EP1889758B1 - Verfahren zur montage einer airbagvorrichtung und airbagvorrichtung - Google Patents

Verfahren zur montage einer airbagvorrichtung und airbagvorrichtung Download PDF

Info

Publication number
EP1889758B1
EP1889758B1 EP06757111A EP06757111A EP1889758B1 EP 1889758 B1 EP1889758 B1 EP 1889758B1 EP 06757111 A EP06757111 A EP 06757111A EP 06757111 A EP06757111 A EP 06757111A EP 1889758 B1 EP1889758 B1 EP 1889758B1
Authority
EP
European Patent Office
Prior art keywords
airbag
tether belt
tubular tether
cover
inflator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06757111A
Other languages
English (en)
French (fr)
Japanese (ja)
Other versions
EP1889758A1 (de
EP1889758A4 (de
Inventor
Yoshio ASHIMORI INDUSTRY CO. LTD. SHIMAZAKI
Seiichiro ASHIMORI INDUSTRY CO. LTD. KAMURA
Kou ASHIMORI INDUSTRY CO. LTD. SASAKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashimori Industry Co Ltd
Original Assignee
Ashimori Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashimori Industry Co Ltd filed Critical Ashimori Industry Co Ltd
Publication of EP1889758A1 publication Critical patent/EP1889758A1/de
Publication of EP1889758A4 publication Critical patent/EP1889758A4/de
Application granted granted Critical
Publication of EP1889758B1 publication Critical patent/EP1889758B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/20Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components
    • B60R21/203Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components in steering wheels or steering columns
    • B60R21/2035Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components in steering wheels or steering columns using modules containing inflator, bag and cover attachable to the steering wheel as a complete sub-unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/20Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components
    • B60R21/201Packaging straps or envelopes for inflatable members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/231Inflatable members characterised by their shape, construction or spatial configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/231Inflatable members characterised by their shape, construction or spatial configuration
    • B60R21/2334Expansion control features
    • B60R21/2338Tethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/231Inflatable members characterised by their shape, construction or spatial configuration
    • B60R21/2334Expansion control features
    • B60R21/2346Soft diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/20Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components
    • B60R21/215Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components characterised by the covers for the inflatable member
    • B60R2021/21543Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components characterised by the covers for the inflatable member with emblems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/231Inflatable members characterised by their shape, construction or spatial configuration
    • B60R21/2334Expansion control features
    • B60R21/2338Tethers
    • B60R2021/23382Internal tether means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/237Inflatable members characterised by the way they are folded
    • B60R2021/2375Folding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/20Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components
    • B60R21/215Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components characterised by the covers for the inflatable member
    • B60R21/2165Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components characterised by the covers for the inflatable member characterised by a tear line for defining a deployment opening
    • B60R21/21656Steering wheel covers or similar cup-shaped covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/237Inflatable members characterised by the way they are folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the invention relates to a method of assembling an airbag device.
  • an airbag device for a driver seat of the automobile equipped with an airbag cover formed by fixedly attaching a decorative member, such as a horn unit and so forth, to a part on the extension line of a steering shaft of a steering system, and installing an airbag folded around the decorative member so as to be contained in the airbag cover.
  • Fig. 16 is a schematic view showing an airbag device MR as an example
  • Fig. 17 is a perspective view of an airbag to be attached to the airbag device MR.
  • the airbag device MR is to be incorporated into a steering system of a vehicle, comprising a horn unit 40R, an airbag 10R, an inflator 30R and an airbag cover 16R, as shown in Fig. 16 .
  • a side of the horn unit 40R, on the side of a driver seat is referred to as a front side while an opposite side thereof is referred to as a back side.
  • a hole is made at the center of a depressed part 16aR of the airbag cover 16R, and an attachment bolt 40aR provided at the center on the back side of the horn unit 40R is inserted into the hole, thereby securing the horn unit 40R to a connecting member 20R.
  • the connecting member 20R is clamped (not shown in the figure) between a cushion ring 22R clamping the airbag 10R and a base plate 24R to which the inflator 30R is secured.
  • the airbag 10R comprises an airbag main body10aR and a tubular tether belt 11aR for restricting an inflation-expansion length of the airbag main body 10aR, and the airbag main body 10aR is formed in the shape of a bag that is inflatable and expandable into a flat spherical shape (an ellipsoidal shape) by stitching respective outer circumferential edges of two pieces of cloth substantially circular in shape with each other.
  • An inflator attachment opening 10ahR is formed substantially at the central part of the airbag main body 10aR on the back side thereof, and small screw holes 10bR for inserting screws of the cushion ring 22R respectively are made around the inflator attachment opening 10ahR.
  • the tubular tether belt 11aR is formed in an insertion hole 10hR provided substantially at the central part on the surface of the airbag main body 10aR of the airbag 10R, and an end of the tubular tether belt 11aR is provided with an attachment bolt insertion hole 11ahR for inserting the attachment bolt 40aR of the decorative member therethrough.
  • the tubular tether belt 11aR of the airbag 10R is secured between the depressed part 16aR of the airbag cover 16R and the connecting member 20R while the inflator attachment opening 10ahR of the airbag 10R is secured between the cushion ring 22R fitted with the connecting member 20R and the base plate 24R.
  • a method for attaching the airbag 10R to the airbag cover 16R comprises the steps of aligning a position of the hole of the airbag cover 16R with that of the attachment bolt insertion hole 11ahR of the tubular tether belt 11aR of the airbag 10R when inserting the airbag 10R into the airbag cover 16R, and subsequently aligning a hole of the connecting member 20R with the attachment bolt insertion hole 11ahR, thereby overlaying the base plate 24R on the connecting member 20R.
  • the bolt 40aR of the horn unit 40R is inserted into the hole of the airbag cover 16R, thereby secured to the connecting member 20R.
  • the position of the attachment bolt insertion hole 11ahR of the tubular tether belt 11aR of the airbag 10R deviates from the hole of the airbag cover 16R, positioning from the backside is executed by making use of an inflator attachment opening of the base plate 24R in order to implement positional alignment.
  • Patent Document 1 JP 2004 - 22943 A .
  • Documents US2004/0256840A , US2003/0042717A and US2004/0119271 disclose similar airbag devices.
  • the invention has been developed in order to solve problems with a conventional technology described as above, and it is an object of the invention to improve efficiency in an assembling work for an airbag device. Another object of the invention is to prevent an airbag from being damaged by an edge of a base plate when assembling the airbag device.
  • the invention disclosed in claim 1 is a method of assembling an airbag device wherein the airbag is formed of front and back base fabrics, an inflator attachment opening is provided at the center of the back base, a tubular tether belt extending from a central position of the front base fabric to the interior of the bag, and the airbag is attached to an airbag cover comprising the steps of: securing a peripheral edge of the inflator attachment opening of the airbag, extending the airbag integrally connected to the tip and a rear end of the tubular tether belt to its full length; pulling back the tubular tether belt in extended state, thereby folding back the airbag around the tubular tether belt; folding the tubular tether belt and the airbag while being pulled back; and fixedly attaching the tip of the folded tubular tether belt to a central part of the back side of the airbag cover for containing the airbag therein.
  • the airbag can be easily folded, but also the inflator attachment opening and a fixture part of a back side of the airbag cover for containing the tether belt and the airbag can easily be in alignment with each other, so that improvement in efficiency of the assembling work can be achieved.
  • the peripheral part around the inflator attachment opening of the airbag is covered with the periphery-protective member, the peripheral part of the airbag is protected by the periphery-protective member even if the base plate is overlaid on the cushion ring to be secured together, it is possible to prevent the peripheral part from being damaged by an edge of the base plate.
  • FIG. 1 is a front elevation showing the airbag device M1 is fitted into a steering wheel
  • Fig. 2 is a cross-sectional view thereof taken on arrow I - I of Fig. 1
  • the airbag device M1 is assembled into the central part of a steering wheel of a vehicle and comprises a decorative member 40, an airbag 10 and an airbag cover 16.
  • a side of the decorative member 40 on the side of an occupant is referred to as a front side while a side thereof opposite from the front side is referred to as a back side in the present specification.
  • the airbag 10 comprises an airbag main body 10a and a tubular tether belt 11a for restricting an extension length of the airbag main body 10a, and the airbag 10 folded like bellows toward the occupant side is contained within the airbag cover 16.
  • the airbag 10 is covered with a holding member 14 in such a way as to press down a side face of the airbag 10 on the outer circumference thereof, to thereby restrain inflation and expansion of the airbag 10 in the direction of the side face thereof.
  • the main body10a and the holding member 14 are secured to a base plate 24 by a cushion ring 22 inserted into the airbag 10. Further, the airbag cover 16 is secured to the base plate 24 in such a way as to cover up those constituents.
  • an attachment bolt 40a positioned on the back side of a depressed part 16a formed on the airbag cover 16 on the side of the occupant and protruding toward the back side of the decorative member 40 is secured to a connecting member 20 with a nut, thereby clamping an end of the tubular tether belt 11a between those members. Further, respective ends of the connecting member 20 are clamped between the cushion ring 22 and the base plate 24 to be thereby secured to the base plate 24.
  • reference numeral 12 denotes a rectification and protective member
  • reference numeral 11c denotes a stitched part where the tubular tether belt 11a is stitched to the airbag main body10a
  • FIG. 3 is a perspective view showing the back side of the base plate 24 shown in Fig. 2 .
  • the base plate 24 is formed substantially in the shape of a disk, and an opening 24h in which an inflator can be fitted is formed at the central part of the base plate 24, while 4 pieces of airbag cover attachment pieces 24a and a pair of attachment pieces 24b for attachment of the base plate 24 itself are formed in such a way as to be erected from the disk.
  • the base plate 24 is for integrally securing the inflator 30, the airbag 10 and the previously described decorative member 40 with each other, and the pair of the attachment pieces 24b are for securing the base plate 24 to the steering wheel.
  • the inflator 30 is formed substantially in the shape of a thick disk and is made up so as to exhaust gas upon detection of a predetermined impact.
  • the inflator 30 has an upper portion with a gas exhaust port 30a formed therein penetrating through the opening 24h of the base plate 24 and a flange formed substantially in an intermediate part of inflator 30 in the direction of thickness thereof in close contact with the back side of the base plate 24, thereby being secured together with the cushion ring 22, to the base plate 24 through the attachment holes 24c of the base plate 24. That is, the inflator 30 is secured to the base plate 24 with the gas exhaust port 30a of the inflator 30 disposed on the front side of the base plate 24, so that an exhaust gas from the inflator 30 is exhausted on the front side of the base plate 24.
  • Fig. 4 is a perspective view of the connecting member 20 shown in Fig. 2 .
  • the connecting member 20 is made of a metal piece in a sheet-like shape, comprising a central part 20a provided with a hole 20ah in which the attachment bolt 40a is fitted, a leg part 20b formed on each of both sides of the central part 20a bent substantially vertically therefrom, and attachment foots 20c bent substantially right angles to the respective leg parts 20b.
  • each attachment foot 20c is provided with an attachment hole 20e made so as to correspond to the attachment holes 22a of the cushion ring 22 and the attachment holes 24c of the base plate 24, so that both connecting member 20 and the base plate 24 are tightened up each other with bolts 22d formed on the cushion ring 22.
  • Fig. 5A is a front elevation of the cushion ring 22 shown in Fig. 2
  • Fig. 5B is a side view showing a part thereof, in section.
  • the cushion ring 22 is substantially in the shape of a rectangle, a central part thereof is provided with an insertion opening 22h for the inflator 30, and the bolt 22d for attaching the cushion ring 22 to the base plate 24 is provided in respective corners of the cushion ring 22 around the insertion opening 22h on the back side of the cushion ring 22.
  • the back side of the cushion ring 22 constitutes a butting surface 22b that can be butted against the surface of the base plate 24 through the airbag 10 interposed therebetween, the butting surface 22b has a depressed part 22c formed by, for example, drawing work, as is evident from the side view of Fig. 5B .
  • the depressed part 22c is formed so as to have a draw depth substantially equal to a thickness of the attachment foot 20c of the connecting member 20 when the cushion ring 22 is connected with the connecting member 20.
  • Fig. 6A is a see-through perspective view showing the interior of the inflated airbag 10
  • Fig. 6B is a perspective view showing the un-inflated airbag 10.
  • the airbag main body 10a is formed in the shape of a bag that is expandable into a flat spherical shape (an ellipsoidal shape) by joining respective outer circumferential edges of two pieces of cloth substantially circular in shape with each other by stitching.
  • a notched part 10h of circular shape for insertion of the depressed part 16a of the airbag cover 16 is formed substantially at the central part of the airbag main body 10a on the front side thereof, and an inflator attachment opening 10ah associating with the inflator for introducing an generated gas into the airbag is formed substantially at the central part of the airbag main body 10a on the back side thereof, while four small holes 10b for insertion of the respective bolts 22d (see Fig. 5B ) of the cushion ring 22 are made on the peripheral part 10d around the inflator attachment opening 10ah.
  • the protective member 12 for protecting the airbag from heat and an impactive pressure generated by the inflator is overlaid on the peripheral part 10d and stitched to a peripheral edge of the inflator attachment opening 10ah of the airbag 10.
  • the protective member 12 is also used as a gas rectification member having a function for guiding the gas up to the vicinity of a part of the airbag (a part of the airbag expanding from an anticipated rupture part of the holding member 14 of circular shape) that will inflate in the initial expansion thereof by rectifying a gas flow direction.
  • the protective member 12 is made of for example a woven cloth and is formed in the shape of concentric circles, an inner circumference thereof is identical in diameter to the inner periphery of the inflator attachment opening 10ah, while an outer circumference thereof is for example at least three times as large in diameter as the inner circumference.
  • an inner peripheral edge of the protective member 12 is stitched to an outer circumferential part 10d' of the peripheral part 10d in alignment with the peripheral edge of the inflator attachment opening 10ah and an outer circumferential part 12' of a concentric circle of the peripheral part 10d.
  • the protective member 12 has the function for protecting the airbag from heat and impact of gas pressure as well as the function as the rectification member for rectifying gas. Further, one sheet of the protective member 12 is effective, however, two or more sheets thereof may be adopted, and may be used for the gas rectification member.
  • the airbag 10 comprises the airbag main body 10a and the tubular tether belt 11a for restricting the extension length of the airbag main body 10a, the airbag main body 10a is provided with a stitched part 10c formed by stitching respective outer peripheral edges of two pieces of base fabrics (a base fabric of the surface portion of the airbag main body and a base fabric of the rear surface portion thereof) substantially circular in shape with each other, and an airbag after stitched is turned inside out, thereby forming the airbag main body in the shape of the bag expandable into the flat spherical shape (the ellipsoidal shape).
  • the two pieces of the base fabrics substantially circular in shape are substantially identical in size to each other.
  • the airbag 10 after stretched substantially to a full length in the direction of extension of the thereof as shown in Fig. 6A (upper part of the figure) is folded like bellows and vertically compressed to be contained in the airbag cover 16.
  • the tubular tether belt 11a is folded like bellows in the direction of a tube length thereof.
  • the tubular tether belt 11a when stretched substantially to the full length thereof has a length substantially equal to a length of the front and back base fabric of the airbag main body 10a respectively.
  • FIG. 6A upper part of the figure
  • Figs. 7A to 7H are schematic views showing operating process for folding the airbag with the airbag-folding machine. The operating process for folding the airbag will be described hereinafter with reference to those schematic views.
  • the airbag-folding machine 60 comprises a table 61 having a support member 62 columnar in shape for supporting the tubular tether belt 11a and an outer cylinder 63 coaxial with the support member 62 for containing the airbag 10 on the outside of the support member 62, and a support unit (not shown) for supporting a clamping member 64 columnar in shape (see Fig. 7C ), positioned vertically above the support member 62 and substantially identical in outer diameter thereto, to thereby clamp the upper end of the tubular tether belt 11a between a clamping member 64 and the support member 62. Since the outer diameter of the support member 62 is smaller than the inside diameter of the insertion opening 22h of the cushion ring 22, the support member 62 can be inserted through the insertion opening 22h to thereby ascend as described later.
  • the bolts 22d of the cushion ring 22 are inserted into the four small holes 10b provided on the peripheral part 10d (see Fig. 6A ) around the inflator attachment opening 10ah of the airbag 10 respectively, and the bolts 22d are engaged with four holes provided on the periphery of the support member 62 of the table 61 on the upper end thereof to be secured to the four holes.
  • the head of the support member 62 ascends through the insertion opening 22h to penetrate into a tube portion of the tubular tether belt 11a, outside of which the airbag main body 10a is placed flat on the top of the table 61.
  • the support member 62 ascends to a position at a height at the maximum about three times of the length of the tubular tether belt 11a and stops at the position, whereupon the tubular tether belt is manually passed through a protrusion provided at the tip of the support member 62 through the attachment hole 11ah thereby implementing positioning of the tubular tether belt 11a.
  • the clamping member 64 descends to clamp said positioned tubular tether belt 11a between the support member 62 and the clamping member 64, the support member 62 and the clamping member 64 descend with the tubular tether belt 11a being kept in clamped position.
  • the outer cylinder 63 ascends from the table 61 up to a clamping position of the upper end of the tubular tether belt 11a, thereby containing the airbag 10 between the outer cylinder 63 and the support member 62.
  • two pieces of plates 65 are caused to slide on an upper end of the outer cylinder 63 from the right side and the left side thereof respectively, to be fitted into a fitting groove (not shown) provided at a lower end of the clamping member 64.
  • the support member 62, the clamping member 64 and the outer cylinder 63 in keeping that position are caused to concurrently descend, whereupon the folded tubular tether belt 11a overlaid together with the airbag main body 10a will be folded like bellows while being compressed.
  • the plates 65 are removed, and subsequently the support member 62, the clamping member 64 and the outer cylinder 63 concurrently revert to respective original positions, thereby completing the operation for folding the airbag 10.
  • the length of the airbag 10 has been described in the foregoing as the length of the tubular tether belt 11a is substantially equal to half the length of the airbag main body 10a when the airbag 10 is stretched to the full length thereof, however, it is to be pointed out that the invention is not limited to the length described, and that the respective positions where the support member 62 and the clamping member 64 stop after descending as well as the position where the support member 62 stops may be decided depending on a length of the airbag 10.
  • Fig. 8A is an expansion view of the holding member 14 prior to covering the airbag 10.
  • the holding member 14 in the shape of an approximate square is made of a woven cloth, and an attachment bolt insertion hole 14hh circular in shape is provided at the center thereof while eight holes 14ah, 14bh, to be engaged with the bolts 22d of the cushion ring 22 respectively, are provided at the respective centers of four sides of the approximate square, and at respective corners of the approximate square along respective diagonal lines thereof respectively.
  • the attachment bolt insertion hole 14hh of the holding member 14 is a hole for use in insertion of the attachment bolt 40a shown in Fig. 2 .
  • Reference numeral 14h denotes the anticipated rupture part of the holding member 14, substantially circular in shape, delineated by perforations, and the anticipated rupture part 14h is provided in order to facilitate rupture in the initial expansion of the airbag, a size of the anticipated rupture part 14h being sufficient to allow respective diameters of the depressed part 16a of the airbag cover 16 and the decorative member 40 to pass through the anticipated rupture part 14h.
  • Fig. 8B is a perspective view showing the back side of the holding member 14 prior to covering the airbag 10 and the back side of the airbag 10 as folded by the airbag-folding machine 60 previously described.
  • the four pieces of the holes 14ah are engaged with the bolts 22d of the cushion ring 22, protruding from the airbag 10 as folded respectively. Thereafter, the holes 14bh positioned on the respective diagonal lines are all engaged with the opposite bolts 22d.
  • Fig. 8C is a perspective view showing the folded airbag 10 covered with the holding member 14.
  • the airbag 10 is covered by the holding member 14 with the attachment hole 11ah of the tubular tether belt 11a shown in Fig. 6A , to overlie the attachment bolt insertion hole 14hh of the holding member 14.
  • Fig. 8D is a backside view of the airbag 10 covered with the holding member 14.
  • the protective member 12 As the protective member 12 is folded like bellows inside the airbag 10, the same is pulled out to be thereby disposed along the inner periphery of the airbag 10 folded as shown in Fig. 8D (or Fig. 2 ). By so doing, the protective member 12 carries out the function as the gas rectification member.
  • the attachment hole 11ah of the tubular tether belt 11a overlying the attachment bolt insertion hole 14hh is disposed substantially at the center of the inflator attachment opening 10ah of the airbag 10, in other words, substantially at the center of the protective member 12 which is formed to reach the vicinity of the part of the airbag inflating in the initial expansion thereof.
  • the protective member 12 is attached to the foregoing inflator attachment opening 10ah when held by the holding member 14 as shown in Fig. 8D , and has a surface with multiple-folded pleats 12a formed thereon.
  • the protective member 12 is extended along the inner wall of the airbag 10 toward the front side from the cushion ring 22 clamping the inflator attachment opening 10ah of the airbag 10 up to the vicinity of the tip of the folded tubular tether belt 11a, the part of the airbag that will inflate in the initial expansion thereof, as shown in Fig. 2 .
  • the protective member 12 in this state is tubular in shape.
  • the protective member 12 Since the multiple-folded pleats 12a are formed on the surface of the protective member 12, as described above, the protective member 12 has not only the function as the protective member for protecting the periphery of the inflator attachment opening 10ah of the airbag 10 from heat and impact of gas pressure but also the function as the rectification member for rectifying the gas since the protective member 12 is tubular in shape.
  • the bolts 22d of the cushion ring 22 inserted when folding the airbag 10 are shown as protruded from around the peripheral edge of the inflator attachment part, on the backside of the airbag 10.
  • a side face of the airbag 10 on the outer circumference thereof is pressed down, so that it is possible to restrain the inflation and expansion of the airbag 10 in the direction of the side face thereof, caused by the gas generated from the inflator in the initial expansion of the airbag 10.
  • Fig. 9 is an expansion view of a periphery-protective member 70 for protecting the peripheral part 10d provided around the inflator attachment opening 10ah.
  • the periphery-protective member 70 is made of a woven cloth, and a surface thereof is coated with a silicone rubber.
  • the periphery-protective member 70 is substantially circular in shape, an insertion opening 70ah for use in insertion of the inflator 30 is provided in a central region thereof, and four holes 70b through which the bolts described as above are inserted respectively, are provided along a circumference outside the insertion opening 70ah.
  • the periphery-protective member 70 is provided in order to prevent the peripheral part 10d of the inflator attachment opening 10ah from being damaged by an edge of the connecting member 20 when the connecting member 20 is fitted onto the cushion ring 22, and the airbag 10 is clamped between both the members 20, 22 to be thereby secured.
  • the protective member 12 is made of a woven cloth as in the case of the airbag 10, it need only be sufficient to dispose cylindrically the protective member 12 prepared by overlaying cloth of a predetermined width on the peripheral part 10d around the inflator attachment opening 10ah to be thereby stitched therewith.
  • the protective member 12 needs to have a length reaching the vicinity of the part of the airbag 10 that will inflate in the initial expansion thereof, preferably a length reaching, for example, the tip of the folded tubular tether belt 11a.
  • the protective member 12 material other than a material of the airbag 10, for example, a synthetic resin sheet, and any flexible material capable of carrying out the function for rectifying gas can be used. In such a case, it need only be sufficient to securely stick the airbag 10 and the synthetic resin sheet together by appropriate means. Further, it is also possible to carry out the invention with the protective member 12 made as a separate member without securely sticking to the airbag 10. If the protective member 12 is the separate member, the protective member 12 is not limited to the synthetic resin sheet, and may be one made of metal. In such a case, it need only be sufficient to rectify the gas generated from the inflator to flow only toward the part of the airbag that will inflate in the initial expansion thereof.
  • the protective member 12 may be either integrally joined with the bolts 22d of the cushion ring 22, or may be attached as a member completely separated therefrom. Otherwise, the protective member 12 may be welded to the base plate 24, or may be formed by deep drawing.
  • the protective member 12 needs to have the length reaching the vicinity of the part of the airbag 10 that will inflate in the initial expansion thereof, preferably the length reaching, for example, the tip of the folded tubular tether belt 11a.
  • Fig. 10A is a perspective view of the airbag cover 16.
  • the airbag cover 16 is formed of a synthetic resin so as to be substantially in a bowl-like shape, and the depressed part 16a for accommodating the decorative member 40 is provided at the central part of the airbag cover 16, as previously described.
  • the airbag cover 16 is secured to the base plate 24 with rivets through the intermediary of the airbag cover attachment pieces 24a. Further, with the decorative member 40 attached to the depressed part 16a of the airbag cover 16, a surface of the decorative member 40 is substantially flush with a surface of the airbag cover 16, as shown in Fig. 2 .
  • Fig. 10B is a back side view of the airbag cover 16.
  • tear-lines L1 to L4, Lc
  • a groove-like shape capable of splitting and tearing upon the inflation and expansion of the airbag 10, while leaving out the depressed part 16a at the center secured by the connecting member 20, are formed on the back side of the airbag cover 16.
  • the back side of the airbag cover 16 is provided with a series of the tear-lines comprising the tear-line Lc circular in shape, formed around the depressed part 16a, and a plurality of the tear-lines, for example, four pieces of the tear-lines L1 to L4, radially extended from the tear-line Lc, so as to enable the airbag cover 16 to be split into a plurality of cover pieces 16b with the depressed part 16a left out as it is, upon the airbag cover 16 being subjected to an inflation pressure of the airbag.
  • the airbag cover 16 is secured to the base plate 24 with the rivets such that the airbag cover 16 can be split into the respective cover pieces 16b upon the inflation of the airbag 10, and the respective cover pieces 16b can independently open up.
  • the airbag cover 16 is pressed to be split along the respective tear-lines L around the decorative member 40 by a force of the inflation and expansion, whereupon the split cover pieces will open outward respectively, with the depressed part 16a in the bowl-like shape at the center being left out as it is, to be then completely cut apart and independently open up respectively, as described above.
  • Fig. 11 is a view showing the respective opened-up cover pieces 16b, as seen from an occupant side. As shown in the figure, because the airbag cover 16 is split into the respective cover pieces 16b upon the expansion of the airbag 10, the airbag cover 16 will not interfere with the expansion of the airbag 10 in the direction of the side face thereof, after the airbag 10 passes through the anticipated rupture part 14h of the holding member 14. For brevity, the airbag and so forth are not shown in the figure.
  • the airbag 10 held by the holding member 14 is contained in the airbag cover 16, however, instead of holding the airbag 10 by the holding member 14, it is also possible to hold the airbag 10 simply by the airbag cover 16 to be contained therein.
  • the side face of the airbag cover 16 does not undergo splitting and tearing after the expansion of the airbag 10 unlike the case shown in Fig. 11 , and if a tear-line in a shape similar to the opening formed by the anticipated rupture part 14h of the holding member 14, substantially circular in shape, as described in detail with reference to Fig.
  • the tear-line in the shape similar to the opening formed inside the airbag cover 16 is provided at a position facing to the part of the airbag where the protective member 12 will rectify and guide gas to inflate in the initial expansion thereof.
  • the airbag 10 with the cushion ring 22 pre-contained therein and packaged in the holding member 14 is contained in the airbag cover 16 by aligning the position of a hole 16ah provided at the central part of the airbag cover 16 with that of the attachment hole 11ah of the tubular tether belt 11a of the airbag 10.
  • the attachment bolt 40a of the decorative member 40 By inserting the attachment bolt 40a of the decorative member 40 into the hole 16ah of the depressed part 16a of the airbag cover 16 from the front side, it is possible to insert the attachment bolt 40a into the hole 16ah of the airbag cover 16, the attachment hole 11ah of the tubular tether belt 11a of the airbag 10 and the hole 20ah of the central part of the connecting member 20 disposed in alignment with the hole 16ah respectively.
  • the attachment bolt insertion hole 14hh and the attachment hole 11ah of the tubular tether belt 11a are clamped and secured between the depressed part 16a of the airbag cover 16 and the central part 20a of the connecting member 20.
  • the cushion ring 22 is overlaid on the base plate 24 to thereby fit the base plate 24 to the airbag cover 16, and further the inflator 30 is snapped in between the bolts 22d, thereby screwing down a nut against the respective bolts 22d.
  • the inflator attachment opening 10ah and the protective member 12 are clamped and secured between the cushion ring 22, and the connecting member 20.
  • FIGs. 12A and 12B there is described hereinafter an expanding action of the airbag device M1.
  • ignition starts in the inflator 30 to thereby cause gas to be generated therein, and the gas is introduced into the airbag 10.
  • the airbag cover 16 is subjected to a force of the inflation and is split along the tear-lines L1 to L4, and Lc, that is, with depressed part 16a as left out as it is, whereupon the respective cover pieces 16b will radially expand.
  • inflation and expansion start from the stitched part 11c formed by stitching together the tubular tether belt 11a and the central part of the base fabric of the airbag 10 that will start inflation in the initial expansion, while enveloping the depressed part 16a with the tubular tether belt 11a, and the surface of the airbag 10 undergoes inflation toward the occupant side. Since the tubular tether belt 11a is folded in the longitudinal direction of the tube portion at the time of the inflation, the tubular tether belt 11a is hardly subjected to resistance upon extension thereof.
  • the airbag 10 undergoes inflation and expansion from the stitched part 11c, the airbag 10 undergoes expansion toward the occupant side while subjected to resistance upon passing through the anticipated rupture part 14h of the holding member 14. Accordingly, surface portion of the airbag 10 will sequentially be expanded toward the occupant side, while maintaining a degree of an internal pressure without causing halfway collapse of folded and contained airbag 10.
  • Fig. 12A shows the fully stretched tubular tether belt 11a to its full length.
  • Parts of the back side portion of the airbag 10 are inflated and expanded toward the occupant side, but the stitched part 10c formed by stitching together the respective outer circumferential edges of the two pieces of the base fabrics substantially circular in shape is positioned in the vicinity of the steering wheel 50, and other parts of the back side portion of the airbag 10 are still contained in the holding member 14.
  • the airbag 10 exhibits a behavior whereby expansion thereof toward the occupant side is stopped following the tubular tether belt 11a stretching to its full length as described above, this behavior is to stop the rapid stretch of the tubular tether belt 11a due to the internal pressure immediately after splitting and to temporarily increase an internal pressure of the airbag inside the airbag cover 16 to obtain a splitting and tearing force, and in association with such stopping action, the airbag 10 is stretched, however, since a volume of the airbag 10 rapidly increases concurrently with expansion thereof, the internal pressure rapidly decreases.
  • an expansion velocity toward the occupant side after the stopping action is actually decreased by half as compared with a stretch velocity of the remaining parts of the airbag 10 within the holding member 14, since the central part of the airbag 10 cannot shift toward the occupant side, harmfulness against occupants will decrease as compared with the case of an airbag device without the tubular tether belt 11a.
  • Such an advantageous effect as above is not limited to the case of the tubular tether belt 11a according to the first embodiment, and the same effect is obtained in the case where a usual flat tubular tether belt is provided.
  • the airbag device M2 for a front passenger seat according to a second example.
  • the airbag device M2 comprises an folded airbag 10A, an inflator 30A for feeding a gas for inflation to the airbag 10A, and an airbag cover 16A in the shape of an approximately square cylinder for containing the airbag 10A, and the inflator 30A therein.
  • the airbag device M2 is substantially the same in structure as the airbag device M1, and in describing the structure of the airbag device M2, like elements are given like reference numerals with "A" suffixed.
  • the airbag cover 16A is made up such that a tear-line LA disposed in the shape resembling the letter H is provided on the back side of the head in the shape of the approximately square cylinder in such a way as to enable the airbag cover 16A to be split into two pieces of cover pieces 16Ab to open, and the two pieces of the cover pieces 16Ab can open toward an upper side and a lower side respectively, as seen from the plane of the figure, with an upper edge and a lower edge of the respective cover pieces 16Ab, each serving as a hinge 16Ae.
  • a connecting wall unit 16Af in the shape of an approximately square cylinder protruding downward is provided on the back side of the head in the shape of the approximately square cylinder in such a way as to surround respective positions where the two pieces of the cover pieces 16Ab are to be disposed.
  • a plurality of stopper holes 16Ag are penetrated through respective predetermined positions of upper and lower walls of the connecting wall unit 16Af, opposed to each other. Stopper fingers 24Ad formed on a base plate 24A are inserted into the stopper holes 16Ag respectively, thereby engaging the stopper fingers 24Ad with the connecting wall unit 16Af. The respective stopper fingers 24Ad are secured to the connecting wall unit 16Af in order to ensure connection of the connecting wall unit 16Af with the base plate 24A so that the airbag 10A at the time of inflation can smoothly push up the two pieces of the cover pieces 16Ab to thereby enable the tear-line LA to be ruptured.
  • the base plate 24A comprises a bottom wall part 24Ae in the shape of a rectangular sheet, formed of a sheet metal substantially rectangular in shape, having a rectangular opening, on the upper end side thereof, and a sidewall part 24Af extending so as to be in the shape of an approximately square cylinder from the outer peripheral edge of the bottom wall part 24Ae upward toward the airbag cover 16A.
  • the bottom wall part 24Ae is formed in the shape of a rectangular sheet extended longer from side to side, and the central part thereof is provided with an inflator attachment opening 24Ah circular in shape, through which an upper side part of an inflator 30A can be inserted from below the bottom wall part 24Ae upward toward the airbag cover 16A.
  • attachment holes 22Ag through which respective bolts 22Ad of a cushion ring 22A can be inserted are formed on the peripheral edge of the inflator attachment opening 24Ah of the bottom wall part 24Ae.
  • a bracket 32 for connecting the base plate 24A on the side of a vehicle body 60a is secured to the respective undersides of both the right and left side of the bottom wall part 24Ae. A nut for screwing a bolt into each of the respective brackets 32 is securely attached thereto.
  • a bracket 60b extending from a reinforcement 60a is provided on the side of the airbag device M2, adjacent to the vehicle body 60, and a bolt is penetrated through an attachment seat of the bracket 60b to be screwed with a nut. By tightening up the nuts against the bolts, respectively, the airbag device M2 is attached to, and secured to the body 60.
  • FIG. 14 is an enlarged view showing a clamped-secured protective member 12A, the airbag 10A and a holding member 14A.
  • the folded airbag 10A for use in the airbag device M2 incorporating the cushion ring 22A, described with reference to Figs. 8A to 8D , is covered with the holding member 14A.
  • the airbag 10 covered with the holding member 14A is contained in the airbag cover 16A, and the inflator attachment opening 24Ah of the base plate 24A is fitted onto the bolts 22Ad of the cushion ring 22A to thereby overlay the base plate 24A on the cushion ring 22A while the stopper fingers 24Ad of the base plate 24A are inserted into the stopper holes 16Ag of the airbag cover 16A respectively, to be secured thereto, thereby screwing nuts from the backside of the base plate 24A.
  • the base plate 24A, the cushion ring 22A and the inflator 30A are screwed together.
  • the protective member 12A, the airbag 10A and a holding member 14A are clamped and secured between the cushion ring 22A and the base plate 24A, thereby completing assembling of the airbag device M2.
  • the shape of the airbag cover 16A of the airbag device M2 is not limited to that described as above, and decision on what shape is to be adopted for the airbag cover 16A can be made according to a design depending on an installation place of the airbag device M2, including, for example, the upper face of an instrument panel and so forth.
  • the airbag device M2 is not provided with the tether belt compared with the case of the airbag device M1, an expansion action of the airbag device M2 does not exhibit the behavior whereby expansion thereof toward the occupant side is temporarily stopped, and the airbag 10A undergoes inflation and expansion toward an occupant side while inflating from a portion thereof facing the occupant side with an internal pressure of the airbag maintained to a degree.
  • the airbag undergoes orderly inflation starting from the surface thereof on the occupant side by virtue of the gas rectification member, even without the tether belt, and expands toward the occupant side after being subjected to resistance while passing through an opening of the holding member 14A, there will not occur a behavior whereby the airbag in whole bursts out in a lump concurrently with splitting and tearing of the airbag as folded, thereby inflicting harm on an occupant, so that occurrences of a punching phenomenon and a membrane phenomenon can be prevented with reliability.
  • FIG. 15 is a schematic enlarged longitudinal sectional view of the airbag device M3 for the front passenger seat.
  • the airbag device M3 comprises an folded airbag 10B, an inflator 30B substantially columnar in shape, contained in the airbag 10B, for feeding a gas for inflation, a diffuser 32B for containing the inflator 30B therein, and an airbag cover 16B in the shape of an approximately square cylinder, for containing the airbag 10B, and the inflator 30B therein.
  • the airbag cover 16B is provided with a tear-line LB disposed in the shape resembling the letter H on the back side of a head part of the approximately square cylinder to enable the airbag cover 16B to be split into two pieces of cover pieces 16Bb to open, and the two pieces of the cover pieces 16Bb can open toward an upper and a lower side as seen from the plane of the figure respectively, by making use of an upper and a lower edge of the respective cover pieces 16Bb as a hinge 16Be.
  • a connecting wall unit 16Bf in the shape of an approximately square cylinder, protruding downward is provided on the back side of the head part of the approximately square cylinder in such a way as to surround respective positions where the two pieces of the cover pieces 16Bb are to be disposed.
  • the diffuser 32B is secured to the airbag cover 16B by inserting bolts (not shown) into the respective holes provided at a plurality of fixture positions of both members 32B and 16B and securing them.
  • the diffuser 32B is disposed between the inflator 30B and the folded and contained airbag 10B and is provided with a plurality of gas exhaust holes (not shown) through which a gas for inflation can flow out, so that the airbag device M3 is structured such that upon actuation of the inflator 30B, a gas generated from the inflator 30B passes through the gas exhaust holes of the diffuser 32B to thereby apply pressure to the central part of the folded and contained airbag 10B.
  • Reference numeral 11B denotes a usual tether belt unlike the tubular tether belt as previously described, and reference numeral 12B denotes a gas rectification member. Both the members 11B, 12B together with the airbag 10B overlapped one another are inserted between the respective members 32B and 16B on fixedly attaching the diffuser 32B to the airbag cover 16B, and the respective members 11B, 12B are secured with bolts to be thereby being attached to the airbag device. Further, as is evident from Fig.
  • the airbag 10B is not provided with the inflator attachment opening 10ah, but is provided with a communicating port for insertion of the inflator 30B, and the inflator 30B is inserted into the communicating port.
  • an airbag device wherein a gas from an inflator of an airbag device (not shown) into an airbag through a communicating port thereof from outside the airbag instead of inserting the inflator directly into the airbag is well known in the art.
  • the respective inflator attachment openings 10ah of the airbag10,10A used in the airbag devices M1, M2, respectively, the communicating port for insertion of the inflator 30B and the communicating port of the well known airbag have the same function as the communicating port for introducing the gas from the inflator into the airbag, therefore, when the word of communicating port of the inflator is used, it will be understood that it means the inflator attachment opening, the communicating port for insertion of the inflator and the communicating port of the well known airbag as well.
  • the assembling work for the airbag device M1 is carried out by a procedure for aligning the position of the attachment hole 11ah of the tubular tether belt 11a of the airbag 10 with that of the hole 20ah of the central part 20a of the connecting member 20 before inserting the connecting member 20 into the airbag 10, so that the connecting member 20 can be inserted after the position of the hole 16ah of the airbag cover 16 is aligned with that of the attachment hole 11ah of the tubular tether belt 11a of the airbag 10.
  • a positioning work is considerably lessened, and improvement in efficiency of an attachment work can be achieved.
  • peripheral part 10d of the airbag is covered with the periphery-protective member 70, the peripheral part 10d of the airbag is protected from the edge of the base plate 24 by the periphery-protective member 70 even when the base plate 24 is overlaid on the cushion ring 22 to be secured together, so that it is possible prevent the peripheral part 10d from being damaged by the edge of the base plate 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)

Claims (4)

  1. Verfahren zum Herstellen einer Airbagvorrichtung, wobei der Airbag (10) aus vorderseitigen und rückseitigen Grundmaterial gebildet ist, eine Befestigungsöffnung für den Gasgenerator (10ah) mittig des rückseitigen Grundmaterials ausgebildet ist, ein tubularer Haltegurt (11a) sich vom einer mittigen Position des vorderseitigen Grundmaterials ins Inneren des Airbags (10) erstreckt, und der Airbag (10) an einer Airbagabdeckung (16) befestigt ist, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
    Befestigen eines äußeren Randes (10d) der Befestigungsöffnung für den Gasgenerator (10ah) des Airbags (10),
    Ausweiten des Airbags (10), der integral mit der Spitze und dem rückseitigen Ende des tubularen Haltegurtes (11a) verbunden ist, zu seiner vollen Länge;
    Zurückziehen des tubularen Haltegurtes (11a) im ausgedehnten Zustand, um dadurch den Airbag (10) um den tubularen Haltegurt (11a) zu falten;
    Falten des tubularen Haltegurtes (11a) und des Airbags (10) während des Zurückziehens; und
    Befestigen der Spitze des gefalteten tubularen Haltegurtes (11a) an einen mittigen Teil (10aR) der Rückseite der Airbagabdeckung (16), um den Airbag (10) darin einzuschließen.
  2. Verfahren zur Herstellung einer Airbagvorrichtung nach Anspruch 1, wobei der Airbag (10) mit einem Polsterring (22), der eine Öffnung an einem mittigen Teil davon aufweist und in einen peripheren Rand der Befestigungsöffnung (10ah) für den Gasgenerator des Airbags (10) eingesetzt ist, bereitgestellt wird, wobei das Verfahren den folgenden Schritt aufweist:
    Befestigen des Polsterringes (22) vor dem Ausweiten des Airbags (10), der integral mit der Spitze und dem rückseitigen Ende des tubularen Haltegurtes (11a) verbunden ist, zu seiner vollen Länge.
  3. Verfahren zum Herstellen einer Airbagvorrichtung nach Anspruch 1 oder 2, welches weiter die folgenden Schritte umfasst:
    Einsetzen eines Verbindungselementes (20) mit einer zentralen Öffnung in dem gefalteten Airbag (10),
    Ausrichten und Verbinden der entsprechenden Teile einer Befestigungsöffnung des tubularen Haltegurtes (11 a), einer Öffnung an einem mittigen Teil des Polsterringes (22), der zentralen Öffnung des Verbindungselementes (20) und eines Loches an dem mittigen Teil der Airbaghülle (16) miteinander.
  4. Verfahren zum Herstellen einer Airbagvorrichtung nach Anspruch 3, welches weiter den folgenden Schritt umfasst:
    Überlagern einer Grundplatte (24) auf das Verbindungselement (20), um dadurch daran befestigt zu werden.
EP06757111A 2005-06-08 2006-06-07 Verfahren zur montage einer airbagvorrichtung und airbagvorrichtung Expired - Fee Related EP1889758B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005168866 2005-06-08
PCT/JP2006/311404 WO2006132266A1 (ja) 2005-06-08 2006-06-07 エアバッグ装置の組立方法及びエアバッグ装置

Publications (3)

Publication Number Publication Date
EP1889758A1 EP1889758A1 (de) 2008-02-20
EP1889758A4 EP1889758A4 (de) 2010-09-15
EP1889758B1 true EP1889758B1 (de) 2012-05-16

Family

ID=37498465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06757111A Expired - Fee Related EP1889758B1 (de) 2005-06-08 2006-06-07 Verfahren zur montage einer airbagvorrichtung und airbagvorrichtung

Country Status (7)

Country Link
US (1) US7832761B2 (de)
EP (1) EP1889758B1 (de)
JP (1) JP4999181B2 (de)
KR (1) KR101301135B1 (de)
CN (1) CN101193775B (de)
AU (1) AU2006256137B9 (de)
WO (1) WO2006132266A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016202A (ko) * 2010-03-12 2013-02-14 아시모리고교 가부시키가이샤 에어백 장치의 장착부 구조

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187816B2 (ja) * 2007-08-13 2013-04-24 芦森工業株式会社 エアバッグ装置
JP5133132B2 (ja) * 2008-05-21 2013-01-30 芦森工業株式会社 エアバッグカバー及びエアバッグ装置
JP5777903B2 (ja) * 2011-02-23 2015-09-09 日本プラスト株式会社 エアバッグ装置
DE102011108348A1 (de) * 2011-07-25 2013-01-31 Trw Automotive Gmbh Zugmittel, Gassackmodul mit Zugmittel und Verfahren zur Herstellung eines Zugmittels
JP5946696B2 (ja) * 2012-05-18 2016-07-06 タカタ株式会社 エアバッグ装置の製造方法
WO2017090772A1 (ja) * 2015-11-26 2017-06-01 オートリブ ディベロップメント エービー エアバッグ装置
DE102017123063B3 (de) * 2017-10-05 2019-03-14 Autoliv Development Ab Gassackmodul
JP7066514B2 (ja) * 2018-05-16 2022-05-13 日本プラスト株式会社 エアバッグ装置のカバー体
CN110091940B (zh) * 2019-05-14 2020-09-25 宁波均普智能制造股份有限公司 一种安全气囊气体发生器的装配方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944251A (en) * 1972-04-28 1976-03-16 Specialty Products Development Corporation Gas generator for automobile driver restraint bag
DE3630685C2 (de) * 1986-07-22 1994-03-10 Trw Repa Gmbh Gaskissen-Aufprallschutzvorrichtung für einen Kraftfahrzeuginsassen
JPH04201758A (ja) 1990-11-30 1992-07-22 Takata Kk エアバッグ装置のエアバッグ取付構造
US5195774A (en) * 1990-11-30 1993-03-23 Takata Corporation Air bag attaching structure
US5782737A (en) * 1996-07-29 1998-07-21 Ford Global Technologies, Inc. Method of folding a vehicle safety airbag
JPH11278186A (ja) * 1998-03-30 1999-10-12 Ikeda Bussan Co Ltd エアバッグ装置のエアバッグ本体
JP2001163143A (ja) * 1999-12-08 2001-06-19 Toyo Tire & Rubber Co Ltd エアバッグ装置
DE10065463C2 (de) * 2000-05-19 2003-12-18 Trw Automotive Safety Sys Gmbh Airbagmodul
JP2001180427A (ja) 2000-11-27 2001-07-03 Toyo Tire & Rubber Co Ltd 車両用エアバッグ装置のためのバッグ及びその製造方法
DE20022018U1 (de) * 2000-12-28 2001-11-08 Trw Automotive Safety Sys Gmbh Gassack-RÜckhalteeinrichtung
DE20102115U1 (de) * 2001-02-07 2001-06-28 Trw Automotive Safety Sys Gmbh Gassack-Modul
US6863301B2 (en) * 2001-02-23 2005-03-08 Key Safety Systems, Inc. Driver side air bag module with annular air bag and centrally disposed control module
DE20110175U1 (de) * 2001-06-20 2001-10-25 Trw Automotive Safety Sys Gmbh Gassackmodul
DE20114507U1 (de) * 2001-09-03 2002-01-24 Trw Automotive Safety Sys Gmbh Gassackmodul
DE10148739B4 (de) * 2001-09-27 2006-05-04 Takata-Petri Ag Ringairbag
DE20116618U1 (de) * 2001-10-10 2002-02-21 Trw Automotive Safety Sys Gmbh Fahrzeuglenkvorrichtung
DE10203960C1 (de) * 2002-01-25 2003-07-31 Takata Petri Ag Airbagmodul für Kraftfahrfzeuge
US6883832B2 (en) * 2002-01-30 2005-04-26 Trw Automotive Safety Systems Gmbh Gas bag for a vehicle occupant restraint system and a gas bag module
JP2004022943A (ja) 2002-06-19 2004-01-22 Hitachi Kokusai Electric Inc 半導体製造装置
JP4031338B2 (ja) 2002-10-02 2008-01-09 芦森工業株式会社 エアバッグ装置
JP4031336B2 (ja) * 2002-10-02 2008-01-09 芦森工業株式会社 エアバッグ装置
JP2005022523A (ja) 2003-07-02 2005-01-27 Ashimori Ind Co Ltd エアバッグ装置
JP4315338B2 (ja) 2004-01-30 2009-08-19 芦森工業株式会社 エアバッグ装置
JP4609229B2 (ja) * 2004-11-16 2011-01-12 マツダ株式会社 エアバッグ装置を備えたステアリングホイール
JP2006248511A (ja) * 2005-02-09 2006-09-21 Takata Corp エアバッグ及びエアバッグ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016202A (ko) * 2010-03-12 2013-02-14 아시모리고교 가부시키가이샤 에어백 장치의 장착부 구조

Also Published As

Publication number Publication date
KR101301135B1 (ko) 2013-09-03
JP4999181B2 (ja) 2012-08-15
AU2006256137A1 (en) 2006-12-14
US7832761B2 (en) 2010-11-16
AU2006256137B2 (en) 2011-06-16
JPWO2006132266A1 (ja) 2009-01-08
AU2006256137B9 (en) 2011-08-04
KR20080018179A (ko) 2008-02-27
CN101193775A (zh) 2008-06-04
WO2006132266A1 (ja) 2006-12-14
EP1889758A1 (de) 2008-02-20
CN101193775B (zh) 2010-11-03
US20090102172A1 (en) 2009-04-23
EP1889758A4 (de) 2010-09-15

Similar Documents

Publication Publication Date Title
AU2011202446B2 (en) Air bag device
EP1889758B1 (de) Verfahren zur montage einer airbagvorrichtung und airbagvorrichtung
US7854446B2 (en) Airbag device
US8104792B2 (en) Airbag device
US8202208B2 (en) Airbag folding device and airbag folding method
JP4979148B2 (ja) エアバッグ装置
JP4780756B2 (ja) エアバッグ装置
JP2007015542A5 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

A4 Supplementary search report drawn up and despatched

Effective date: 20100816

RIC1 Information provided on ipc code assigned before grant

Ipc: B60R 21/203 20060101ALI20100810BHEP

Ipc: B60R 21/16 20060101AFI20070206BHEP

17Q First examination report despatched

Effective date: 20110520

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006029507

Country of ref document: DE

Effective date: 20120712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120619

Year of fee payment: 7

Ref country code: GB

Payment date: 20120606

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006029507

Country of ref document: DE

Effective date: 20130219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130605

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130607

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006029507

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006029507

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101