüberdrucks während des Umsetzvorgangs kann eine Anlage zur Zwischenstufenvergütung noch weiter in ihrer Wirtschaftlichkeit verbessert werden.
Bezüglich des in der Abschreckkammer und in der Gefüge-Umwandlungskammer vorherrschenden Druckes kann in einer bevorzugten Ausführungsform in beiden Kammern ein im Wesentlichen gleicher Gasdruck vorherrschen. Dies hat den Vorteil, dass beim Umsetzen zwischen der Abschreckkammer und der Gefüge-Umwandlungskammer kein Temperatursturz im Gas aufgrund einer Gasentspannung auftreten kann. Weiterhin bewirkt der hohe Druck in der Gefüge-Umwandlungskammer eine sehr gute Wärmeabfuhr von dem zu vergütenden Halbzeug.
Ggf. kann vor der Entnahme des größten Teils oder auch vollständig im Gefüge umgewandelten Halbzeuges aus der Gefügeumwandlungskammer eine stufenweise oder auch
langsame Entspannung des Gasdrucks durch entsprechend geeignete Mittel vorgesehen sein.
In einer demgegenüber abgewandelten Ausführungsform kann zwischen der Abschreckkammer und der Umwandlungskammer zur Durchführung des jeweiligen Prozessschrittes auch ein Druckverhältnis vorherrschen, das vorzugsweise jedoch nicht größer ist als in etwa das Verhältnis 3:1. Mit diesem Verhältnis kann immer noch gewährleistet werden, dass durch die dabei verhältnismäßig geringe Entspannung des Gases keine unzulässige Abkühlung des Gases und dadurch der zu vergütenden Bauteile erfolgt. Übliche Druckbereiche in der Abschreckkammer können in etwa im Bereich von 10 bis 30 bar liegen. Um ausreichend Wärme abführen zu können, sollte das Niveau der Umwandlungskammer längerfristig einen Druckbereich von 3 bar jedoch nicht unterschreiten.
Um die Gefüge-Umwandlungskammer entsprechend temperieren zu können, weist die Anlage vorzugsweise weiterhin eine Temperaturregelung auf. Damit kann die Gefüge- Umwandlungskammer mittels entsprechender Heizelemente vor Einbringen der zu vergütenden Charge an Halbzeugen auf die entsprechende Temperatur vorgewärmt, und nach Einbringen der Halbzeuge mittels entsprechender Kühlmittel genau auf der gewünschten Temperatur gehalten werden. Diese Kühlmittel umfassen insbesondere einen die Charge umströmenden, unter Überdruck stehenden Gasstrom. Ggf. kann zusätzlich noch eine Kühlvorrichtung im Gasstrom angeordnet sein, um die von der Charge aufgenommene Abwärme aus dem Gasstrom wieder abführen zu können.
Zur Erzeugung und Aufrecherhaltung des Gasstroms kann die Gefüge- Umwandlungskammer im Weiteren eine Gasumwälzvorrichtung umfassen, insbesondere vorteilhaft eignen sich hierzu Gasgebläse oder Ventilatoren.
Zur Umsetzung des Halbzeugs von der Abschreckkammer in die Gefüge- Umwandlungskammer kann die Anlage im Weiteren eine Transportvorrichtung umfassen. Bei lediglich durch eine mit einer Tür versehenen Trennwand getrennten Abschreck- und Gefüge-Umwandlungskammer könnte diese beispielsweise getaktet betrieben werden. D.h. nach erfolgtem Abschreckvorgang und Öffnen der die beiden Kammern trennenden Tür, kann die Transportvorrichtung aktiviert werden, woraufhin sie die Halbzeuge aus der Abschreckkammer in die Umwandlungskammer umsetzt.
Denkbar sind hierzu beispielsweise entsprechend temperaturgeeignete Fördermittel wie
Kettenförderer, hintereinander angeordnete, drehbare Walzen oder dergleichen mehr. Für eine z. B. sternförmig aufgebaute Anlage mit mehreren Gefüge-Umwandlungskammern kann diese Transportvorrichtung beispielsweise im Weiteren eine Drehscheibe umfassen, um eine entsprechende Ausrichtung der Transportmittel zur nächsten zu beschickenden Gefüge-Umwandlungskammer zu ermöglichen, oder selbstverständlich auch eine Aufnahme einer neu abzuschreckenden Charge aus einem stromaufwärts angeordneten Hochtemperaturofen.
Die Fördergeschwindigkeit der Transportvorrichtung ist dabei vorzugsweise mindestens so groß, dass die für das Umsetzen der Halbzeuge erforderliche Zeit kürzer ist, als die Zeit, welche zwischen Ende des Abschreckvorgangs und einem markanten Anstieg der Temperatur des Halbzeuges aufgrund einer darin einsetzenden Gefüge-Umwandlung vergeht. Als markanter Anstieg der Temperatur wird hierbei der Bereich um den Wendepunkt einer den zeitlichen Verlauf der Gefüge-Umwandlung wiedergebenden Kurve angesehen.
Um die zu vergütenden Bauteile nach Ablauf des Prozessbereiches einer hohen Gefüge- Umwandlungsrate aus der Gefüge-Umwandlungskammer entnehmen zu können, kann die Anlage im Weiteren vorzugsweise eine Druckschleuse aufweisen. Hiermit können die Bauteile ohne wesentliche Druckminderung in der Gefüge-Umwandlungskammer aus dieser ausgeschleust und im Anschluss daran gegebenenfalls an eine ihr nachfolgend angeordnete, mit Normaldruck beaufschlagte Temperierkammer, z. B. einem Umluftofen, zum Vollzug der restlichen Gefüge-Umwandlung eingebracht werden.
Ausführungsbeispiel
Die Erfindung wird anhand der Zeichnungen und der nachfolgend darauf bezugnehmenden Beschreibung näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung einer Anlage zur trockenen Umwandlung eines Materialgefüges von Halbzeug;
Figur 2 einen schematisch dargestellten Aufbau einer Materialgefüge-
Umwandlungskammer.
Figur 3 ein Diagramm, bei dem über einer horizontalen Zeitachse der Ver-
lauf einer Umwandlung eines Materialgefüges aufgetragen ist; und
Figur 4 eine weitere schematische Darstellung einer Anlage zur trockenen
Umwandlung eines Materialgefüges von Halbzeugen mit darunter dargestellten, den jeweiligen Prozessschritten zugeordneten Zeit- /Temperaturdiagramm.
Im Detail zeigt nun die Figur 1 eine Anlage 1 zur trockenen Umwandlung eines Materialgefüges von Halbzeugen, insbesondere zum trockenen Bainitisieren. Sie umfasst eine Abschreckkammer 2 und eine im Bearbeitungsfluss nachfolgend angeordnete Gefüge- Umwandlungskammer 3, wobei jeweils ein Innenraum der beiden Kammern zumindest während des betreffenden Verfahrensschrittes zur Umwandlung des Materialgefüges mit Gasüberdruck beaufschlagt ist. Die zu vergütenden Halbzeuge sind hier beispielhaft als Chargen 9 dargestellt.
Die Halbzeuge dürfen beim Umsetzen zwischen der Abschreckkammer und der Gefüge- Umwandlungskammer keine wesentliche Temperaturänderung erfahren. Insbesondere kritisch sind hierbei die Außenbereiche oder auch dünnwandige Bereiche, die rasch zur Unterschreitung eines zulässigen Temperaturbereichs neigen. Als zulässige Temperaturschwankungsbreite wird in etwa der Bereich von
+/■ 5° C gegenüber der in der Abschreckkammer dem Halbzeug aufgeprägten Temperatur von ca. 220° C angesehen.
Erfindungsgemäß sind nun Mittel vorgesehen, die zur Aufrechterhaltung eines auf das Halbzeug wirkenden Mindestgasüberdrucks während eines Umsetzens der Halbzeuge aus der Abschreckkammer in die Gefüge-Umwandlungskammer geeignet sind. In dieser Ausführungsform umfassen diese Mittel eine Trennwand 4 mit einer Tür zwischen der Abschreckkammer 2 und der Gefüge-Umwandlungskammer 3. Da beide Kammern gleichzeitig mit Gasüberdruck beaufschlagt sind, muss vor Öffnen der Tür ein Druckausgleich zwischen beiden Kammern erfolgen. Dies erfolgt vorzugsweise durch eine Druckreduzierung in der Abschreckkammer. Die Halbzeuge der Charge 9 bleiben dabei aber weiterhin zumindest mit dem in der Gefüge-Umwandlungskammer vorherrschenden Gasüberdruck beaufschlagt, so dass eine unzulässige Materialabkühlung vermieden wird.
Die Charge 9 kann anschließend aus der Abschreckkammer zur Durchführung des gegenüber dem Abschreckvorgangs (ca. 35 bis 40 sec.) wesentlich länger dauernden Gefü-
ge-Umwandlungsprozesses (abhängig von Material, Bauteilform und Bauteilgröße der Halbzeuge bis zu mehreren Stunden) umgesetzt werden.
Nach Beendigung des Umsetzvorgangs für die Charge 9 kann die Tür in der Trennwand 4 zwischen den beiden Kammern 2, 3 wieder geschlossen werden, um diese druckdicht voneinander zu trennen. Die Abschreckkammer 2 kann dann zur Aufnahme einer neuen, abzuschreckenden Charge 9 vorbereitet werden, während in der Gefüge- Umwandlungskammer in dem umgesetzten Halbzeug der Gefüge-Umwandlungsprozess einsetzt.
Zur Bereitstellung der für die Gefüge-Umwandlung erforderlichen Temperatur kann die Gefüge-Umwandlungskammer 3 entsprechend der Figur 2 eine Heizvorrichtung 10 und/oder eine Kühlvorrichtung 11 umfassen, die bevorzugt über eine Temperaturregelung 12, die einen Temperatursensor 12.1 umfasst, kontrolliert werden. Zur gleichmäßigen Temperaturverteilung im Inneren der Gefüge-Umwandlungskammer 3 sowie zur besseren Wärmeabfuhr, kann diese im Weiteren eine oder mehrere Gasumwälzvorrichtungen 13 umfassen, die hier in der vorliegenden Ausführungsform als Gebläse oder Ventilatoren ausgebildet sind. Um die Charge 9 sowohl von der Abschreckkammer 2 in die Gefüge- Umwandlungskammer 3 umsetzen zu können, als auch ggf. in der Gefüge- Umwandlungskammer weiter zu transportieren, umfasst die Anlage im Weiteren eine Transportvorrichtung 14. Insbesondere vorteilhaft kann diese Transportvorrichtung 14 in getakteter Weise betrieben werden. Damit ist es möglich, die Chargen 9 durch die gesamte Anlage 1 in entsprechenden Taktschritten weiter zu transportieren. Jene Anlagenteile, in welchen das Halbzeug eine größere Verweildauer zur Durchführung des jeweiligen Prozessschrittes erfordern, können dazu derart ausgebildet sein, dass sie zur Aufnahme mehrerer Chargen geeignet sind. Diese Chargen durchlaufen dann entsprechend des getakteten Transportes den jeweiligen Anlagenabschnitt, z. B. die Gefüge- Umwandlungskammer 3.
Weitere Anlagenteile sind aus der Figur 1 zu entnehmen. Darin ist der Abschreckkammer im Prozessablauf vorgeschaltet ein Hochtemperaturofen 7 dargestellt. In diesem sind beispielhaft drei Chargen 9 angeordnet, um auf eine Temperatur erhitzt zu werden, von welcher sie in der Abschreckkammer wieder abgekühlt werden. Hierbei handelt es sich um die Austenitisierungstemperatur, welche bei 100Cr6 in etwa bei 850° C liegt.
Die beiden Kammern 2, 7 sind mit einer entsprechend der Trennwand 4 ausgebildeten
Trennwand 6 voneinander getrennt. Da der Hochtemperaturofen 7 vorzugsweise unter Vakuum betrieben wird, ist diesem eingangsseitig eine Schleuse 8 mit zwei Schleusentrennwände 8.1 und 8.2 vorgeschaltet.
Auch die Gefüge-Umwandlungskammer 3 ist, in dieser Ausführungsform, mit einer Schleuse 5 und ihr zugeordneten Trennwänden 5.1 und 5.2 gegenüber dem außen vorherrschenden Umgebungsdruck abgedichtet.
In einer einfacheren Ausführungsform, z. B. bei entsprechend niedrigem Betriebsdruck in der Gefüge-Umwandlungskammer, kann anstelle der Schleuse 5 auch lediglich eine Trennwand 5.1 mit einer darin entsprechend angeordneten Tür für die Entnahme der darin umgewandelten Halbzeuge vorgesehen sein.
Der Verlauf der Gefüge-Umwandlung in den Halbzeugen ist in der Figur 3 beispielhaft in einem Diagramm dargestellt. Horizontal ist die Zeit in Minuten aufgetragen und vertikal der Anteil der bereits erfolgten Gefüge-Umwandlung in den betreffenden Halbzeugen. Daraus ist ersichtlich, dass relativ rasch nach dem Abschrecken eine starke Umwandlungsrate, hier beispielhaft in etwa bei 8 min. einsetzt und in etwa 15 min. andauert. Dieser Bereich wird durch die beiden Wendepunkte 15, 16 der die Umwandlung wiedergebenden Kurve 17 begrenzt.
Bevorzugt ist die Anlage so aufgebaut, dass das umzuwandelnde Halbzeug während dieser Zeit durch die Gefüge-Umwandlungskammer stabil in seiner Temperatur gehalten wird. Beispielhaft ist für den Beginn der Zeitpunkt 18 angegeben, bis zu dem das Umsetzen des Halbzeugs aus der Abschreckkammer in die Gefüge-Umwandlungskammer abgeschlossen sein sollte. Eine Entnahme des Halbzeugs aus der Gefüge- Umwandlungskammer sollte vorzugsweise erst nach dem Zeitpunkt 19 erfolgen, zu welchem bereits etwa 80 % des Materialgefüges umgewandelt ist.
Die Figur 4 zeigt eine weitere Ausführungsform einer Anlage 1, die gegenüber der Ausführungsform in der Figur 1 um einen Umluftofen 20 erweitert ist, welcher mit Umgebungsdruck betrieben wird. In diesem Umluftofen verbleibt das Halbzeug so lange, bis auch noch das restliche Materialgefüge umgewandelt ist.
Unterhalb der in Figur 4 dargestellten Anlage 1 ist eine schematische Temperaturkurve in Bezug auf die darüber liegenden Anlagenkomponenten (Hochtemperaturofen, Abschreck-
kammer, Umwandlungskammer, Schleuse und Umluftofen) dargestellt. Dabei ist über die horizontale x-Achse für den betreffenden Verfahrensweg in der Anlage die Temperatur in Grad Celsius aufgetragen. Der höchste Punkt der Kurve stellt die Austenitisierungstempe- ratur TAustdar, die in etwa bei 850° C liegt, dar, und mit welcher die Halbzeuge in die Abschreckkammer eingebracht werden. Aus der Abschreckkammer kommen sie mit der für den weiteren Prozess konstant zu haltenden Zwischenstufenvergütungstemperatur, hier Bainitisierungstemperatur TBaιn, die bei etwa 220° C liegt. Nach der vollständigen Material- Gefügeumwandlung können die Bauteile dann auf Umgebungstemperatur abgekühlt werden.