EP1886075B1 - Appareil frigorifique - Google Patents

Appareil frigorifique Download PDF

Info

Publication number
EP1886075B1
EP1886075B1 EP06701814.3A EP06701814A EP1886075B1 EP 1886075 B1 EP1886075 B1 EP 1886075B1 EP 06701814 A EP06701814 A EP 06701814A EP 1886075 B1 EP1886075 B1 EP 1886075B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
mass flow
additional
refrigeration system
compressor stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06701814.3A
Other languages
German (de)
English (en)
Other versions
EP1886075A1 (fr
Inventor
Hermann Renz
Günter DITTRICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP1886075A1 publication Critical patent/EP1886075A1/fr
Application granted granted Critical
Publication of EP1886075B1 publication Critical patent/EP1886075B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Definitions

  • the invention relates to a refrigeration system comprising a refrigerant circuit, in which a main mass flow of a refrigerant - preferably carbon dioxide - is guided, arranged in the refrigerant circuit high-pressure side heat exchanger, a refrigerant circuit disposed in the expansion cooling device, which cools the main mass flow of the refrigerant in the active state and thereby an additional mass flow of gaseous Generates refrigerant, arranged in the refrigerant circuit reservoir for liquefied refrigerant, at least one arranged in the refrigerant circuit expansion unit for liquefied refrigerant of the main mass flow, which an expander and a downstream low-pressure side cooling available, that is, the enthalpy of the refrigerant increasing, heat exchanger, and at least one in the refrigerant circuit arranged refrigerant compressor, which a main compressor stage and minde at least one driven together with the main compressor stage additional compressor stage, both compress the refrigerant to high pressure, the main compressor stage
  • the present invention seeks to provide a refrigeration system that can be optimally adapted to different operating conditions.
  • the advantage of the solution according to the invention lies in the fact that, due to the variable connectability of the additional compressor stages, this makes it possible to adapt the liquefaction of the main mass flow and the enthalpy reduction to the various operating conditions and thus to always keep it in an optimum range.
  • the expansion cooling device reduces the enthalpy of the main mass flow by at least 10%.
  • the expansion cooling device reduces the enthalpy of the main mass flow by at least 20%.
  • the refrigeration plant can be used particularly advantageously when the first operating mode corresponds to a supercritical operation, for example using carbon dioxide as the refrigerant
  • the high-pressure refrigerant compressed in the high-pressure side heat exchanger can not be cooled to a temperature corresponding to a boiling line and saturation curve of the refrigerant isotherms, but can only be cooled to a temperature that a outside the boiling line and saturation curve extending isotherms, so that it does not come to a liquefaction of the refrigerant.
  • a particularly favorable embodiment provides that the expansion cooling device converts the main mass flow into a thermodynamic state whose pressure and enthalpy are lower than pressure and enthalpy of a maximum of the saturation curve or boiling line in an enthalpy / pressure diagram.
  • thermodynamic state of the main mass flow caused by the expansion cooling device is close to the boiling point of the enthalpy / pressure diagram, in particular essentially at the boiling line or at an enthalpy which is lower than the enthalpy corresponding to the boiling line at the respective pressure.
  • the expansion cooling device can basically be designed in any desired manner.
  • the expansion cooling device has an expansion valve for expansion of refrigerant to an intermediate pressure and that the intermediate pressure of the Exapansionskssel worn by switching the appropriate number of additional compressor stages is adjustable.
  • the expansion cooling device could work so that only an expansion of the additional mass flow forming refrigerant takes place.
  • the expansion valve of the expansion cooling device expands the refrigerant of the main mass flow and of the additional mass flow to the intermediate pressure.
  • the expansion cooling device includes the reservoir for the liquid refrigerant of the main mass flow and thus simplifies the construction of the refrigeration system according to the invention.
  • a structurally particularly preferred solution provides that the expansion valve converts the expanded refrigerant from the main mass flow and the additional mass flow into a container in which the reservoir for the liquid refrigerant of the main mass flow forms over which there is a vapor space, from which then the additional mass flow forming Refrigerant is removed, so that a portion of the refrigerant evaporates and thereby cools the main mass flow or even subcooled.
  • a further advantageous embodiment of the refrigeration system according to the invention provides that in a second operating mode, the expansion cooling device is in the inactive state and does not cause cooling of the main mass flow.
  • the refrigeration system according to the invention can be operated in the conventional manner known manner by a circuit of the entire refrigerant in the form of the main mass flow.
  • the reservoir for liquid refrigerant of the main mass flow is under high pressure.
  • the second operating mode corresponds to a subcritical operation of the refrigeration system.
  • the controller controls the refrigerant compressor according to the required cooling capacity, that is, the refrigerant compressor can be operated either with variable speed and / or can be switched on or off.
  • the controller is able to individually connect or disconnect the refrigerant compressor according to the required cooling capacity, that is, by Einzelzu- or shutdown of the at least two refrigerant compressor in the refrigerant circuit is possible, the compressor power to the to adjust the required cooling capacity and thus always operate the refrigeration system according to the invention optimally.
  • each refrigerant compressor is dimensioned with additional compressor stage so that the mass flow of refrigerant of the additional mass flow compressed by the additional compressor stage corresponds maximally to the compressed mass flow of refrigerant of the main mass flow in this refrigerant compressor from the main compressor stage.
  • the possibilities afforded by the control of adjusting the additional mass flow and the intermediate pressure can advantageously be exploited in that the refrigerant compressors with additional compressor stage are dimensioned so that the additional compressor stages of different refrigerant compressors compress different mass flows of refrigerant of the additional mass flow.
  • a suitable variation of the additional mass flow to be compressed can be achieved by suitably selecting the additional compressor stages provided for compressing refrigerant of the additional mass flow, in particular by suitable combination for different mass flows of additional compressor stages, without the power of the main compressor stages having to be changed for this purpose.
  • the refrigerant compressors with additional compressor stage are reciprocating compressors.
  • each of the refrigerant compressor with additional compressor stage is expediently designed so that it has at least one cylinder for the additional compressor stage and at least one cylinder for the main compressor stage.
  • Such a refrigeration system can be realized in a particularly favorable manner if, for each refrigerant compressor with additional compressor stage, the number of cylinders for the main compressor stage is greater than the number of cylinders for the additional compressor stage.
  • a solution of the refrigeration system according to the invention which is particularly favorable with regard to the variable adjustability of the additional mass flow provides that the additional compressor stages of different refrigerant compressors have a different stroke volume from the refrigerant compressors with additional compressor stage, thereby resulting in a particularly wide range of stroke volumes for the additional mass flow even in different combinations of the additional compressor stages is available for selection.
  • a further advantageous embodiment of the refrigeration system according to the invention provides that in the first operating mode, the reservoir for liquefied refrigerant operates at an intermediate pressure and between the high-pressure side, the refrigerant cooling heat exchanger and the reservoir for liquefied refrigerant an additional expansion unit with an expansion element and a downstream cooling capacity Providing heat exchanger is provided.
  • this additional expansion unit the thermodynamic efficiency of the refrigeration system according to the invention can be further improved, since the evaporation temperature in this Additional expansion unit is higher, which requires that the provided cooling capacity at a higher temperature level, for example, for room cooling or room air conditioning, can be used.
  • thermodynamic efficiency can be achieved under supercritical operating conditions.
  • cooling capacity is higher at a defined compressor stroke volume and the power characteristic in relation to the ambient temperature flatter, which has a positive effect on the control characteristics of the refrigeration system.
  • the higher efficiency in supercritical operation is due, in particular, to the fact that the evaporation of the additional mass flow takes place at a higher pressure level than the evaporation in the suction-side heat exchangers of the expansion units. This leads to an improvement of the thermodynamic efficiency with the result of a reduced energy requirement for a defined cooling capacity.
  • the refrigerant compressors have cylinder heads in which inlet chambers and outlet chambers are substantially thermally decoupled, so that the heating of the refrigerant during compression to high pressure and the associated heating of the outlet chambers is substantially no heating of the inlet chambers with the refrigerant to be sucked and thus no negative effect on the compressor performance.
  • a structurally particularly simple solution provides that a check valve is provided for connecting an inlet chamber of the additional compressor stage to the low-pressure connection of the main compressor stage, so that inevitably, when the additional mass flow is interrupted, the additional compressor stage compresses refrigerant of the main mass flow.
  • a particularly simple solution provides that the check valve connects the inlet chamber of the additional compressor stage with the inlet chamber of the main compressor stage.
  • Another advantageous solution provides that the check valve is provided in a valve plate of the respective refrigerant compressor.
  • This solution has the advantage that the already equipped with valves valve plate only needs to be provided with an additional check valve and thus the check valve can be very easily mounted.
  • a connecting channel between the low-pressure connection and the check valve runs in a cylinder housing and can be molded into it in the same way as the inlet channel for supplying the main compressor stage with refrigerant supplied via the low-pressure connection.
  • An in Fig. 1 illustrated embodiment of a refrigeration system comprises a designated as a whole with 10 refrigerant circuit in which a plurality, for example three, refrigerant compressors 12a to 12c are arranged, the high-pressure ports 14a to c are connected to a high-pressure line 16 of the refrigerant circuit 10.
  • the high-pressure line 16 leads to a high-pressure side heat exchanger 18 which cools the refrigerant compressed to high pressure PH, for example with a flow 20 of a cooling medium, the cooling medium preferably being ambient air flowing through the heat exchanger 18.
  • cooling medium for example, water or the like to provide.
  • a further high-pressure line 22 leads to an expansion valve 24 and to a bypass valve 26 connected in parallel to the expansion valve 24, both of which open into a container 28 which is designed to include a reservoir 30 for liquid refrigerant which is always a volume 32 of liquid refrigerant is present, which - as described in detail below - represents a buffer volume for liquid refrigerant in the refrigerant circuit 10.
  • a conduit 34 leads to expansion units 40, for example four expansion units 40a to 40d connected in parallel.
  • the line 34 is connected to the reservoir 30 in such a way that it essentially only leads liquid refrigerant to the expansion units 40 and thus can be operated and in particular regulated in a known manner, since there is always an expansion of liquid refrigerant, essentially without Gas content, takes place.
  • expansion units 40 which are supplied with liquid refrigerant, corresponds to the type of control in known refrigeration systems.
  • Each of the expansion units 40 includes a shut-off valve 42, an expansion valve 44 that expands the liquid refrigerant, and a low-pressure side heat exchanger 46 that is capable of discharging cooling power due to the expanded refrigerant as indicated by the arrow 48.
  • the heat exchangers 46 of the parallel-connected expansion units 40 are connected to a common low-pressure line 50, which leads to low-pressure connections 52a to 52c of the refrigerant compressor 12a to 12c.
  • the sum of all the partial mass flows 54a, 54b, 54c and 54d of the refrigerant that are passing through the expansion units 40 and that are collected by the low-pressure line 50 form a main mass flow 56 of the Refrigerant circuit 10, which in turn is divided into partial mass flows 58a, 58b and 58c, which are sucked by the refrigerant compressors 12a to 12c via the low-pressure ports 52a to 52c and compressed to high pressure PH to exit through the high-pressure ports 14a to 14c of the refrigerant compressor 12 again.
  • the line 34 is also flowed through by the main mass flow 56 following the reservoir 30, which then divides again onto the partial mass flows 54a to 54d.
  • each of the refrigerant compressors 12 is configured as a reciprocating compressor and includes a cylinder housing 60 in which, for example, four cylinders 62a to 62d are provided, in which refrigerant can be compressed by oscillatingly moving pistons 64a to d.
  • a refrigerant compressor 12 configured in accordance with the invention, not all the cylinders 62a to 62d now operate as a single compressor stage, but for example the cylinders 62a to 62c are combined to form a main compressor stage 66 in which these three cylinders 62a to 62c operate in parallel, ie all three cylinders 62a to 62c suck in refrigerant via the respective low-pressure port 52 and deliver refrigerant compressed to high-pressure PH to the respective high-pressure port 14.
  • the cylinder 62d which is driven together with the other cylinders of the main compressor stage 66 and in the same way as these by a drive motor 68, is operated as a separate auxiliary compressor stage 70, which is also connected to the high-pressure connection 14 on the output side, but is able to either to suck in refrigerant via an additional connection 72 or via the low-pressure connection 52.
  • a check valve 76 is provided in the connection channel 74 extending between the additional connection 72 and the low-pressure connection 52, which blocks the connection channel 74 when the pressure at the additional connection 72 is higher than at the low-pressure connection 52, so that always when at Additional connection 72 refrigerant is present at a higher pressure than at the low pressure port 52, the connecting channel 74 is blocked and thus the additional compressor stage 70 sucks refrigerant via the additional port 72.
  • a check valve 76 is provided in the connection channel 74 extending between the additional connection 72 and the low-pressure connection 52, which blocks the connection channel 74 when the pressure at the additional connection 72 is higher than at the low-pressure connection 52, so that always when at Additional connection 72 refrigerant is present at a higher pressure than at the low pressure port 52, the connecting channel 74 is blocked and thus the additional compressor stage 70 sucks refrigerant via the additional port 72.
  • it can also be provided a controlled valve.
  • the check valve 76 opens and the additional compressor stage 70 sucks in refrigerant via the low-pressure connection 52 and compresses it to high pressure PH, in the same way as the main compressor stage 66.
  • auxiliary ports 72a to 72c of the refrigerant compressors 12a to 12c are connected to a distribution pipe 82 via shutoff valves 80a to 80c, respectively, which open into the container 28 so as to be able to escape from a vapor space 84 of the container 28 remove vaporized refrigerant.
  • the vaporized refrigerant discharged from the container 28 from the distribution line 82 forms an additional mass flow 86 which can be distributed from the distribution line 82 to the additional compressor stages 70 in order to be compressed by the same to the high pressure PH.
  • the additional mass flow 86 can thus be controlled by opening or closing individual ones of the shut-off valves 80a to 80c.
  • a control designated by 90 is provided, which is able to control the individual shut-off valves 80a to 80c individually.
  • shut-off valves 80a to 80c are closed, then no additional mass flow 86 flows through the distribution line 82 and no additional mass flow 86 is compressed in the additional compressor stages 70 so that only the main mass flow 56 with all cylinders 62 is compressed and expanded overall in the refrigerant circuit 10 ,
  • the additional mass flow 86 flows through the distribution line 82 is supplied to the additional compressor stages 70, which are connected via the open shut-off valves 80a to 80c with the distribution line 82, and thus is compressed by the corresponding additional compressor stages 70 of the respective refrigerant compressor 12, so that in addition to the main mass flow 56 of the additional mass flow 86 flows through both the high pressure line 16 and through the high-pressure side heat exchanger 18 and the other High pressure line 22 is supplied to the container 28, wherein in the container 28 is a separation between the main mass flow 56 and the additional mass flow 86 to the effect that the main mass flow 56 is supplied via the line 34 to the expansion units 40, while the additional mass flow 86 via the distribution line 82 the corresponding Additional compressor stages 70 is supplied and thus does not flow through the expansion units 40.
  • This liquid refrigerant then forms the main mass flow 56, which is distributed via the line 34 to the individual expansion units 40, provided that these are switched on by the controller 90, that is, the shut-off valves 42a to d are open.
  • the refrigerant expanded in the individual expansion units 40a to 40d is then supplied via the low-pressure line 50 to the individual low-pressure connections 52a to 52c of the individual refrigerant compressors 12a to c.
  • the controller 90 does not necessarily operate all the refrigerant compressors 12a to 12c in the full load range, but can operate either individual of the refrigerant compressors 12a to 12c in the full load range or individual or all refrigerant compressors 12a to 12c in the partial load range, ie with reduced rotational speed of the respective drive motor 68. However, it is also possible for the control 90 to switch off individual ones of the refrigerant compressors 12a to 12c completely, for example if only a part of the expansion units 40a to 40d is to be provided with refrigerating capacity at their respective heat exchanger 46.
  • controller 90 closes the shut-off valves 80a to 80c in subcritical operation, so that in all refrigerant compressors 12a to 12c, the additional compressor stages 70 suck refrigerant from the main mass flow 56 via the respective check valve 76 and compress it to high pressure PH.
  • Fig. 3 Such a cycle for subcritical operation is in Fig. 3 represented by the dashed lines, wherein the state in point A represents the incipient compression of refrigerant from the main mass flow 56 through the respective refrigerant compressor 12, which is completed in the state in point B.
  • the refrigerant compressed under high pressure PH is cooled down to a state at point C which is approximately at the saturation curve or boiling line 96 for carbon dioxide as the refrigerant.
  • the cooling capacity 48 can now be made available in the respective low-pressure side heat exchanger 46 by enthalpy increase, until the state in point A is reached, which represents the refrigerant in terms of enthalpy and pressure, which via the low pressure line 50 to the low pressure connections 52 of the refrigerant compressor 12 is supplied.
  • the state in point C is at a compared to a maximum 98 of the boiling line 96 by more than 20% lower value of the enthalpy [h] which is achieved by the evaporation of the additional mass flow forming refrigerant, the state in point C in Fig. 4 either essentially on the boiling line 96 or optionally with additional cooling, for example via a heat exchanger penetrated by the expanded main mass flow, at a slightly lower enthalpy than the enthalpy of the state in point C.
  • the controller 90 must open at least part of the shut-off valves 80a to 80c or all shut-off valves 80a to 80c, thereby causing refrigerant from the additional stream 86 to be sucked in by the additional compressor stages 70 to maintain the intermediate pressure PZ in the container 28 and compressed to high pressure PH becomes.
  • the refrigerant of the main mass flow 56 can be supplied via the line 34 to the individual expansion units 42a to 42c and by isenthalp relaxation in the expansion units 40 by means of the expansion valves 44 in the in Fig. 4 Transfer state with point D, in which under enthalpy increase up to the state in point A in the respective low-pressure side heat exchanger 46, the delivery of cooling capacity 48 is possible, wherein from the comparison with Fig. 3 it can be seen that the provided cooling capacity is greater than in a supercritical cycle corresponding to the states in points A, B ', C', D 'in FIG Fig. 3 ,
  • the advantage of the inventive concept can be seen in the fact that opens up the possibility to optimally choose the high pressure PH according to the course of the isotherms of the refrigerant used without having to take into account the downstream expansions.
  • the intermediate pressure PZ can also be optimized by suitable variation of the additional mass flow, in such a way that the decrease of the enthalpy of the main mass flow is higher than the percentage of the delivery volume of the total delivery volume of the compressor required for the additional mass flow, so that the by compressing the additional mass flow conditional loss of delivery volume is overcompensated by the decrease in the enthalpy of the main mass flow.
  • the cyclic process for maintaining the intermediate pressure PZ by compressing the additional mass flow 86 is in Fig. 4 shown dotted and runs from the state in point Z by enthalpy of the vaporized refrigerant to the state in point A "and from the state in point A" to the state in point B ", which in turn is on the high pressure PH, and the state in point B" to the state in point C 'and from the state in point C' to the state in point Z.
  • the additional compressor stages 70 of the refrigerant compressors 12 are designed in such a way that at maximum cooling capacity to be delivered by all expansion units 40 and maximum temperature of the cooling medium 20 is still an optimized supercritical operation is possible and the resulting additional mass flow 86 can be compressed to maintain a suitable level of the intermediate pressure PZ of the totality of the active auxiliary compressor stages 70 to high pressure PH.
  • the controller 90 can either reduce the rotational speed of the drive motors 68 of one or more of the refrigerant compressors 12 or shut off one of the refrigerant compressors 12, thereby eliminating both the compressor capacity of the main compressor stage of this refrigerant compressor 12 and the compressor capacity the additional compressor stage 70.
  • the controller 90 has the ability to adjust by closing one or two of the shut-off valves 80a to 80c, the compressor power of the additional compressor stages 70 to the lower required additional mass flow 86 and thus maintain an optimized intermediate pressure PZ in the container 28.
  • the additional compressor stages 70 in which the shut-off valves 80 have been closed, then suck in refrigerants of the corresponding low-pressure connection 52 and thus compress refrigerant from the respective main mass flow 56.
  • the inventive concept thus allows an optimal adaptation of the intermediate pressure PZ by adjusting the compressor power required for the compression of the additional mass flow 86 of the additional compressor stages 70a to 70c independently of the compressor capacity of the main compressor stages 66.
  • each main compressor stage 66 and each additional compressor stage 70 can provide the same compressor performance.
  • the refrigerant compressors 12a to 12c are formed such that a second one of the refrigerant compressors 12a to 12c has twice the compressor capacity of the first refrigerant compressor, and a third refrigerant compressor has twice the compressor capacity of the second refrigerant compressor the doubling of compressor performance relates to both the main compressor stages 66 and the auxiliary compressor stages 70.
  • compressor power of the additional compressor stages 70 further variations are conceivable, namely in that when all three refrigerant compressors 12a to 12c are operated, the maximum power of the additional compressor stages 70 for the additional mass flow 86 is available, which is seven times the compressor capacity of the first refrigerant compressor equivalent.
  • the refrigerant compressors 12 ' are designed such that they have two additional compressor stages 70 1 and 70 2 , each having its own additional connections 72 1 and 72 2 .
  • Such a structure of the refrigerant compressor 12 or all the refrigerant compressor 12 provides even greater variability in terms of compressing the compressor power available for compressing the additional mass flow 86, since the individual additional compressor stages 70 1 and 70 2 either individually or jointly either by opening the corresponding shut-off valve 80 with the Distribution line 82 can be connected or can be used to compress refrigerant of the main mass flow 56.
  • the second embodiment of the refrigeration system according to the invention corresponds to the first embodiment, so that the description of the first embodiment of the refrigeration system according to the invention can be fully incorporated by reference.
  • FIG Fig. 6 a third embodiment of the refrigeration system according to the invention, shown in FIG Fig. 6 is based on the first embodiment of the refrigeration system according to the invention, wherein the same parts are provided with the same reference numerals, so that with respect to the description of the same fully incorporated by reference to the comments on the first embodiment.
  • bypass valve 26 and the expansion valve 24 are still a soirzppansionsaku 100 connected in parallel.
  • the additional expansion unit 100 in turn comprises a shut-off valve 102, an expansion valve 104 and a high-pressure side heat exchanger 106, from which cooling power characterized by an arrow 108 can be dissipated.
  • the refrigerant which is expanded in the additional expansion unit 100 does not cause a cooling effect for the main mass flow 56 and has to be removed via the additional mass flow 86 and re-compressed by the additional compressor stages 70.
  • the third embodiment of the refrigeration system according to the invention works similar to the first embodiment, so that also with respect to the function is fully incorporated by reference to the first embodiment.
  • an as in Fig. 7 and 8th illustrated cylinder head 110 is used, which is designed in this case for two cylinders and having an outlet chamber 112, and separated from the outlet chamber 112 by a wall portion 114 a first inlet chamber 116 and a second inlet chamber 118, which in turn are separated by an intermediate wall 120 ,
  • the inlet chamber 116 is assigned to a cylinder 62 of the main compressor stage 66, while the inlet chamber 118 is assigned to the cylinder 62 of the additional compressor stage 70.
  • the inlet chamber 118 is also directly provided with a connection flange 122 for the auxiliary port 72, while the inlet chamber 116, the refrigerant is supplied via the usual, provided in the housing inlet channels.
  • outlet chamber 112 is also provided with a connection flange 124 for the high-pressure connection 14.
  • the wall portion 114 separating the outlet chamber 112 from the inlet chambers 116 and 118 is separated from the inlet chambers 116 and 118 by two over substantial portions Height of the cylinder head 110 formed separately from each other walls 126 and 128, between which a free space 130 is provided, which isolates the walls 126 and 128 relative to each other and thus also the outlet chamber 112 with respect to the inlet chambers 116 and 118 thermally insulated.
  • the two walls 126 and 128 only essentially unite in a wall region 132 which directly adjoins a base surface 134 of the cylinder head 110.
  • the check valve 76 can be arranged in the intermediate wall 120 and thus allows in a simple manner the suction of refrigerant from the inlet chamber 116, when the inlet chamber 118 of the additional compressor stage 70 via the additional port 72, no refrigerant is supplied.
  • FIG Fig. 9 and Fig. 10 the intermediate wall 120 'of the cylinder head 110' is not provided with the check valve 76, but it is a check valve 176 provided on a valve plate 140 which rests on a cylinder housing 142 and in turn carries the cylinder head 110 '.
  • an additional opening 144 is provided in the valve plate 140, which is congruent with a provided in the cylinder housing 142 and branched off from the inlet channel 148 connecting channel 174, and opens into the inlet chamber 118 for the cylinder 62 of the additional compressor stage 70.
  • the opening 144 can be closed by a valve tongue 178 of the check valve 176, which is arranged on a side of the valve plate 140 facing the inlet chamber 118 and is additionally secured by a catcher 180.
  • the inlet chamber 116 of the main compressor stage 66 is supplied with refrigerant supplied to the low-pressure connection 52 via an inlet channel 148, wherein an opening 150 arranged congruently with the inlet channel 148 is provided in the valve plate 140, via which the refrigerant exits from the inlet channel 148 into the inlet chamber 116.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (28)

  1. Appareil frigorifique comprenant un circuit d'agent frigorifique (10) dans lequel est acheminé un flux massique principal (56) d'un agent frigorifique, un échangeur de chaleur (18) refroidissant l'agent frigorifique côté haute pression disposé dans le circuit d'agent frigorifique (10), un dispositif de refroidissement par expansion (24, 28), disposé dans le circuit d'agent frigorifique, qui refroidit, à l'état actif, le flux massique principal (56) de l'agent frigorifique et génère, en même temps, un flux massique supplémentaire (86) d'agent frigorifique gazeux, un réservoir (30), disposé dans le circuit d'agent frigorifique (10) pour l'agent frigorifique liquéfié, au moins un module d'expansion (40), disposé dans le circuit d'agent frigorifique pour l'agent frigorifique liquéfié du flux massique principal (56), qui présente un organe d'expansion (44) et un échangeur de chaleur (46) en aval côté basse pression fournissant une puissance frigorifique, et au moins un compresseur frigorifique (12), disposé dans le circuit d'agent frigorifique (10) et présentant au moins un étage de compression principal (66) et au moins un étage de compression supplémentaire (70) entrainé conjointement à l'étage de compression principal (66), qui compriment tous les deux de l'agent frigorifique à une haute pression (PH), l'étage de compression principal (66) et l'au moins un étage de compression supplémentaire (70) pouvant être utilisés de telle manière que soit l'étage de compression principal (66) comprime de l'agent frigorifique provenant du flux massique principal (56) et l'étage de compression supplémentaire (70) comprime de l'agent frigorifique provenant du flux massique supplémentaire (86) ou bien l'étage de compression principal (66) et l'étage de compression supplémentaire (70) compriment de l'agent frigorifique provenant du flux massique principal (56),
    dans lequel au moins deux compresseurs frigorifiques (12) se trouvent dans le circuit d'agent frigorifique (10), lesquels compresseurs peuvent être mis en circuit de façon individuelle pour comprimer le flux massique principal (56),
    et dans lequel au moins deux des compresseurs frigorifiques (12) présentent respectivement au moins un étage de compression supplémentaire (70),
    caractérisé en ce que chacun des étages de compression supplémentaires (70) peut être utilisé soit pour comprimer de l'agent frigorifique provenant du flux massique principal (56), soit pour comprimer de l'agent frigorifique provenant du flux massique supplémentaire (86) et en ce que l'appareil frigorifique comprend un système de commande (90) qui, dans un premier mode de fonctionnement, en fonction des conditions de fonctionnement, permet la mise en circuit d'un certain nombre d'étages de compression supplémentaires (70) destinés à comprimer de l'agent frigorifique provenant du flux massique supplémentaire (86), de sorte que le dispositif de refroidissement par expansion (24, 28) liquéfie le flux massique principal (56) et réduit son enthalpie.
  2. Appareil frigorifique selon la revendication 1, caractérisé en ce que le dispositif de refroidissement par expansion (24, 28) réduit l'enthalpie du flux massique principal (56) d'au moins 10 %.
  3. Appareil frigorifique selon la revendication 2, caractérisé en ce que le dispositif de refroidissement par expansion (24, 28) réduit l'enthalpie du flux massique principal (56) d'au moins 20 %.
  4. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier mode de fonctionnement correspond à un fonctionnement surcritique.
  5. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de refroidissement par expansion (24, 28) transfère le flux massique principal (56) dans un état thermodynamique dont les valeurs de pression et d'enthalpie sont plus faibles que celles d'un maximum (98) de la courbe de saturation (96).
  6. Appareil frigorifique selon la revendication 5, caractérisé en ce que les valeurs de pression et d'enthalpie du flux massique principal (56), générées par le dispositif de refroidissement par expansion (24, 28) sont proches de la courbe de saturation (96) sur le diagramme d'enthalpie et de pression.
  7. Appareil frigorifique selon la revendication 6, caractérisé en ce que les valeurs de pression et d'enthalpie du flux massique principal (56), générées par le dispositif de refroidissement par expansion (24, 28) se trouvent, pour l'essentiel, sur la courbe de saturation (96) du diagramme d'enthalpie et de pression.
  8. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de refroidissement par expansion (24, 28) présente une soupape d'expansion (24) pour l'expansion de l'agent frigorifique à une pression intermédiaire PZ et en ce que la pression intermédiaire PZ du dispositif de refroidissement par expansion (24, 28) peut être réglée par la mise en circuit du nombre d'étages de compression supplémentaires (70) approprié.
  9. Appareil frigorifique selon la revendication 8, caractérisé en ce que la soupape d'expansion (24) expanse de l'agent frigorifique du flux massique principal (56) et de l'agent frigorifique du flux massique supplémentaire (86) à la pression intermédiaire PZ.
  10. Appareil frigorifique selon la revendication 8 ou la revendication 9, caractérisé en ce que le dispositif de refroidissement par expansion (24, 28) comprend le réservoir (30) pour l'agent frigorifique liquide du flux massique principal (56).
  11. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans un deuxième mode de fonctionnement, le dispositif de refroidissement par expansion (24, 28), est dans l'état inactif et ne provoque aucun refroidissement du flux massique principal (56).
  12. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans un deuxième mode de fonctionnement, tous les étages de compression supplémentaires (70) compriment de l'agent frigorifique du flux massique principal (56).
  13. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans un deuxième mode de fonctionnement, de l'agent frigorifique liquide du flux massique principal (56) est sous haute pression PH dans le réservoir (30).
  14. Appareil frigorifique selon l'une quelconque des revendications 11 à 13, caractérisé en ce que le deuxième mode de fonctionnement correspond à un fonctionnement sous-critique.
  15. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le système de commande (90) commande le compresseur frigorifique (12) conformément à la puissance frigorifique (48) exigée.
  16. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le système de commande (90) permet de mettre individuellement en ou hors circuit les compresseurs frigorifiques (12) conformément à la puissance frigorifique (48) exigée.
  17. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque compresseur frigorifique (12) est dimensionné avec un étage de compression supplémentaire (70) de telle manière que le flux massique d'agent frigorifique du flux massique supplémentaire (86), comprimé par l'étage de compression supplémentaire (70), correspond au maximum au flux massique d'agent frigorifique du flux massique principal (56), comprimé par l'étage de compression principal (66), sur ce compresseur frigorifique (12).
  18. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que les compresseurs frigorifiques (12) avec un étage de compression supplémentaire (70) sont dimensionnés de telle manière que les étages de compression supplémentaires (70) de différents compresseurs frigorifiques (12) compriment différents flux massiques d'agent frigorifique du flux massique supplémentaire (86).
  19. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que les compresseurs frigorifiques (12) avec étage de compression supplémentaire (70) sont des compresseurs à piston.
  20. Appareil frigorifique selon la revendication 19, caractérisé en ce que chacun des compresseurs frigorifiques (12) avec étage de compression supplémentaire (70) présente au moins un cylindre (62) pour l'étage de compression supplémentaire (70) et au moins un cylindre (62) pour l'étage de compression principal (66).
  21. Appareil frigorifique selon la revendication 19 ou la revendication 20, caractérisé en ce que, sur chaque compresseur frigorifique (12) avec étage de compression supplémentaire (70), le nombre de cylindres (62) pour l'étage de compression principal (66) est supérieur au nombre de cylindres (62) pour l'étage de compression supplémentaire (70).
  22. Appareil frigorifique selon le préambule de la revendication 1 ou selon l'une quelconque des revendications 19 à 21, caractérisé en ce que, sur les compresseurs frigorifiques (12) avec étage de compression supplémentaire (70), les étages de compression supplémentaires (70) de différents compresseurs frigorifiques (12) présentent un volume déplacé différent.
  23. Appareil frigorifique selon la revendication 22, caractérisé en ce que, sur chaque compresseur frigorifique (12) avec étage de compression supplémentaire (70), le rapport entre le volume déplacé de l'étage de compression supplémentaire (70) et le volume déplacé de l'étage de compression principal (66) est différent d'au moins un des autres compresseurs frigorifiques (12) avec étage de compression supplémentaire (70).
  24. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans le premier mode de fonctionnement, le réservoir (30) pour agent frigorifique liquéfié travaille à une pression intermédiaire PZ et en ce que entre l'échangeur de chaleur (18) côté haute pression refroidissant l'agent frigorifique et le réservoir (30) pour agent frigorifique liquéfié, est prévu un module d'expansion supplémentaire (100) avec un organe d'expansion (104) et un échangeur de chaleur (106), situé en aval, délivrant une puissance frigorifique (108).
  25. Appareil frigorifique selon l'une quelconque des revendications 19 à 24, caractérisé en ce que les compresseurs frigorifiques (12) présentent des têtes de cylindre (110), sur lesquelles sont formées des chambres d'évacuation (112) et des chambres d'arrivée (116, 118) découplées pour l'essentiel thermiquement.
  26. Appareil frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un clapet de non-retour (76, 176) est prévu pour relier une chambre d'arrivée (118) de l'étage de compression supplémentaire (70) au raccord basse pression (52) de l'étage de compression principal (66).
  27. Appareil frigorifique selon la revendication 26, caractérisé en ce que le clapet de non-retour (176) est prévu dans une plaque porte-soupape (140) du compresseur frigorifique (12) concerné.
  28. Appareil frigorifique selon la revendication 27, caractérisé en ce que le canal de liaison (174) passe entre le raccord basse pression (52) et le clapet de non-retour (176) dans un carter de cylindre (142).
EP06701814.3A 2005-02-17 2006-01-24 Appareil frigorifique Active EP1886075B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005009173A DE102005009173A1 (de) 2005-02-17 2005-02-17 Kälteanlage
PCT/EP2006/000581 WO2006087075A1 (fr) 2005-02-17 2006-01-24 Appareil frigorifique

Publications (2)

Publication Number Publication Date
EP1886075A1 EP1886075A1 (fr) 2008-02-13
EP1886075B1 true EP1886075B1 (fr) 2018-01-10

Family

ID=36168387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06701814.3A Active EP1886075B1 (fr) 2005-02-17 2006-01-24 Appareil frigorifique

Country Status (5)

Country Link
US (1) US7451617B2 (fr)
EP (1) EP1886075B1 (fr)
CN (1) CN100538206C (fr)
DE (1) DE102005009173A1 (fr)
WO (1) WO2006087075A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008039B1 (fr) 2006-03-27 2016-11-02 Carrier Corporation Système réfrigérant avec circuits économiseurs étagés en parallèle à sortie transférée en pression interétage d'un compresseur principal
WO2007111586A1 (fr) * 2006-03-27 2007-10-04 Carrier Corporation système réfrigérant avec circuits Économiseurs étagés parallèles employant une compression multi-étage
CN101460790A (zh) * 2006-06-01 2009-06-17 开利公司 调节受控膨胀阀的系统与方法
JP5028481B2 (ja) * 2006-06-01 2012-09-19 キャリア コーポレイション 冷凍システム用の多段圧縮機ユニット
JP4246257B2 (ja) * 2007-06-22 2009-04-02 パナソニック株式会社 冷凍サイクル装置
US20100313586A1 (en) * 2008-02-15 2010-12-16 Panasonic Corporation Refrigeration cycle apparatus
WO2010036540A1 (fr) * 2008-09-29 2010-04-01 Carrier Corporation Augmentation de la capacité pendant la descente
WO2010085593A2 (fr) 2009-01-23 2010-07-29 Bitzer Kuhlmaschinenbau Gmbh Compresseurs à spirale ayant des indices de volume différents et systèmes et procédés associés
DK2339265T3 (en) * 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
US9068765B2 (en) 2010-01-20 2015-06-30 Carrier Corporation Refrigeration storage in a refrigerant vapor compression system
DE102011053894A1 (de) * 2010-11-23 2012-05-24 Visteon Global Technologies, Inc. Kälteanlage mit Kältemittelverdampferanordnung und Verfahren zur parallelen Luft- und Batteriekontaktkühlung
WO2012095186A1 (fr) * 2011-01-14 2012-07-19 Carrier Corporation Système de réfrigération et procédé de fonctionnement d'un système de réfrigération
EP2795204B1 (fr) * 2011-12-23 2021-03-10 GEA Bock GmbH Compresseur
US9625183B2 (en) 2013-01-25 2017-04-18 Emerson Climate Technologies Retail Solutions, Inc. System and method for control of a transcritical refrigeration system
US10253766B2 (en) 2015-05-13 2019-04-09 Carrier Corporation Economized reciprocating compressor
RU2745598C2 (ru) * 2016-10-07 2021-03-29 Битцер Кюльмашиненбау Гмбх Полугерметичный компрессор холодильного агента
WO2019100122A1 (fr) * 2017-11-27 2019-05-31 Glaciem Cooling Technologies Système de réfrigération
WO2019185121A1 (fr) 2018-03-27 2019-10-03 Bitzer Kühlmaschinenbau Gmbh Système frigorifique
RU2771541C1 (ru) * 2021-03-17 2022-05-05 Битцер Кюльмашиненбау Гмбх Полугерметичный компрессор холодильного агента (варианты)
DE102022102740A1 (de) 2022-02-07 2023-08-10 Audi Aktiengesellschaft Verfahren zum Betreiben eines Kältemittelkreises und Kraftfahrzeug

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH227856A (de) * 1941-11-17 1943-07-15 Sulzer Ag Nach dem Kompressionssystem arbeitende Kälteanlage.
US4197719A (en) * 1976-01-29 1980-04-15 Dunham-Bush, Inc. Tri-level multi-cylinder reciprocating compressor heat pump system
US4254637A (en) * 1979-10-19 1981-03-10 Vilter Manufacturing Corporation Refrigeration system with refrigerant cooling of compressor and its oil
US4748820A (en) * 1984-01-11 1988-06-07 Copeland Corporation Refrigeration system
DE3440253A1 (de) * 1984-11-03 1986-05-15 Bitzer Kühlmaschinenbau GmbH & Co KG, 7032 Sindelfingen Kuehlvorrichtung
DE3925090A1 (de) * 1989-07-28 1991-02-07 Bbc York Kaelte Klima Verfahren zum betrieb einer kaelteanlage
DE4309137A1 (de) * 1993-02-02 1994-08-04 Otfried Dipl Ing Knappe Verfahren für einen Kälteprozeß und Vorrichtung zur Durchführung desselben
US5522233A (en) * 1994-12-21 1996-06-04 Carrier Corporation Makeup oil system for first stage oil separation in booster system
US6105378A (en) * 1995-10-30 2000-08-22 Shaw; David N. Variable capacity vapor compression cooling system
US5768901A (en) * 1996-12-02 1998-06-23 Carrier Corporation Refrigerating system employing a compressor for single or multi-stage operation with capacity control
US6145326A (en) * 1999-04-29 2000-11-14 Systematic Refrigeration, Inc. Forced oil cooling for refrigeration compressor
FR2838180B1 (fr) * 2002-04-03 2006-10-27 Jean Paul Arpin Installations frigorifiques basse temperature de surgelation et de stockage
DE602004026510D1 (de) * 2003-07-18 2010-05-27 Star Refrigeration Verbesserte überkritische Kältekreislaufanlage
US6931871B2 (en) * 2003-08-27 2005-08-23 Shaw Engineering Associates, Llc Boosted air source heat pump
DE102004038640A1 (de) * 2004-08-09 2006-02-23 Linde Kältetechnik GmbH & Co. KG Kältekreislauf und Verfahen zum Betreiben eines Kältekreislaufes

Also Published As

Publication number Publication date
WO2006087075A1 (fr) 2006-08-24
US7451617B2 (en) 2008-11-18
CN101120213A (zh) 2008-02-06
CN100538206C (zh) 2009-09-09
EP1886075A1 (fr) 2008-02-13
US20080011014A1 (en) 2008-01-17
DE102005009173A1 (de) 2006-08-24

Similar Documents

Publication Publication Date Title
EP1886075B1 (fr) Appareil frigorifique
DE102006050232B9 (de) Kälteanlage
DE102005007321B4 (de) Ejektorpumpenkreis mit mehreren Verdampfapparaten
EP0701096B1 (fr) Procédé de fonctionnement d'une installation productrice de froid pour la climatisation de véhicules et installation productrice de froid pour sa mise en oeuvre
EP1789732B1 (fr) Circuit frigorifique et procede de fonctionnement d'un circuit frigorifique
DE10357801A1 (de) Kühlkreislauf mit Dampfkompression
EP0848981B1 (fr) Installation et procédé d'adsorption à variation de pression pour l'extraction de l'oxygène de l'air
DE10356447A1 (de) Kältekreislaufvorrichtung
EP1710435A1 (fr) Compresseur de réfrigérant
DE10347748A1 (de) Mehrfachzonen-Temperatursteuersystem
DE19832479A1 (de) Mit CO¶2¶ betreibbare Klimaanlage
DE10333535A1 (de) Ejektorkreislauf mit einem Kompressor
DE102004019364A1 (de) Dampfkompressions-Kühlkreis mit Ejektorpumpe
DE69929643T2 (de) Durchflusskontrollventil für einen verstellbaren Kältemittelkompressor
WO2022101139A2 (fr) Installation de thermorégulation et procédé pour faire fonctionner une installation de thermorégulation
DE102004029510A1 (de) Ejektor-Kreislauf
EP0180904B1 (fr) Dispositif de refroidissement
EP3574269B1 (fr) Unité d'expansion a intégrer dans un circuit de réfrigération
DE102018112333A1 (de) Kältemittelkreislauf mit einer Expansions-Kompressions-Vorrichtung sowie Verfahren zum Betreiben des Kältemittelkreislaufs
DE102011012644A1 (de) Kälteanlage
DE202007017723U1 (de) Anlage für die Kälte-, Heiz- oder Klimatechnik, insbesondere Kälteanlage
DE4338939C1 (de) Verfahren und Vorrichtung zum Kühlen eines Kältemittelverdichters
EP2602571B1 (fr) Dispositif de pompe à chaleur réversible et son procédé de fonctionnement
DE102021003045A1 (de) Kühlvorrichtung zum Kühlen von Ladeluft für eine Verbrennungsmaschine
EP3830500A2 (fr) Circuit frigorifique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070815

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170612

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BITZER KUEHLMASCHINENBAU GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20171103

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962830

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015778

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015778

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 962830

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230120

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 19

Ref country code: GB

Payment date: 20240123

Year of fee payment: 19