EP4015657B1 - Thermisches behandeln von bauteilen - Google Patents

Thermisches behandeln von bauteilen Download PDF

Info

Publication number
EP4015657B1
EP4015657B1 EP21209527.7A EP21209527A EP4015657B1 EP 4015657 B1 EP4015657 B1 EP 4015657B1 EP 21209527 A EP21209527 A EP 21209527A EP 4015657 B1 EP4015657 B1 EP 4015657B1
Authority
EP
European Patent Office
Prior art keywords
component
furnace
components
oven
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21209527.7A
Other languages
English (en)
French (fr)
Other versions
EP4015657A1 (de
EP4015657C0 (de
Inventor
Andreas Reinartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwartz GmbH
Original Assignee
Schwartz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwartz GmbH filed Critical Schwartz GmbH
Publication of EP4015657A1 publication Critical patent/EP4015657A1/de
Application granted granted Critical
Publication of EP4015657B1 publication Critical patent/EP4015657B1/de
Publication of EP4015657C0 publication Critical patent/EP4015657C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the invention relates to a method and a device for the thermal treatment of metallic components, in particular steel components for a motor vehicle.
  • the object of the present invention is to accelerate the thermal treatment of components, which differs from region to region, based on the described prior art.
  • Components can be thermally treated using the described method.
  • the components are preferably steel components.
  • the steel is preferably 22MnB5.
  • components for a motor vehicle, in particular B-pillars can be thermally treated using the described method.
  • the components are preferably press-hardened in a press and thus hot-formed.
  • the method preferably includes, for each of the components, as a further step that the component is transferred to a press after the thermal treatment and is press-hardened there.
  • the described method is a method for the thermal treatment and press-hardening of metal components.
  • the method comprises steps a) to d). For a specific component, these are carried out in the order given. Preferably, several components are thermally treated one after the other, with the thermal treatment of one component being started before the thermal treatment of a previous component is completed.
  • steps a) to d) the component passes through the first oven and the tempering station.
  • the first oven and the tempering station are different components that are spatially separated from one another.
  • the component is heated in the first furnace, preferably to a temperature above the austenitizing temperature of the component.
  • the heating takes place to a temperature above the AC3 temperature of the component.
  • a furnace is understood to mean a device which is brought to an adjustable temperature inside and into which a component can be introduced. Over time, the component takes on the temperature prevailing inside the furnace. The heat is transferred to the component by thermal radiation.
  • the first furnace is preferably a continuous furnace.
  • a continuous furnace is a furnace through which the component can be moved, the component being heated as it passes through the furnace.
  • the first furnace is preferably a roller hearth furnace.
  • the component is preferably heated by burners, in particular Gas burner. This allows the component to have a particularly evenly distributed temperature.
  • the entire component is heated in the first oven.
  • the component is completely taken up by the first oven.
  • heating by a particularly large temperature difference can be achieved with an oven.
  • a component With an oven, a component can be heated from room temperature to a temperature in the range of the AC3 temperature of the component. Such extensive heating is not possible with many other heating methods, or at least not without disproportionate effort.
  • Heating in an oven is particularly in contrast to heating by so-called "direct energization". This would make it difficult to heat the component evenly and to a sufficiently high level. With direct energization, the speed of heating is more important. In addition, direct energization requires contact with the component. In step a) of the process described, heating is preferably carried out without contact. This does not exclude the component being moved through the first oven using transport rollers and thus being in contact with the transport rollers. Heating is contactless if the heat is introduced into the component via a gas and/or thermal radiation.
  • step b) the component is held at the exit of the first oven in such a way that a first area of the component cools down outside the first oven, while a second area of the component remains inside the first oven.
  • the component is at rest for this step. For a treatment time, it is located at the exit of the first oven in such a way that the component is partly inside and partly outside the first oven.
  • the part of the component held outside the first oven in step b) is the first area of the component.
  • the part of the component held inside the first oven in step b) is the second area of the component.
  • the component therefore protrudes from the exit of the first oven.
  • the protruding first area of the component cools down in the process. This can happen because the component gives off heat via radiation.
  • the component can be moved in a transport direction through the first furnace and all subsequent elements of the device. It is preferred that the first region of the component is arranged in front of the second region of the component in the transport direction. This means that the first region leaves the first furnace first. Particularly preferably, a dividing line between the first region and the second region runs transversely to the transport direction.
  • the method described is particularly suitable for such components because these components can be held particularly easily at the exit of the first furnace according to step b).
  • the second region remaining in the first furnace is exposed to a higher temperature than the first region.
  • the temperature of the second region in step b) can rise, remain constant or fall. If the temperature of the second region falls, this occurs more slowly than the cooling of the first region.
  • the first region has a first temperature and the second region has a second temperature, the first temperature being lower than the second temperature, preferably by at least 100 K.
  • the two areas Due to the different thermal treatment of the two areas, the two areas can acquire different ductilities in the further course of the process.
  • the first area and the second area are preferably each connected areas.
  • the component preferably has exactly one first area, exactly one second area, a transition area between the first area and the second area and no further areas.
  • a simple division of the component into two areas is easiest to achieve by step b).
  • the first area and/or the second area are each made up of several non-connected sub-areas. This can be achieved by appropriately designing the exit of the first furnace.
  • step b) of the process the component is transferred from the first oven to the tempering station.
  • “From the first oven” refers to the position in which the component was held for step b). It is therefore not necessary for the Component is completely in the first oven at the start of step c).
  • the transfer according to step c) preferably takes place directly from the first oven to the tempering station. This means that the component does not pass through any further element between the first oven and the tempering station.
  • the tempering station is arranged downstream of the first oven in the transport direction.
  • the component can cool down.
  • the component is not actively cooled or heated during the transfer according to step b). This means that the component only cools down through radiation during the transfer.
  • step d) the component is locally thermally treated differently in the tempering station.
  • a temperature difference of at least 200 K is achieved between different areas of the component.
  • Steps b) and d) result in a locally different thermal treatment of the component, which is divided into two steps. This division can speed up the process overall. This is particularly the case if the components are thermally treated at partially overlapping times.
  • the components can be introduced into the first oven one after the other. Before a first component has reached the exit of the first oven, a second component can be introduced into the first oven. This is particularly the case with a continuous oven, through which a large number of components can be transported one after the other. As soon as the first component has reached the exit of the first oven, it can be treated there according to step b). The second component can still be transported through the first oven at the same time.
  • the first component Before the second component reaches the exit of the first oven, the first component can be transferred from the first oven to the tempering station.
  • the first component can be thermally treated in step d) in the tempering station, while the second component is thermally treated at the exit of the first oven according to step b).
  • the first component Before a third component reaches the exit of the first furnace, the first component can be removed from the tempering station and the second component can be transferred from the first furnace to the tempering station. This process can be continued for any number of components.
  • the process time for the locally different thermal treatment can be reduced by the described method to the extent that two components can be treated locally differently at the same time.
  • Step b) can be understood as a local pre-cooling, through which the treatment time in the tempering station is reduced. Since step b) can be carried out for one component while the previous component is thermally treated in the tempering station according to step d), the total time for the locally different thermal treatment is shortened.
  • the method described can also be used to thermally treat several components at the same time, provided that the components are moved through the device next to one another.
  • a group of two to four components can be placed next to one another in the first oven and thus moved through the first oven at the same time.
  • Steps b) to d) are also carried out simultaneously for the components in this group. This means that the device can be used to its full width. Different groups of components can be moved through the device one after the other and can thus be thermally treated in overlapping time.
  • the locally different thermal treatment in step d) can be carried out by increasing the temperature difference previously set in step c). However, it is not necessary for the first region to be treated uniformly in step d) and/or for the second region to be treated uniformly in step d).
  • the locally different thermal treatment in step d) can also be carried out by dividing the component into different regions in a different way than for step b). This is particularly advantageous in that the temperature control station enables the component to be divided more precisely into regions.
  • the temperature control station also enables the shape of the regions of the component to be freely designed, while the design of the exit of the first oven restricts the division for step b). For example, it may be possible for only one straight dividing line perpendicular to the transport direction to be possible between the first region and the second region in step b).
  • step d) the embodiment of the method is preferred in which in step d) the first region and the second region of the component are thermally treated differently.
  • a locally different thermal treatment is carried out in steps b) and d) with the same division of the component into areas. This reinforces the locally different thermal treatment from step b) in step d).
  • the two steps complement each other particularly well.
  • a temperature difference obtained in step b) is not partially canceled out again in step d).
  • a particularly sharp division into the first area and the second area can be obtained.
  • a temperature of the second region of the component in steps b) and/or d) is kept within 200 K, in particular 150 K, of the value present at the start of step b).
  • the "and" case is preferred.
  • the temperature of the second region is preferably kept high enough to prevent the dissolution of previously formed austenite.
  • the second region thus has lower ductility and higher strength. In this way, for example, the crash properties of a B-pillar for a motor vehicle can be specifically adjusted.
  • the temperature of the second region in steps b) to d) is kept high enough to prevent the dissolution of austenite.
  • the first furnace is a continuous furnace through which the component is conveyed in step a), wherein the component is stopped at the exit of the first furnace for step b).
  • the components can be transported through the first furnace one after the other. This means that a large number of components can be thermally treated automatically.
  • step b) the movement of the component is stopped so that the component is at rest for the duration of step b). This is advantageous because it allows a particularly sharp separation between the first area and the second area to be achieved. If the component were still moving during step b), the temperature in the component would decrease continuously over a larger transition area from the second area to the first area.
  • a transition area can arise in particular if a part of the component that is at the front in the transport direction begins to cool earlier than a part that follows when it leaves the first oven.
  • the component is preferably partially moved out of the first oven as quickly as possible and stopped as abruptly as possible.
  • the embodiment of the method is preferred in which the component for step b) is stopped by a stopper at the exit of the first furnace.
  • the stopper allows the component to be stopped particularly quickly.
  • the stopper is preferably movable in such a way that the stopper can block the path of the component for step b) and can release the path of the component after step b).
  • step b) is carried out such that the first region cools to a temperature in the range of 500 to 750 °C.
  • step b This is particularly possible in the preferred embodiment of the method in which the component is held at the exit of the first furnace for 0.5 to 5 seconds in step b).
  • the first oven, the tempering station and the second oven are three different components that are spatially separated from each other. During the transfer from the transfer station to the second oven, the component can cool down. This is in contrast to a solution in which all process steps are carried out in the same facility if possible, without having to transfer the component.
  • the second furnace is preferably a continuous furnace.
  • the second furnace is preferably a roller hearth furnace.
  • the entire component is thermally treated in the second furnace.
  • the component is completely taken up by the second furnace.
  • Thermal treatment in a furnace is in particular in contrast to heating by so-called "direct energization”.
  • Heating in the second furnace is preferably contactless.
  • the second furnace is preferably arranged downstream of the tempering station in the transport direction. If the device has a press, the press is preferably arranged downstream of the second furnace in the transport direction.
  • the thermal treatment in the second furnace gives the component a different temperature in the first area and in the second area than would otherwise be the case. This means that after the pressing process has been completed, the desired structure with the desired strength values is present in the first area and in the second area. In this respect, the present embodiment is aimed at applications in which corresponding structure compositions are desired.
  • the renewed thermal treatment in the second furnace also reduces a temperature difference between different areas of the component. Due to the smaller temperature difference between the areas, the geometric distortion of the components is reduced. In addition, this means that the components can lie flat on a roller hearth and can be reliably picked up by a press feed system.
  • the first component can be transferred from the tempering station to the second oven if the second component is transferred from the first furnace to the tempering station.
  • the first component can then be thermally treated in the second furnace, while the second component is thermally treated in the tempering station and the third component is thermally treated at the exit of the first furnace.
  • a device for the thermal treatment of metallic components comprises a first furnace, a tempering station and a control device.
  • the control device is designed to carry out the method described.
  • the advantages and features of the method are applicable and transferable to the device, and vice versa.
  • the method is preferably carried out with the device.
  • the device preferably has conveying means with which the components can be conveyed through the device.
  • the device can have transport rollers as conveying means via which the components can be conveyed through the first oven, the tempering station and, if present, the second oven and the press.
  • the device is preferably designed such that the first oven, the tempering station and, if present, the second oven and/or the press can be passed through in the order mentioned without passing through further elements in between.
  • the device further comprises a transfer device for transferring the components from the first furnace to the tempering station, wherein the transfer device has a stopper for stopping the components at the exit of the first furnace.
  • the transfer device can be part of the previously described conveying means.
  • the part of the conveying means arranged between the first oven and the tempering station can be regarded as a transfer device.
  • Fig.1 shows a device 1 for the thermal treatment of metallic components 2.
  • the device 1 comprises a first furnace 3, a tempering station 5 and a second furnace 6.
  • the first furnace 3, the tempering station 5 and the second furnace 6 are arranged such that the components 2 can first pass through the first furnace 3, then the tempering station 5 and then the second furnace 6.
  • the device 1 also has conveying means 12. These serve to convey the components 2 through the device 1 with their elements.
  • the transport direction is in Fig.1 from left to right.
  • the first oven 3 and the second oven 6 are each designed as a continuous oven.
  • the components 2 can be transported through the first oven 3 and through the second oven 6 by the conveying means 12.
  • the part of the conveying means 12 arranged between the first oven 3 and the tempering station 5 is a transfer device 13 for transferring the components 2 from the first oven 3 to the tempering station 5.
  • Fig.1 Four components 2 are shown as an example.
  • One component 2 is conveyed through the first furnace 3 as indicated by an arrow (step a)).
  • a second component 2 was stopped by a stopper 9 and is at rest at the exit 4 of the first furnace 3 (step b)).
  • a third component 2 is thermally treated locally in a different way in the tempering station 5 using the nozzle 8 and a heating device (not shown) (step d)).
  • a fourth component 2 is conveyed through the second furnace 6 as indicated by an arrow (step f)).
  • each component 2 is conveyed through the first furnace 3 in step a) and stopped at the exit 4 of the first furnace 3 for step b).
  • the transfer device 13 has a stopper 9.
  • the stopper 9 is movable in such a way that the stopper 9 can be moved into the transport path of the component 2 to stop a component 2. After step b) has been completed, the stopper 9 can be moved out of the transport path to clear the path for the component 2 again.
  • step d) the first area 10 and the second area 11 of the component 2 are thermally treated differently in the tempering station 5. To do this, the first area 10 of the component 2 is cooled with the nozzle 8 of the tempering station 5, while the temperature of the second area 11 of the component 2 is kept within a window of +/-150 K around the value present at the start of step b). In step d), the temperature of the second area 11 of the component 2 is also kept within a window of +/- 150 K around the value present at the start of step b).
  • Fig. 2 shows a temperature curve for Fig.1 described method.
  • the temperature of the component 2 is shown versus time t.
  • the treatment time in the first oven 3 is given as t O1
  • the duration of step b) is given as a holding time t H.
  • the transfer time from the first oven 3 to the tempering station 5 is given as t t1 , the treatment time in the tempering station 5 as t temp , the transfer time from the tempering station 5 to the second oven 6 as t t2 and the treatment time in the second oven 6 as t O2 .
  • the temperature curve shown with the holding time t H splits into the temperature T 1 of the first region 10 and the temperature T 2 of the second region 11.
  • the component 2 is transferred from the second furnace 6 into a press (not shown in the figures) and formed there.
  • the component is cooled as quickly as possible in a water-cooled tool, for example.
  • the process is accelerated in that a component 2 can be pre-cooled according to step b), while the preceding component 2 is thermally treated in the tempering station 5 according to step d).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum thermischen Behandeln von metallischen Bauteilen, insbesondere von Stahlbauteilen für ein Kraftfahrzeug.
  • Insbesondere in der Automobilindustrie ist es bekannt, Stahlbauteile durch thermische Behandlung gezielt zu härten. Dazu werden Stahlbauteile wie beispielsweise B-Säulen bereichsweise unterschiedlich thermisch behandelt. Entsprechend entsteht eine bereichsweise unterschiedliche Duktilität, was für das Crashverhalten derartiger Bauteile vorteilhaft ist. So können Insassen durch einen harten Bereich der B-Säule auf Höhe der Sitze geschützt werden, während weiche Bereiche im oberen und unteren Bereich der B-Säule durch Verformung Energie aufnehmen.
  • Aus der EP 2 336 374 A1 ist ein Verfahren zur thermischen Behandlung eines Werkstücks bekannt, bei welchem das Werkstück in einem Ofen erwärmt und gleichzeitig in einem Abschnitt gekühlt wird. Aus der DE 10 2016 118 252 A1 ist ein Verfahren zur thermischen Behandlung eines metallischen Bauteils bekannt, bei welchem in einer Temperierstation eine Temperaturdifferenz zwischen Bereichen des Bauteils eingestellt wird.
  • Die bereichsweise unterschiedliche thermische Behandlung der Bauteile ist regelmäßig der limitierende Faktor für die Taktzeit eines Gesamtprozesses.
  • Aufgabe der vorliegenden Erfindung ist es, ausgehend vom beschriebenen Stand der Technik die bereichsweise unterschiedliche thermische Behandlung der Bauteile zu beschleunigen.
  • Diese Aufgabe wird gelöst mit einem Verfahren und einer Vorrichtung gemäß den unabhängigen Ansprüchen. Weitere vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben. Die in den Ansprüchen und in der Beschreibung dargestellten Merkmale sind in beliebiger, technologisch sinnvoller Weise miteinander kombinierbar.
  • Erfindungsgemäß wird ein Verfahren zur thermischen Behandlung von metallischen Bauteilen vorgestellt. Das Verfahren umfasst für jedes der Bauteile:
    1. a) Erwärmen des Bauteils in einem ersten Ofen,
    2. b) Halten des Bauteils an einem Ausgang des ersten Ofens, so dass ein erster Bereich des Bauteils außerhalb des ersten Ofens abkühlt, während ein zweiter Bereich des Bauteils innerhalb des ersten Ofens verbleibt,
    3. c) Transfer des Bauteils von dem ersten Ofen in eine Temperierstation,
    4. d) lokal unterschiedliches thermisches Behandeln des Bauteils in der Temperierstation.
  • Mit dem beschriebenen Verfahren können Bauteile thermisch behandelt werden. Bei den Bauteilen handelt es sich vorzugsweise um Stahlbauteile. Der Stahl ist vorzugsweise 22MnB5. Beispielsweise Bauteile für ein Kraftfahrzeug, insbesondere B-Säulen, können mit dem beschriebenen Verfahren thermisch behandelt werden. Nach der thermischen Behandlung werden die Bauteile vorzugsweise in einer Presse pressgehärtet und insoweit warmumgeformt. Das Verfahren umfasst vorzugsweise für jedes der Bauteile als weiteren Schritt, dass das Bauteil nach der thermischen Behandlung in eine Presse transferiert wird und dort pressgehärtet wird. In dem Fall handelt es sich bei dem beschriebenen Verfahren um ein Verfahren zum thermischen Behandeln und Presshärten von metallischen Bauteilen.
  • Das Verfahren umfasst die Schritte a) bis d). Für ein bestimmtes Bauteil werden diese in der angegebenen Reihenfolge durchgeführt. Vorzugsweise werden mehrere Bauteile nacheinander thermisch behandelt, wobei die thermische Behandlung eines Bauteils begonnen wird, bevor die thermische Behandlung eines vorhergehenden Bauteils abgeschlossen ist. In den Schritten a) bis d) durchläuft das Bauteil den ersten Ofen und die Temperierstation. Der erste Ofen und die Temperierstation sind voneinander verschiedene Bauteile, die räumlich voneinander getrennt sind.
  • In Schritt a) wird das Bauteil in dem ersten Ofen erwärmt, vorzugsweise auf eine Temperatur oberhalb der Austenitisierungstemperatur des Bauteils. Vorzugsweise erfolgt die Erwärmung auf eine Temperatur oberhalb der AC3-Temperatur des Bauteils. Unter einem Ofen ist eine Einrichtung zu verstehen, die in ihrem Innern auf eine einstellbare Temperatur gebracht wird und in die ein Bauteil eingebracht werden kann. Mit der Zeit nimmt das Bauteil die im Innern des Ofens herrschende Temperatur an. Die Wärme wird durch Wärmestrahlung auf das Bauteil übertragen. Der erste Ofen ist vorzugsweise ein Durchlaufofen. Ein Durchlaufofen ist ein Ofen, durch den das Bauteil hindurchbewegt werden kann, wobei das Bauteil während des Durchlaufens des Ofens erwärmt wird. Bei dem ersten Ofen handelt es sich vorzugsweise um einen Rollenherdofen. In dem ersten Ofen wird das Bauteil vorzugsweise durch Brenner, insbesondere Gasbrenner, erwärmt. Dadurch kann das Bauteil eine besonders gleichmäßig verteilte Temperatur erhalten. In dem ersten Ofen wird das gesamte Bauteil erwärmt. Das Bauteil wird von dem ersten Ofen vollständig aufgenommen. Zudem kann mit einem Ofen eine Erwärmung um eine besonders große Temperaturdifferenz erreicht werden. Mit einem Ofen kann ein Bauteil insbesondere von Raumtemperatur auf eine Temperatur im Bereich der AC3-Temperatur des Bauteils erwärmt werden. Eine derart umfangreiche Erwärmung ist mit vielen anderen Erwärmungsmethoden nicht oder jedenfalls nicht ohne unverhältnismäßig großen Aufwand möglich.
  • Die Erwärmung in einem Ofen steht insbesondere im Gegensatz zu einer Erwärmung durch die sogenannte "direct energization". Damit wäre es nur schwer möglich, das Bauteil gleichmäßig und um einen ausreichend hohen Betrag zu erwärmen. Beim direct energization kommt es vielmehr auf die Schnelligkeit der Erwärmung an. Zudem ist beim direct energization ein Kontakt mit dem Bauteil erforderlich. In Schritt a) des beschriebenen Verfahrens erfolgt das Erwärmen vorzugsweise kontaktlos. Das schließt nicht aus, dass das Bauteil mit Transportrollen durch den ersten Ofen bewegt wird und insoweit in Kontakt mit den Transportrollen steht. Das Erwärmen ist kontaktlos, wenn der Wärmeeintrag in das Bauteil über ein Gas und/oder über Wärmestrahlung erfolgt.
  • In Schritt b) wird das Bauteil so am Ausgang des ersten Ofens gehalten, dass ein erster Bereich des Bauteils außerhalb des ersten Ofens abkühlt, während ein zweiter Bereich des Bauteils innerhalb des ersten Ofens verbleibt. Für diesen Schritt ist das Bauteil in Ruhe. Es befindet sich für eine Behandlungszeit so am Ausgang des ersten Ofens, dass sich das Bauteil teilweise innerhalb und teilweise außerhalb des ersten Ofens befindet. Der in Schritt b) außerhalb des ersten Ofens gehaltene Teil des Bauteils ist der erste Bereich des Bauteils. Der in Schritt b) innerhalb des ersten Ofens gehaltene Teil des Bauteils ist der zweite Bereich des Bauteils. Das Bauteil ragt also aus dem Ausgang des ersten Ofens heraus. Der herausragende erste Bereich des Bauteils kühlt dabei ab. Das kann dadurch erfolgen, dass das Bauteil über Strahlung Wärme abgibt.
  • Das Bauteil kann in einer Transportrichtung durch den ersten Ofen und alle folgenden Elemente der Vorrichtung bewegt werden. Es ist bevorzugt, dass der erste Bereich des Bauteils in der Transportrichtung vor dem zweiten Bereich des Bauteils angeordnet ist. Das bedeutet, dass der erste Bereich den ersten Ofen zuerst verlässt. Besonders bevorzugt verläuft eine Trennlinie zwischen dem ersten Bereich und dem zweiten Bereich quer zur Transportrichtung. Für derartige Bauteile eignet sich das beschriebene Verfahren besonders, weil diese Bauteile besonders einfach am Ausgangs des ersten Ofens gemäß Schritt b) gehalten werden können.
  • Der im ersten Ofen verbleibende zweite Bereich ist einer höheren Temperatur ausgesetzt als der erste Bereich. Je nach Temperatur des zweiten Bereichs zu Beginn von Schritt b) kann die Temperatur des zweiten Bereichs in Schritt b) ansteigen, konstant bleiben oder abfallen. Sofern die Temperatur des zweiten Bereichs abfällt, erfolgt dies aber jedenfalls langsamer als die Abkühlung des ersten Bereichs. Nach Schritt b) hat der erste Bereich eine erste Temperatur und der zweite Bereich eine zweite Temperatur, wobei die erste Temperatur geringer ist als die zweite Temperatur, vorzugsweise um mindestens 100 K.
  • Durch die unterschiedliche thermische Behandlung der beiden Bereiche können die beiden Bereiche im weiteren Verlauf des Verfahrens unterschiedliche Duktilitäten erhalten. Der erste Bereich und der zweite Bereich sind vorzugsweise jeweils zusammenhängende Bereiche. Das Bauteil hat vorzugsweise genau einen ersten Bereich, genau einen zweiten Bereich, einen Übergangsbereich zwischen dem ersten Bereich und dem zweiten Bereich und darüber hinaus keine weiteren Bereiche. Eine einfache Unterteilung des Bauteils in zwei Bereiche ist am einfachsten durch Schritt b) zu realisieren. Denkbar ist aber auch, dass sich der erste Bereich und/oder der zweite Bereich jeweils aus mehreren nicht zusammenhängenden Teilbereichen zusammensetzen. Das kann durch eine entsprechende Gestaltung des Ausgangs des ersten Ofens realisiert werden.
  • In Schritt b) des Verfahrens wird das Bauteil von dem ersten Ofen in die Temperierstation transferiert. "Von dem ersten Ofen" bezieht sich dabei auf die Position, in der das Bauteil für Schritt b) gehalten wurde. Es ist also nicht erforderlich, dass sich das Bauteil zu Beginn von Schritt c) vollständig im ersten Ofen befindet. Der Transfer gemäß Schritt c) erfolgt vorzugsweise unmittelbar vom ersten Ofen in die Temperierstation. Das bedeutet, dass das Bauteil zwischen dem ersten Ofen und der Temperierstation kein weiteres Element durchläuft. Die Temperierstation ist dem ersten Ofen in der Transportrichtung nachgeordnet. Während des Transfers gemäß Schritt b) kann das Bauteil abkühlen. Vorzugsweise wird das Bauteil während des Transfers gemäß Schritt b) nicht aktiv gekühlt oder erwärmt. Das bedeutet, dass das Bauteil während des Transfers lediglich durch Strahlung abkühlt.
  • In Schritt d) wird das Bauteil in der Temperierstation lokal unterschiedlich thermisch behandelt. Dabei wird vorzugsweise eine Temperaturdifferenz von mindestens 200 K zwischen verschiedenen Bereichen des Bauteils erreicht.
  • Die Schritte b) und d) bewirken eine lokal unterschiedliche thermische Behandlung des Bauteils, welche auf zwei Schritte aufgeteilt ist. Durch diese Aufteilung kann der Prozess insgesamt beschleunigt werden. Das ist insbesondere der Fall, wenn die Bauteile teilweise zeitlich überlappend thermisch behandelt werden. So können die Bauteile nacheinander in den ersten Ofen eingeführt werden. Bevor ein erstes Bauteil den Ausgang des ersten Ofens erreicht hat, kann ein folgendes zweites Bauteil in den ersten Ofen eingeführt werden. Das ist insbesondere bei einem Durchlaufofen der Fall, durch den eine Vielzahl von Bauteilen zeitglich hintereinander befördert werden können. Sobald das erste Bauteil den Ausgang des ersten Ofens erreicht hat, kann dieses dort gemäß Schritt b) behandelt werden. Das zweite Bauteil kann währenddessen noch durch den ersten Ofen befördert werden. Bevor das zweite Bauteil den Ausgang des ersten Ofens erreicht, kann das erste Bauteil vom ersten Ofen in die Temperierstation transfereitert werden. Das erste Bauteil kann Schritt d) in der Temperierstation thermisch behandelt werden, während das zweite Bauteil gemäß Schritt b) am Ausgang des ersten Ofens thermisch behandelt wird. Bevor ein drittes Bauteil den Ausgang des ersten Ofens erreicht, kann das erste Bauteil aus der Temperierstation entnommen werden und kann das zweite Bauteil vom ersten Ofen in die Temperierstation transfereitert werden. Dieser Prozess kann für beliebig viele Bauteile fortgeführt werden. Gegenüber einer Ausgestaltung mit einer lokal unterschiedlichen thermischen Behandlung nur in einer Temperierstation kann durch das beschriebene Verfahren die Prozesszeit für die lokal unterschiedliche thermische Behandlung insoweit reduziert werden, als dass zwei Bauteile gleichzeitig lokal unterschiedlich thermische behandelt werden können. Schritt b) kann als eine lokale Vorkühlung aufgefasst werden, durch welche die Behandlungszeit in der Temperierstation reduziert wird. Da Schritt b) für ein Bauteil durchgeführt werden kann, während das vorhergehende Bauteil gemäß Schritt d) in der Temperierstation thermisch behandelt wird, verkürzt sich die Gesamtzeit für die lokal unterschiedliche thermische Behandlung.
  • Mit dem beschriebenen Verfahren können auch mehrere Bauteile insoweit gleichzeitig thermisch behandelt werden, als dass die Bauteile nebeneinander durch die Vorrichtung bewegt werden. So kann beispielsweise eine Gruppe von zwei bis vier Bauteilen nebeneinander in den ersten Ofen eingelegt werden und so gleichzeitig durch den ersten Ofen bewegt werden. Auch die Schritte b) bis d) werden für die Bauteile dieser Gruppe gleichzeitig durchgeführt. Dadurch kann die Vorrichtung auf voller Breite ausgenutzt werden. Verschiedene Gruppen von Bauteilen können nacheinander durch die Vorrichtung bewegt werden und insoweit zeitlich überkappend thermisch behandelt werden.
  • Die lokal unterschiedliche thermische Behandlung in Schritt d) kann dadurch erfolgen, dass die zuvor in Schritt c) eingestellte Temperaturdifferenz verstärkt wird. Allerdings ist es nicht erforderlich, dass in Schritt d) der erste Bereich einheitlich behandelt wird und/oder dass in Schritt d) der zweite Bereich einheitlich behandelt wird. Die lokal unterschiedliche thermische Behandlung in Schritt d) kann auch dadurch erfolgen, dass das Bauteil auf andere Weise in verschiedene Bereiche unterteilt wird als für Schritt b). Das ist insbesondere insoweit vorteilhaft, als dass in der Temperierstation eine genauere Unterteilung des Bauteils in Bereiche möglich ist. Auch ermöglicht die Temperierstation eine freie Gestaltung der Form der Bereiche des Bauteils, während die Gestaltung des Ausgangs des ersten Ofens die Unterteilung für Schritt b) einschränkt. So kann es möglich sein, dass in Schritt b) zwischen dem ersten Bereich und dem zweiten Bereich nur eine gerade Trennlinie senkrecht zur Transportrichtung möglich ist.
  • Trotzdem ist die Ausführungsform des Verfahrens bevorzugt, bei der in Schritt d) der erste Bereich und der zweite Bereich des Bauteils unterschiedlich thermisch behandelt werden.
  • In dieser Ausführungsform erfolgt in den Schritten b) und d) eine lokal unterschiedliche thermische Behandlung mit gleicher Unterteilung des Bauteils in Bereiche. Dadurch wird die lokal unterschiedliche thermische Behandlung aus Schritt b) in Schritt d) verstärkt. Die beiden Schritte ergänzen sich so besonders gut. Insbesondere wird eine in Schritt b) erhaltene Temperaturdifferenz nicht teilweise wieder in Schritt d) aufgehoben. In dieser Ausführungsform kann so eine besonders scharfe Unterteilung in den ersten Bereich und in den zweiten Bereich erhalten werden.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens wird eine Temperatur des zweiten Bereichs des Bauteils in den Schritten b) und/oder d) innerhalb von 200 K, insbesondere von 150 K um den zu Beginn von Schritt b) vorliegenden Wert gehalten. Der "und"-Fall ist bevorzugt.
  • Die Temperatur des zweiten Bereichs wird in dieser Ausführungsform vorzugsweise so hoch gehalten, dass eine Auflösung von zuvor gebildetem Austenit vermieden wird. Im Unterschied zu dem gekühlten ersten Bereich erhält der zweite Bereich so eine geringere Duktilität und höhere Festigkeit. So können beispielsweise bei einer B-Säule für ein Kraftfahrzeug die Crasheigenschaften gezielt eingestellt werden. Vorzugseise wird die Temperatur des zweiten Bereichs in den Schritten b) bis d) so hoch gehalten, dass die Auflösung von Austenit vermieden wird.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens ist der erste Ofen ein Durchlaufofen, durch welchen das Bauteil in Schritt a) befördert wird, wobei das Bauteil für Schritt b) am Ausgang des ersten Ofens gestoppt wird.
  • Die Bauteile können nacheinander durch den ersten Ofen befördert werden. So kann eine große Zahl von Bauteilen automatisiert thermisch behandelt werden. Für Schritt b) wird die Bewegung des Bauteils gestoppt, damit das Bauteil während der Dauer von Schritt b) in Ruhe ist. Das ist vorteilhaft, weil dadurch eine besonders scharfe Trennung zwischen dem ersten Bereich und dem zweiten Bereich erzielt werden kann. Würde sich das Bauteil während der Dauer von Schritt b) noch bewegen, würde die Temperatur im Bauteil über einen größeren Übergangsbereich vom zweiten Bereich zum ersten Bereich hin kontinuierlich abnehmen. Ein Übergangsbereich kann insbesondere dadurch entstehen, dass ein in Transportrichtung vorne liegender Teil des Bauteils beim Verlassen des ersten Ofens früher abzukühlen beginnt als ein folgender Teil. Um die Taktzeit so kurz wie möglich zu halten und um eine möglichst gleichmäßige Festigkeit im ersten Bereich zu erhalten, wird das Bauteil vorzugsweise so schnell wie möglich teilweise aus dem ersten Ofen herausbewegt und so abrupt wie möglich gestoppt.
  • Dazu ist die Ausführungsform des Verfahrens bevorzugt, bei der das Bauteil für Schritt b) von einem Stopper am Ausgang des ersten Ofens gestoppt wird.
  • Durch den Stopper kann das Bauteil besonders schnell gestoppt werden. Der Stopper ist vorzugsweise derart beweglich, dass der Stopper den Weg des Bauteils für Schritt b) versperren kann und den Weg des Bauteils nach Schritt b) freigeben kann.
  • In einer weiteren bevorzugten Ausführungsform des Verfahrens wird Schritt b) so durchgeführt, dass der erste Bereich auf eine Temperatur im Bereich von 500 bis 750 °C abkühlt.
  • Das ist insbesondere in der bevorzugten Ausführungsform des Verfahrens möglich, in der das Bauteil in Schritt b) für 0,5 bis 5 Sekunden am Ausgang des ersten Ofens gehalten wird.
  • In einer bevorzugten Ausführungsform umfasst das Verfahren weiterhin für jedes der Bauteile:
    • e) Transfer des Bauteils aus der Temperierstation in einen zweiten Ofen,
    • f) thermisches Behandeln des Bauteils in dem zweiten Ofen.
  • Der erste Ofen, die Temperierstation und der zweite Ofen sind drei voneinander verschiedene Bauteile, die räumlich voneinander getrennt sind. Während des Transfers von der Transferstation zum zweiten Ofen kann das Bauteil abkühlen. Dies steht im Gegensatz zu einer Lösung, bei der alle Verfahrensschritte nach Möglichkeit in der gleichen Einrichtung durchgeführt werden, ohne das Bauteil transferieren zu müssen.
  • Derartige Lösungen haben typischerweise das Ziel, den Aufwand für Bauteiltransfers gering zu halten oder ganz zu vermeiden. Die räumliche Trennung zwischen der Temperierstation und dem zweiten Ofen erleichtert auch die Konstruktion, weil die Anforderungen an die Temperierstation und an den zweiten Ofen unterschiedlich sind. Beides in einer Einrichtung zu integrieren, wäre daher entsprechend kompliziert.
  • Das zum ersten Ofen Gesagte gilt entsprechend für den zweiten Ofen. So ist der zweite Ofen insbesondere vorzugsweise ein Durchlaufofen. Bei dem zweiten Ofen handelt es sich vorzugsweise um einen Rollenherdofen. In dem zweiten Ofen wird das gesamte Bauteil thermisch behandelt. Das Bauteil wird von dem zweiten Ofen vollständig aufgenommen. Die thermische Behandlung in einem Ofen steht insbesondere im Gegensatz zu einer Erwärmung durch das sogenannte "direct energization". Vorzugsweise erfolgt die Erwärmung im zweiten Ofen kontaktlos. Der zweite Ofen ist vorzugsweise der Temperierstation in der Transportrichtung nachgeordnet. Weist die Vorrichtung eine Presse auf, ist die Presse vorzugsweise dem zweiten Ofen in der Transportrichtung nachgeordnet.
  • Durch die thermische Behandlung im zweiten Ofen erhält das Bauteil eine andere Temperatur im ersten Bereich und im zweiten Bereich, als dies ansonsten der Fall wäre. Dies führt dazu, dass nach dem Abschluss des Pressvorgangs das jeweils gewünschte Gefüge mit den gewünschten Festigkeitswerten im ersten Bereich und im zweiten Bereichen vorliegt. Insoweit ist die vorliegende Ausführungsform auf Anwendungsfälle gerichtet, in denen entsprechende Gefügezusammensetzungen gewünscht sind. Durch die erneute thermische Behandlung im zweiten Ofen wird zudem eine Temperaturdifferenz zwischen verschiedenen Bereichen des Bauteils verringert. Aufgrund der geringeren Temperaturdifferenz zwischen den Bereichen wird der geometrische Verzug der Bauteile verringert. Zudem wird erreicht, dass die Bauteile flach auf einem Rollenherd aufliegen können und von einem Pressen-Zuführsystem zuverlässig aufgenommen werden können.
  • Für die Reihenfolge der Schritte a) bis f) gilt das zuvor für die Schritte a) bis d) Gesagte entsprechend. In Fortführung des oben beschriebenen Beispiels kann so das erste Bauteil aus der Temperierstation in den zweiten Ofen transferiert werden, wenn das zweite Bauteil vom ersten Ofen in die Temperierstation transferiert wird. Anschließend kann das erste Bauteil im zweiten Ofen thermisch behandelt werden, während das zweite Bauteil in der Temperierstation thermisch behandelt wird und das dritte Bauteil am Ausgang des ersten Ofens thermisch behandelt wird.
  • Als ein weiterer Aspekt der Erfindung wird eine Vorrichtung zur thermischen Behandlung von metallischen Bauteilen vorgestellt. Die Vorrichtung umfasst einen ersten Ofen, eine Temperierstation und eine Steuereinrichtung. Die Steuereinrichtung ist dazu eingerichtet, das beschriebene Verfahren durchzuführen.
  • Die Vorteile und Merkmale des Verfahrens sind auf die Vorrichtung anwendbar und übertragbar, und umgekehrt. Das Verfahren wird vorzugsweise mit der Vorrichtung durchgeführt.
  • Die Vorrichtung weist vorzugsweise Beförderungsmittel auf, mit denen die Bauteile durch die Vorrichtung befördert werden können. Beispielsweise kann die Vorrichtung Transportrollen als Beförderungsmittel aufweisen, über welche die Bauteile durch den ersten Ofen, die Temperierstation und, falls vorhanden, den zweiten Ofen und die Presse befördert werden können. Vorzugsweise ist die Vorrichtung so ausgebildet, dass der erste Ofen, die Temperierstation und gegebenenfalls der zweite Ofen und/oder die Presse in der genannten Reihenfolge durchlaufen werden können, ohne dass dazwischen weitere Elemente durchlaufen werden.
  • In einer bevorzugten Ausführungsform weist die Vorrichtung weiterhin eine Transfereinrichtung zum Transfer der Bauteile vom ersten Ofen in die Temperierstation auf, wobei die Transfereinrichtung einen Stopper zum Stoppen der Bauteile am Ausgang des ersten Ofens aufweist.
  • Die Transfereinrichtung kann Teil der zuvor beschriebenen Beförderungsmittel sein. So kann der zwischen dem ersten Ofen und der Temperierstation angeordnete Teil der Beförderungsmittel als Transfereinrichtung aufgefasst werden.
  • Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen ein besonders bevorzugtes Ausführungsbeispiel, auf das die Erfindung jedoch nicht begrenzt ist. Die Figuren und die darin dargestellten Größenverhältnisse sind nur schematisch. Es zeigen:
  • Fig. 1:
    eine erfindungsgemäße Vorrichtung zur thermischen Behandlung von metallischen Bauteilen,
    Fig. 2:
    einen Temperaturverlauf bei einem erfindungsgemäßen Verfahren zur thermischen Behandlung von metallischen Bauteilen mit der Vorrichtung aus Fig. 1.
  • Fig. 1 zeigt eine Vorrichtung 1 zur thermischen Behandlung von metallischen Bauteilen 2. Die Vorrichtung 1 umfasst einen ersten Ofen 3, eine Temperierstation 5 und einen zweiten Ofen 6. Der erste Ofen 3, die Temperierstation 5 und der zweite Ofen 6 sind derart angeordnet, dass die Bauteile 2 zuerst den ersten Ofen 3, anschließend die Temperierstation 5 und anschließend den zweiten Ofen 6 durchlaufen können.
  • Die Vorrichtung 1 weist zudem Beförderungsmittel 12 auf. Diese dienen dazu, die Bauteile 2 durch die Vorrichtung 1 mit ihren Elementen zu befördern. Die Transportrichtung ist in Fig. 1 von links nach rechts. Der erste Ofen 3 und der zweite Ofen 6 sind jeweils als ein Durchlaufofen ausgebildet. Durch die Beförderungsmittel 12 können die Bauteile 2 durch den ersten Ofen 3 und durch den zweiten Ofen 6 befördert werden. Der zwischen dem ersten Ofen 3 und der Temperierstation 5 angeordnete Teil der Beförderungsmittel 12 ist eine Transfereinrichtung 13 zum Transfer der Bauteile 2 vom ersten Ofen 3 in die Temperierstation 5 dar.
  • Die Temperierstation 5 weist eine Düse 8 zum Austragen von Druckluft auf einen Teil des in der Temperierstation 5 befindlichen Bauteils 2 auf. Weiterhin umfasst die Vorrichtung 1 eine Steuereinrichtung 7, welche dazu eingerichtet ist, ein Verfahren zur thermischen Behandlung von Bauteilen 2 durchzuführen, bei dem für jedes der Bauteile 2 folgende Schritte durchgeführt werden:
    1. a) Erwärmen des Bauteils 2 in dem ersten Ofen 3,
    2. b) für 0,5 bis 5 Sekunden Halten des Bauteils 2 an einem Ausgang 4 des ersten Ofens 3, so dass ein erster Bereich 10 des Bauteils 2 außerhalb des ersten Ofens 3 auf eine Temperatur im Bereich von 500 bis 750 °C abkühlt, während ein zweiter Bereich 11 des Bauteils 2 innerhalb des ersten Ofens 3 verbleibt,
    3. c) Transfer des Bauteils 2 von dem ersten Ofen 3 in die Temperierstation 5,
    4. d) lokal unterschiedliches thermisches Behandeln des Bauteils 2 in der Temperierstation 5, indem der erste Bereich 10 und der zweite Bereich 11 des Bauteils 2 unterschiedlich thermisch behandelt werden,
    5. e) Transfer des Bauteils 2 aus der Temperierstation 5 in den zweiten Ofen 6,
    6. f) thermisches Behandeln des Bauteils 2 in dem zweiten Ofen 6.
  • Zur Veranschaulichung sind in Fig. 1 beispielhaft vier Bauteile 2 eingezeichnet. Ein Bauteil 2 wird - wie durch einen Pfeil angedeutet - durch den ersten Ofen 3 befördert (Schritt a)). Ein zweites Bauteil 2 wurde von einem Stopper 9 gestoppt und befindet sich am Ausgang 4 des ersten Ofens 3 in Ruhe (Schritt b)). Ein drittes Bauteil 2 wird in der Temperierstation 5 unter Verwendung der Düse 8 und einer (nicht gezeigten) Beheizungseinrichtung lokal unterschiedlich thermisch behandelt (Schritt d)). Ein viertes Bauteil 2 wird - wie durch einen Pfeil angedeutet - durch den zweiten Ofen 6 befördert (Schritt f)).
  • Jedes Bauteil 2 wird in Schritt a) durch den ersten Ofen 3 befördert und für Schritt b) am Ausgang 4 des ersten Ofens 3 gestoppt. Dazu weist die Transfereinrichtung 13 einen Stopper 9 auf. Der Stopper 9 ist derart beweglich, dass der Stopper 9 zum Stoppen eines Bauteils 2 in die Transportbahn des Bauteils 2 bewegt werden kann. Nachdem Schritt b) abgeschlossen ist, kann der Stopper 9 aus der Transportbahn heraus bewegt werden, um den Weg für das Bauteil 2 wieder freizugeben.
  • In Schritt d) werden der erste Bereich 10 und der zweite Bereich 11 Bauteils 2 in der Temperierstation 5 unterschiedlich thermisch behandelt. Dazu wird der erste Bereich 10 des Bauteils 2 mit der Düse 8 der Temperierstation 5 abgekühlt, während die Temperatur des zweiten Bereichs 11 des Bauteils 2 innerhalb eines Fensters von +/-150 K um den zu Beginn von Schritt b) vorliegenden Wert gehalten wird. Auch in Schritt d) wird die Temperatur des zweiten Bereichs 11 des Bauteils 2 innerhalb eines Fensters von +/- 150 K um den zu Beginn von Schritt b) vorliegenden Wert gehalten.
  • Fig. 2 zeigt einen Temperaturverlauf bei dem für Fig. 1 beschriebenen Verfahren. Gezeigt ist die Temperatur des Bauteils 2 gegenüber der Zeit t. Die Behandlungszeit im ersten Ofen 3 ist mit tO1 angegeben, die Dauer von Schritt b) ist als eine Haltezeit tH angegeben. Die Transferzeit vom ersten Ofen 3 zur Temperierstation 5 ist mit tt1 angegeben, die Behandlungszeit in der Temperierstation 5 mit ttemp, die Transferzeit von der Temperierstation 5 zum zweiten Ofen 6 mit tt2 und die Behandlungszeit im zweiten Ofen 6 mit tO2. Aufgrund der unterschiedlichen thermischen Behandlung des Bauteils 2 in während der Haltezeit tH spaltet sich der gezeigte Temperaturverlauf mit der Haltezeit tH in die Temperatur T1 des ersten Bereichs 10 und die Temperatur T2 des zweiten Bereichs 11 auf. Nachdem das Bauteil 2 im zweiten Ofen 6 thermisch behandelt worden ist, wird das Bauteil 2 aus dem zweiten Ofen 6 in eine (in den Figuren nicht gezeigte) Presse transferiert und dort umgeformt. Dabei wird das Bauteil in einem beispielsweise wassergekühlten Werkzeug schnellstmöglich abgekühlt.
  • Durch das Halten des Bauteils 2 am Ausgang 4 des ersten Ofens 3 wird der Prozess insoweit beschleunigt, als dass ein Bauteil 2 gemäß Schritt b) vorgekühlt werden kann, während das vorhergehende Bauteil 2 in der Temperierstation 5 gemäß Schritt d) thermisch behandelt wird.
  • Bezugszeichenliste
  • 1
    Vorrichtung
    2
    Bauteil
    3
    erster Ofen
    4
    Ausgang
    5
    Temperierstation
    6
    zweiter Ofen
    7
    Steuereinrichtung
    8
    Düse
    9
    Stopper
    10
    erster Bereich
    11
    zweiter Bereich
    12
    Beförderungsmittel
    13
    Transfereinrichtung
    T
    Temperatur
    t
    Zeit
    TA
    Austenitisierungstemperatur des Bauteils
    T1
    Temperatur des ersten Bereichs des Bauteils
    T2
    Temperatur des zweiten Bereichs des Bauteils
    tO1
    Behandlungszeit im ersten Ofen
    tH
    Haltezeit am Ausgang des ersten Ofens
    tt1
    Transferzeit vom ersten Ofen zur Temperierstation,
    ttemp
    Behandlungszeit in der Temperierstation,
    tt2
    Transferzeit von der Temperierstation zum zweiten Ofen
    tO2
    Behandlungszeit im zweiten Ofen

Claims (10)

  1. Verfahren zur thermischen Behandlung von metallischen Bauteilen (2), umfassend für jedes der Bauteile (2):
    a) Erwärmen des Bauteils (2) in einem ersten Ofen (3),
    b) Halten des Bauteils (2) an einem Ausgang (4) des ersten Ofens (3), so dass ein erster Bereich (10) des Bauteils (2) außerhalb des ersten Ofens (3) abkühlt, während ein zweiter Bereich (11) des Bauteils (2) innerhalb des ersten Ofens (3) verbleibt,
    c) Transfer des Bauteils (2) von dem ersten Ofen (3) in eine Temperierstation (5),
    d) lokal unterschiedliches thermisches Behandeln des Bauteils (2) in der Temperierstation (5).
  2. Verfahren nach Anspruch 1, wobei in Schritt d) der erste Bereich (10) und der zweite Bereich (11) des Bauteils (2) unterschiedlich thermisch behandelt werden.
  3. Verfahren nach einem der vorstehenden Ansprüche, wobei eine Temperatur des zweiten Bereichs (11) des Bauteils (2) in den Schritten b) und/oder d) innerhalb von 200 K um den zu Beginn von Schritt b) vorliegenden Wert gehalten wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, wobei der erste Ofen (3) ein Durchlaufofen ist, durch welchen das Bauteil (2) in Schritt a) befördert wird, und wobei das Bauteil (2) für Schritt b) am Ausgang (4) des ersten Ofens (3) gestoppt wird.
  5. Verfahren nach Anspruch 4, wobei das Bauteil (2) für Schritt b) von einem Stopper (9) am Ausgang (4) des ersten Ofens (3) gestoppt wird.
  6. Verfahren nach einem der vorstehenden Ansprüche, wobei Schritt b) so durchgeführt wird, dass der erste Bereich (10) auf eine Temperatur im Bereich von 500 bis 750 °C abkühlt.
  7. Verfahren nach einem der vorstehenden Ansprüche, wobei das Bauteil (2) in Schritt b) für 0,5 bis 5 Sekunden am Ausgang (4) des ersten Ofens (3) gehalten wird.
  8. Verfahren nach einem der vorstehenden Ansprüche, weiterhin umfassend für jedes der Bauteile (2):
    e) Transfer des Bauteils (2) aus der Temperierstation (5) in einen zweiten Ofen (6),
    f) thermisches Behandeln des Bauteils (2) in dem zweiten Ofen (6).
  9. Vorrichtung (1) zur thermischen Behandlung von metallischen Bauteilen (2), umfassend einen ersten Ofen (3), eine Temperierstation (5) und eine Steuereinrichtung (7), welche dazu eingerichtet ist, ein Verfahren nach einem der Ansprüche 1 bis 8 durchzuführen.
  10. Vorrichtung (1) nach Anspruch 9, weiterhin aufweisend eine Transfereinrichtung (13) zum Transfer der Bauteile (2) vom ersten Ofen (3) in die Temperierstation (5), wobei die Transfereinrichtung (13) einen Stopper (9) zum Stoppen der Bauteile (2) am Ausgang (4) des ersten Ofens (3) aufweist.
EP21209527.7A 2020-12-15 2021-11-22 Thermisches behandeln von bauteilen Active EP4015657B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020133461.3A DE102020133461A1 (de) 2020-12-15 2020-12-15 Thermisches Behandeln von Bauteilen

Publications (3)

Publication Number Publication Date
EP4015657A1 EP4015657A1 (de) 2022-06-22
EP4015657B1 true EP4015657B1 (de) 2024-07-31
EP4015657C0 EP4015657C0 (de) 2024-07-31

Family

ID=78725301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21209527.7A Active EP4015657B1 (de) 2020-12-15 2021-11-22 Thermisches behandeln von bauteilen

Country Status (2)

Country Link
EP (1) EP4015657B1 (de)
DE (1) DE102020133461A1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336374A1 (de) 2009-12-16 2011-06-22 Schwartz, Eva Verfahren und Vorrichtung zum Erwärmen und partiellem Kühlen von Werstücken in einem Durchlaufofen
DE102016118252A1 (de) 2016-09-27 2018-03-29 Schwartz Gmbh Verfahren und Vorrichtung zur Wärmebehandlung eines metallischen Bauteils
WO2017129599A1 (de) * 2016-01-25 2017-08-03 Schwartz Gmbh Verfahren und vorrichtung zur wärmebehandlung eines metallischen bauteils

Also Published As

Publication number Publication date
EP4015657A1 (de) 2022-06-22
DE102020133461A1 (de) 2022-06-15
EP4015657C0 (de) 2024-07-31

Similar Documents

Publication Publication Date Title
EP2427282B1 (de) Vorrichtung und verfahren zur erwärmung warm umzuformender werkstücke
EP2110448B1 (de) Verfahren und Durchlaufofen zum Erwärmen von Werkstücken
DE102014110415B4 (de) Verfahren zum Aufheizen von Stahlblechen und Vorrichtung zur Durchführung des Verfahrens
EP2989220B1 (de) Vorrichtung zum presshaerten von bauteilen
DE102007012180B3 (de) Verfahren zur Wärmebehandlung von Halbzeugen aus Metall
EP3420111B1 (de) Verfahren zur gezielten bauteilzonenindividuellen wärmebehandlung
WO2017129603A1 (de) Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung
DE102016100648B4 (de) Wärmebehandlungsofen sowie Verfahren zur Wärmebehandlung einer vorbeschichteten Stahlblechplatine und Verfahren zur Herstellung eines Kraftfahrzeugbauteils
DE102020131238A1 (de) Thermisches Behandeln eines Bauteils
DE102014111501B4 (de) Warmumformvorrichtung und Verfahren zum Herstellen von pressgehärteten Formbauteilen aus Stahlblech
EP0621904B1 (de) Vorrichtung zur wärmebehandlung metallischer werkstücke
WO2017129602A1 (de) Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung
EP0236666A2 (de) Arbeitsverfahren zum Aufheizen von in Stranggusseinrichtungen gegossenen oder in Umformeinrichtungen umgeformten Halbzeugen für deren Einbringen in Umform- und/oder Weiterverarbeitungseinrichtungen
EP2667132B1 (de) Ofenanlage sowie Verfahren zum Betreiben der Ofenanlage
EP4015657B1 (de) Thermisches behandeln von bauteilen
WO2017137259A1 (de) Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung
DE102020133462A1 (de) Thermisches Behandeln von Bauteilen
EP3184655A1 (de) Wärmebehandlungsofen sowie verfahren zur wärmebehandlung einer vorbeschichteten stahlblechplatine und verfahren zur herstellung eines kraftfahrzeugbauteils
DE102014109883A1 (de) Einrichtung zum Umformen und Presshärten eines Blechzuschnitts aus Stahl
DE102020106139A1 (de) Thermisches Behandeln eines Bauteils
EP3862710B1 (de) Ofen zur partiellen erwärmung von metallbauteilen
DE102010053980B4 (de) Etagenofen
DE102020106192A1 (de) Thermisches Behandeln eines beschichteten Bauteils
WO2024105076A1 (de) Thermisches behandeln eines metallischen bauteils
DE102022130152A1 (de) Thermisches Behandeln eines metallischen Bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220808

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021004567

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240812

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240827

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_48406/2024

Effective date: 20240822