EP1926139A2 - Substrat SOQ et son procédé de fabrication - Google Patents
Substrat SOQ et son procédé de fabrication Download PDFInfo
- Publication number
- EP1926139A2 EP1926139A2 EP07022103A EP07022103A EP1926139A2 EP 1926139 A2 EP1926139 A2 EP 1926139A2 EP 07022103 A EP07022103 A EP 07022103A EP 07022103 A EP07022103 A EP 07022103A EP 1926139 A2 EP1926139 A2 EP 1926139A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- soq
- film
- silicon
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 192
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 63
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 62
- 239000010703 silicon Substances 0.000 claims abstract description 61
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 57
- 239000010453 quartz Substances 0.000 claims abstract description 54
- 238000010438 heat treatment Methods 0.000 claims abstract description 40
- 239000001257 hydrogen Substances 0.000 claims abstract description 33
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 33
- 230000032798 delamination Effects 0.000 claims abstract description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000005468 ion implantation Methods 0.000 claims abstract description 16
- 230000003746 surface roughness Effects 0.000 claims abstract description 15
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000009832 plasma treatment Methods 0.000 claims abstract description 7
- 239000010408 film Substances 0.000 claims description 76
- 239000010409 thin film Substances 0.000 claims description 22
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 9
- 238000004381 surface treatment Methods 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract description 43
- 230000008569 process Effects 0.000 abstract description 17
- 150000002500 ions Chemical class 0.000 abstract description 13
- -1 Hydrogen ions Chemical class 0.000 abstract description 11
- 230000035939 shock Effects 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 abstract description 3
- 230000009477 glass transition Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 10
- 230000007547 defect Effects 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000005498 polishing Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910018557 Si O Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
- H01L21/3247—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78603—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
Definitions
- the present invention relates to an SOQ substrate where a silicon film is formed on a quartz substrate and a method for manufacturing the same.
- An SOQ (Silicon on Quartz) substrate having a silicon thin film formed on a quartz substrate is an SOI substrate expected to be applied to optical devices, for example, a device for manufacturing a TFT liquid crystal monitor.
- this substrate has received attentions as a substrate intended for applications other than a general SOI substrate.
- a method of bonding substrates of different materials, a silicon substrate for forming an SOI layer and a quartz substrate as a handling substrate to form a silicon thin film on the quartz substrate is proposed.
- a SOITEC method SmartCut method
- This method bonds a silicon substrate prepared by implanting hydrogen ions into a bonding surface side to a handling substrate and performs heat treatment at approximately 500°C or more to thermally delaminate a silicon thin film from a region implanted with hydrogen ions in the highest concentration.
- This method is based on a mechanism that "air bubbles” called “hydrogen blisters” generated at high density through hydrogen ion implantation are let “grow” under heating, and a silicon thin film is delaminated through the "bubble growth" (for example, Japanese Patent No. 3048201 or A. J.
- a silicon substrate and a support substrate are bonded together and then, thermally delamination is executed along a hydrogen ion implanted boundary at a temperature of 500°C or more.
- a thermal strain is caused by a thermal expansion coefficient difference between the two substrates, and delamination along a bonded surface or cracking tends to occur due to the thermal strain. Therefore, it is desirable to complete delamination of a silicon thin film with a lower-temperature process.
- two substrates that are bonded together should be subjected to heat treatment at higher temperature in order to ensure a satisfactory bonded state throughout the entire bonding surfaces of the silicon substrate and the quartz substrate, and high bonding strength.
- an SOI layer surface is made rough upon the delamination.
- a difference in height of about 65 nm in terms of Peak to Valley (PV value) is involved in as small an area as 1 ⁇ m x 1 ⁇ m.
- Conceivable examples of a method of flattening such a rough surface include mirror polishing and heat treatment at high temperatures (about 1100 to 1200°C) with an atmospheric gas such as argon. Considering quartz grass transition temperatures of 1050 to 1090°C, the latter flattening method based on the high-temperature heat treatment is unsuitable as a method for manufacturing an SOQ substrate.
- the surface is flattened by the former method (mirror polishing).
- the SOQ substrate would have a difference in height of 100 nm or more throughout the entire surface, which value is derived from the above surface roughness (about 65 nm in terms of PV value in a 1 ⁇ m x 1 ⁇ m area).
- stock removal for example, stock removal of 100 nm or more is required.
- a subtle difference in polishing condition becomes apparent between a central portion and a peripheral portion of the substrate, making it difficult to ensure a uniform SOQ layer thickness throughout the entire surface of the SOQ substrate.
- the present invention has been accomplished in view of the above problems. It is accordingly an object of the present invention to reduce the degree of surface roughness of an SOQ film immediately after delamination and realize a mirror-finished surface of the SOQ film through hydrogen heat treatment at lower temperatures (1000°C or less).
- the present invention provides a method for manufacturing an SOQ substrate, including: an ion implantation step of forming a hydrogen ion implanted layer on a main surface of a silicon substrate; a surface treatment step of performing activation on at least one of a main surface of a quartz substrate and a main surface of the silicon substrate; a step of bonding the main surface of the quartz substrate and the main surface of the silicon substrate; a delamination step of mechanically delaminating a silicon thin film from the silicon substrate of the bonded substrate without heating to form a silicon film on the main surface of the quartz substrate; and a step of performing hydrogen heat treatment on the silicon film at a temperature of 1000°C or less.
- a temperature range for the hydrogen heat treatment is preferably 800°C or more, and a hydrogen concentration in an atmosphere of the hydrogen heat treatment is preferably 0.5% or more.
- the activation may be performed through at least one of a plasma treatment and an ozone treatment, and the method may include a step of performing heat treatment on the quartz substrate and silicon substrate, which are bonded together, at a temperature of 350°C or less after the bonding step and before the delamination step.
- a silicon oxide film may be formed on the main surface of the silicon substrate, and the silicon oxide film has a thickness of, for example, 0.2 ⁇ m or more.
- a process temperature for an SOQ substrate manufacturing process can be lowered, so it is possible to omit delamination in a higher temperature region unlike a conventional method to reduce the degree of surface roughness of an SOQ film immediately after being delaminated, ensure a uniform SOQ film thinness throughout the SOQ substrate, and provide a high-quality SOQ substrate because the whole process is a low-temperature one and thus, transference defects or slip dislocation generation is suppressed.
- FIGS. 1 are explanatory views of a process example of the method for manufacturing an SOQ substrate according to the present invention.
- an oxide film is formed beforehand on a silicon substrate surface, but the oxide film may be omitted, and a general silicon substrate having no oxide film may be used.
- a silicon substrate 10 of FIG. 1(A) is a single crystal Si substrate basically, and a handling substrate is a quartz substrate 20.
- the single crystal Si substrate 10 is a commercially available Si substrate grown by a Czochralski method (CZ method), for example. Its electric characteristic value such as a conductivity type or a specific resistance, or crystal orientation or crystal diameter is appropriately determined depending on a design value or process of a device using an SOQ substrate manufactured by the method of the present invention or a display area of a manufactured device.
- the oxide film 11 may be formed in advance on a surface (bonding surface) of the single crystal Si substrate 10 through thermal oxidation, for example, as described above.
- the single crystal Si substrate 10 and the quartz substrate 20 that are bonded together have substantially the same diameter. It is advantageous to form orientation flat (OF) also in the quartz substrate 20 similar to OF formed in the single crystal Si substrate 10 and bond the substrates together while aligning the OFs with an aim to facilitate a subsequent device manufacturing process.
- OF orientation flat
- hydrogen ions are implanted to the surface of the single crystal Si substrate 10 through the oxide film 11(FIG. 1(B)).
- the ion-implanted surface serves as a "bonded surface” (bonding surface) later.
- an ion implanted layer 12 is uniformly formed at a predetermined depth from the surface of the single crystal Si substrate 10 (average ion implantation depth L), and a localized "micro bubble layer” is formed in a region corresponding to the average ion implantation depth L in a surface region of the single crystal Si substrate 10 (FIG. 1(C)).
- the dosage is appropriately selected from a range of, for example, 1x10 16 to 4x10 17 atoms/cm 2 in accordance with specifications of the SOQ substrate or the like.
- the dosage is generally set to about 7x10 16 atoms/cm 2 .
- the silicon thin film can be delaminated at low temperature as in the present invention, diffusion of hydrogen atoms in the delamination process is considerably suppressed, so even if hydrogen ions are implanted with a high dosage, the SOI layer surface is not made rough.
- the present inventors have executed implantation of hydrogen ions with varying dosages and examined an influence of the implantation on surface roughness of the SOI layer. The examination result shows that the surface is not made rough with at least a dosage of 4x10 17 atoms/cm 2 or less as long as a silicon thin film is delaminated trough low-temperature heat treatment at only about 350°C.
- a depth of the ion implanted layer 12 from the surface of the single crystal Si substrate 10 (boundary with the oxide film 11) (average ion implantation depth L) is controlled in accordance with an acceleration voltage of implanted ions and is determined depending on a thickness of an SOQ layer to be delaminated.
- the average ion implantation depth L is set to 0.5 ⁇ m or less, and the acceleration voltage is set to 50 to 100 keV.
- an insul,ator film such as an oxide film may be formed beforehand on an ion implantation surface of the single crystal Si substrate 10 to implant ions through the insulator film.
- the bonded surface of both of the single crystal Si substrate 10 having the ion implanted layer 12 formed thereon as above and the quartz substrate 20 is subjected to a plasma treatment or an ozone treatment for cleaning and activating the surface (FIG. 1(D)).
- This surface treatment is carried out for the purpose of removing an organic material from the surface as the bonded surface or increasing OH groups on the surface to activate the surface, and the treatment is not necessarily performed on both of the bonded surfaces of the single crystal Si substrate 10 and the quartz substrate 20 but may be performed on one of the bonded surfaces.
- a single crystal Si substrate and/or a quartz substrate with the surface being cleaned by RCA cleaning is placed on a sample stage in a vacuum chamber, and a plasma gas is introduced to the vacuum chamber up to a predetermined vacuum degree.
- the usable plasma gas include an oxygen gas, a hydrogen gas, an argon gas, and a mixed gas thereof, or a mixed gas of a hydrogen gas and a helium gas.
- radio-frequency (RF) plasma having a power of about 100 W is generated and then applied to the surface of the single crystal Si substrate and/or the quartz substrate as a plasma treatment target for about 5 to 10 seconds, and the treatment is completed.
- a single crystal Si substrate and/or a quartz substrate with the surface being cleaned by RCA cleaning is placed on a sample stage in a chamber kept in an atmosphere containing an oxygen, and plasma gas such as a nitrogen gas or an argon gas is introduced into the chamber, after which an RF plasma having a predetermined power is generated, and the oxygen in the atmosphere is turned into an ozone by the plasma to apply treatment to the surface of the target single crystal Si substrate and/or quartz substrate for a predetermined period.
- plasma gas such as a nitrogen gas or an argon gas
- the surfaces of the surface-treated single crystal Si substrate 10 and the quartz substrate 20 as bonding surfaces are closely bonded (FIG. 1(E)).
- the surface (bonding surface) of at least one of the single crystal Si substrate 10 and the quartz substrate 20 undergoes surface treatment through the plasma treatment or ozone treatment and thus is activated, so a bonding strength, which is high enough to withstand mechanical delamination or polishing in a subsequent step even in a closely-attached (bonded) state at room temperatures, can be obtained.
- This heat treatment step mainly aims at enhancing strength of bonding between the quartz substrate 20 and the oxide film 11 formed on the single crystal silicon substrate 10.
- the main reason for setting the heat treatment temperature to 350°C or less is to prevent occurrences of "hydrogen blisters" as described above.
- this temperature is set in consideration of a difference in thermal expansion coefficient between single crystal silicon and quartz, a damage resulting from the thermal expansion coefficient difference, and the damage and thicknesses of the single crystal silicon substrate 10 and the quartz substrate 20.
- the single crystal Si substrate 10 and the quartz substrate 20 have approximately the same thickness, a large difference arises between a thermal expansion coefficient (2.33x10 -6 ) of single crystal silicon and a thermal expansion coefficient (0.6x10 -6 ) of quartz and thus, upon heat treatment at a temperature of more than 350°C, cracking or delamination along the bonding surface might occur due to a thermal strain resulting from a rigidity difference between the two substrates; in an extreme case, the signal crystal silicon substrate or quartz substrate would be broken. From this point of view, the upper limit of heat treatment temperature is set to 350°C.
- this heat treatment can be expected to cause a secondary effect of generating a thermal stress caused by the thermal expansion coefficient difference between the single crystal Si substrate 10 and the quartz substrate 20 to weaken chemical bonds of silicon atoms in the ion implanted layer 12.
- Si-H bonds or Si atoms having dangling bonds are generated at high density in the ion implanted layer 12. If the bonded substrate is subjected to heat treatment, a large stress is generated between the two substrates throughout the entire surface of the bonded substrate due to the fact that silicon crystal has a larger thermal expansion coefficient than that of quartz.
- an external shock is applied onto the bonded substrate with any method to mechanically delaminate a silicon film 13 from a single crystal silicon bulk 14 to obtain an SOQ film that is formed on the quartz substrate 20 through the oxide film 11 (FIG. 1(F)).
- any method to mechanically delaminate a silicon film 13 from a single crystal silicon bulk 14 to obtain an SOQ film that is formed on the quartz substrate 20 through the oxide film 11 (FIG. 1(F)).
- various methods are conceivable for applying an external shock to delaminate a silicon thin film. The delamination is carried out without heating here.
- hydrogen heat treatment is performed at 1000°C or less below a quartz glass transition point (FIG. 1(G)).
- the hydrogen heat treatment also produces a recovery effect from a damage caused by hydrogen ion implantation.
- the temperature is 800 to 1000°C, and a hydrogen concentration in the atmosphere is 0.5% or more.
- This example shows a thickness of an oxide film formed on a main surface of the silicon substrate 10.
- FIGS. 2 are a sectional view schematically illustrating a bonding surface of a single crystal Si substrate used in the method for manufacturing an SOQ substrate according to the present invention (FIG. 2(A)), and a schematic sectional view of an SOQ substrate including a delaminated silicon film (FIG. 2 (B)) .
- the silicon oxide film 11 having a film thickness tox is formed on one main surface (bonding surface) of the single crystal Si substrate 10, and the hydrogen ion implanted layer 12 is formed near the substrate surface with an average ion implantation depth L.
- the film thickness tox of the oxide film 11 is set to 0.2 ⁇ m or more to suppress transference defects or slip dislocation generation in a step of delaminating a silicon thin film after bonding the substrate to the quartz substrate.
- the silicon thin film is delaminated at the average ion implantation depth L as indicated by reference numeral 12 in FIG. 2 (A) . Then, the silicon thin film is transferred onto the quartz substrate 20 through the oxide film 11 to form the SOQ film 13 (FIG. 2(B)).
- the bonding surface of the quartz substrate 20 is not an ideal, completely flat surface but involves irregularities because of microscopic roughness, adherence of microparticles to the bonding surface, or the like. If the quartz substrate 20 having such a bonding surface is bonded to the single crystal Si substrate 10, the irregularities of the quartz substrate 20 surface are reflected to the bonding surfaces, and a "clearance" is locally formed between the bonding surfaces. As a result, a region concentratedly applied with a damage is locally formed.
- the method for manufacturing an SOQ substrate according to the present invention employs a low-temperature process for the purpose of reducing a thermal strain (thermal stress) resulting from a thermal expansion coefficient difference between the silicon substrate and the quartz substrate, and thus does not involve higher-temperature heat treatment for increasing a strength of bonding between the two substrates and sets a large film thickness tox of the oxide film 11 to 0.2 ⁇ m or more, to thereby impart enough mechanical strength to a thin film delaminated from the single crystal silicon substrate side, and absorb and alleviate the damage with the relatively thick oxide film to suppress the generation of transference defects during the delamination step.
- a thermal strain thermal stress
- the main reason for setting the film thickness tox of the oxide film 11 to 0.2 ⁇ m or more in the present invention is to increase the total thickness of the thin films delaminated from the single crystal Si substrate side (that is, the oxide film and the silicon film) to enhance the mechanical strength and to absorb and alleviate a damage with the oxide film to suppress the generation of "transference defects" in the delamination step.
- the oxide film thickness of 0.2 ⁇ m or more, which is selected in the present invention is an elliptically determined effective for preventing transference defects or slip dislocation from reaching up to the silicon thin film from the bonding boundary.
- the generation of "transference defects" in the delamination step can be more suppressed.
- the thickness of the oxide film 11 is as small as about 0.1 ⁇ m, and a "clearance" is locally formed due to particles between the bonding surfaces of the oxide film 11 and the quartz substrate 20, a damage tends to be localized in the region, so transference defects or slip dislocation is likely to be generated from that region. If the oxide film 11 has a thickness of 0.2 ⁇ m or more, the damage is alleviated in the oxide film 11 and a stress applied to the silicon film (SOQ film) formed thereon is reduced.
- SOQ film silicon film
- the thickness of the oxide film as an SOI layer is generally about 0.1 ⁇ m.
- a handling substrate is a quartz substrate based on Si-O bonds, so a problem does not occur even if an oxide film including Si-O bonds and formed on one main surface of the single crystal silicon substrate has a large thickness of 0.2 ⁇ m or more.
- the oxide film 11 can realize high quality by thermally oxidizing the surface of the single crystal silicon substrate.
- the experiments made by the present inventors reveal that if the film thickness (tox) of the oxide film 11 formed on the single crystal Si substrate is twice or more as large as the thickness (that is, L and tSi) of the SOQ film (2L ⁇ tox), generation of defects in the delamination step can be effectively suppressed.
- a damage locally applied between the bonding surfaces could be alleviated by the oxide film having the thickness twice or more as large as the thickness of the SOQ film (2L ⁇ tox), and a stress applied to the silicon film (SOQ film) formed thereon can be reduced.
- a substrate that can satisfy 2L ⁇ tox as a relation between the film thickness (tox) of the oxide film and the average ion implantation depth L of the hydrogen ion implanted layer may be used.
- the present invention it is possible to lower a process temperature for an SOQ substrate manufacturing process, reduce the degree of surface roughness of an SOQ film, and provide a high-quality SOQ substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006315363A JP5249511B2 (ja) | 2006-11-22 | 2006-11-22 | Soq基板およびsoq基板の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1926139A2 true EP1926139A2 (fr) | 2008-05-28 |
EP1926139A3 EP1926139A3 (fr) | 2011-05-04 |
EP1926139B1 EP1926139B1 (fr) | 2013-10-23 |
Family
ID=39155509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07022103.1A Active EP1926139B1 (fr) | 2006-11-22 | 2007-11-14 | Substrat SOQ et son procédé de fabrication |
Country Status (4)
Country | Link |
---|---|
US (1) | US7790571B2 (fr) |
EP (1) | EP1926139B1 (fr) |
JP (1) | JP5249511B2 (fr) |
CN (1) | CN101188190B (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1998368A3 (fr) * | 2007-05-31 | 2012-05-23 | Shin-Etsu Chemical Company, Ltd. | Procédé de fabrication d'une tranche SOI |
EP3168862A4 (fr) * | 2014-07-10 | 2018-06-20 | Sicoxs Corporation | Substrat semi-conducteur et procédé de fabrication de substrat semi-conducteur |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4967842B2 (ja) * | 2007-06-18 | 2012-07-04 | セイコーエプソン株式会社 | シリコン基材の接合方法、液滴吐出ヘッド、液滴吐出装置および電子デバイス |
JP5248838B2 (ja) * | 2007-10-25 | 2013-07-31 | 信越化学工業株式会社 | 半導体基板の製造方法 |
US7820527B2 (en) * | 2008-02-20 | 2010-10-26 | Varian Semiconductor Equipment Associates, Inc. | Cleave initiation using varying ion implant dose |
JP5868003B2 (ja) * | 2011-01-14 | 2016-02-24 | 三菱電機株式会社 | 平面導波路型レーザ装置およびその製造方法 |
CN102259829A (zh) * | 2011-07-04 | 2011-11-30 | 上海先进半导体制造股份有限公司 | 隔离腔体及其制造方法 |
US12007695B2 (en) * | 2020-01-15 | 2024-06-11 | Board Of Regents, The University Of Texas System | Rapid large-scale fabrication of metasurfaces with complex unit cells |
JP7466961B1 (ja) | 2023-05-29 | 2024-04-15 | 大 西田 | 連結具及び施工方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0348201B2 (fr) | 1981-03-11 | 1991-07-23 | Daiichi Togyo Kk |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2681472B1 (fr) | 1991-09-18 | 1993-10-29 | Commissariat Energie Atomique | Procede de fabrication de films minces de materiau semiconducteur. |
JP2001291851A (ja) * | 1996-11-15 | 2001-10-19 | Canon Inc | 半導体部材の製造方法 |
JP3927977B2 (ja) * | 1996-12-18 | 2007-06-13 | キヤノン株式会社 | 半導体部材の製造方法 |
CA2194653A1 (fr) * | 1997-01-08 | 1998-07-08 | Junichi Matsushita | Methode de traitement thermique en presence d'hydrogene de tranches de silicium au moyen d'un gaz de substitution inerte de purete elevee |
JP3697052B2 (ja) * | 1997-03-26 | 2005-09-21 | キヤノン株式会社 | 基板の製造方法及び半導体膜の製造方法 |
JP2877800B2 (ja) * | 1997-03-27 | 1999-03-31 | キヤノン株式会社 | 複合部材の分離方法、分離された部材、分離装置、半導体基体の作製方法および半導体基体 |
US6413874B1 (en) * | 1997-12-26 | 2002-07-02 | Canon Kabushiki Kaisha | Method and apparatus for etching a semiconductor article and method of preparing a semiconductor article by using the same |
JP3697106B2 (ja) * | 1998-05-15 | 2005-09-21 | キヤノン株式会社 | 半導体基板の作製方法及び半導体薄膜の作製方法 |
JP3395661B2 (ja) * | 1998-07-07 | 2003-04-14 | 信越半導体株式会社 | Soiウエーハの製造方法 |
JPH11274018A (ja) * | 1998-10-09 | 1999-10-08 | Canon Inc | 複合部材の分離方法および半導体基体の作製方法 |
AU6905000A (en) * | 1999-08-10 | 2001-03-05 | Silicon Genesis Corporation | A cleaving process to fabricate multilayered substrates using low implantation doses |
EP1158581B1 (fr) * | 1999-10-14 | 2016-04-27 | Shin-Etsu Handotai Co., Ltd. | Procede de fabrication d'une tranche de soi, et tranche de soi |
US7094667B1 (en) * | 2000-12-28 | 2006-08-22 | Bower Robert W | Smooth thin film layers produced by low temperature hydrogen ion cut |
JP2004063730A (ja) * | 2002-07-29 | 2004-02-26 | Shin Etsu Handotai Co Ltd | Soiウェーハの製造方法 |
JP2004247610A (ja) * | 2003-02-14 | 2004-09-02 | Canon Inc | 基板の製造方法 |
EP2293326A3 (fr) * | 2004-06-10 | 2012-01-25 | S.O.I.TEC Silicon on Insulator Technologies S.A. | Procédé pour la fabrication d'une tranche SOI |
JP5183874B2 (ja) * | 2004-12-28 | 2013-04-17 | 信越化学工業株式会社 | Soiウエーハの製造方法 |
FR2881573B1 (fr) * | 2005-01-31 | 2008-07-11 | Soitec Silicon On Insulator | Procede de transfert d'une couche mince formee dans un substrat presentant des amas de lacunes |
-
2006
- 2006-11-22 JP JP2006315363A patent/JP5249511B2/ja active Active
-
2007
- 2007-11-14 US US11/984,184 patent/US7790571B2/en active Active
- 2007-11-14 EP EP07022103.1A patent/EP1926139B1/fr active Active
- 2007-11-22 CN CN2007101864843A patent/CN101188190B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0348201B2 (fr) | 1981-03-11 | 1991-07-23 | Daiichi Togyo Kk |
Non-Patent Citations (3)
Title |
---|
"Realize Co., UCS Semiconductor Substrate Technique Research Institute", THE SCIENCE OF SOI, vol. 2, 2000 |
A. J. AUBERTON-HERVE ET AL.: "SMART CUT TECHNOLOGY: INDUSTRIAL STATUS of SOI WAFER PRODUCTION and NEW MATERIAL DEVELOPMENTS", ELECTROCHEMICAL SOCIETY PROCEEDINGS, vol. 99-3, 1999, pages 93 - 106 |
SATO ET AL.: "Hydrogen Annealed Silicon-on-Insulator", APPL. PHYS. LETT., vol. 65, 1994, pages 1924 - 1926, XP002101679, DOI: doi:10.1063/1.112818 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1998368A3 (fr) * | 2007-05-31 | 2012-05-23 | Shin-Etsu Chemical Company, Ltd. | Procédé de fabrication d'une tranche SOI |
US8268700B2 (en) | 2007-05-31 | 2012-09-18 | Shin-Etsu Chemical Co., Ltd. | Method for manufacturing SOI wafer |
EP3168862A4 (fr) * | 2014-07-10 | 2018-06-20 | Sicoxs Corporation | Substrat semi-conducteur et procédé de fabrication de substrat semi-conducteur |
Also Published As
Publication number | Publication date |
---|---|
CN101188190B (zh) | 2012-08-08 |
CN101188190A (zh) | 2008-05-28 |
US7790571B2 (en) | 2010-09-07 |
JP2008130884A (ja) | 2008-06-05 |
JP5249511B2 (ja) | 2013-07-31 |
EP1926139B1 (fr) | 2013-10-23 |
US20080119028A1 (en) | 2008-05-22 |
EP1926139A3 (fr) | 2011-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1926139B1 (fr) | Substrat SOQ et son procédé de fabrication | |
EP1936679A1 (fr) | Procédé de fabrication d'un substrat SOI | |
US7977209B2 (en) | Method for manufacturing SOI substrate | |
EP1986219A1 (fr) | Substrat soi et procede de fabrication d'un substrat soi | |
US8263478B2 (en) | Method for manufacturing semiconductor substrate | |
EP1045448B1 (fr) | Procede de production de tranche soi utilisant un procede de separation d'implantation d'ions hydrogene | |
EP0843346B1 (fr) | Procédé de fabrication d'un objet semiconducteur | |
WO2000062343A1 (fr) | Plaquette a silicium sur isolant et procede de production de plaquette a silicium sur isolant | |
EP2053650B1 (fr) | Procédé de production d'un substrat à semi-conducteur | |
EP1981083A2 (fr) | Procédé de fabrication d'un substrat SOI | |
EP2053645B1 (fr) | Procédé de fabrication d'un substrat semi-conducteur | |
JP5064693B2 (ja) | Soi基板の製造方法 | |
EP1921672B1 (fr) | Procédé de fabrication d'un substrat SOQ | |
JP5019852B2 (ja) | 歪シリコン基板の製造方法 | |
JP2004288790A (ja) | Soi基板の製造方法及びsoi基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20111104 |
|
AKX | Designation fees paid |
Designated state(s): BE DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20120614 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 21/762 20060101AFI20130312BHEP Ipc: H01L 21/84 20060101ALN20130312BHEP Ipc: H01L 27/12 20060101ALI20130312BHEP Ipc: H01L 21/324 20060101ALI20130312BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 27/12 20060101ALI20130328BHEP Ipc: H01L 21/324 20060101ALI20130328BHEP Ipc: H01L 21/84 20060101ALN20130328BHEP Ipc: H01L 21/762 20060101AFI20130328BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130529 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007033423 Country of ref document: DE Effective date: 20131219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20131113 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20131113 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007033423 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140724 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007033423 Country of ref document: DE Effective date: 20140724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141114 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141114 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230929 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230929 Year of fee payment: 17 |