EP1954776A2 - Suspension aqueuse abrasive a base de particules de dioxyde de cerium et de silice pour le polissage de surfaces de materiaux - Google Patents

Suspension aqueuse abrasive a base de particules de dioxyde de cerium et de silice pour le polissage de surfaces de materiaux

Info

Publication number
EP1954776A2
EP1954776A2 EP06820206A EP06820206A EP1954776A2 EP 1954776 A2 EP1954776 A2 EP 1954776A2 EP 06820206 A EP06820206 A EP 06820206A EP 06820206 A EP06820206 A EP 06820206A EP 1954776 A2 EP1954776 A2 EP 1954776A2
Authority
EP
European Patent Office
Prior art keywords
polishing
particles
suspension
silica
suspensions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06820206A
Other languages
German (de)
English (en)
Inventor
Georges Michel
Mohamed Ennahali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kemesys SA
Original Assignee
Kemesys SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemesys SA filed Critical Kemesys SA
Publication of EP1954776A2 publication Critical patent/EP1954776A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to an abrasive aqueous suspension based on cerium dioxide and silica particles for polishing surfaces of materials. It also relates to a method for polishing these surfaces by the implementation of the suspensions.
  • CMP chemical mechanical polishing
  • the CMP is produced by means of a polishing device known to those skilled in the art, such as a polisher.
  • the material to be treated is fixed, by its so-called rear face on a support, while the so-called front face, on which are present the layers to be polished, is applied on a polishing plate, covered with a carpet of polymeric material, under low pressure, such as from 0.07 to 1.05 bar. Rotational movements are applied to the support and to the plate in order to standardize the linear speeds of passage of the belt on the wafer.
  • the abrasion mechanism causing the polishing of the surface of the material is provided by a polishing slurry distributed on the carpet in the form of a film or "cushion" fluid during the course of the CMP process.
  • abrasive suspensions usually comprise fine abrasive particles dispersed in a liquid medium, such as water.
  • abrasive particles are metal oxides, such as cerium dioxide (CeO 2 ), silicon dioxide or silica (SiO 2 ), for example precipitated or fumed silica, manganese dioxide (MnO 2 ) or aluminum oxide (Al 2 O 3 ).
  • These suspensions are also likely to include dispersants, surfactants, etc.
  • the abovementioned abrasive suspensions must therefore be able to polish complex, anisotropic surfaces of materials, such as multi-chip systems for manufacturing microcircuits, so that the polished surface obtained is smooth, without defects, and having an absence of scratches. submicrometric dimension.
  • the abrasive suspensions must not unacceptably alter, if necessary, the lower layers of microcircuits or certain regions of the surface of the material to be polished. They must also allow satisfactory polishing speeds, defined as the thickness removed from the surface of the material per unit of time, and make the polishing process stable by controlling the frictional forces. Frictions may indeed cause a phenomenon of rebound of the material to be polished on the carpet of the polishing device in particular CMP process, resulting in a decrease in polishing rates and a degradation of the results in terms of surface condition.
  • abrasive suspensions those comprising silica particles as abrasives are very commonly used in CMP processes for polishing or gluing the surfaces of materials, such as silica insulating layers of microcircuits.
  • Such suspensions may contain surfactants, polymeric dispersants, complexing agents, corrosion inhibitors, and the like. Examples which may be mentioned are patent applications and patents WO 02/04573, US 2004/0077295 A1, US Pat. No. 6,736,992, EP 0 366 027 and EP 0 121 707. Some patents also disclose abrasive suspensions with based on mixtures of silica with other metal oxides, such as alumina or zirconium dioxide.
  • the polishing rate largely depends on the pH of the slurry, which must be maintained at values above 10 to observe a satisfactory polishing rate. Such pH values are not without risks for the user.
  • the amounts of silica usually used in such suspensions are between 10 and 30% by weight.
  • polishing suspensions based on CeO 2 particles are also conventionally used for the above applications, with the achievement of a comparable surface polish. It is observed that these suspensions are all the more efficient in terms of polishing rate that the CeO 2 content is high.
  • abrasive suspensions have disadvantages related to the fact that the CeO 2 particles have a low dispersibility in a liquid medium, making the suspensions thus obtained unstable, which causes phenomena of sedimentation and particulate aggregation.
  • the consequences of such phenomena are changes in polishing rates during the polishing process and damage to the surface of layers to be polished by scratching.
  • the CeO 2 particles also have a high coefficient of friction which requires high torque to rotate a polishing substrate attached, for example, to the CMP support, as indicated above.
  • patent EP 0690772 Bl discloses abrasive compositions and aqueous suspensions comprising a particulate mixture of CeO 2, fumed silica and precipitated silica, into 'reports Weights and respective specific granulometries, usable in a method of polishing surfaces of materials.
  • the surface qualities and the polishing rates obtained can not be explained by the combination of the three compounds mentioned above, their respective concentrations and granulometries in these compositions.
  • US patent application 2004/0221516 A1 describes abrasive aqueous suspensions of metal oxides, comprising fine abrasive particles of metal oxides, in particular CeO 2 , and particles of colloidal oxides, such as silica, in which the concentration of abrasive particles of metal oxides must be greater than 5% by weight, so that the suspension has sufficient polishing capacity, the weight ratio of colloidal oxide particles / abrasive particles of metal oxides must be less than 1 for avoid sedimentation and particulate aggregation and, finally, the average size of the colloidal oxide particles must be less than that of the abrasive particles of metal oxides.
  • Improving the quality of the polishing result remains an important objective, which can be achieved in particular by the availability of abrasive suspensions based on CeO 2 particles, stable over time. They must participate in the control of the friction forces of the abrasive particles of CeO 2 during polishing and thus allow, together, high polishing rates of the surface of the material, in particular insulating layers of microcircuits, avoiding the formation of scratches , an improvement in the stability of the polishing by eliminating the risk of rebound of the material to be polished on the carpet of the polishing device, and, moreover, the elimination of the effects high pressure adhesion of the material to the polishing pad.
  • the invention aims to achieve at least one of the above aims.
  • the invention relates to an abrasive aqueous suspension for polishing the surface of a material, comprising from 0.5 to 4% by weight of cerium dioxide particles having an average size of between 5 and 80 nm and particles silica with a specific surface area of between 60 and 400 m 2 / g.
  • the Applicant has found, surprisingly, that the combination of CeO 2 particles having the specific characteristics set out above, in contents in the suspension varying in the range considered, with the silica particles of specific surface in the claimed range. , makes it possible to synergistically obtain the desired effects for these abrasive aqueous suspensions. It has thus been able to establish a synergistic correlation between the average size of the CeO 2 particles and the specific surface area of the representative silica, in particular the stability of the abrasive suspensions.
  • each parameter can not be adjusted independently of the others, in that, for example, optimizing the stability of abrasive suspensions obtained from these particle mixtures can have an influence on the polishing rate or the stability of the polishing process.
  • the abrasive aqueous suspensions of the invention have an increased stability over time, allowing their implementation in polishing processes and devices without the risk of a discontinuous and heterogeneous feed of the polishing device into abrasive particles. of the suspension.
  • the silica behaves as a stabilizing agent thereof, ensuring, inter alia, the function of thickening agent.
  • silica particles thus makes it possible to modify the organization of the CeO 2 abrasive particles in the suspension (increase in viscosity) and thus to control the frictional forces of these abrasive particles.
  • silica particles in the amounts mentioned above in the suspensions decreases the zeta potential of the suspension and, therefore, increases the electrostatic repulsion between the particles, which results in greater stability of the particles. suspension.
  • electrostatic stabilization can be explained by the fact that a particle, having many negative or positive charges on its surface, exhibits, in a medium of low ionic strength, an electrostatic repulsion vis-à-vis another particle over a fairly large distance at the molecular level. The particles will therefore repel each other because the energy barrier to be crossed for the aggregation will be important.
  • the steric effect and the electrostatic effect are cumulative for the stabilization of the suspensions.
  • the Net Load Point defined as the resulting charge density around a given particle and which represents the pH value for which the potential measured zeta is close to zero and for which particle aggregation and flocculation is observed, has a value of about 6.5.
  • the Applicant has found that an addition of silica particles in the amounts mentioned above in the suspensions makes it possible to reduce the PCN of this resulting suspension, which then has a value of approximately 2.1. Therefore, a suspension consisting solely of CeO 2 particles would be unstable in the preferred pH range of 6 to 12 (see below) because having a PCN value of about 6.5.
  • a suspension based on particles of CeO 2 and silica remains stable in this considered range (PCN having a value of about 2.1).
  • the control of the friction forces during polishing allows, with the suspensions of the invention , polishing rates of the surface of a very satisfactory material, such as from 3000 to 5000 ⁇ / min, or even 6000 ⁇ / min, for silica-based layers, the material surfaces having moreover polished and flatness increased compared to those of the prior art.
  • This control improves the stability of the polishing process by eliminating bouncing of the material to be polished on the carpet of the polishing device, and eliminating the effects of adhesion at high pressure, for example greater than 0.21 bar, material on the polishing mat.
  • the suspensions could be used at low pressures, less than 0.21 bar, in a polishing process, including CMP , in order to avoid the rebound phenomena above and unwanted vibrations of the polishing device that can cause the escape of the polishing plate from its support.
  • the presence of silica particles avoids these drawbacks by increasing the viscosity of the suspension, in particular on the polishing mat of the CMP process. This has the effect of making it possible to increase the polishing pressure to set it to a value greater than or substantially greater than 0.21 bar, with a gain in performance, especially in terms of polishing speed, polishing stability, quality polish and flatness of the polished surface of the material.
  • the stability period of the suspensions of the invention varies between at least 1 day, for example about 2 to 3 days, even a few months, or even 1 year and more, depending on the choice of characteristics of the average particle size of CeO 2 and the specific surface area of the silica particles.
  • the suspension is considered to have remained stable as long as about 10% of the particles have not flocculated or precipitated as flocculates / agglomerates.
  • the particle size distribution of the suspension (CeO 2 and silica particles) remains constant over time, which confirms the stabilizing function of the silica particles of suspensions based on CeO 2 particles.
  • the Applicant has shown that an increase in the specific surface area of the silica particles in the claimed range, the average particle size of CeO 2 being kept constant, was in favor of an improvement of the stability of the suspensions and the polishing performance. , especially representing the polished quality, the flatness of the desired surface of the polished material and the polishing speeds. In other words, the higher the specific surface area of the silica particles, the better the polishing performance. For example, the performance of the method of polishing a material is increased when considering a suspension according to the invention having a stability of 3 days compared to a suspension whose stability is of the order of 1 day .
  • the silica particles thus guarantee the stability of the suspension and, consequently, the desired polishing performance according to the industrial needs, thanks to the synergistic correlation between the average particle size of CeO 2 and the specific surface of the particles of silica.
  • This is of undeniable industrial interest because users can therefore choose according to needs, polishing performance required and the nature of the materials to be polished, suspensions having the desired stabilities. For example, in the case of ⁇ n polishing implemented during the multi-step manufacture of integrated circuits on a large scale, choose a polishing suspension having a fixed stability in particular to 15 days.
  • the user will wish to implement a material polishing only with a suspension whose stability will be a few days, for occasional needs, thus not requiring storage of large volumes of suspensions, or still whose stability period will be greater than 1 month or more.
  • Another advantage is the possibility of better management control of the need for suspensions.
  • the abrasive aqueous suspension comprises from 1 to 3% by weight of CeO 2 particles.
  • the "% by weight” refers to the weight of the CeO 2 or silica particles per 100 g of suspension.
  • the CeO 2 particles have an average size of between 20 and 70 nm, in particular between 40 and 60 nm.
  • the weight ratio R silica particles / cerium dioxide particles is preferably between 1.5 and 4.5, more preferably between 2 and 4 and in particular between 2.5 and 3.5.
  • the cerium dioxide is of high purity, such as at least 99.9%. This can be manufactured by techniques known per se or can be obtained commercially.
  • the silica particles have a specific surface area of between 90 and 300 m 2 / g, and preferably between 130 and 250 m 2 / g.
  • the silica particles of the suspension may be manufactured in a manner known per se or are commercially available and preferably represent particles of precipitated silica, fumed silica or sol-gel, provided that their specific surface respects the ranges of values defined below above.
  • the average particle size of the silica particles dispersed in an aqueous medium is usually between 25 and 250 nm, preferably between 50 and 200 nm. Pyrogenic silica is very particularly preferred because it gives the aqueous suspensions increased stability times compared with other types of silica particles, such as at least 5 days, which may especially be 3-4 months, while allowing polishing rates comparable to other types of silica particles.
  • the surface of the material to be polished preferably represents an insulating layer of microcircuits, and, more preferably, an insulating layer of silica.
  • the suspensions of the invention may also comprise a dispersant, preferably of polymeric type, to promote the dispersion of the particles in question in the suspension and to adjust the viscosity thereof.
  • examples of such dispersants are acids or derivatives of acrylic or methacrylic acids, or mixtures thereof.
  • Sodium polyacrylate having a molecular weight of between 500 Da and 5000 Da and in particular 2100 Da of molecular weight is preferred.
  • the dispersants are usually present in the suspensions in an amount of between 0.25% and 5% by weight, based on the weight of the CeO 2 particles present in the suspension.
  • Such quantities of dispersant give the suspensions viscosities of between 1000 and 1.5 cP at 20 ° C.
  • the presence in the suspensions of quantities by dispersing greater than 5% by weight does not make it possible to achieve polishing rates. satisfactory, typically at least 3000 ⁇ / min for silica-based layers.
  • the pH of the suspensions of the invention is generally between 6 and 12 and preferably between 6 and 10.
  • the pH values are adjusted by the addition of acids or bases which will be chosen by those skilled in the art in order to avoid any alteration of the polishing performance of the suspensions. Examples include strong mineral acids (hydrochloric acid, nitric acid, phosphoric acid and others) and mineral bases (sodium or potassium hydroxide and others).
  • Such a pH range particularly promotes chemical etching and erosion of the material associated with the control of the chemical part of the CMP process.
  • the suspensions of the invention may be prepared by conventional methods used in the field of the invention. For example, an aqueous suspension of CeO 2 particles may be prepared, followed by an aqueous suspension of silica particles at a pH of preferably between 4 and 8, and the two suspensions thus prepared may be mixed, respecting the weight ratio of silica particles. / CeO 2 particles previously defined, with vigorous stirring while adjusting the pH between 6 and 12. The stirring is completed when a homogeneous suspension is observed.
  • suspensions Given the simplicity of realization of such suspensions, they can be directly prepared on industrial microcircuit production sites and used in a method of polishing surfaces of materials, such as silica insulating layers of microcircuits. Consequently, suspension stabilities of the order of 24 hours prove to be acceptable in terms of industrial implementation.
  • the CeO 2 and silica particles may be in the form of colloids in the suspensions of the invention, observed for submicron particle sizes.
  • Another object of the present invention is a method for polishing the surface of a material comprising the steps of applying the abrasive aqueous suspension according to the invention to the surface of the material, and mechanically polishing said surface via of the suspension.
  • Such a polishing process by the use of the abrasive aqueous suspension of the invention improves in particular the flatness of the surfaces of materials and the quality of polish, that is to say whose surfaces are smooth, without defects and free of micro-scratches.
  • the polishing process can be implemented by means of a conventional device.
  • the method is particularly suitable for polishing the surface of silica insulating layers of microcircuits.
  • the method for polishing the surface of material represents the CMP. More specifically, the CMP comprises the following steps consisting of: a) placing and fixing the material on a support by its rear face, b) applying the front face to polish on a tray covered with a carpet of polymeric material, under sufficient pressure c) rotating the support and the plate at predetermined speeds, d) applying the aqueous abrasive suspension of the invention between the front face of said material and the plate, and e) polishing the front face of said material for a predetermined period of time .
  • the pressures applied in step b) are typically between 0.07 bar and 1.05 bar.
  • the rotational speeds of the plate and the support are typically between 20 and 120 rpm.
  • the polishing times (step d)) are usually between 30 and 300 s, preferably between 45 and 150 s.
  • the implementation of the CMP for polishing in particular the silica insulating layers of microcircuits is very effective, as will also show the following nonlimiting examples of embodiments of the invention.
  • the dispersed silica particles have an average size of 100 nm except for Example 9 where it is 50 nm.
  • Example 1 Influence of average CeOg particle size on slurry stability and polishing rates.
  • Three samples of colloidal abrasive aqueous suspensions S1, S2 and S3 are prepared comprising 3.5% by weight of fumed silica particles of 300 m 2 / g of specific surface area, 2% by weight of CeO 2 particles, the average sizes of which are are respectively 60 nm (Sl), 800 nm (S2) and 1200 nm (S3), and 1% of sodium polyacrylate (2100 Da) relative to the weight of CeO 2 at pH 8.
  • the samples were mixed under strong stirring for 15 minutes until a homogeneous suspension is obtained.
  • An aqueous abrasive slurry SO containing only 2% by weight of 60 nm CeO 2 particles of average size is also prepared for comparison.
  • a) Comparative stability tests were carried out just after obtaining the homogeneous suspensions (t 0 ). The stability limit is defined when 10% flocculates / agglomerates are observed. The results are shown in Table 1.
  • the CMP was carried out using a Mecapol 460 polisher (Presi-France) with a plate equipped with a Rodel IC10000-grooved stacked Suba IV (Rodel - USA) carpet.
  • the back side of the silicon wafer is fixed on a support of the polisher.
  • the rotational speed of the support is set at 50 rpm and that of the plate at 90 rpm.
  • Three polishing tests of silica coating the silicon wafer were conducted for 1 minute, applying a pressure of 0.41 bar to the polisher support.
  • the tray mat was fed with the suspensions S1, S2 and S3 respectively.
  • the polishing rates were measured by considering the initial height of the silica layer on the silicon wafer and the final height of this layer.
  • colloidal abrasive aqueous suspensions S4, S5 and S6 are prepared in the same manner as in Example 1. These suspensions comprise respectively 3%, 5% and 7% by weight of fumed silica particles with a specific surface area of 300 m 2. / g, 1.6% by weight of 60 nm CeO 2 particles of average particle size, and 1% of sodium polyacrylate (2100 Da), at pH 8.
  • the weight ratios R for each suspension considered are shown in Table 3 .
  • Example 3 This example is intended to show the influence of the nature of the silica particles on the polishing rates.
  • polishing rates of a silica layer coated with a silicon wafer are measured by implementing a CMP method as explained in Example 1, under two polishing pressures, 0.21 and 0.42. bar respectively.
  • This example illustrates the influence of the amount of sodium polyacrylate, of 2100 Da molecular weight, on the polishing rates of a silica-on-silicon layer.
  • an aqueous colloidal abrasive suspension comprising 3.5% by weight of fumed silica particles of 300 m 2 / g of specific surface area, 2% by weight of CeO 2 particles having an average size of 60 nm, is prepared. at pH 8 (SU), with or without varying amounts, dispersing sodium polyacrylate (PA) based on the weight of CeO 2 particles present in SiI, as shown in Table 5.
  • PA sodium polyacrylate
  • polishing rates of a silica layer coated with a silicon wafer are measured by the implementation of a CMP process as explained in Example 1, at a pressure of 0.42 bar.
  • This example is intended to increase the influence of the specific surface of the silica particles on the stability of a suspension based on CeO 2 particles.
  • Example 5 Experiments identical to those of Example 5 were carried out by considering the suspensions containing 60 nm CeO 2 particles of average size (suspensions S12 to S15), and suspensions (suspensions S16 to S19) manufactured with particles of CeO 2 of 130 nm (average size) and with the silica particles of variable specific surface area, mentioned in Example 5.
  • the pH is set at 8.
  • Stability and polishing rate measurements are carried out according to Example 1, using a polishing pressure of 0.42 bar.
  • Table 7 summarizes the results obtained by plotting those obtained according to Example 5.
  • This example is intended to show the influence of the addition of silica particles in suspensions based on CeO 2 particles on the zeta potential of this suspension.
  • An S20 suspension containing only 60 ⁇ m average particle size CeO 2 particles present in an amount of 1% by weight is considered.
  • a suspension S21 containing 1% of 60 nm CeO 2 particles of average particle size and 2.5% of fumed silica particles of 300 m 2 / g of specific surface area is prepared.
  • FIG. 1 shows a cross-section a silicon oxide deposit, of level n + 1, on a metal (M), of lower level n.
  • FIG. 2 represents a cross section of another topology relating to silica, of level n + 1, deposited on silicon nitride (Si 3 N 4 ), itself deposited on silicon, of lower level n.
  • the initial operating height (Hmi) of the silica deposition typically between 1000 and 15000 ⁇ , and the thickness of the initial silica deposition (Edi) between the n and n + 1 levels are defined.
  • the tests consist in showing the influence of the nature of the suspensions on their ability to polish preferentially the topology defined by the silica deposits of the zone A of FIG. 1, that is to say to reduce HMI, without affecting excessively the thickness of the Edi deposit of the zone B of this figure.
  • the slurry S1 defined in example 1 and a suspension S22 of colloidal silica containing 30% by weight of precipitated silica particles having an average size of 50 nm and having a specific surface area of 300 m 2 / are considered. boy Wut.
  • the CMP is applied to the silica deposition of FIG. 1, under a pressure of 0.42 bar, according to the conditions described in Example 1, for periods allowing the elimination of a certain desired height Hm.
  • Hmi 0.48Edi.
  • H Hmi - Hmf
  • E Edi - Edf

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

La présente invention concerne une suspension aqueuse abrasive pour polir la surface d'un matériau, comprenant de 0,5 à 4% en poids de particules de dioxyde de cérium présentant une taille moyenne comprise entre 5 et 80 nm et des particules de silice de surface spécifique comprise entre 60 et 400 m2/g. Elle concerne également un procédé pour polir la surface d'un matériau utilisant ladite suspension aqueuse abrasive.

Description

Suspension aqueuse abrasive à base de particules de dioxyde de cérium et de silice pour le polissage de surfaces de matériaux
La présente invention concerne une suspension aqueuse abrasive à base de particules de dioxyde de cérium et de silice pour le polissage de surfaces de matériaux. Elle concerne également un procédé pour polir ces surfaces par la mise en œuvre des suspensions .
La fabrication d'un circuit intégré fait appel à la réalisation de dépôts successifs de matériaux isolants, tels que l'oxyde de silicium, et conducteurs de plus en plus nombreux destinés à, relier entre eux les transistors intégrés sur la tranche de silicium. Une telle succession de couches isolantes et conductrices engendre des inconvénients bien connus de défaut de planéité des surfaces des couches par la présence de reliefs parasites apparaissant à la suite du dépôt, reliefs qu'il est nécessaire de supprimer, car ils peuvent engendrer des problèmes de continuité de couches lors des dépôts successifs.
Une technique de polissage de couches communément utilisée dans ce domaine est le polissage mécano- chimique (« Chemical Mechanical Polishing - CMP) et a fait l'objet d'une nombreuse littérature.
Son principe repose sur un polissage combinant une attaque mécanique et chimique de la surface d'un matériau à traiter par la mise en œuvre d'une suspension abrasive de polissage. Plus spécifiquement, la CMP est réalisée au moyen d'un dispositif de polissage connu de l'homme du métier, telle qu'une polisseuse. Le matériau à traiter est fixé, par sa face dite arrière sur un support, tandis que la face dite avant, sur laquelle sont présentes les couches à polir, est appliquée sur un plateau de polissage, revêtu d'un tapis en matière polymérique, sous faible pression, telle que de 0,07 à 1,05 bars. Des mouvements de rotation sont appliqués au support ainsi qu'au plateau afin d'uniformiser les vitesses linéaires de passage du tapis sur la tranche. Le mécanisme d'abrasion engendrant le polissage de la surface du matériau est assuré par une suspension de polissage distribuée sur le tapis sous forme d'une pellicule ou « coussin » fluide pendant le déroulement du procédé CMP . De façon générale, on utilise différents types de suspensions abrasives en fonction des caractéristiques du matériau à polir. Ces suspensions abrasives comprennent habituellement de fines particules abrasives dispersées dans un milieu liquide, tel que l'eau. Des exemples de telles particules abrasives sont les oxydes métalliques, tels que le dioxyde de cérium (CeO2) , le' dioxyde de silicium ou silice (SiO2) , par exemple la silice précipitée ou pyrogénée, le dioxyde de manganèse (MnO2) ou l'oxyde d'aluminium (Al2O3) . Ces suspensions sont en outre susceptibles de comprendre des dispersants, des tensioactifs, etc.
Les suspensions abrasives précitées doivent donc être aptes à polir des surfaces complexes, anisotropes, de matériaux, tels que des systèmes multicouch.es de fabrication de microcircuits, afin que la surface polie obtenue soit lisse, sans défauts, et présentant une absence de rayures de dimension submicrométrique . En outre, lors de la mise en œuvre du polissage, les suspensions abrasives ne doivent pas altérer de façon rédhibitoire, le cas échéant, les couches inférieures de microcircuits ou certaines régions de la surface du matériau à polir. Elles doivent également autoriser des vitesses de polissage satisfaisantes, définies comme étant l'épaisseur enlevée de la surface du matériau par unité de temps, et rendre stable le procédé de polissage par le contrôle des forces de frottements. Les frottements peuvent en effet engendrer un phénomène de rebond du matériau à polir sur le tapis du dispositif de polissage au cours notamment du procédé CMP, aboutissant à une diminution des vitesses de polissage et à une dégradation des résultats en terme d'état de surface .
Parmi les suspensions abrasives, celles comprenant des particules de silice comme abrasif sont très communément utilisées dans les procédés CMP pour polir ou planer les surfaces de matériaux, tels que les couches isolantes en silice de microcircuits. De telles suspensions peuvent contenir des tensioactifs, des dispersants de type polymère, des agents complexants, inhibiteurs de corrosion, etc. On peut citer, à titre d'exemple, les demandes de brevets et brevets WO 02/04573, US 2004/0077295 Al, US 6 736 992, EP 0 366 027, EP 0 121 707. Certains brevets divulguent également des suspensions abrasives à base de mélanges de silice avec d'autres oxydes métalliques, comme l'alumine ou le dioxyde de zirconium.
Toutefois, lorsque des agents abrasifs à base de silice sont mis en œuvre, la vitesse de polissage dépend largement du pH de la suspension, qui doit être maintenu à des valeurs supérieures à 10 pour observer une vitesse de polissage satisfaisante. De telles valeurs de pH ne sont pas sans risques pour l'utilisateur. En outre, les quantités de silice habituellement utilisées dans de telles suspensions sont comprises entre 10 et 30% en poids.
D'autres suspensions de polissage à base de particules de CeO2 sont également classiquement utilisées pour les applications ci-dessus, avec l'obtention d'un poli de surface comparable. On observe que ces suspensions sont d'autant plus performantes en terme de vitesse de polissage que la teneur en CeO2 est élevée. On peut citer à titre d'exemples US 7 759 917, US 2003/0216003, US 2004/0060472.
Toutefois, de telles suspensions abrasives présentent des inconvénients liés au fait que les particules de CeO2 présentent un faible aptitude de dispersion dans un milieu liquide, rendant instables les suspensions ainsi obtenues, ce qui provoque des phénomènes de sédimentation et d'agrégation particulaire . Les conséquences de tels phénomènes sont les modifications des vitesses de polissage au cours du processus de polissage et l ' endommagement de la surface de couches à polir par formation de rayures. Il y a en outre une difficulté pour alimenter de manière continue et uniforme le dispositif de polissage en particules abrasives de la suspension. Les particules de CeO2 ont également un grand coefficient de frottement ce qui nécessite un couple élevé pour faire tourner un substrat à polir fixé, par exemple, sur le support de la CMP, tel qu'indiqué ci- dessus .
Pour éviter les phénomènes de sédimentation et d'agrégation particulaire observés' dans de telles suspensions à base de CeO2, il a été proposé d'y incorporer divers additifs polymériques , tels que des tensioactifs et des dispersants, comme décrit par exemple dans les demandes de brevets JP 2000-17195 A, JP 2001-138214 et JP 2002-353175 A. Toutefois, l'utilisation de tels additifs polymériques ne permet pas de stabiliser efficacement les suspensions abrasives. Une alternative à l'ajout de tels additifs consiste à incorporer un composant inorganique stabilisant, tel que la silice, à des suspensions abrasives de CeO2.
Ainsi, le brevet EP 0 690 772 Bl divulgue des compositions et suspensions aqueuses abrasives comprenant un mélange particulaire de CeO2, de silice pyrogénée et de silice précipitée, en des ' rapports pondéraux et granulometries respectifs spécifiques, utilisables dans un procédé de polissage de surfaces de matériaux. Les qualités de surface et les vitesses de polissage obtenues ne peuvent s'expliquer par la combinaison des trois composés cités ci-dessus, leurs concentrations et granulométries respectives dans ces compositions .
La demande de brevet US 2004/0221516 Al décrit des suspensions aqueuses abrasives d'oxydes métalliques, comprenant de fines particules abrasives d'oxydes métalliques, en particulier CeO2, et des particules d'oxydes colloïdales, tel que de la silice, dans lesquelles la concentration en particules abrasives d'oxydes métalliques doit être supérieure à 5% en poids, afin que la suspension présente des capacités de polissage suffisantes, le rapport pondéral particules d'oxydes colloïdales/particules abrasives d'oxydes métalliques doit être inférieur à 1 pour éviter la sédimentation et l'agrégation particulaire et, enfin, la taille moyenne des particules d'oxydes colloïdales doit être inférieure à celle des particules abrasives d'oxydes métalliques.
L'amélioration de la qualité du résultat de polissage reste un objectif important, qui peut être notamment atteint par la mise à disposition de suspensions abrasives à base de particules de CeO2, stables dans le temps. Elles doivent participer au contrôle des forces de frottement des particules abrasives de CeO2 au cours du polissage et ainsi permettre, conjointement, des vitesses de polissage élevées de la surface du matériau, en particulier de couches isolantes de microcircuits, en évitant la formation de rayures, une amélioration de la stabilité du polissage par l'élimination du risque de rebond du matériau à polir sur le tapis du dispositif de polissage, et, de plus, l'élimination des effets d'adhérence à forte pression du matériau sur le tapis de polissage.
L'invention vise à atteindre au moins l'un des buts ci-dessus.
A cet effet, l'invention concerne une suspension aqueuse abrasive pour polir la surface d'un matériau, comprenant de 0,5 à 4% en poids de particules de dioxyde de cérium présentant une taille moyenne comprise entre 5 et 80 nm et des particules de silice de surface spécifique comprise entre 60 et 400 m2/g.
La Demanderesse a trouvé, de manière surprenante, que la combinaison des particules de CeO2 présentant les caractéristiques spécifiques énoncées ci-dessus, en des teneurs dans la suspension variant dans la gamme considérée, avec les particules de silice de surface spécifique dans la gamme revendiquée, permet d'obtenir de façon synergique les effets recherchés pour ces suspensions aqueuses abrasives. Elle a donc pu établir une corrélation synergique entre la taille moyenne des particules de CeO2 et la surface spécifique de la silice représentative notamment de la stabilité des suspensions abrasives. En effet, la mise en œuvre de telles suspensions aqueuses abrasives, pour polir et/ou planer des surfaces de matériaux, permet d'obtenir un bon compromis entre différents paramètres tels que la stabilité dans le temps de ces suspensions, des vitesses de polissage satisfaisantes, des qualités élevées de poli et une planéité satisfaisante de la surface, et une stabilité du procédé de polissage par le contrôle des forces de frottement.
En effet, chaque paramètre (stabilité des suspensions, vitesse de polissage, qualité du poli des surfaces, stabilité du procédé de polissage et planéité de la surface) ne peut être réglé indépendamment des autres, en ce sens que, par exemple, l'optimisation de la stabilité de suspensions abrasives obtenues à partir de ces mélanges de particules peut avoir une influence sur la vitesse de polissage ou sur la stabilité du procédé de polissage.
Elle a ainsi montré que les suspensions aqueuses abrasives de l'invention présentent une stabilité accrue dans le temps, autorisant leur mise en œuvre dans des procédés et dispositifs de polissage sans le risque d'une alimentation discontinue et hétérogène du dispositif de polissage en particules abrasives de la suspension.
Elle a mis en évidence que, dans ces suspensions, la silice se comporte comme un agent stabilisant de celles-ci, en assurant, entre autres, la fonction d'agent épaississant.
La présence de particules de silice permet donc de modifier l'organisation des particules abrasives de CeO2 dans la suspension (augmentation de la viscosité) et ainsi de contrôler les forces de frottements de ces particules abrasives.
La Demanderesse a ainsi observé, lors d'essais, que des résultats très satisfaisants pouvaient être obtenus par augmentation de la viscosité de la suspension, typiquement dans la gamme de 1 à 1000 cP, ceci par ajout de particules de silice en des quantités comprises entre environ 1,5% en poids et environ 20% en poids, ce qui accroît l'effet stérique autour de chaque particule et, par conséquent, la stabilisation des suspensions à base de CeO2. Ainsi, lorsque la concentration totale des particules devient importante, par exemple de l'ordre de 5% en poids, des interactions stériques répulsives sont nettement mises en évidence, liées à la non-interpénétrabilité des particules considérées, de sorte qu'un résultat optimal peut être obtenu. En outre, l'ajout de particules de silice en des quantités mentionnées ci-dessus dans les suspensions diminue le potentiel zêta de la suspension et, par conséquent, augmente la répulsion électrostatique entre les particules, ce qui se traduit par un surcroît de stabilité de la suspension. Cette stabilisation dite électrostatique peut s'expliquer par le fait qu'une particule, présentant de nombreuses charges négatives ou positives à sa surface, présente, dans un milieu de faible force ionique, une répulsion électrostatique vis-à-vis d'une autre particule sur une distance assez importante à l'échelle moléculaire. Les particules vont donc se repousser mutuellement car la barrière d'énergie à franchir pour l'agrégation sera importante.
Il convient de noter que l'effet stérique et l'effet électrostatique se cumulent pour la stabilisation des suspensions.
Lorsque l'on considère des suspensions ne contenant que des particules de CeO2, le Point de Charge Nulle (PCN) , défini comme étant la densité de charges résultante autour d'une particule donnée et qui représente la valeur de pH pour lequel le potentiel zêta mesuré est voisin de zéro et pour laquelle il est observé une agrégation et floculation particulaire, présente une valeur d'environ 6,5. La Demanderesse a trouvé qu'un ajout de particules de silice en des quantités mentionnées ci-dessus dans les suspensions permet de diminuer le PCN de cette suspension résultante qui a alors pour valeur environ 2,1. Par conséquent, une suspension constituée uniquement de particules de CeO2 serait instable dans la gamme de pH préférée comprise entre 6 et 12 (voir plus loin), car ayant une valeur PCN d'environ 6,5. Une suspension à base de particules de CeO2 et de silice reste stable dans cette gamme considérée (PCN ayant une valeur d'environ 2,1) .
Le contrôle des forces de frottement au cours du polissage, tel que CMP, grâce aux caractéristiques conjointes, c'est-à-dire taille moyenne des particules CeO2 et surface spécifique des particules de silice, autorise, avec les suspensions de l'invention, des vitesses de polissage de la surface d'un matériau très satisfaisantes, telles que de 3000 à 5000 Â/min, voire même 6000 Â/min, pour des couches à base de silice, les surfaces de matériau présentant de plus des qualités de poli et de planéité accrues par rapport à celles de l'art antérieur. Ce contrôle améliore la stabilité du procédé de polissage par l'élimination de rebonds du matériau à polir sur le tapis du dispositif de polissage, et l'élimination des effets d'adhérence à forte pression, par exemple supérieure à 0,21 bar, du matériau sur le tapis de polissage. En effet, en l'absence de particules de silice, outre le défaut de stabilité de la suspension, les suspensions ne pourraient être utilisables qu'à de faibles pressions, inférieures à 0,21 bar, dans un procédé de polissage, notamment de CMP, afin d'éviter les phénomènes de rebonds ci-dessus et les vibrations indésirées du dispositif de polissage qui peuvent engendrer l'échappement de la plaque à polir de son support. La présence de particules de silice évite ces inconvénients par l'accroissement de la viscosité de la suspension, notamment sur le tapis de polissage du procédé CMP. Ceci a pour effet de permettre d'augmenter la pression de polissage pour la fixer à une valeur supérieure ou nettement supérieure à 0,21 bar, avec un gain en performances, notamment en termes de vitesse de polissage, de stabilité de polissage, de qualité de poli et de planéité de la surface polie du matériau. Avantageusement, on. peut régler les paramètres de la suspension pour que la durée de stabilité des suspensions de l'invention varie entre au minimum 1 jour, par exemple 2 à 3 jours environ, voire quelques mois, ou même 1 an et plus, en fonction du choix des caractéristiques de la taille moyenne des particules de CeO2 et de la surface spécifique des particules de silice. On considère que la suspension est restée stable tant qu'environ 10% des particules n'ont pas floculé ou précipité sous forme de floculats/agglomérats . La distribution granulométrique de la suspension (particules de CeO2 et de silice) reste constante au cours du temps, ce qui confirme la fonction stabilisante des particules de silice des suspensions à base de particules de CeO2.
La Demanderesse a montré qu'une augmentation de la surface spécifique des particules de silice dans la gamme revendiquée, la taille moyenne des particules de CeO2 étant maintenue constante, était en faveur d'une amélioration de la stabilité des suspensions et des performances de polissage, représentant notamment la qualité de poli, la planéité de la surface désirées du matériau poli et les vitesses de polissage. Autrement dit, plus la surface spécifique des particules de silice augmente, meilleures sont les performances de polissage. A titre d'exemple, les performances du procédé de polissage d'un matériau sont accrues lorsqu'on considère une suspension selon l'invention ayant une stabilité de 3 jours par rapport à une suspension dont la stabilité est de l'ordre de 1 jour.
De même, pour une taille moyenne de particules de CeO2 et une surface spécifique des particules de silice fixées, il est possible de conserver les mêmes performances de polissage ci-dessus sur des durées aussi longues que quelques mois, voire 1 an ou plus, et ce pendant toute la période de stabilité de la suspension. La reproductibilité du procédé de polissage est donc assurée pendant toute la durée de stabilité des suspensions.
Les particules de silice garantissent donc la stabilité de la suspension et, par voie de conséquence, les performances de polissage voulues en fonction des besoins industriels, grâce à la corrélation synergique entre la taille moyenne des particules de CeO2 et la surface spécifique des particules de silice. Ceci présente un intérêt industriel indéniable car les utilisateurs peuvent donc choisir en fonction des besoins, des performances de polissage requises et de la nature des matériaux à polir, des suspensions présentant les stabilités désirées. On peut par exemple, dans le cas d'μn polissage mis en œuvre lors de la fabrication multi-étape de circuits intégrés sur une grande échelle, choisir une suspension de polissage présentant une stabilité fixée en particulier à 15 jours. Dans d'autres applications, l'utilisateur ne souhaitera mettre en œuvre un polissage de matériaux qu'avec une suspension dont la stabilité sera de quelques jours, pour des besoins ponctuels, ne nécessitant donc pas de stockage de grand volumes de suspensions, ou bien encore dont la durée de stabilité sera supérieure à 1 mois ou plus. Un autre avantage est la possibilité d'un meilleur contrôle de gestion des besoins en suspensions.
En revanche, en dehors des plages de valeurs considérées, la stabilité des suspensions n'est pas satisfaisante, et l'on observe même une diminution des vitesses de polissages, de la stabilité et de la reproductibilité du procédé de polissage indiquées plus haut .
Avantageusement, la suspension aqueuse abrasive comprend de 1 à 3% en poids de particules de CeO2. La locution « % en poids » désigne le poids des particules de CeO2 ou de silice pour 100 g de suspension. La mise en œuvre de telles suspensions dans des procédés de polissage présente l'avantage de ne nécessiter que de faibles quantités de particules de CeO2 pour obtenir les effets recherchés. Ceci est d'autant plus important que le CeO2 est toxique, polluant et onéreux. Par ailleurs, les coûts de production et de mise en œuvre du polissage s'en trouvent, par conséquent, réduits.
De préférence, les particules de CeO2 ont une taille moyenne comprise entre 20 et 70 nm, en particulier entre 40 et 60 nm.
De très bons résultats sont obtenus, notamment en terme de vitesse de polissage et de stabilité du procédé de polissage et de stabilité des suspensions aqueuses, lorsque le rapport pondéral R particules de silice/particules de dioxyde de cérium est de préférence compris entre 1,5 et 4,5, de façon plus préférée entre 2 et 4 et , en particulier, entre 2,5 et 3,5.
Dans le cadre de l'invention, il est préférable que le dioxyde de cérium soit d'une pureté élevée, tel que d'au moins 99,9%. Celui-ci peut être fabriqué par des techniques connues en soi ou on peut se le procurer dans le commerce .
Avantageusement, les particules de silice présentent une surface spécifique comprise entre 90 et 300 m2/g, et, de préférence, entre 130 et 250 m2/g.
Les particules de silice de la suspension peuvent être fabriquées de manière connue en soi ou sont disponibles dans le commerce et représentent, de préférence, des particules de silice précipitée, pyrogénée ou sol-gel, à condition que leur surface spécifique respecte les plages de valeurs définies ci- dessus. La granulomêtrie moyenne des particules de silice dispersées dans un milieu aqueux est habituellement comprise entre 25 et 250 nm, de préférence, entre 50 et 200 nm. La silice pyrogénée est tout particulièrement préférée, car elle confère aux suspensions aqueuses des durées de stabilité accrues par rapport aux autres types de particules de silice, telles que d'au moins 5 jours, pouvant notamment être de 3-4 mois, tout en autorisant des vitesses de polissage comparables aux autres types de particules de silice.
La surface du matériau à polir représente de préférence une couche isolante de microcircuits, et, de façon plus préférée, une couche isolante en silice. Les suspensions de l'invention peuvent également comprendre un dispersant, de préférence de type polymérique, pour favoriser la dispersion des particules considérées dans la suspension et en ajuster la viscosité. Des exemples de tels dispersants sont les acides ou les dérivés d'acides acryliques ou méthacryliques, ou leur mélanges. On préfère le polyacrylate de sodium ayant un poids moléculaire compris entre 500 Da et 5000 Da, et, en particulier, de poids moléculaire de 2100 Da. Les dispersants sont habituellement présents dans les suspensions en une quantité comprise entre 0,25% et 5% en poids, par rapport au poids des particules de CeO2 présentes dans la suspension. De telles quantités de' dispersant confèrent aux suspensions des viscosités comprises entre 1000 et 1,5 cP, à 200C. La présence dans les suspensions de quantités en dispersant supérieures à 5% en poids ne permet pas d'atteindre des vitesses de polissage satisfaisantes, typiquement d'au moins 3000 Â/min pour des couches à base de silice. Le pH des suspensions de l'invention est généralement compris entre 6 et 12 et, de préférence, entre 6 et 10. Les valeurs des pH sont ajustées par l'ajout d'acides ou de bases qui seront choisis par l'homme du métier afin d'éviter toute altération des performances de polissage des suspensions. On peut citer par exemple les acides minéraux forts (acides chlorhydrique, nitrique, phosphorique et autres) et des bases minérales (hydroxyde de sodium ou de potassium et autres) . Une telle gamme de pH favorise notamment l'attaque chimique et l'érosion du matériau associées au réglage de la partie chimique du procédé CMP.
Les suspensions de l'invention peuvent être préparées par des méthodes conventionnelles mises en oeuvre dans le domaine de l'invention. On peut par exemple préparer une suspension aqueuse de particules de CeO2, puis une suspension aqueuse de particules silice à un pH de préférence compris entre 4 et 8, et procéder au mélange des deux suspensions ainsi préparées, en respectant le rapport pondéral particules de silice/ particules de CeO2 précédemment défini, sous forte agitation tout en ajustant le pH entre 6 et 12. L'agitation est achevée lorsqu'une suspension homogène est observée.
Compte tenu de la simplicité de réalisation de telles suspensions, elles peuvent être directement préparées sur les sites industriels de production de microcircuits et utilisées dans un procédé de polissage de surfaces de matériaux, tels que des couches isolantes en silice de microcircuits. Par conséquent, des stabilités de suspensions de l'ordre de 24 heures se révèlent être acceptables en termes de mise en oeuvre industrielle.
Il convient de noter que les particules de CeO2 et de silice peuvent se présenter sous la forme de colloïdes dans les suspensions de l'invention, observés pour des tailles de particules submicroniques . Un autre objet de la présente invention concerne un procédé pour polir la surface d'un matériau comprenant les étapes consistant à appliquer la suspension aqueuse abrasive selon l'invention sur la surface du matériau, et procéder au polissage mécanique de ladite surface par l'intermédiaire de la suspension. Un tel procédé de polissage par l'utilisation de la suspension aqueuse abrasive de l'invention améliore notamment la planéité des surfaces de matériaux et la qualité de poli, c'est-à-dire dont les surfaces sont lisses, sans défauts et exemptes de micro-rayures .
Le procédé de polissage peut être mis en œuvre au moyen d'un dispositif conventionnel. Le procédé est particulièrement adapté pour polir la surface de couches isolantes en silice de microcircuits.
Avantageusement, le procédé pour polir la surface de matériau représente la CMP. Plus précisément, la CMP comprend les étapes suivantes consistant à : a) placer et fixer le matériau sur un support par sa face arrière, b) appliquer la face avant à polir sur un plateau revêtu d'un tapis en matière polymérique, sous pression suffisante, c) mettre en rotation le support et le plateau à des vitesses prédéterminées, d) appliquer la suspension aqueuse abrasive de l'invention entre la face avant dudit matériau et le plateau, et e) polir la face avant dudit matériau pendant une durée prédéterminée.
Les pressions appliquées à l'étape b) sont typiquement comprises entre 0,07 bar et 1,05 bar. Les vitesses de rotation du plateau et du support sont typiquement comprises entre 20 et 120 tours/min. Les durées de polissage (étape d) ) sont habituellement comprises entre 30 et 300 s, de préférence entre 45 et 150 s.
La mise en œuvre de la CMP pour polir notamment les couches isolantes en silice de microcircuits est très efficace, comme vont en outre le montrer les exemples non limitatifs de modes de réalisation de l'invention qui suivent. Dans tous les exemples qui suivent les particules de silice dispersées ont une taille moyenne de 100 nm sauf pour l'Exemple 9 où celle-ci est de 50 nm. Exemple 1 Influence de la taille des particules moyenne de CeOg sur la stabilité des suspensions et les vitesses de polissage.
On prépare trois échantillons de suspensions aqueuses abrasives colloïdales Sl, S2 et S3 comprenant 3,5% en poids de particules de silice pyrogénée de 300 m2/g de surface spécifique, 2% en poids de particules de CeO2, dont les tailles moyennes sont respectivement 60 nm (Sl), 800 nm (S2) et 1200 nm (S3) , et 1% de polyacrylate de sodium (2100 Da) par rapport au poids de CeO2, à pH 8. Les échantillons ont été mélangés sous forte agitation pendant 15 minutes jusqu'à l'obtention d'une suspension homogène. Une suspension aqueuse abrasive SO ne contenant que 2% en poids de particules de CeO2 de 60 nm de taille moyenne est également préparée à .titre de comparaison. a) Des essais comparatifs de stabilité ont été effectués juste après l'obtention des suspensions homogènes (t0) . La limite de stabilité est définie lorsqu'il est observé 10% de floculats/agglomérats . Les résultats figurent au Tableau 1. Tableau 1
Les résultats montrent que la suspension Sl de l'invention, contenant des particules de CeO2 de 60 nm de taille moyenne, est la plus stable. Ce tableau montre également qu'en l'absence de particules de silice les suspensions à base de particules de CeO2 seules ne sont pas stables, malgré la présence du dispersant. S2 et S3 présentent également une stabilité insuffisante. b) Des essais relatifs aux vitesses de polissage ont été effectués par l'utilisation des suspensions Sl, S2 et S3. Pour ces essais, une tranche de silicium de 150 mm de diamètre sur laquelle a été déposée de la silice, a été soumise à un polissage selon la CMP. La CMP a été réalisée au moyen d'une polisseuse Mecapol 460 (Presi-France) comportant un plateau muni d'un tapis Rodel IClOOOk-grooved stacké Suba IV (Rodel - USA) . La face arrière de la tranche de silicium est fixée sur un support de la polisseuse. La vitesse de rotation du support est fixée à 50 tours/min et celle du plateau à 90 tours/min. Trois essais de polissage de la silice revêtant la tranche de silicium ont été menés pendant 1 minute, en appliquant une pression de 0,41 bar au support de la polisseuse. Le tapis du plateau a été alimenté avec les suspensions Sl, S2 et S3 respectivement. Les vitesses de polissage ont été mesurées en considérant la hauteur initiale de la couche de silice sur la tranche de silicium et la hauteur finale de cette couche.
Les résultats sont montrés dans le Tableau 2. Tableau 2
Les résultats conjoints des Tableaux 1 et 2 montrent que la suspension S3 permet d'atteindre des vitesses de polissage bien plus élevées que les suspensions Sl et S2. Toutefois, une telle suspension n'est stable que pendant 6 heures à partir de sa préparation, ce qui n'est pas satisfaisant dans le cadre d'une mise en œuvre d'un polissage à l'échelle industrielle. Il en est de même de la suspension S2. L'absence de silice dans SO à des effets néfastes sur la stabilité de la suspension et les vitesses de polissage obtenues. La suspension Sl de l'invention offre un très bon compromis entre la stabilité de la suspension, qui est très supérieure à 5 jours, pouvant notamment atteindre 3-4 mois, et la vitesse de polissage de la silice sur silicium.
Exemple 2
On prépare trois échantillons de suspensions aqueuses abrasives colloïdales S4 , S5 et S6 de la même manière que dans l'Exemple 1. Ces suspensions comprennent respectivement 3%, 5% et 7% en poids de particules de silice pyrogénée de surface spécifique 300 m2/g, 1,6% en poids de particules de CeO2 de 60 nm de granulométrie moyenne, et 1% de polyacrylate de sodium (2100 Da), à pH 8. Les rapports pondéraux R pour chaque suspension considérée sont indiqués au Tableau 3.
On procède aux mesures des vitesses de polissage d'une couche de silice revêtant une tranche de silicium par la mise en œuvre d'un procédé CMP comme explicité à l'Exemple 1, en considérant deux pressions de polissage, 0,21 et 0,42 bars respectivement. Les résultats sont montrés au Tableau 3.
Tableau 3
Les résultats du Tableau 3 montrent que des vitesses de polissage très satisfaisantes sont obtenues pour différents rapports pondéraux R, sous les deux pressions de mise en œuvre.
Exemple 3 Cet exemple est destiné à montrer l'influence de la nature des particules de silice sur les vitesses de polissage.
On prépare quatre échantillons de suspensions aqueuses abrasives colloïdales S7, S8, S9 et SlO de la même manière que dans l'Exemple 1. Les compositions de ces suspensions sont les suivantes :
S7 : 3,5% de particules de silice pyrogénée de 300 m2/g de surface spécifique et 2% de particules de CeO2 de 60 nm de granulométrie moyenne (R = 1,75), 58 : 3,5% de particules de silice sol-gel de 60 m2/g de surface spécifique et 2% de particules de CeO2 de 60 nm de granulométrie moyenne (R = 1,75),
59 : 5% de particules de silice pyrogénée de 300 m2/g de surface spécifique et 2% de particules de CeO2 de 60 nm de granulométrie moyenne (R = 2,5),
SlO : 5% de particules de silice sol-gel de
60 m2/g de surface spécifique et 2% de particules de CeO2 de 60 nm de granulométrie moyenne (R = 2,5) .
Toutes les suspensions considérées comprennent en plus 1% de polyacrylate de sodium (2100 Da) et sont à pH 8.
On procède aux mesures des vitesses de polissage d'une couche de silice revêtant une tranche de silicium par la mise en œuvre d'un procédé CMP comme explicité à l'Exemple 1, sous deux pressions de polissage, 0,21 et 0,42 bar respectivement.
Les résultats sont montrés au Tableau 4.
Tableau 4
Les résultats figurant au Tableau 4 indiquent que l'utilisation de deux types de particules de silice dans les suspensions abrasives de l'invention conduit à des vitesses de polissage très convenables. Toutefois, la stabilité des suspensions à base de particules de silice sol-gel est moins satisfaisante que pour celle obtenue avec la silice pyrogénée, mais acceptable dans le cadre d'une mise en œuvre industrielle.
Exemple 4
Cet exemple illustre l'influence de la quantité en polyacrylate de sodium, de poids moléculaire 2100 Da, sur les vitesses de polissage d'une couche de silice sur silicium.
A cet effet, on prépare uns suspension aqueuse abrasive colloïdale comprenant 3,5% en poids de particules de silice pyrogénée de 300 m2/g de surface spécifique, 2% en poids de particules de CeO2 ayant une taille moyenne de 60 nm, à pH 8 (SU) , comprenant ou non des quantités variables en dispersant polyacrylate de sodium (PA) par rapport au poids de particules de CeO2 présentes dans SIl, comme indiqué au Tableau 5.
On procède aux mesures des vitesses de polissage d'une couche de silice revêtant une tranche de silicium par la mise en œuvre d'un procédé CMP comme explicité à l'Exemple 1, à une pression de 0,42 bar.
Les résultats sont montrés au Tableau 5.
Tableau 5
Les résultats illustrent le fait que la quantité de polyacrylate de sodium influe sur les vitesses de polissage d'une couche de silice sur silicium et que des quantités supérieures à 5 % engendrent des vitesses de polissage insuffisantes pour l'application considérée. Il est à noter que même en l'absence de polyacrylate de sodium, les vitesses de polissage sont très satisfaisantes.
Exemple 5
Cet exemple est destiné à monter l'influence de la surface spécifique des particules de silice sur la stabilité d'une suspension à base de particules de CeO2.
On prépare des suspensions contenant 2% en poids de particules de CeO2, de taille particulaire moyenne de 60 nm, et 3,5% en poids de particules de silice pyrogénée dont on a fait varier la surface spécifique : 50 m2/g (suspension S12) , 90 m2/g
(suspension S13) , 130 m2/g (suspension S14) et 300 m2/g
(suspension S15) . Le pH est fixé à 8.
Les résultats sont montrés au Tableau 6.
Tableau 6
Les résultats de ce Tableau 6 indiquent clairement que lorsque la surface spécifique des particules de silice est en-dehors de la plage revendiquée, la suspension est instable. En revanche, les résultats montrent que plus la surface spécifique des particules de silice augmente, en maintenant constante la taille moyenne des particules de CeO2, plus la suspension est stable.
Exemple 6
Des expériences identiques à celles de l'Exemple 5 ont été effectuées en considérant les suspensions contenant des particules de CeO2 de 60 nm de taille moyenne (suspensions S12 à S15) , et des suspensions (suspensions S16 à S19) fabriquées avec des particules de CeO2 de 130 nm (taille moyenne) et avec les particules de silice de surface spécifique variable, mentionnées à l'Exemple 5. Le pH est fixé à 8.
On effectue des mesures de stabilité et de vitesses de polissage selon l'Exemple 1, en mettant en œuvre une pression de polissage de 0,42 bar.
Le Tableau 7 rassemble les résultats obtenus en reportant ceux obtenus selon l'Exemple 5.
Tableau 7
Ces résultats montrent que lorsqu'une taille moyenne de particules de CeC>2 n'est pas dans la gamme revendiquée, les suspensions considérées (S16 à S19) sont instables et ne peuvent être Utilisées dans des procédés de polissage notamment dont les durées de mise en oeuvre sont supérieures à la durée de stabilité de la suspension. On observe également une légère diminution des vitesses de polissage en fonction de la surface spécifique des particules de silice pour ces suspensions. En revanche, lorsqu'on considère des suspensions selon l'invention, la stabilité et les vitesses de polissage sont très satisfaisantes .
Exemple 7
Cet exemple est destiné à montrer l'influence de l'ajout de particules de silice dans des suspensions à base de particules de CeO2 sur le potentiel zêta de cette suspension. On considère une suspension S20 ne contenant que des particules de CeO2 de 60 nra de taille particulaire moyenne, présentes en une quantité de 1% en poids. On prépare une suspension S21 contenant 1% de particules de CeO2 de 60 nm de taille particulaire moyenne et 2,5% de particules de silice pyrogénée de 300 m2/g de surface spécifique.
On procède aux mesures de la variation du potentiel zêta de S20 et S21 en fonction du pH sur un dispositif Zetasizer 3000 par des méthodes connues de l'homme du métier. Les résultats sont montrés au Tableau 8. Tableau 8
Ces résultats permettent de déduire que la présence de particules de silice diminue le potentiel zêta et que le Point de Charge Nulle (PCN) pour la suspension S21 est d'environ 2,1. Par conséquent, lorsque le pH est fixé préférentiellement dans la gamme de 6 à 12 dans les suspensions de l'invention, celles-ci sont donc très stables à ces pH.
Exemple 8
Les performances des suspensions aqueuses abrasives en termes d'aptitude à fournir une planéité de surfaces de couches, présentant une topologie déterminée, ont été évaluées pour des dépôts de silice sur différentes structures par la technique de Dépôt Chimique en Phase Vapeur (CVD) . La topologie de ces dépôts sur des structures est montrée aux Figures 1 et 2. La figure 1 représente une section transversale d'un dépôt d'oxyde de silicium, de niveau n+1, sur un métal (M) , de niveau inférieur n. La figure 2 représente une section transversale d'une autre topologie relative à de la silice, de niveau n+1, déposée sur du nitrure de silicium (Si3N4) , lui-même déposé sur silicium, de niveau inférieur n. On définit la hauteur de marche initiale (Hmi) du dépôt de silice, typiquement comprise entre 1000 et 15000 Â, et l'épaisseur du dépôt initial de silice (Edi) entre les niveaux n et n+1. Les essais consistent à montrer l'influence de la nature des suspensions sur leur capacité à polir préfèrentiellement la topologie définie par les dépôts de silice de la zone A de la figure 1, c'est-à-dire à diminuer Hmi, sans affecter excessivement l'épaisseur du dépôt Edi de la zone B de cette figure.
Pour ces essais, on considère la suspension Sl définie à l'exemple 1 et une suspension S22 de silice colloïdale contenant 30% en poids de particules de silice précipitée dont la taille moyenne est de 50 nm et présentant une surface spécifique de 300 m2/g.
On met en œuvre la CMP sur le dépôt de silice de la Figure 1, sous pression de 0,42 bar, selon les conditions décrites à l'exemple 1, pendant des durées permettant l'élimination d'une certaine hauteur Hm voulue. Dans le cas présent, Hmi = 0,48Edi.
On mesure ensuite les hauteurs Hm et Ed finales, respectivement Hmf et Edf, obtenues après polissage mis en œuvre avec Sl et S22. On définit : H = Hmi - Hmf, et E = Edi - Edf.
On fixe, en fonction de la durée du polissage, les hauteurs Hl = 0,66Hmi, H2 = 0,5Hmi et H3 = 0,33Hmi, et on calcule respectivement les hauteurs El, E2 et E3 obtenues, après mesure des épaisseurs Edfl, Edf2 et Edf3.
Le Tableau 9 présente les résultats obtenus. Tableau 9
Suspension El E2 E3
Sl 0, 18Edi 0, 30Edi 0, 36Edi
S22 0, 32Edi 0, 48Edi 0, 66Edi
Les résultats de ce Tableau montrent que le polissage du dépôt d'oxyde de silicium considéré mis en œuvre avec la suspension de l'invention Sl, 'pour l'obtention de hauteurs Hl, H2 et H3 , affecte beaucoup moins les hauteurs El, E2 et E3 respectives que par un polissage effectué en utilisant la suspension de silice colloïdale S22.
La mise en oeuvre d'un polissage de longue durée sur la zone A et la zone B aboutit à une réduction de ces dépôts, d'épaisseur initiale Edi, visibles sur la Figure 1, c'est-à-dire que la CMP permet l'obtention d'une surface d'oxyde de silicium totalement plane par polissage des reliefs de hauteur Hmi, avec une consommation très limitée de la zone B, de sorte que l'épaisseur après polissage Edf de la zone B ainsi traitée n'est que légèrement inférieure à Edi.
Ces essais démontrent que les suspensions de l'invention, utilisées dans un procédé de polissage CMP, améliorent la planéité de la surface de matériaux et contribuent à réduire l'érosion de la zone B ou encore zones de topologie basse.

Claims

Revendications
1. Suspension aqueuse abrasive pour polir la surface d'un matériau, comprenant de 0,5 à 4% en poids de particules de dioxyde de cérium présentant une taille moyenne comprise entre 5 et 80 nm et des particules de silice de surface spécifique comprise entre 60 et 400 m2/g.
2. Suspension selon la revendication 1, comprenant de 1 à 3% en poids de particules de dioxyde de cérium.
3. Suspension selon la revendication 1 ou 2 , dans laquelle les particules de dioxyde de cérium ont une taille moyenne comprise entre 20 et 70 nm, en particulier entre 40 et 60 nm.
4. Suspension selon l'une des revendications 1 à
3, dans laquelle le rapport pondéral R particules de silice/particules de dioxyde de cérium est compris entre 1,5 et 4,5, de façon plus préférée entre 2 et 4 et, en particulier, entre 2,5 et 3,5.
5. Suspension selon l'une des revendications 1 à
4, dans laquelle la surface spécifique des particules de silice est comprise entre 90 et 300 m2/g, et, de préférence, entre 130 et 250 m2/g.
6. Suspension selon l'une des revendications 1 à
5, comprenant en outre un dispersant.
7. Suspension selon la revendication 6, dans laquelle le dispersant est de type polymérique.
8. Suspension selon la revendication 6 ou 7, dans laquelle le dispersant représente les acides ou les dérivés d'acides acryliques ou méthacryliques , ou leur mélange .
9. Suspension selon l'une des revendications 6 à 8, dans laquelle le dispersant est présent en une quantité comprise entre 0,25% et 5% en poids, par rapport au poids des particules de dioxyde de cérium présentes dans la suspension.
10. Suspension selon l'une des revendications 1 à 9, de pH compris entre 6 et 12, de préférence, entre 6 et 10.
11. Suspension selon l'une des revendications 1 à 10, pour polir la surface d'une couche isolante en silice d'un microcircuit.
12. Procédé pour polir la surface d'un matériau, comprenant les étapes consistant à appliquer la suspension aqueuse abrasive selon l'une des revendications 1 à 11 sur la surface du matériau, et procéder au polissage mécanique de ladite surface par l'intermédiaire de ladite suspension.
13. Procédé selon la revendication 12, dans lequel la surface du matériau représente la surface de couches isolantes en silice de microcircuits.
14. Procédé selon la revendication 12 ou 13, caractérisé en ce qu' il représente un procédé de polissage mécano chimique (CMP) .
15. Procédé selon la revendication 14, comprenant les étapes suivantes consistant à : a) placer et fixer le matériau sur un support par sa face arrière, b) appliquer la face avant à polir sur un plateau revêtu d'un tapis en matière polymérique, sous pression suffisante, c) mettre en rotation le support et le plateau à des vitesses prédéterminées, d) appliquer la suspension aqueuse abrasive selon l'une des revendications 1 à 11 entre la face avant dudit matériau et le plateau, et e) polir la face avant dudit matériau pendant une durée prédéterminée .
EP06820206A 2005-10-12 2006-10-12 Suspension aqueuse abrasive a base de particules de dioxyde de cerium et de silice pour le polissage de surfaces de materiaux Withdrawn EP1954776A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0510412A FR2891759B1 (fr) 2005-10-12 2005-10-12 Suspension aqueuse abrasive a base de particules de dioxyde de cerium et de silice pour le polissage de surfaces de materiaux
PCT/FR2006/002305 WO2007042681A2 (fr) 2005-10-12 2006-10-12 Suspension aqueuse abrasive a base de particules de dioxyde de cerium et de silice pour le polissage de surfaces de materiaux

Publications (1)

Publication Number Publication Date
EP1954776A2 true EP1954776A2 (fr) 2008-08-13

Family

ID=36603720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06820206A Withdrawn EP1954776A2 (fr) 2005-10-12 2006-10-12 Suspension aqueuse abrasive a base de particules de dioxyde de cerium et de silice pour le polissage de surfaces de materiaux

Country Status (3)

Country Link
EP (1) EP1954776A2 (fr)
FR (1) FR2891759B1 (fr)
WO (1) WO2007042681A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694653B2 (ja) * 2017-04-10 2020-05-20 信越化学工業株式会社 合成石英ガラス基板用研磨剤及びその製造方法並びに合成石英ガラス基板の研磨方法
CN114045153B (zh) * 2021-12-21 2022-09-20 清华大学 一种制备二氧化铈悬浮液的方法、二氧化铈悬浮液及抛光液

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527423A (en) * 1994-10-06 1996-06-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers
JP5017574B2 (ja) * 2001-05-25 2012-09-05 エア プロダクツ アンド ケミカルズ インコーポレイテッド 酸化セリウム研磨剤及び基板の製造方法
US6726535B2 (en) * 2002-04-25 2004-04-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method for preventing localized Cu corrosion during CMP
TWI307712B (en) * 2002-08-28 2009-03-21 Kao Corp Polishing composition
US20040127045A1 (en) * 2002-09-12 2004-07-01 Gorantla Venkata R. K. Chemical mechanical planarization of wafers or films using fixed polishing pads and a nanoparticle composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007042681A3 *

Also Published As

Publication number Publication date
WO2007042681A2 (fr) 2007-04-19
FR2891759A1 (fr) 2007-04-13
WO2007042681A3 (fr) 2007-05-31
FR2891759B1 (fr) 2009-04-10

Similar Documents

Publication Publication Date Title
TWI534220B (zh) 研磨用組成物
TWI624537B (zh) Grinding composition and method for producing the same
TW591100B (en) Cerium oxide abrasive and method for preparing substrates
JP5121128B2 (ja) 半導体研磨用組成物
TWI542676B (zh) CMP polishing solution and grinding method using the same
JP6252587B2 (ja) Cmp用研磨液及び研磨方法
TWI775722B (zh) 化學機械拋光(cmp)組成物用於拋光含鈷及/或鈷合金之基材的用途
JPWO2007088868A1 (ja) 絶縁膜研磨用cmp研磨剤、研磨方法、該研磨方法で研磨された半導体電子部品
EP1416025A1 (fr) Suspension aqueuse pour polissage mécano-chimique, procédé de polissage chimico-mécanique, procédé de fabrication de dispositifs semi-conducteurs et matériel pour la préparation d'une dispersion aqueuse
KR102125271B1 (ko) 연마용 조성물 및 그것을 사용한 기판의 제조 방법
CN104334675A (zh) 悬浮液、研磨液套剂、研磨液、基体的研磨方法及基体
FR2879618A1 (fr) Solution selective pour le polissage mecano-chimique et procede l'utilisant
WO2007029465A1 (fr) Agent de polissage, procédé de polissage de surface à polir, et procédé de fabrication de dispositif à circuit intégré semi-conducteur
CN1572017A (zh) 研磨剂、研磨剂的制造方法以及研磨方法
CN110283572A (zh) 研磨用组合物、研磨方法及基板的制造方法
WO2016158328A1 (fr) Abrasif et suspension épaisse contenant ce dernier
TW202010822A (zh) 研漿、研磨液的製造方法以及研磨方法
FR2761629A1 (fr) Nouveau procede de polissage mecano-chimique de couches de materiaux semi-conducteurs a base de polysilicium ou d'oxyde de silicium dope
EP0838845B1 (fr) Nouveau procédé de polissage mécano-chimique de couches de matériaux isolants à base de dérivés du silicium ou de silicium
JP7295849B2 (ja) タングステンバフ用途のための表面処理研削粒子
WO2007042681A2 (fr) Suspension aqueuse abrasive a base de particules de dioxyde de cerium et de silice pour le polissage de surfaces de materiaux
JP7066480B2 (ja) 砥粒分散液、研磨用組成物キットおよび磁気ディスク基板の研磨方法
TWI677544B (zh) 拋光半導體基板的方法
JP7425660B2 (ja) 酸化珪素膜用研磨液組成物
TWI796575B (zh) 氧化矽膜用研磨液組合物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17P Request for examination filed

Effective date: 20080513

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

18W Application withdrawn

Effective date: 20080710

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR