EP3523537B1 - Compresseur frigorifique semi-hermétique - Google Patents

Compresseur frigorifique semi-hermétique Download PDF

Info

Publication number
EP3523537B1
EP3523537B1 EP16778057.6A EP16778057A EP3523537B1 EP 3523537 B1 EP3523537 B1 EP 3523537B1 EP 16778057 A EP16778057 A EP 16778057A EP 3523537 B1 EP3523537 B1 EP 3523537B1
Authority
EP
European Patent Office
Prior art keywords
compressor
control unit
refrigerant
electric motor
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16778057.6A
Other languages
German (de)
English (en)
Other versions
EP3523537A1 (fr
Inventor
Rainer GROSSE-KRACHT
Hermann Renz
Eduardo Martin
Jens MANNEWITZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority to EP23195632.7A priority Critical patent/EP4276311A3/fr
Publication of EP3523537A1 publication Critical patent/EP3523537A1/fr
Application granted granted Critical
Publication of EP3523537B1 publication Critical patent/EP3523537B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/04Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B27/053Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with an actuating element at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/01Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/007Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0076Piston machines or pumps characterised by having positively-driven valving the members being actuated by electro-magnetic means

Definitions

  • the invention relates to a refrigerant compressor, comprising a reciprocating piston compressor and an electric motor, an overall housing, a suction-side refrigerant path leading from a suction connection on the overall housing to an inlet chamber of the reciprocating piston compressor and a pressure-side refrigerant path leading from an outlet chamber of the reciprocating piston compressor to a pressure connection on the overall housing, wherein the electric motor is designed as a synchronous motor, in the rotor of which permanent magnets for the synchronous operation of the electric motor and a squirrel cage for starting the electric motor in asynchronous operation are arranged, wherein the permanent magnets extend parallel to a rotor axis of the rotor, wherein the permanent magnets are designed as plate bodies, the flat sides of which extend in a longitudinal direction and a transverse direction running transversely to the longitudinal direction, wherein the permanent magnets designed as plate bodies have a different magnetic polarity on their opposite flat sides, one of which faces the rotor axis and the other faces away from the rotor
  • Refrigerant compressors with the above mentioned features are from the US6,547,538 B1 known.
  • the US6,547,538 B1 discloses a hermetic single-cylinder compressor with a synchronous motor according to the above-mentioned features.
  • the US 2,007,388 A discloses a refrigerant compressor with an "unloader device" which is controlled to operate the refrigerant compressor in predetermined load conditions.
  • the EN 10 2008 045 103 A1 discloses a semi-hermetic reciprocating piston compressor with an electric motor arranged within an outer housing which drives a cylinder unit arranged in the outer housing.
  • the refrigerant compressor is a semi-hermetic refrigerant compressor which has the overall housing as an outer housing, that the overall housing has a motor housing section for the electric motor, which represents an outer housing of the electric motor, and a compressor housing section for the reciprocating compressor, which represents an outer housing of the reciprocating compressor, wherein in the compressor housing section representing the outer housing and forming at least one cylinder housing, at least one cylinder of the reciprocating compressor is provided, which has a piston movable in a cylinder bore formed in the compressor housing section, a valve plate closing off the cylinder bore and a cylinder head extending over the valve plate and forming part of the compressor housing section, that a cylinder head has an inlet chamber and an outlet chamber for a cylinder bank comprising at least two cylinders, and that the permanent magnets are designed such that in a direction of rotation around the rotor axis, successive permanent magnets each have an alternating polarity on their
  • the advantage of the solution according to the invention is that such an electric motor for driving a semi-hermetic refrigerant compressor has a higher energy efficiency, especially at full load and also at partial load. Furthermore, the advantage of such an electric motor This can be seen in the fact that the delivery volume remains constant even in the high load range due to the synchronous operation.
  • the semi-hermetic refrigerant compressor has the entire housing as the outer housing, with the electric motor in particular being arranged in the refrigerant atmosphere.
  • the semi-hermetic refrigerant compressor is not provided with an outer encapsulation that completely encloses the reciprocating piston compressor and the electric motor together, but the compressor housing that forms the at least one cylinder housing itself represents the outer housing.
  • the solution according to the invention provides that the permanent magnets extend parallel to a rotor axis of the rotor.
  • the invention provides that the permanent magnets are designed as plate bodies whose flat sides extend in a longitudinal direction and a transverse direction running transversely to the longitudinal direction.
  • the solution according to the invention provides that the permanent magnets designed as plate bodies have a different magnetic polarity on their opposite flat sides, one of which faces the rotor axis and the other faces away from the rotor axis, so that planar magnetic poles are easily available in the rotor for synchronous operation of the electric motor.
  • the permanent magnets are expediently arranged in the rotor in such a way that their longitudinal direction extends parallel to the rotor axis.
  • the permanent magnets are preferably arranged in the rotor such that their transverse directions extend along outer edges of a geometric polygon symmetrical to the rotor axis.
  • the electric motor can be cooled in a variety of ways.
  • suction-side refrigerant path passes through the motor housing to cool the electric motor.
  • a further solution according to the invention provides that the refrigerant compressor is provided with an externally controllable or controlled mechanical power control unit.
  • Such an externally controlled power control unit makes it possible to control the compressor capacity of the semi-hermetic refrigerant compressor by means of the mechanical power control unit without a frequency converter for the electric motor, which is cost-effective and efficient, and in addition, it opens up the possibility of reducing the mechanical loads on the reciprocating compressor.
  • the mechanical power control unit connects the outlet-side refrigerant path with the inlet-side refrigerant path in order to reduce the power in at least one cylinder.
  • This solution has the advantage that the mechanical load on the components of the reciprocating compressor is low when the power is reduced, since the refrigerant flows back from the outlet side to the inlet side at a pressure level that is close to the inlet side and no large pressure fluctuations or even pressure peaks and temperature peaks occur in the reciprocating compressor, which in particular also reduce the efficiency when the power is reduced.
  • the mechanical power control unit is at least partially integrated into at least one cylinder head.
  • the mechanical power control unit for power reduction connects an outlet chamber in the cylinder head with an inlet chamber in the cylinder head by means of a connecting channel.
  • the connecting channel is integrated into the cylinder head, so that the space required for the interaction of the power control unit with the inlet chamber and the outlet chamber can also be optimized.
  • the outlet chamber in the cylinder head is arranged directly adjacent to at least one outlet opening for the respective cylinder in the valve plate and thus in particular the outlet chamber is also directly adjacent to the valve plate and the outlet opening, in particular with the outlet valve.
  • the inlet chamber in the cylinder head is arranged directly adjacent to an inlet opening for the respective cylinder in the valve plate, so that the inlet chamber also directly adjoins the valve plate and the inlet opening.
  • a particularly advantageous solution provides that the mechanical power control unit has a closing piston for closing the connecting channel.
  • Such a closure piston makes it possible to open or close the connecting channel, in particular with the shortest possible reaction time.
  • the closure piston is preferably sealed with a piston ring and guided in a guide bore, in particular in the cylinder head.
  • the closure piston for closing the connecting channel can be placed on a sealing seat which extends around the connecting channel, so that when the closure piston is placed on the sealing seat, the connecting channel is interrupted, while when the closure piston is lifted off the compression seat, the connecting channel is opened again.
  • a sealing area of the closure piston that can be placed on the sealing seat is made of a metal that has a lower hardness than a metal from which the sealing seat is made, or vice versa.
  • the seal seat can be arranged in a variety of ways.
  • a particularly advantageous and compact solution provides that the sealing seat is arranged in a wall section of the cylinder head that separates the inlet chamber from the outlet chamber.
  • the sealing seat can either be formed as part of the wall section or the sealing seat is formed by a component inserted into the wall section of the cylinder head.
  • the sealing seat is arranged in such a way that it is arranged in a wall section running above the valve plate and above the inlet chamber and thus in particular the sealing seat simultaneously represents an inlet opening for the inlet chamber opposite the valve plate.
  • the sealing seat simultaneously represents an opening for the outlet chamber, so that a direct transition from the outlet chamber to the inlet chamber is realized through the sealing seat.
  • the sealing seat is arranged on a side of the inlet chamber opposite the valve plate.
  • a rapid change of the closure piston between the closed position and the open position is preferably possible if, starting from the sealing seat, the stroke of the closure piston is in the range of one quarter to one half of the average diameter of the connecting channel.
  • One solution provides that the mechanical power control unit is assigned to one cylinder and that, if there are several cylinders, several mechanical power control units are provided, although it is not necessarily necessary to assign a mechanical power control unit to each cylinder.
  • a favorable solution provides for a cylinder head to have an inlet chamber and an outlet chamber for a cylinder bank comprising at least two cylinders.
  • such a solution provides that the respective mechanical power control unit is assigned to a cylinder bank, in particular with at least two cylinders.
  • N cylinder banks In a refrigerant compressor with several cylinder banks, for example N cylinder banks, it is preferably provided that at least N-1 cylinder banks are assigned a mechanical power control unit.
  • each cylinder bank is assigned a mechanical power control unit.
  • a check valve is provided in the compressor housing section following the refrigerant paths that can be influenced by the mechanical power control unit.
  • the check valve has an outlet opening provided in the valve plate and a valve element interacting with the valve plate, so that the valve plate can also be used for the arrangement and formation of the check valve.
  • valve element is held on the valve plate, so that the valve plate is used not only to form the inlet and outlet valves, but also to hold the valve element of the check valve.
  • closure piston is acted upon by a compression spring in the direction of its position interacting with the sealing seat, so that the compression spring ensures that the closure piston closes the connecting channel due to the effect of the compression spring, for example when the refrigerant compressor is not working.
  • the closure piston can be actuated by a pressure chamber which, depending on the external control of the power control unit, can be acted upon either by suction pressure or by high pressure, wherein when the pressure chamber is acted upon by suction pressure, the closure piston changes to its open position and when the pressure chamber is acted upon by high pressure, the closure piston is acted upon in the direction of its closed position in addition to the effect of the compression spring.
  • a volume of the pressure chamber is so small that in the open position of the closure piston it is smaller than a third, preferably smaller than a quarter, even better smaller than a fifth, more advantageously smaller than a sixth and particularly advantageously smaller than a seventh and even more advantageously smaller than an eighth of the maximum volume of the pressure chamber in the closed position of the closure piston.
  • This dimensioning of the pressure chamber allows for quick switching between the closed position and the open position, since the pressure only needs to be changed in a small volume between suction pressure and high pressure.
  • a control unit included in the power control unit is preferably provided, with which the pressurization of the closure piston can be controlled.
  • a power control is preferably provided which controls the at least one power control unit according to a required compressor delivery rate.
  • the power control is particularly connected to a higher-level system control and receives information from the system control about the required compressor output.
  • the power control Based on this information about the required compressor delivery capacity, the power control then controls the at least one or more power control units in such a way that the refrigerant compressor delivers the required compressor delivery capacity, but does not deliver an unnecessarily high compressor delivery capacity.
  • the refrigerant compressor is designed in such a way that its maximum compressor delivery capacity is sufficient for the maximum compressor delivery capacity required by the system control system, and lower compressor delivery capacities are achieved by reducing the power by means of at least one power control unit.
  • a start-up control unit is preferably provided for the refrigerant compressor, in particular the refrigerant compressor is provided with a start-up control unit which controls a start-up of the electric motor, which in the solution according to the invention starts as an asynchronous motor until it has reached the synchronous speed and then continues to run as a synchronous motor.
  • the start-up control unit can control the operation of the refrigerant compressor in different ways in order to start the electric motor in a suitable manner.
  • the start-up control unit operates in such a way that it operates the electric motor for starting with a winding circuit that reduces the starting current.
  • start-up control unit first supplies current to a first partial winding and then to a second partial winding in a stator of the electric motor in order to start the electric motor.
  • Starting the electric motor with a first partial winding has the advantage that it makes it possible to reduce the starting current and thus, for example, to avoid a heavy load on the electrical supply network due to an excessively high starting current.
  • the start-up control unit is designed in such a way that it controls the power control when the electric motor starts up in such a way that the reciprocating piston compressor only operates with a reduced compressor delivery capacity when the electric motor starts up.
  • start-up control controls the power control in such a way that the reciprocating piston compressor operates with the smallest possible compressor output when the electric motor starts up.
  • the smallest possible compressor output can be a compressor output at which one or more cylinders are still operating.
  • a particularly advantageous embodiment provides that the reciprocating compressor is power-controllable in such a way that at the smallest possible compressor output, none of the cylinders compresses any more refrigerant, so that the torque required for starting the reciprocating compressor is minimal.
  • an advantageous solution provides that the start-up control controls the power control in such a way that after the synchronous operation of the electric motor is achieved, the compressor delivery rate is increased step by step, for example by connecting another cylinder or another cylinder bank or, if necessary, successively connecting other cylinders or other cylinder banks.
  • the reciprocating piston compressor according to the invention can work with all refrigerants commonly used for semi-hermetic refrigerant compressors.
  • the solution according to the invention creates particular advantages for the operation of the reciprocating piston compressor, in particular for the damage-free operation of the reciprocating piston compressor when the reciprocating piston compressor operates with a suction pressure in the range of 10 bar to 50 bar.
  • the solution according to the invention is also particularly advantageous with regard to the mechanical load on the reciprocating piston compressor when the reciprocating piston compressor operates at a high pressure in the range of 40 bar to 160 bar.
  • the refrigerant compressor according to the invention can be used particularly advantageously when the reciprocating piston compressor operates with carbon dioxide as a refrigerant and is designed in particular for operation with carbon dioxide as a refrigerant.
  • An embodiment of a semi-hermetic refrigerant compressor according to the invention shown in Fig. 1 to 5 , comprises an overall housing 10 in which a reciprocating piston compressor 12 and an electric motor 14 are arranged.
  • the overall housing 10 comprises a compressor housing section 22, which represents an outer housing of the reciprocating compressor 12, and a motor housing section 24, which represents an outer housing of the electric motor 14.
  • the overall housing 10 is preferably formed by a one-piece housing body 26 which extends in a direction parallel to a central axis 28 explained in more detail below and is closed at the end on the side of the compressor housing section 22 by means of a bearing cover 32 and is closed at the end in the region of the motor section 24 with an end cover 34.
  • a compressor shaft In the compressor housing section 22, a compressor shaft, designated as a whole by 42, extends coaxially to the central axis 28 between a first shaft bearing 44 arranged on the bearing cover 32 to a second shaft bearing 46 arranged between the reciprocating compressor 12 and the electric motor 14, wherein the second shaft bearing 46 is held on a central wall 48 formed in the housing body 26, which has a delimited by the drive chamber 52 located between the bearing cover 32 and the center wall 48, through which the compressor shaft 42 extends and in which eccentrics 54 and 56 of the compressor shaft 42 are arranged, with two connecting rods 62 1 and 62 2 , or 64 1 and 64 2 , being arranged on each of the eccentrics 54 and 56, with the connecting rods 62 1 and 64 1 driving the pistons 66 1 and 68 1 and the connecting rods 62 2 and 64z driving the pistons 66 2 and 68 2 .
  • the pistons 66 and 68 are guided in cylinder bores 72 and 74, which are formed by cylinder housings 76, 78 molded into the compressor housing section 22, in particular molded in one piece.
  • the two first cylinders 82 1 and 84 1 molded into the compressor housing section 22 form a first cylinder bank 86 1
  • the two cylinders 82 2 and 84 2 molded into the compressor housing section 22 form a second cylinder bank 86 2 .
  • each of the cylinder banks 86 1 and 86 2 the respective cylinder bores 72 1 and 74 1 or 72 2 and 74 2 are closed by a common valve plate 88 1 or 88 2 , which rests tightly on the respective cylinder housings 76 1 and 78 1 or 76 2 and 78 2 and thus delimits the compression chamber enclosed by the respective valve plate 88 1 or 88 2 and the respective pistons 66 1 and 68 1 or 66 2 and 68 2 as well as the cylinder bores 72 1 and 74 1 or 72 2 and 74 2 .
  • valve plates 88 1 and 88 2 are in turn covered by cylinder heads 92 1 and 92 2 respectively.
  • an inlet chamber 94 and an outlet chamber 96 are arranged, which are assigned to the two cylinders 82 and 84 of the respective cylinder bank 86.
  • the intake chamber 94 is located above intake ports 102 and 104 of the cylinder 82 and intake ports 106 and 108 of the cylinder 84.
  • outlet chamber 96 is located above outlet openings 112 and 114 of the cylinder 82 arranged in the valve plate 88 as well as outlet openings 116 and 118 of the cylinder 84, which are provided with outlet valves 113, 115, 117, 119 sitting on the valve plate 88, and in particular directly adjoins these.
  • each cylinder head 92 comprises an outer body 122 which engages over the respective valve plate 88 and encloses the inlet chamber 94 and the outlet chamber 96, which in turn are separated from one another by a separating body 124 running within the outer body 122, wherein the separating body 124 rises from the respective valve plate 88 and extends over and across the inlet chamber 94.
  • the outlet chamber 96 is located in the region of the valve plate 88 laterally next to the inlet chamber 94 and extends between the outer body 122 and the separating body 124 at least partially above the inlet chamber 94.
  • each cylinder head 92 is assigned a mechanical power control unit 142 which is actively controlled by a power control 138 and with which a connecting channel 144 between the outlet chamber 96 and the inlet chamber 94 can be closed or opened.
  • a connecting channel 144 between the outlet chamber 96 and the inlet chamber 94 can be closed or opened.
  • the connecting channel 144 runs through an insert part 146 inserted into the separating body 124, which forms a sealing seat 148 which faces the outlet chamber 96 and which adjoins a part of the outlet chamber 96 which surrounds the sealing seat 148 and adjoins it.
  • the sealing seat 148 faces a closure piston 152, which can be placed on the sealing seat 148, for example with a metallic sealing region 154, in order to tightly close the connecting channel 144 and which can be lifted off the sealing seat 148 to such an extent that the sealing region 154 is at a distance from the sealing seat 148 and thus coolant can flow from the outlet chamber 96 into the inlet chamber 94.
  • the closure piston 152 is guided coaxially to the insert part 146 with the sealing seat 148 and sealed by means of a piston ring 153 in a guide bore 156 which is formed by a guide sleeve body 158 of the cylinder head 92 which is integrally formed on the outer body 122.
  • the closure piston 152 itself or at least the sealing region 154 is made of a metal, for example a non-ferrous metal, which has a lower hardness than the metal of the sealing seat 148, which is made of steel, in particular hardened steel, for example.
  • a stroke of the closure piston 152 between a closed position and an open position is in the range between a quarter and a half of an average diameter of the connecting channel 144.
  • the closure piston 152 delimits a pressure chamber 162 which is arranged on a side of the closure piston 152 facing away from the sealing region 154 and is closed on a side opposite the closure piston 152 by a closing body 164.
  • the volume of the pressure chamber 162 is in particular so small that in the open position of the closure piston it is smaller than a third, preferably smaller than a quarter, even better smaller than a fifth, advantageously smaller than a sixth and even more advantageously smaller than an eighth of the maximum volume of the pressure chamber 162 in the closed position of the closure piston 152.
  • a compression spring 166 is arranged in the pressure chamber 162, which on the one hand is supported on the closing body 164 and on the other hand acts on the closing piston 152 in the direction of its closing position sitting on the sealing seat 148.
  • the closure piston 152 is in its Fig.8 shown open position or in its Fig.7 shown locking position movable.
  • the closure piston 152 is penetrated by a throttle channel 172 which extends from the pressure chamber 162 through the closure piston 152 to a mouth opening which is arranged radially outside the sealing area 154 on a side facing the sealing seat 148, but by virtue of the fact that this is arranged radially outside the sealing element 154 is located, in the closed position of the closure piston 152 allows entry of refrigerant under pressure in the outlet chamber 96 and flowing around the seal seat and supplies this throttled to the pressure chamber 162.
  • a relief channel 176 leads into the pressure chamber 162, for example through the closing body 164, which can be connected by a solenoid valve designated as a whole by 182 to a pressure relief channel 184 which is connected to the inlet chamber 94.
  • the solenoid valve 182 is designed such that it has a valve body 186 with which the connection between the pressure relief channel 184 and the relief channel 176 can be interrupted or established.
  • the suction pressure predominates in the pressure chamber 162, while the closure piston 152 is acted upon by the pressure in the outlet chamber 96 on its side facing the outlet chamber 96 and is thus moved into its open position.
  • the compression spring 166 presses the closure piston 152 onto the sealing seat 148 and, in addition, high pressure flows through the throttle channel 172 into the pressure chamber 162, so that high pressure builds up in the pressure chamber 162, which, in addition to the effect of the compression spring 166, presses the closure piston 152 with the sealing element 154 onto the sealing seat 148.
  • the closure piston 152 is designed such that it extends radially beyond the sealing seat 148, so that even when the closure piston 152 is in the closed position, the piston surface lying radially outside the sealing seat 148 and subjected to high pressure This causes the closure piston 152 to move against the force of the compression spring 166 into the open position, shown in Fig.5 is moved, provided that the valve body 186 of the solenoid valve 182 establishes the connection between the relief channel 176 and the pressure relief channel 184, which leads to a suction pressure being established in the pressure chamber 162.
  • the supply of refrigerant under suction pressure takes place via a supply channel 202 formed in the compressor housing section 22, which leads to an inlet opening 204 leading to the valve plate 88, through which refrigerant under suction pressure flows to a passage opening 206 in the valve plate 88 and passes through this into the inlet chamber 94.
  • outlet chamber 96 to an outlet opening 212 arranged in the valve plate 88 through which the refrigerant under pressure in the outlet chamber 96 passes into an outlet channel 214 provided in the compressor housing section 22 and can flow to an outlet connection element 216.
  • the outlet opening 212 of the valve plate 88 is assigned a check valve 222 which is held on the valve plate 88 and a valve element 224 is arranged on a side of the valve plate 88 facing the outlet channel 214 and ensures that in the case of the open position of the closure piston 152 and thus in the case of an overflow of the coolant from the outlet chamber 96 into the inlet chamber 94, the pressure in the outlet channel 214 does not drop but is maintained by the closing check valve 222.
  • the check valve 222 together with a catch element 226 associated therewith is held on the valve plate 88 by means of a holding element 228 and seals against the valve plate 88.
  • the refrigerant compressor according to the invention is designed as a semi-hermetic compressor, so that refrigerant under suction pressure is supplied to a motor compartment 234 by means of an inlet connection element 232 arranged on the end cover 34 and flows through the electric motor 14 in the direction of the center wall 48 and passes from the motor compartment 234 into the supply channel 202, so that the electric motor 14 in the motor compartment 234 is cooled by the supplied suction-side refrigerant.
  • the electric motor 14 in turn comprises a stator 252 which is fixedly held in the motor housing section 24 and has a stator winding 254 which, for example, has two partial windings 256 and 258 which serve to magnetize a stator laminated core 262.
  • the stator 252 encloses a rotor designated as a whole by 272, in whose rotor lamination package 274, as in Fig.9 shown, on the one hand a short-circuit cage 276 is arranged, which comprises short-circuit bars 278 which run parallel to a rotor axis 282 and which are electrically conductively connected to one another at the ends in the circumferential direction.
  • plate-shaped permanent magnets 292 are inserted into the laminated core 274, the flat sides 294 of which extend on the one hand in a longitudinal direction 296 parallel to the rotor axis 282 and extend in a transverse direction 298 transverse to the rotor axis 282 in such a way that the transverse directions 298 form a geometric polygon running around the rotor axis 282 as an axis of symmetry.
  • the permanent magnets 292 are further designed such that in a direction of rotation 302 around the rotor axis 282, successive permanent magnets 292 each have an alternating polarity on their sides facing the rotor axis 282, so that overall the rotor 272 has alternating magnetic poles in the direction of rotation by means of the permanent magnets 292.
  • An electric motor 14 provided with such a rotor 272 operates as a synchronous motor in normal operation due to the permanent magnets 292 provided in the rotor 272, wherein such a synchronous motor has advantageous energy efficiency and higher refrigerant delivery capacity due to the permanent magnets 292.
  • the rotating field generated by the stator 252 rotates at a defined frequency due to the supply of the stator winding 254, which is caused, for example, by the fact that the stator winding 254 is supplied by an alternating current network.
  • the rotor 272 is provided with the squirrel cage 276, which makes it possible for the electric motor 14 to initially start as an asynchronous motor until it has reached the speed corresponding to the rotating field of the stator winding and then rotates as a synchronous motor due to the magnetic poles caused by the permanent magnets 292.
  • a refrigerant compressor with such an electric motor can be operated using a standard AC power supply, since it starts like an asynchronous motor.
  • a start-up control 312 assigned to the refrigerant compressor - as in Fig.10 shown - initially only to energize one of the partial windings 256 or 258 in order to reduce the starting current and then, after a short start-up phase of the electric motor 14 as an asynchronous motor, to switch on the other of the partial windings 258, 256.
  • the start-up control 312 intervenes in the power control 138 provided for the active control of the power control units 142 and causes at least one cylinder bank 86, preferably both cylinder banks 86 1 and 86 2 , to be deactivated, so that when at least one cylinder bank 86 is deactivated, the torque required by the reciprocating compressor 12 is reduced, and when both cylinder banks 86 1 and 86 2 are deactivated, the torque required by the reciprocating compressor 12 is low, since no compression of refrigerant takes place, so that on the one hand the starting current of the electric motor 14 is kept low and on the other hand it then very quickly changes from its operation as an asynchronous motor to operation as a synchronous motor in which the full torque is available, so that either simultaneously or successively the cylinder banks 86 1 and 86 2 are activated. can be ( Fig.10 ).
  • the catch element 226' of the check valve 222' is formed in the compressor housing section 22, for example by a recess to the side of the outlet channel 214, which limits the possible path of the valve element 224' between its closed position resting on the valve plate 88 and the maximum open position.
  • Such a catch element 226' can generally be provided in all compressor housing sections 22 of all refrigerant compressors of the same assembly, regardless of whether they are provided with a check valve 222' or not, so that a simple retrofitting of the refrigerant compressors with a check valve 222' and in particular also with at least one mechanical power control unit 142 according to the invention together with such a check valve 222' is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Claims (16)

  1. Compresseur de fluide frigorigène semi-hermétique, comprenant un compresseur à piston de course (12) et un moteur électrique (14), un carter général (10), un chemin de fluide frigorigène côté aspiration menant depuis un raccordement d'aspiration (232) au niveau du carter général (10) vers une chambre d'admission (94) du compresseur à piston de course (12) et un chemin de fluide frigorigène côté refoulement menant depuis une chambre d'échappement (96) du compresseur à piston de course (12) vers un raccordement d'aspiration (216) au niveau du carter général (10), dans lequel le moteur électrique (14) est conçu en tant que moteur synchrone dans le rotor (272) duquel sont agencés des aimants permanents (292) pour le fonctionnement synchrone du moteur électrique (14) et une cage de court-circuit (276) pour le démarrage du moteur électrique (14) en fonctionnement synchrone, dans lequel les aimants permanents (292) s'étendent parallèlement à un axe de rotor (282) du rotor (272), dans lequel les aimants permanents (292) sont conçus en tant que corps en forme de plaque, dont les côtés plats (294) s'étendent dans une direction longitudinale (296) et une direction transversale (298) se déroulant transversalement à la direction longitudinale, dans lequel les aimants permanents (292) conçus en tant que corps en forme de plaque présentent une polarité (N, S) magnétique différente sur leurs côtés plats (294) opposés l'un à l'autre dont l'un est tourné vers l'axe de rotor (282) et l'autre est détourné de l'axe de rotor (282), caractérisé en ce que le compresseur de fluide frigorigène est un compresseur de fluide frigorigène semi-hermétique qui présente le carter général (10) en tant que carter extérieur, en ce que le carter général (10) présente une section de carter de moteur (24) pour le moteur électrique (14), laquelle constitue un carter extérieur du moteur électrique (14), et une section de carter de compresseur (22) pour le compresseur à piston de course (12), laquelle constitue un carter extérieur du compresseur à piston de course (12), dans lequel dans la section de carter de compresseur (22) constituant le carter extérieur et formant au moins un carter de cylindre (76, 78) est prévu au moins un cylindre (82, 84) du compresseur à piston de course (12), qui présente un piston (66, 68) mobile dans un alésage de cylindre (72, 74) conçu dans la section de carter de compresseur (22), une plaque porte-soupape (88) fermant l'alésage de cylindre (72, 74) et une tête de cylindre (92) débordant sur la plaque porte-soupape (88) et formant une partie de la section de carter de compresseur (22), en ce qu'une tête de cylindre (92) présente une chambre d'admission (94) et une chambre d'échappement (96) pour une rangée de cylindres (86) comprenant au moins deux cylindres (82, 84), et en ce que des aimants permanents (292) sont conçus de sorte que des aimants permanents (292) se succédant dans une direction périphérique (302) autour de l'axe de rotor (282) présentent respectivement une polarité alternée sur leurs côtés tournés vers l'axe de rotor (282), de sorte qu'au total le rotor (272) présente des pôles magnétiques alternant dans la direction périphérique au moyen des aimants permanents (292).
  2. Compresseur de fluide frigorigène selon la revendication 1, caractérisé en ce que les aimants permanents (292) s'étendent parallèlement à l'axe de rotor (282) respectivement avec leur direction longitudinale (296) et en ce qu'en particulier les aimants permanents (292) s'étendent avec leurs directions transversales (298) le long de bords extérieurs d'un polygone géométrique et symétrique par rapport à l'axe de rotor (282).
  3. Compresseur de fluide frigorigène selon l'une des revendications précédentes, caractérisé en ce que le chemin de fluide frigorigène côté aspiration traverse la section de carter de moteur (24) pour le refroidissement du moteur électrique (14).
  4. Compresseur de fluide frigorigène selon l'une des revendications précédentes, caractérisé en ce que le compresseur de fluide frigorigène est pourvu d'une unité de commande de puissance (142) mécanique et commandée depuis l'extérieur.
  5. Compresseur de fluide frigorigène selon l'une des revendications précédentes, caractérisé en ce que l'unité de commande de puissance (142) mécanique relie le chemin de fluide frigorigène côté admission avec le chemin de fluide frigorigène côté échappement pour une réduction de puissance dans le cas d'au moins un cylindre (82, 84) .
  6. Compresseur de fluide frigorigène selon la revendication 4 ou 5, caractérisé en ce que l'unité de commande de puissance (142) mécanique est agencée contre la au moins une tête de cylindre (92) et en ce qu'en particulier l'unité de commande de puissance (142) mécanique est intégrée au moins partiellement dans la au moins une tête de cylindre (92).
  7. Compresseur de fluide frigorigène selon l'une des revendications 4 à 6, caractérisé en ce que l'unité de commande de puissance (142) mécanique relie une chambre d'échappement (96) dans la tête de cylindre (92) avec une chambre d'admission (94) dans la tête de cylindre (92) pour la réduction de puissance au moyen d'un canal de liaison (144), en ce qu'en particulier le canal de liaison (144) est agencé de façon intégrée dans la tête de cylindre (92), en ce qu'en particulier la chambre d'échappement (96) dans la tête de cylindre (92) est agencée de façon immédiatement adjacente contre au moins une ouverture d'échappement (112, 114, 116, 118) pour le cylindre (82, 84) respectif dans la plaque porte-soupape (88) et en ce qu'en particulier la chambre d'admission (94) dans la tête de cylindre est agencée de façon immédiatement adjacente contre une ouverture d'admission (102, 104, 106, 108) pour le cylindre (82, 84) respectif de la plaque porte-soupape (88).
  8. Compresseur de fluide frigorigène selon l'une des revendications 4 à 7, caractérisé en ce que l'unité de commande de puissance (142) mécanique présente un piston de fermeture (152) pour la fermeture du canal de liaison (144), en ce qu'en particulier le piston de fermeture (152) pour la fermeture du canal de liaison (144) peut être posé sur un siège de joint d'étanchéité (148) qui se déroule en entourant le canal de liaison (144), en ce qu'en particulier une zone de joint d'étanchéité (154) du piston de fermeture (152) est fabriquée dans un métal qui présente une dureté inférieure à celle d'un métal dans lequel est fabriqué le siège de joint d'étanchéité (148), et/ou en ce qu'en particulier le siège de joint d'étanchéité (148) est agencé dans une section de paroi (124) de la tête de cylindre (92) qui sépare la chambre d'admission (94) de la chambre d'échappement (96), et/ou en ce qu'en particulier le siège de joint d'étanchéité (148) est agencé dans une section de paroi (124) se déroulant par-dessus la plaque porte-soupape (88) et par-dessus la chambre d'admission (94), et/ou en ce qu'en particulier le siège de joint d'étanchéité (148) est agencé sur un côté de la chambre d'admission (94) opposé à la plaque porte-soupape (88), et/ou en ce qu'en particulier partant du siège de joint d'étanchéité (148) une course du piston de fermeture (152) se situe dans la plage allant d'un quart à la moitié d'une diamètre moyen du canal de liaison (144).
  9. Compresseur de fluide frigorigène selon l'une des revendications précédentes, caractérisé en ce que l'unité de commande de puissance (142) mécanique respective est attribuée à une rangée de cylindres (86), en ce qu'en particulier dans le cas de N rangées de cylindres (86) du compresseur de fluide frigorigène une unité de commande de puissance (142) mécanique est attribuée à N-1 rangées de cylindres (86), et/ou en ce qu'en particulier une unité de commande de puissance (142) mécanique est attribuée à chaque rangée de cylindres (86).
  10. Compresseur de fluide frigorigène selon l'une des revendications précédentes, caractérisé en ce que dans la section de carter de compresseur (22) un clapet de non-retour (222) est prévu dans le raccordement avec les chemins de fluide frigorigène pouvant être influencés par l'unité de commande de puissance (142) mécanique, en ce qu'en particulier le clapet de non-retour (222) présente une ouverture d'échappement (212) prévue dans la plaque porte-soupape (88) et un élément de soupape (224) coopérant avec la plaque porte-soupape (88), en ce qu'en particulier l'élément de soupape (224) est maintenu contre la plaque porte-soupape (88).
  11. Compresseur de fluide frigorigène selon l'une des revendications 8 à 10, caractérisé en ce que le piston de fermeture (152) est sollicité par un ressort de pression (166) dans la direction de sa position coopérant avec le siège de joint d'étanchéité (148), en ce qu'en particulier le piston de fermeture (152) peut être actionné par une chambre de pression (162) qui peut être sollicitée en fonction d'un pilotage extérieur de l'unité de commande de puissance (142) soit par pression d'aspiration soit par haute pression, en ce qu'en particulier la chambre de pression (162) présente dans la position ouverte du piston de fermeture (152) un volume qui est inférieur à un tiers, mieux inférieur à un quart du volume maximal de la chambre de pression (162) dans la position fermée.
  12. Compresseur de fluide frigorigène selon l'une des revendications 4 à 11, caractérisé en ce qu'est prévue une unité de pilotage (182), comprise dans l'unité de commande de puissance (142), avec laquelle la sollicitation sous pression du piston de fermeture (152) peut être commandée.
  13. Compresseur de fluide frigorigène selon l'une des revendications 4 à 12, caractérisé en ce qu'est prévue une commande de puissance (138), laquelle pilote la au moins une unité de commande de puissance (142) mécanique en fonction d'un taux de refoulement de compresseur exigé.
  14. Compresseur de fluide frigorigène selon l'une des revendications précédentes, caractérisé en ce qu'est prévue une unité de commande de démarrage (312), laquelle commande un démarrage du moteur électrique (14), en ce qu'en particulier l'unité de commande de démarrage (312) fait fonctionner le moteur électrique (14) pour le démarrage avec une circuiterie d'enroulements réduisant le courant de démarrage, et/ou en ce qu'en particulier l'unité de commande de démarrage (312) alimente en courant pour le démarrage du moteur électrique (14) d'abord un premier enroulement partiel (256) puis un second enroulement partiel (258) dans un stator (252) du moteur électrique (14), et/ou en ce qu'en particulier l'unité de commande de démarrage (312) pilote la commande de puissance (138) lors du démarrage du moteur électrique (14) de sorte que le compresseur à piston de course (12) lors du démarrage du moteur électrique (14) travaille uniquement avec un taux de refoulement de compresseur réduit, en ce qu'en particulier l'unité de commande de démarrage (312) pilote la commande de puissance (138) de sorte que le compresseur à piston de course (12) lors du démarrage du moteur électrique (14) travaille avec le taux de refoulement de compresseur le plus petit possible.
  15. Compresseur de fluide frigorigène selon l'une des revendications précédentes, caractérisé en ce que le compresseur à piston de course (12) travaille avec une pression d'aspiration dans la plage de 10 bars à 50 bars et/ou en ce qu'en particulier le compresseur à piston de course (12) travaille avec une haute pression dans la plage de 40 bars à 160 bars.
  16. Compresseur de fluide frigorigène selon l'une des revendications précédentes, caractérisé en ce que le compresseur à piston de course (12) travaille avec du dioxyde de carbone en tant que fluide frigorigène et en particulier est aménagé pour le fonctionnement avec du dioxyde de carbone en tant que fluide frigorigène.
EP16778057.6A 2016-10-07 2016-10-07 Compresseur frigorifique semi-hermétique Active EP3523537B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23195632.7A EP4276311A3 (fr) 2016-10-07 2016-10-07 Compresseur frigorifique semi-hermétique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/074063 WO2018065071A1 (fr) 2016-10-07 2016-10-07 Compresseur frigorifique semi-hermétique

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP23195632.7A Division EP4276311A3 (fr) 2016-10-07 2016-10-07 Compresseur frigorifique semi-hermétique
EP23195632.7A Division-Into EP4276311A3 (fr) 2016-10-07 2016-10-07 Compresseur frigorifique semi-hermétique

Publications (2)

Publication Number Publication Date
EP3523537A1 EP3523537A1 (fr) 2019-08-14
EP3523537B1 true EP3523537B1 (fr) 2024-05-01

Family

ID=57104046

Family Applications (2)

Application Number Title Priority Date Filing Date
EP23195632.7A Pending EP4276311A3 (fr) 2016-10-07 2016-10-07 Compresseur frigorifique semi-hermétique
EP16778057.6A Active EP3523537B1 (fr) 2016-10-07 2016-10-07 Compresseur frigorifique semi-hermétique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP23195632.7A Pending EP4276311A3 (fr) 2016-10-07 2016-10-07 Compresseur frigorifique semi-hermétique

Country Status (6)

Country Link
US (1) US20190234392A1 (fr)
EP (2) EP4276311A3 (fr)
CN (2) CN109715945B (fr)
AU (1) AU2016425930B2 (fr)
RU (1) RU2745598C2 (fr)
WO (1) WO2018065071A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486084A (zh) * 2019-01-28 2020-08-04 苏州宝时得电动工具有限公司 空气压缩机
DE102020103975A1 (de) 2020-02-14 2021-08-19 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichter
US11841031B2 (en) 2020-03-13 2023-12-12 Honeywell International Inc. Compressor sensor mount
US11635091B2 (en) 2020-03-13 2023-04-25 Honeywell International Inc. Compressor with integrated accumulator
EP3929436B1 (fr) * 2020-06-24 2024-02-21 BITZER Kühlmaschinenbau GmbH Compresseur de réfrigérant
EP4279739A1 (fr) * 2022-05-17 2023-11-22 Valeo Klimasysteme GmbH Dispositif de sortie d'un compresseur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097166A (en) * 1990-09-24 1992-03-17 Reuland Electric Rotor lamination for an AC permanent magnet synchronous motor
US20020098093A1 (en) * 2000-12-01 2002-07-25 Tomell Phillip A. Reciprocating piston compressor having improved noise attenuation
US20050023923A1 (en) * 2003-07-30 2005-02-03 Ming-Tsung Chu Rotor structure of line-start permanent magnet synchronous motor
DE102008045103A1 (de) * 2008-08-29 2010-03-11 TEKO Gesellschaft für Kältetechnik mbH Hubkolbenverdichter für Kältemittel

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007388A (en) * 1931-09-15 1935-07-09 Westinghouse Electric & Mfg Co Valve construction
US2213743A (en) * 1938-12-01 1940-09-03 Robert G Miner Control apparatus for unloading compressors
FR1352457A (fr) * 1963-03-29 1964-02-14 Normalair Ltd Dispositif de marche à vide pour compresseur
US4139790A (en) * 1977-08-31 1979-02-13 Reliance Electric Company Direct axis aiding permanent magnets for a laminated synchronous motor rotor
US4506517A (en) * 1982-08-09 1985-03-26 General Motors Corporation Air conditioning compressor unloading control system
KR100507786B1 (ko) * 1999-07-02 2005-08-17 마쯔시다덴기산교 가부시키가이샤 전동 압축기
JP3906432B2 (ja) * 1999-12-27 2007-04-18 株式会社豊田自動織機 空調装置
JP3676242B2 (ja) * 2001-01-30 2005-07-27 三洋電機株式会社 誘導同期電動機
JP3896472B2 (ja) * 2002-09-04 2007-03-22 株式会社日立製作所 冷凍装置
JP2004270975A (ja) * 2003-03-06 2004-09-30 Tgk Co Ltd 流量制御弁
EP1516417B1 (fr) * 2003-07-09 2010-11-03 Panasonic Corporation Moteur synchrone a induction et compresseur electrique hermetique comportant un tel moteur
DE102005009173A1 (de) * 2005-02-17 2006-08-24 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
WO2008012270A1 (fr) * 2006-07-25 2008-01-31 Arcelik Anonim Sirketi Moteur à aimant permanent à démarrage direct
KR100963742B1 (ko) * 2007-10-24 2010-06-14 엘지전자 주식회사 왕복동식 압축기
KR101507605B1 (ko) * 2007-10-24 2015-04-01 엘지전자 주식회사 리니어 압축기
JP6065192B2 (ja) * 2011-05-09 2017-01-25 パナソニックIpマネジメント株式会社 密閉型圧縮機
CN204334267U (zh) * 2014-12-27 2015-05-13 无锡新启源电机技术有限公司 八字形二槽稀土永磁同步电机转子冲片
US9797395B2 (en) * 2015-09-17 2017-10-24 Schlumberger Technology Corporation Apparatus and methods for identifying defective pumps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097166A (en) * 1990-09-24 1992-03-17 Reuland Electric Rotor lamination for an AC permanent magnet synchronous motor
US20020098093A1 (en) * 2000-12-01 2002-07-25 Tomell Phillip A. Reciprocating piston compressor having improved noise attenuation
US20050023923A1 (en) * 2003-07-30 2005-02-03 Ming-Tsung Chu Rotor structure of line-start permanent magnet synchronous motor
DE102008045103A1 (de) * 2008-08-29 2010-03-11 TEKO Gesellschaft für Kältetechnik mbH Hubkolbenverdichter für Kältemittel

Also Published As

Publication number Publication date
CN109715945A (zh) 2019-05-03
RU2019112862A (ru) 2020-11-09
RU2019112862A3 (fr) 2020-11-09
RU2745598C2 (ru) 2021-03-29
BR112019006964A2 (pt) 2019-07-02
AU2016425930B2 (en) 2021-03-25
CN109715945B (zh) 2021-07-23
AU2016425930A1 (en) 2019-04-18
WO2018065071A1 (fr) 2018-04-12
EP4276311A2 (fr) 2023-11-15
CN113294311A (zh) 2021-08-24
EP4276311A3 (fr) 2024-01-10
EP3523537A1 (fr) 2019-08-14
US20190234392A1 (en) 2019-08-01
CN113294311B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
EP3523537B1 (fr) Compresseur frigorifique semi-hermétique
DE102005038605B4 (de) Kühlmittelansaugführungsaufbau für einen hin- und herlaufenden Verdichter
EP2642122B1 (fr) Groupe motopompe
DE4229069C2 (de) Taumelscheiben-Kältemittelkompressor für ein Kühlsystem
EP3204648B1 (fr) Compresseur à vis
EP2732165A1 (fr) Compresseur à vis
DE2308265A1 (de) Rotations- bzw. drehkolbenverdichter anlage mit oelkreislauf und ventilanordnungen
DE102010041550A1 (de) Pendelschieberzellenpumpe
DE102015225069B4 (de) Zylinderkopf für mehrstufigen Kolbenverdichter
EP3482076B1 (fr) Couvercle de tête de cylindre pour un compresseur de réfrigérant
WO2004111396A1 (fr) Actionneur d'arbre a cames pour moteur a combustion interne
DE102007004187A1 (de) Regelbare Kühlmittelpumpe
EP0509077B1 (fr) Pompe a pistons, notamment pompe a pistons radiaux
EP3657017A1 (fr) Compresseur frigorifique
DE3218960C2 (fr)
DE2237246A1 (de) Foerderpumpe
DE102019208680A1 (de) Verdrängermaschine nach dem Spiralprinzip, insbesondere Scrollverdichter für eine Fahrzeugklimaanlage
DE102011077094A1 (de) Pendelschieberpumpe
DE4325286A1 (de) Zweistufige Drehschiebervakuumpumpe
DE102017102645A1 (de) Kältemittel-Scrollverdichter für die Verwendung innerhalb einer Wärmepumpe
DE102017204145A1 (de) Ölmehrfachpumpe und Kraftfahrzeug mit einer solchen Ölmehrfachpumpe
DE2329799A1 (de) Verfahren und vorrichtung zur schmierung der lager der rotoren von schraubenkompressoren
DE102011007673A1 (de) Linearverdichter mit Schlitzsteuerung sowie Kältemaschine mit dem Linearverdichter
EP2005001A1 (fr) Pompe cellulaire
DE102008045103A1 (de) Hubkolbenverdichter für Kältemittel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARTIN, EDUARDO

Inventor name: MANNEWITZ, JENS

Inventor name: RENZ, HERMANN

Inventor name: GROSSE-KRACHT, RAINER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BITZER KUEHLMASCHINENBAU GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200918

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 39/12 20060101ALI20230522BHEP

Ipc: F04B 35/01 20060101ALI20230522BHEP

Ipc: F04B 27/053 20060101ALI20230522BHEP

Ipc: F04B 7/00 20060101ALI20230522BHEP

Ipc: F04B 49/06 20060101ALI20230522BHEP

Ipc: F04B 49/24 20060101ALI20230522BHEP

Ipc: F04B 35/04 20060101AFI20230522BHEP

INTG Intention to grant announced

Effective date: 20230626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20231127

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016510

Country of ref document: DE