EP1871553B1 - Verfahren zur herstellung von hohlkörperelementen, hohlkörperelement, zusammenbauteil, folgeverbundwerkzeug zum herstellen von hohlkörperelementen sowie walzwerk - Google Patents
Verfahren zur herstellung von hohlkörperelementen, hohlkörperelement, zusammenbauteil, folgeverbundwerkzeug zum herstellen von hohlkörperelementen sowie walzwerk Download PDFInfo
- Publication number
- EP1871553B1 EP1871553B1 EP06753856.1A EP06753856A EP1871553B1 EP 1871553 B1 EP1871553 B1 EP 1871553B1 EP 06753856 A EP06753856 A EP 06753856A EP 1871553 B1 EP1871553 B1 EP 1871553B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hollow body
- accordance
- recess
- broad side
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/64—Making machine elements nuts
- B21K1/70—Making machine elements nuts of special shape, e.g. self-locking nuts, wing nuts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/64—Making machine elements nuts
- B21K1/70—Making machine elements nuts of special shape, e.g. self-locking nuts, wing nuts
- B21K1/702—Clinch nuts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21H—MAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
- B21H7/00—Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/64—Making machine elements nuts
- B21K1/66—Making machine elements nuts from strip bars
Definitions
- the present invention relates to a method according to the preamble of claim 1 for the production of hollow body elements, such as nut elements, for attachment to usually made of sheet metal components, in particular for the production of hollow body elements with an at least substantially square or rectangular outer contour, by cutting individual elements of a in Shape of a profile bar or a roll present profile after prior punching of holes in the profile, optionally with subsequent formation of a threaded cylinder using a progressive tool with multiple workstations in which respective operations are performed. Furthermore, the present invention relates to hollow body elements according to the preamble of claim 22, which are produced by the method, assembly components, which consist of a hollow body member and a sheet metal part and progressive dies for performing the method and rolling mills, which can be used in combination with the progressive tools.
- a method of the type mentioned above and corresponding hollow body elements and assembly components are, for example, in the WO-A-2005/09930 (Registration PCT / EP2005 / 003893 of 13 April 2005 ) known.
- Object of the present invention is to develop the method of the type mentioned so that hollow body elements, in particular rectangular nut elements, can be produced inexpensively, without burdening the tools used so that they early to fail.
- the hollow body elements produced in this way should have excellent mechanical properties, for example a high pull-out force, excellent resistance to twisting and, moreover, a reduced notch effect, so that the fatigue properties of assembly components consisting of a component usually consisting of sheet metal and hollow body elements attached to it dynamic loads are improved.
- the hollow body elements should be extremely inexpensive to produce.
- a particularly advantageous design of a follow-on composite tool used in the production of the hollow body elements as well as a rolling mill which can be used for the purpose of producing hollow body elements should be provided according to the invention.
- the object according to the invention is achieved by a method according to claim 1, by a hollow body element according to claim 22, by an assembly component according to claim 35, by a progressive compound tool according to claim 39 and by a rolling mill according to claim 42, the respective subclaims representing preferred embodiments of the invention.
- the profile used thus has a rectangular cross section and is therefore inexpensive to manufacture.
- the production method according to the invention makes it possible to produce hollow body elements without the tools used being subject to high wear and without the punches failing prematurely. Furthermore, the problem of elongation of the profile strip in the follow-on composite tool has been most effectively overcome in that depending on the design of the incoming profile strip only one forming station or at most two forming stations in the progressive tool are necessary or that according to the invention a station for training an undercut on the pilot part of the hollow body element in comparison to the aforementioned WO-A-2005/099930 (Registration PCT / EP2005 / 003893 ) is no longer necessary.
- Fig. 1 shows a portion of an elongated profile 1 with a rectangular cross section, a first broad side 2, a second broad side 3 and two narrow sides 7, 8.
- the longitudinal edges 9 of the profile can be rounded as shown. But they can also have a different shape, such as a chamfer or a rectangular shape.
- the profile is machined in a follow-on composite tool to form hollow elements, for example, nut elements of substantially rectangular or square shape, manufacture. If the hollow elements are to be realized as nut elements, a thread must be cut or produced in the hole of the hollow body element. This is usually done outside of the progressive tool in a separate machine.
- the thread only after attachment of the hollow body member to a sheet metal part, for example by means of a thread-forming or thread-cutting screw. Furthermore, it is not necessary to provide a thread in the hollow body element, but the perforation of the hollow body element could serve as a smooth bore for rotatably supporting a shaft or as a plug-in receptacle for receiving a plug pin.
- a first progressive composite tool 10 which is used to produce hollow body elements from the profile 21 of the Fig. 1 or a similar profile is in Fig. 2 shown in longitudinal section, wherein the longitudinal section is made through the center of the profile.
- a lower plate 12 which is usually attached to a press table, either directly or indirectly over an intermediate plate, not shown.
- the lower plate 12 carries a plurality of columns 14, four in this example, two of which are apparent, namely the two columns which lie behind the cutting plane.
- another plate 16 which is usually attached to the upper die plate of the press or to an intermediate plate of the press.
- guides 18 are screwed (for example by means of screws, which are not shown here), wherein the guides 18 are designed to slide in accordance with the lifting movement of the press up and down the columns 14.
- the profile 1 is advanced in the direction of arrow 20 at each stroke of the press, by an amount equal to twice the longitudinal dimension L of the individual hollow body elements produced from the profile is.
- the follow-on composite tool in this example comprises four workstations A, B, C, D, in which two treatments are made simultaneously at each stroke of the press.
- a so-called enforcing procedure is carried out as the first step a).
- a punching operation is carried out in a second step b) and a squeezing operation is carried out in the third workstation C in a third step c).
- a knock-down punch 22 is used to separate two hollow-body elements from the profile 1 at each stroke of the press.
- the right side of the punch cuts through the profile at a separation point, which is behind the first hollow body element, ie the hollow body element 21 in Fig. 3 located as well as at a separation point behind the second hollow body element 21 '.
- the progressive tool is in the Fig. 2 and 3 shown in the closed position, in which the two hollow body elements 21 and 21 'have just been separated from the profile 1.
- the cam 24 presses on the right side of the nut member 21 and tilts this in the inclined position, on the right side of the Fig. 3 is apparent.
- the nut member 21 drops then on a chute from the work area of the progressive tool and can, for example, in the position according to Fig. 2 then be led out laterally from the progressive compound tool, for example via its side chute under the action of gravity or with a blast of compressed air, etc.
- the second hollow body member 21 passeses through a hole 28 in the tee die 30 and then through corresponding bores 32, 34, 36 and 38 formed in plates 40, 42, 44 and 12.
- the bores or the hole 38 in the plate 12 can be aligned with a further bore (not shown) in the press table or in any intermediate plate provided between the plate 12 and the press table, which allows the removal of the nut elements such as 21 ', for example under the By gravity or by a lateral chute or by applying a blast of compressed air.
- the plate 44 is bolted to the plate 12 via screws, not shown.
- the plate 42 consists of a plurality of plate sections, which are assigned to the respective work stations, which are screwed to the continuous plate 44 via further, not shown screws (since arranged outside the plane of the sectional view).
- the continuous plate 40 is also bolted to the sections of the plate 42, again by means not shown screws.
- Above the continuous plate 40 are again plate sections 50, 52, 54, 56, 58 and 60, which in turn are bolted to the plate 40.
- the plate 50 is a support plate, which forms a lower guide for the profile 1, more precisely for the first broad side 2 of the profile 1, which in this illustration the underside forms.
- the plate sections 52, 54 and 56 are associated with the work stations A, B and C, while the plate sections 58 and 60, which form a receptacle for the tee die 30, are associated with the workstation D.
- the parting plane of the progressive tool is located above the profile 1 and is T in Fig. 3 designated.
- plate sections 72, 74, 76, 78 and 80 which are bolted to a continuous plate 82 - again on screws, not shown. Further, the plate 82 is bolted to the upper plate 16.
- the plates 72, 74, 76, 78 and 80 are thus lifted with the plate 22 and the upper plate 16, so far that the two punch 84, 86 and the two upper Abflachstempel 88 and 90, such as also the dies 92 and 94 which cooperate with the puncturing punches 64, 66 and also the tee punches 22 out of engagement with the profile strip 1 arrive.
- the profile strip 1 can be pushed further by twice the length dimension of the hollow body elements 21 in preparation for the next stroke of the press.
- workstations A and B have a length dimension, i. in the direction of movement 20 of the profile strip 1, which corresponds to four times the length dimension of a hollow body element 21.
- the work station C has a length dimension which corresponds to three times the length dimension of a hollow body element 21, while the work station D has a length dimension which has a multiple of the length dimension of the hollow body element 21, in this example six times.
- the perforation dies 100, 102 which cooperate with the punches 84, 86, have a central bore 104, 106, respectively, which are aligned with further bores 108, 110 in insert sleeves 112, 114, which make it possible to produce the punches 116, 118 to dispose of.
- Guiding elements which may be formed, for example by cheeks of the plates 50, 52, 54, 56 and 58, which ensure that the profile strip follows the desired trajectory through the progressive tool. It may be provided a slight lateral clearance, which allows a possible expansion of the profile strip in the transverse direction.
- a method for producing hollow body elements such as nut elements, for attachment to usually made of sheet metal components is realized.
- the method is used to produce hollow body elements 21, 21 ', for example with an at least substantially square or rectangular outer contour, by cutting individual elements from a present in the form of a profile bar or a roll profile 1 after prior punching holes 23 in the profile 1, optionally with subsequent formation of a threaded cylinder using a progressive tool with multiple workstations A, B, C, D, in which respective processing is performed.
- the method is characterized in that in each workstation A, B, C, D for the profile 1 or for a plurality of juxtaposed profiles in each case two machining operations for each stroke of the progressive tool are performed simultaneously. That is, it is basically possible to process several profiles 1 side by side and at the same time in the same progressive tool, provided that the corresponding number of individual tools, such as puncture punches, punches and associated matrices, is present.
- the knock-off punch 22 cuts through the profile at a first location behind a first hollow body element 21 and at a second location behind a second hollow body element 21 ', wherein the second hollow body element 21' in the direction of the movement of the tee punch transversely to the longitudinal direction of the profile 1 from the movement path of the profile is led out.
- the first hollow body element 21 is led out in the teetering station of the progressive tool at least for the time being generally in the direction of the movement path of the profile.
- Each workstation of the follow-on composite tool has a length in the direction of travel of the profile which corresponds to three times or four times or several times the longitudinal dimension of a finished hollow body element 21, 21 '.
- a spring-loaded cam 27 is biased against the force of a spring means 26 with a cam surface 24 inclined to the trajectory of the profile from the leading edge of the leading end of the profile at the exit end of the last work station. After separation of the formed at the front end of the profile hollow body member 21, this is tilted by the spring-loaded cam down to facilitate removal from the progressive tool.
- the lower punches 64, 66 for performing the puncturing operation and the punches 84, 86 for perforating from opposite sides of the tread 1 operate thereon.
- respective flattening dies 88, 90 are acted upon from above onto the profile strip 1, while the strip is supported in the area of the perforation by a plate section 56.
- support pins on the plate portion 56 at the locations of the holes in the profile strip, if necessary, to support the profile material in this area during the flattening process, for example, to achieve a sharp-edged formation of the end face of the hollow punching section.
- the third step could optionally be combined with step b).
- the diameter of the cylindrical recess and the inner diameter of the hollow cylindrical projection are at least substantially equal.
- the mouth 229 of the cylindrical recess 208 is preferably carried out at the first broad side 2 of the profile with a rounded or chamfered inlet edge 230 during the insertion process of step a) or during the punching process of step b) or the flattening process of step c) Elements forms the thread outlet.
- step a) or the hole process of step b) or the flattening of step c) is preferably also the mouth 232 of the hollow cylindrical projection 210 at its free end with a rounded or chamfered outlet edge 234 provided in the completed element the thread inlet forms.
- the hole 204 is produced with a diameter which at least substantially corresponds to the diameter of the cylindrical recess 208 and the inner diameter of the hollow cylindrical projection 210. Further, at The first step is performed by a) providing the free end of the hollow cylindrical projection 210 with a chamfer 236 on the outside.
- annular recess 212 is provided in this enforcing operation with an annular bottom portion 238 which is at least approximately in a plane parallel to the first and second broad side 2, 3 of the profile strip, on the radially inner side with an at least substantially rounded transition 240 in the outside of the hollow cylindrical projection 210 and on the radially outer side merges into a conical surface 242 having an included cone angle in the range between 60 to 120 °, preferably at about 90 °.
- transition 243 from the annular portion 238 of the annular recess 212 in the conical surface 242 is rounded, as well as the outlet 245 of the conical surface of the annular recess 212 in the second broad side 3 of the profile.
- the cone surface 242 may in practice be such that the rounded transition 243 merges tangentially into the rounded outlet 245.
- the undercut 244 When the undercut 244 is produced, it is formed by a cylindrical part of the hollow cylindrical projection 210 which merges approximately at the height of the second broad side 3 of the profile 1 into a region 246 of the hollow cylindrical projection 210 that is thickened when step c) is carried out Essentially projecting beyond the second broad side 3 of the profile.
- the thickened portion 246 of the hollow cylindrical projection 210 is at least substantially cone-shaped and diverges away from the first and second broad sides, wherein the cone angle of the thickened portion of the hollow cylindrical projection adjacent to the end face 224 in the range between 30 ° and 70 °, preferably at about 50 ° is.
- the hollow cylindrical projection 219 terminates at its free end on the outside in a preferably sharp-edged punching edge 250.
- the annular recess is designed with an outer diameter which is only slightly smaller than the smallest transverse dimension of the rectangular in plan view hollow body element, whereby the annular recess 212 with the second broad side 3 of the profile 1 at the narrowest points in the plane of the second broadside 3 remaining webs 284, 286 in the range of 0.25 to 1 mm, preferably of about 0.5 mm.
- Fig. 5E-5I and Figs. 5J-5N show substantially the same elements as Figs Figures 5A-5D , but with small deviations with respect to the formation of the punching section 222, which in the two versions according to Fig. 5E-5I or 5J-5N has an ideal shape.
- the main difference between the execution according to Fig. 5E-5I and the execution according to Figs. 5J-5N is that the execution according to Fig. 5E-5I is used for thicker sheets in the range of, for example, 1.2 to 2.0 mm sheet thickness, while the execution according to Figs. 5J-5N For rather thinner sheets, for example in the range of 0.4 to 1.2 mm sheet thickness is used.
- FIG. 5E a view from below of the lower end face of the punching section 222, ie in the direction of arrow E of Fig. 5H
- the Fig. 5F is a sectional drawing corresponding to the vertical sectional plane FF in Fig. 5E , so in Fig. 5F the two anti-rotation ribs 272 extending in the axial direction and located at the 12 o'clock and 6 o'clock position in Fig. 5E can each be seen in section.
- the four other anti-rotation ribs 272 ' which in Fig. 5E are registered, neither in Fig. 5F still in Fig.
- FIG. 5G which shows a sectional drawing corresponding to the cutting plane GG, can be seen. You can also only hint in Fig. 5E be recognized, since they are hidden in principle behind the punching section 222 as far as possible. In the sectional drawing of Fig. 5G they are not visible because the cutting plane is selected so that the anti-rotation ribs 272 and 272 'are not in the cutting plane or adjacent to the cutting plane and are not so large that they could be recognized in side view in the cutting plane.
- Figs. 5H and 5I each show an enlarged view of the in a dash-dotted rectangle in Fig. 5G or 5F shown areas. From the Fig. 5H to 5I It can be seen that the lower end face 224 of the punching section 222 is illustrated in the sectional plane by a radius which terminates tangentially at the cutting edge 250.
- the cone-shaped inclined surface 242 in Fig. 5D per se designated area of the annular recess 212 is formed by two radii, which merge into one another at a turning point, in this example with only a very short straight line, which is indicated by the two lines 301 and 303, and which are also not present in practice must, ie the two radii, which form the inclined wall of the recess (curved portions 243 and 245) can merge directly tangentially into each other. Nevertheless, in the area of the inflection point there is an area which can be described as approximately flat, so that the term "at least substantially cone-shaped" is justified. Of course, a clear, strictly cone-shaped area could also be provided.
- the enforcement process according to step a) through the application of correspondingly shaped through-punches 64, 66 and clinching 92, 94 on the first broad side 2 of the profile around the cylindrical recess 208 around an annular elevation 260 formed, for example, at least substantially represents a volume of material , the volume of the annular recess 212 around the hollow cylindrical Lead around equals.
- the diameter of the cylindrical recess 208 is greater than the inner diameter of the hollow cylindrical projection 210.
- the thread 206 ends in a conical region 262 of a stepped hole 264, which may optionally be used in this example instead of a rounded thread spout (which also in the Execution according to FIGS. 4A to 4C respectively. Figs. 5A to 5D it is possible).
- the bottom of the annular recess is formed in this embodiment alone by a rounded transition 243 from the hollow cylindrical projection 210 in the conical surface 242, which also in the embodiment according to Fig. 4A to 4E respectively.
- Figs. 5A to 5D it is possible.
- step a As in Fig. 5A and Fig. 6E can be seen formed by appropriate profiling of the piercing dies 92, 94, anti-rotation features 272 on the outside of the hollow cylindrical projection 210 and inside the annular recess 212 around the hollow cylindrical projection 210 around.
- These anti-rotation features may be formed by ribs 272 and / or grooves (not shown) on the radially outer side of the hollow cylindrical projection 210 (as shown). These ribs 272 extend in the axial direction 226 and bridge the undercut 244 of the hollow cylindrical projection 210. They have a radial width which corresponds at least substantially to between 40% and 90% of the maximum radial depth of the undercut.
- a hollow body element 200 for attachment to a usually made of sheet metal component 280 (FIG. Fig. 7A respectively. Fig. 7B ) having an at least substantially square or rectangular Outer outline 202, with a first broad side 2 and a second broad side 3, with an undercut 244 having punching portion 246 which projects beyond the second broad side and is surrounded by an annular recess 212 in the second broadside and with a hole 204 extending from the first broad side 2 extends through the punching section 246, wherein the hole optionally has a threaded cylinder 206 and the hollow body element is characterized in that anti-rotation features 272 outside of the hollow cylindrical projection 210 and / or inside in the region of the annular recess 212 are formed around the hollow cylindrical projection 210 around ,
- the hollow body element is further characterized in that the second broad side 3 is located radially outside the annular recess 212 in a plane, i. Apart from any curves or bevels at the transitions in the side edges of the hollow body member, and thus has no beams, grooves or undercuts in the area outside the annular recess.
- the annular recess 212 is designed with an outer diameter which is only slightly smaller than the smallest transverse dimension of the rectangular in plan view hollow body element, whereby the annular recess with the second broad side 3 of the profile at the narrowest points 284, 286 in the plane of the second broadside remaining webs in Range from 0.25 to 1 mm, preferably from about 0.5 mm.
- Figs. 7A and 7B show as one and the same inventive element 200 according to Figs. 5A to 5D with a thinner sheet metal part ( Fig. 7A ), for example, 0.7 mm thick and with a thicker sheet metal part ( Fig. 7B ) of, for example, 1.85 mm thickness can be used.
- the sheet material fills after compression by means of a die the entire Ring recess 212 and lies against the full surface of the annular recess and the anti-rotation features 272 in the region of the undercut. In both cases, therefore, a good coverage with the anti-rotation ribs 272 and therefore a good rotation between the hollow body member 200 and the sheet metal part 280.
- the flattened end face 224 of the punching section 246 is located at thin sheets (as in Fig. 7A shown) in the height of the underside of the sheet metal part and in thicker sheet metal parts ( Fig. 7B ) above the underside of the sheet metal part (ie, the side of the sheet metal part facing away from the body part of the hollow body element).
- there is an annular recess 282 around the punching section which is predetermined in its shape by the concrete shape of the complementarily shaped die in the self-piercing attachment of the hollow body element in a press or by a robot or in a C-frame.
- the die as usual in the self-piercing attachment of fasteners, a central bore, through which the resulting punching is disposed of.
- the hollow body elements according to the invention are self-piercing, they can still be used in pre-punched sheet metal parts.
- a further thickness range of sheet metal parts for example 1.85 to 3 mm, can be covered. Only the punching section needs to be made longer.
- the square-shaped in hollow body elements are mounted so that the second broad side 3 is applied directly to the top of the sheet metal part 280, but not or substantially not dig into the sheet metal part, a notch effect is not to be feared, so that a good fatigue thanks good fatigue resistance too dynamic loads.
- the hollow body elements are square in plan view, no special orientation of the die is required per se with respect to the particular setting head used because the punching section in plan view is circular and therefore orientation-free. It only needs to be ensured that the setting head and the die are coaxial with each other and to the longitudinal axis 226 of the hollow body element.
- the further component is usually below the sheet metal part by a screw (not shown) attached, which is screwed coming from below into the thread.
- a screw not shown
- the connection between the hollow body element 200 and the sheet metal part is reinforced by tightening the screw.
- anti-rotation ribs would be conceivable which traverse the annular recess 212 in the radial direction or bridge it, for example in the FIGS 8A-8D .
- Such anti-rotation ribs can be flush with the broad side 3 ( 8A-8D ) or recessed within the annular recess (such anti-rotation features are not shown in the drawings).
- the free upper sides of the anti-rotation ribs which are indicated by 272 ", in the same plane as the surface of the broad side 3 outside the annular recess 212.
- the sides 272" can also be arranged offset from the broad side 3 back. Since the anti-rotation ribs bridge over the annular recess 212, they can also be found on the side of the annular punching section 222 in the region of the undercut 244.
- Figs. 9A-9C show a further variant in which the anti-rotation features in the form of anti-rotation ribs extending in the radial direction over annular recess 212, only the tops 272 "'of the anti-rotation ribs 272 of the embodiment according to Figs. 9A-9D inclined so that they rise in the direction of the punching section 222 rising and therefore not only extend in the radial direction over the annular recess and bridge it, but also in the axial direction of the undercut 244 of the punching section 222 over a considerable length or in the full length of the undercut 244 extend.
- the 10A-10D show an embodiment that of the Figs. 9A-9D is very similar, except that here are the anti-rotation ribs angled so that they have a radial portion 272 "" and an axial portion 272 ""', which are interconnected over a radius 272 """and therefore have a total of the discussed angled shape.
- Figs. 11A-11D show another type of anti-rotation features, here in the form of recesses 272 '''' or grooves formed in the inclined side wall of the annular recess 212, wherein the recesses 272 '''' here in plan view have an approximately cup-like shape.
- Other shapes of the depressions are conceivable, for example elongated grooves, which are narrower in the region of the broad side 3.
- FIGs. 12A-12D a slightly different shape of a hollow body element.
- a polygonal shape 212 ' in the specific case a square shape in plan view, wherein the annular recess has a corresponding number, ie four, inclined surfaces 400, 402, 404 and 406, by means of radii 408, 410, 412 and 414 merge into each other.
- a surface region which is defined by four corner regions 416, 418, 420 and 422 and is arranged in a plane perpendicular to the central longitudinal axis 226 of the element.
- Punching section 222 transitions over a radius 424 into these corner regions, the radius at the radially outermost point having a diameter which is slightly larger than the maximum transverse dimension of the surface region formed by the four corners 416, 418, 420 and 422 that this radius eventually merges into the bottom of the four sloping surfaces. All thin parallel lines such as 426, 426 'and 426 "show radii or rounded surfaces which provide, inter alia, for a gentle bending of the sheet metal part.
- the rounded areas between the inclined surfaces also have the advantage that there are no pronounced sharp features at these locations in the sheet metal part, which can lead to fatigue, in particular with dynamic loading of the component. Since the punching section 222, as in the other embodiments, generates a circular hole in the sheet metal part, no stress concentrations are to be expected here, which can lead to fatigue cracks during operation.
- the element When attaching the hollow body member to a sheet metal part, the element is at least substantially not deformed, deformation is undesirable, and the sheet metal part is formed by a suitable complementary shape of the die in the square recess 212 'in the area around the punching portion 222 and completely in Plant brought with this punching section around the punching section around.
- the hollow body element is formed flat on the first broad side 2, ie with an end face which is perpendicular to the central longitudinal axis 226 of the element, according to the previous embodiment of the Fig. 5A-5N .
- the corresponding end face in the embodiments according to 8A-8D to Figs. 12A-12D similar to the embodiment according to Fig. 6D could be trained.
- Both Figs. 12A-12D This means that instead of a circular survey as in Fig. 6D shown, the survey will then have a corresponding polygonal shape, here a square shape.
- the hollow cylindrical projection which converts by flattening in the punching section 222 is achieved solely by material displacement from the second broad side 3 of the hollow body element, ie it is not necessary to perform in the first step of the manufacturing process, a penetration method in which material is displaced from the first broad side 2 from. That is, the first manufacturing step a) according to claim 1 can be replaced here by a molding process in which the hollow cylindrical projection 210 is effected solely by material displacement from the region of the polygonal ring recess in plan view and in the region of the hollow cylindrical projection 210. During the subsequent piercing process, the body thus formed is then pierced through from the first broad side 2 to the bottom 216 of the cavity 232.
- annular recess 212 need not necessarily be simultaneous with the piercing operation, but could be combined with the piercing or flattening process, i. the punches 84, 86 and the flattening dies 88, 90 would have to have a corresponding shape in this case.
- the profile can be maintained or used after production of the general shape of the hollow body elements in sections or in rewound form, with a separation into individual hollow body elements takes place only when the profile in a setting head for attachment of the hollow body elements is used on a component.
- FIGS. 13 to 27 To the description of the invention according to FIGS. 13 to 27 to facilitate the same reference numerals are used, which also in connection with the embodiments of FIG Fig. 1 to 12 were used. It is understood that the previous description also for the FIGS. 13 to 27 applies, ie that the earlier description of features with the same reference numerals for the description of FIGS. 13 to 27 applies, so that it is only necessary to describe the main differences. Therefore, only essential differences or significant features will be described separately here.
- a hollow body element the element according to Figs. 5A to 5D corresponds, except for the fact that the pilot part, ie the hollow projection 210, is executed here without undercut. Consequently, the axial anti-rotation ribs 272 can be seen better because they are not hidden in an undercut, but protrude in the radial direction of the hollow cylindrical projection 210 here. Furthermore, it can be seen that the thread in the hollow body elements according to the invention immediately before the hollow cylindrical projection comes to an end, that does not extend into the hollow cylindrical projection, otherwise it would be deformed during the forming of the hollow cylindrical projection or rivet section 210, which is the introduction of a Make screw difficult or impossible.
- hollow body element according to the invention only in connection with a modification of the embodiment according to the Figs. 5A to 5D has been described, all previously described embodiments of hollow body elements, ie, inter alia, the hollow body elements of Fig. 5E to 5N , of the FIGS. 6A to 6E , of the 8A to 8D , of the Figs. 9A to 9D , of the 10A to 10D , of the Figs. 11A to 11D and the FIGS. 12A to 12D be made into hollow body elements according to the invention, in that the undercut of the hollow projection 210 is omitted, so that a cylindrical projection is formed, as shown in Figs. 113A to 13D shown, however, with the embodiments of the respective anti-rotation characteristics of said figures.
- the hollow cylindrical projection forming the rivet section is crimped by means of the rivet die 504 to the rivet bead 506, which surrounds the sheet metal part in the edge region of the perforation 500 in a between the Nietbördel 506 and the bottom surface of the annular recess 212 formed in the broad side 3 annular groove 508 receives by clamping.
- the hollow cylindrical projection of the hollow body element according to the invention is not provided with an undercut, it can still be self-piercing attached to a sheet metal part, if this is done in two stages.
- a first stage or station the hollow cylindrical projection is used with a suitable punching die, which is arranged on the other side of a sheet metal part to a hole in the sheet metal part punching and punching through the middle passage of the punching die (not shown).
- the hollow body element in the sheet metal part "hang", due to the hole reveal of the hollow cylindrical projection or anti-rotation features or ribs, if they engage in the hole edge.
- the rivet section formed by the hollow-cylindrical projection with a suitable rivet die such as, for example, the rivet die of the Fig. 14C , flanged to a rivet bead.
- the shape of the hollow body element according to the invention also makes it possible to simplify the follow-on composite tool. Since the undercut on the hollow projection is missing, the previously third station C of the progressive tool, in which the flattening of the hollow projection to produce the undercut, done, no longer required so that this station can be omitted with a corresponding simplification of the progressive tool.
- the resulting form of the progressive compound tools is in the Fig. 15 and 16 shown.
- the previously used reference numerals of Fig. 2 and 3 are in the Fig. 15 and 16 where appropriate have been used and will not be further described, since the previous description also applies to these corresponding features or parts.
- This simplification means that only one forming station (station A) is required, namely the station where the wrapping process takes place, at which an elongation, ie an elongated extension of the profile strip, which is undesirable, can take place. In the remaining stations B and D, in which the punching process or the singling process take place, there is no elongation of the profile strip. These operations in the workstations B and D mean that the corresponding workstations B and D are not considered to be forming stations.
- the rolling mill can be coupled with the progressive tool, in the sense that the rolling mill feeds the profile strip directly to the follow-on composite tool. This is not required.
- the rolling mill can provide a profile strip with the necessary enforcements as an intermediate, which can be fed in lengths or in the form of a roll to the progressive die. The rolling can be done in a different factory than the further production in the progressive tool. If the penetration station is not present in the progressive tool, then no forming station is present and the problem of elongation no longer exists. This represents an optimal solution.
- the follow-on composite tool is designed as in FIGS Fig. 17 and 18 shown.
- the previously used reference numerals of Fig. 2 and 3 are also in the Fig. 17 and 18 where appropriate have been used and will not be further described, since the previous description also applies to these corresponding features or parts.
- the rolling mill is designed to produce from an incoming profile strip 1 with an at least substantially rectangular cross section with a first broad side 2 and an opposite broad side 3 an outgoing profile strip 1 'of regularly alternating profile sections, the incoming strip for the progressive tool Fig. 17 and 18 forms.
- the purpose is the outgoing profile strip 1 'of alternating profile sections, which consist of first profile sections, which have at least substantially the cross-sectional shape of the incoming profile strip 1, and second profile sections, which are made of the incoming profile strip 1 and each have a cylindrical recess 208 at the first Have broad side and a hollow cylindrical, surrounded by an annular recess 212 projection 210 on the second broad side 3.
- the rolling mill consists of a first roller 600 and a second roller 602, which are disk-shaped, but only portions of which are shown, in a perspective view in FIG Fig. 19A partially in a side view and in a radial section plane in FIG Fig. 19B and in an enlarged view in the region of the clamping gap in Fig. 19C (where the drawings of the FIGS. 20A to 20C and 21A to 21C are drawn accordingly).
- the rollers 600 and 602 are synchronized with each other and run in opposite directions of rotation 604 and 606.
- the incoming profile strip 1 is formed in a gap region 608, ie in the nip 610, between the rollers.
- the first roller 600 has a plurality of regularly spaced-apart projections 612 having a shape complementary to that of the cylindrical recess 208.
- the second roller 602 also has a plurality of mold portions 614 arranged at the same intervals as the projections of the first roller, each having a central portion, a shape 616 complementary to the shape of the hollow cylindrical projections 210, and a the central portion surrounding annular projection 618 having a shape which is complementary to the shape of the hollow cylindrical projection 210 surrounding annular recess 212.
- the rollers are similarly configured except that the roller 602 lacks a molding protrusion such as 618 of FIG Fig. 19C , which leads to the formation of an annular recess in the profile strip.
- the annular recess 212 which is desired for the hollow body elements, must be produced in the progressive tool, for example.
- the protrusions 612 of the first roll 600 and the mold portions 614 of the second roll 602 have clearances such as 620, i. a somewhat spherical shape, which differs from a circular cylindrical shape, which ensure that a clean rolling movement takes place in the rollers, i. No collisions of the rollers with the profile strip can take place when leaving the expiring profile strip.
- the volume of profile strip material displaced by each projection of the first roller should advantageously at least substantially correspond to the material volume of the material displacement on the side of the second roller, i. the volume, which is composed as follows: the volume of the hollow cylindrical projection 210 plus the volume of a bottom portion of the projection extending beyond the second broad side and minus the volume of any surrounding annular recess 212.
- the projections 612 of the first roller 600 and / or the moldings 614 of the second roller may be replaced by respective inserts of the respective ones Rollers 600 and 602 are formed, as in the Fig. 19 to 21 shown, with only in Figs. 21A to 21C the moldings 614 are not realized as inserts.
- inserts facilitates the replacement of worn or broken inserts without having to replace the entire roller
- the present invention is intended for the production of rectangular or square elements in the outer contour, it could also be used for the production of polygonal, oval or circular elements in the outer contour or of another shape, provided the tools used are designed to be the profile strip to produce the desired contour shape, for example by the use of appropriately designed punching tools.
- the penetration process can, as explained above, in the progressive tool or in an upstream operation, for example in a rolling mill, take place.
- the diameter of the cylindrical recess 208 and the inner diameter of the hollow cylindrical projection 210 should be at least substantially equal.
- a hole 204 is preferably produced with a diameter which corresponds at least substantially to the diameter of the cylindrical recess 208 and the inner diameter of the hollow cylindrical projection 210.
- this is preferably carried out so that it projects beyond the second broad side of the profile.
- annular elevation 260 can be formed on the first broad side (2) of the profile around the cylindrical depression 208.
- anti-rotation features 272 can be formed on the outside of the hollow-cylindrical projection 210 and / or on the inside in the region of the annular recess 212 about the hollow-cylindrical projection 210.
- the anti-rotation features may be formed by ribs 272 and / or grooves on the radially outer side of the hollow cylindrical projection 210.
- the anti-rotation features are preferably formed by ribs 272 extending axially along a portion of the hollow cylindrical projection 210 between the bottom of the annular recess 212 and a location between the second broad side 2 of the profile and the free front end of the hollow cylindrical projection.
- the anti-rotation ribs 272 may have a radial width that corresponds at least substantially in the range between 40% and 90% of the maximum radial depth of the undercut 244.
- step a) also starting from a rectangular in cross-section profile 1, a molding operation can be performed in which on the first broad side 2 of the profile 1 optionally no cylindrical recess 208 is provided, but on the second broad side 3 of the profile 1 to a preferably polygonal in plan view, in particular square recess 212 'on the second Broad side 3 of the profile that surrounds the hollow cylindrical projection 210, which is partially formed from the material displaced by the formation of the recess 212 'and partially from the displaced by the formation of the cavity of the hollow cylindrical projection 210 material, wherein the recess 212' with one or more obliquely provided to the central longitudinal axis of the hollow body member annular surface or surfaces is provided and in the second step b) the material between the first broad side 2 of the profile 1 and the bottom 216 of the hollow cylindrical projection 210 to form a through hole 204th pierced or punched out.
- the anti-rotation features are preferably formed by ribs 272 and / or grooves on the radially outer side of the hollow cylindrical projection 210.
- the anti-rotation features may be formed by ribs 272 extending in the axial direction along the hollow cylindrical projection 210.
- the anti-rotation ribs 272 may have a radial width which is at least substantially in the range between 10% and 60% of the wall thickness of the hollow cylindrical projection 210.
- the anti-rotation features may also be provided in the form of radially extending ribs bridging the annular recess. An execution of this kind is the Figs. 22A-22D which will be explained later.
- anti-rotation features can be provided in the form of inclined anti-rotation ribs extending in the radial direction over the annular recess and in the axial direction along the hollow cylindrical projection.
- anti-rotation features can be provided in the form of depressions, which are arranged in the inclined surface of the annular recess.
- the second broad side 3 is preferably located radially outside the annular recess 212 in a plane, i. Apart from any curves or chamfers at the transitions in the side edges of the hollow body member, and thus has no beams, grooves or undercuts in the area outside of the annular recess 212.
- the annular recess 212 is preferably made with an outer diameter which is only slightly smaller than the smallest transverse dimension of the in plan view rectangular hollow body member 200, whereby the annular recess with the second broad side of the profile at the narrowest points in the plane of the second broadside remaining webs in the range of 0.25 and 1 mm, preferably of about 0.5 mm.
- the invention provides a hollow body element for attachment to a usually consisting of sheet metal component 280, with a particular at least substantially square or rectangular outer contour, with a first broad side 2 and a second broad side 3, with a hollow cylindrical projection, over the second broad side 3 and surrounded by an annular recess 212 'in the second broad side and with a hole 204 which extends from the first broad side 2 through the hollow cylindrical projection or through the punching section 210, wherein the hole optionally has a threaded cylinder 206, and the element is characterized in that the annular recess 212 'in plan view is polygonal and in particular square, and that the annular recess 212' is provided with one or more obliquely to the central longitudinal axis of the hollow body member surface or surfaces and the hollow cylindrical projection 210th no e has undercut.
- An assembly part according to the invention consists of a hollow body element 200 of the abovementioned type according to the invention, which is attached to a component, for example a sheet metal part 280, wherein the material of the component or the sheet metal part 280 on the surface of the annular recess 212 of the hollow body element, on the surface of Anti-rotation features 272 and applied to the surface of the flanged to a Nietbördel hollow cylindrical projection 210.
- the axial depth of the annular groove 282 in the sheet metal part depending on the length of the hollow cylindrical projection 210 and the thickness of the sheet metal part 280 is selected so that the Nietbördel does not or only slightly protrudes beyond the side of the sheet metal part, which faces away from the body of the hollow body member 200 and in the region below the second broad side 3 of the hollow body element around the annular recess 212 of the hollow body element is present.
- the second broad side 3 of the hollow body element 200 in the region around the annular recess 212 of the hollow body element 200 is preferably at least substantially not or at most slightly pressed into the sheet material.
- a follow-on composite tool for producing hollow body elements 200, such as nut elements, for attachment to components usually made of sheet metal 280, in particular for producing hollow body elements with an at least substantially square or rectangular outer contour 202, by cutting individual elements from one in the form of a profile bar or a Wickels present profile 1 after prior punching of holes 204 in the profile, optionally with subsequent formation of a threaded cylinder 206, wherein in each workstation for the profile or for several juxtaposed profiles each two treatments for each stroke of the progressive tool are simultaneously feasible, characterized characterized in that in a workstation (B) a hole process and in a downstream workstation (D) the separation of two hollow body elements of the or each profile by means of the Abschlagstemp els is feasible.
- an enforcing process can be carried out, for example to form a cylindrical recess 208 on a first broad side of a cross-sectionally at least substantially rectangular profile 1 and a hollow cylindrical, surrounded by an annular recess 212 projection on a second the first broadside opposite broad side of the profile.
- the piercing operation for piercing a remaining after the piercing operation between the bottom of the cylindrical recess 208 and the central passage of the hollow cylindrical projection web is performed.
- the follow-on composite tool is designed in a variant to work with an incoming profile strip 1 with an at least substantially rectangular cross-section with a first broad side 2 and an opposite broad side 3, consisting of regularly alternating profile sections of the profile strip 1 and profile sections, from the profile strip 1 and each having a cylindrical recess 208 on the first broad side and a hollow cylindrical, surrounded by an annular recess 212 projection 210 on the second broad side 3 have.
- a hollow body element 200 it is also possible to execute the anti-rotation ribs 272 in such a way that they bridge the annular groove 212 in the radial direction.
- a design of a hollow body element 200 is in the Figs. 22A-22D shown.
- the only significant difference to the element according to Figs. 13A-13D is that the anti-rotation ribs 272, as shown here, bridge the annular groove 212 in the radial direction, wherein the material that the anti-rotation ribs 272 in this Design forms over clear radii in the rivet section 210 and in the bottom area and in the outer oblique side of the annular recess 212 passes.
- the tops of the anti-rotation ribs 272 in Fig. 22D are slightly set back from the second broad side 3 of the element, but can also be flush with this side.
- the inner cylindrical side 288 of the cylindrical rivet portion 210 has an inner diameter which is slightly larger than the outer diameter of the thread 206, on the one hand in the riveted state, the insertion of a screw in the thread 206, in Fig. 22C
- the inner diameter 288 forms the thread inlet via a conical region 288 "and merges into the thread, which also serves to center a screw when it is inserted into the thread 206.
- the radius on the outer side of the cylindrical rivet portion 210 is somewhat more pronounced than in the embodiment according to FIG Figs. 13A-13D ,
- the inner cone-shaped surface 288 ' is smaller. Here it is shown slightly rounded, but it could also be performed in a conventional manner as a cone-shaped cutting surface.
- FIG. 22C one sees the anti-rotation ribs 272 left and right of the cylindrical Nietabitess in an oblique side view, wherein the hatched representation represents a perspective view of the radii with which the material of the anti-rotation ribs 272, behind the plane of the sectional drawing of Fig. 22C lie, in the inclined surface of the axial groove or the annular recess 212 passes.
- a possible way of attaching the hollow body element according to Figs. 22A-22D to a sheet metal part is in the drawings of Figs. 23A-23D for a relatively thin sheet metal part 280 'and in the Figs. 24A-24D for a shown relatively thick sheet metal part.
- the attachment itself is similar to the procedure already used in connection with the Figs. 14A-14D has been described, ie, also with the aid of a die such as 504, in which case the die in addition to the central post area or the middle elevation according to Fig. 14C , which is responsible for the formation of the Nietbördels 506 around this central post around a square in plan view survey, with a cross-sectional shape corresponding to the shape of the recess 510 according to Fig. 23B and a shape in plan view complementary to the circumferential shape of the groove 510 according to FIG Fig. 23D , This in plan view square shape of the outer elevation of the die leads just to the recess 510 according to Figs. 23A-23D respectively.
- the elevation 512 in plan view also ensures a visually appealing transition of the lower side of the hollow body element 200 into the sheet metal part 280 '.
- the underside of the sheet metal part in the region of the element and the underside of the Nietbördels 506 lies with the underside of the sheet metal part outside of the element in a plane, which is favorable for the screwing of another component on the underside of the sheet metal part. This can be achieved no matter what thickness of the sheet metal part is within the allowable range for the once fixed length of the rivet section.
- Figs. 22A-22D corresponds largely to the previously described method and will now be briefly using the Figs. 25A-25F or 26 and 27 explained in more detail.
- Fig. 25A the profile strip from which the elements are made is a substantially rectangular strip, but the side surfaces 7 and 8 are slightly inclined relative to one another, ie inclined, in such a way that they face each other in the region of the first broad side 2 of the profile have a smaller distance than in the region of the second broad side 3 of the profile.
- the Fig. 25B shows the profile strip after performing the clinching operation, in which the cylindrical recess 208 is formed with radius 230 in the first broad side 2 of the profile and the cylindrical rivet portion 210 and the surrounding annular groove 212 in the second broad side 3 of the profile is generated.
- the anti-rotation ribs 272 which bridge the annular groove 212, miter Wegten in this first forming step.
- notches, such as 514 are generated in the broad side 3 of the profile strip, which run perpendicular to the longitudinal direction of the profile strip, ie from one narrow side 7 to the other narrow side 8.
- notches form weakenings that facilitate the subsequent separation of the individual elements from the profile strip. They form in Fig. 25B the boundary of the shown central part of the strip, which later forms a hollow element such as 200, where to the left of the left notch 514 part of another hollow body element and right of the right notch 514 part of a still further hollow body element 200 can be seen.
- the progressive compound tool for producing the element according to Figs. 22A-22D corresponds to the in the Figs. 25A-25F and described in this context manufacturing steps and is in the Fig. 26 and in the relevant area of the progressive tool on a large scale in Fig. 27 shown.
- the progressive tool of the Fig. 26 or 27 generally corresponds to the progressive tool according to Fig. 15 and 16 and, as explained above, the same reference numerals are used for corresponding parts or parts with the corresponding functions for this reason.
- the progressive tool according to Fig. 26 and 27 are essentially only the significant differences compared to the progressive tool according to Fig. 15 and 16 or the other follow-on composite tools already described.
- the puncture punches 64, 66 below the profile strip 1 and the corresponding Matrices 92, 94 are arranged above the profile strip 1 are in the example in the Fig. 26 and 27, the puncturing punches 64, 66 arranged above the profile strip 1, while the corresponding dies 92, 94 are located below the profile strip.
- the support of the piercing dies 92, 94 in the embodiment according to Fig. 26 or 27 taken slightly different than in the embodiment according to Fig. 15 or 16.
- the matrices are arranged in a fixed position in the lower tool.
- the purpose of the previously mentioned inclined arrangement of the side surfaces 7 and 8 of the profile strip is that the profile strip is stretched in the upper area adjacent to the cylindrical cavity 208 generated by the puncturing punches 64, 66 by the puncturing punches 64, 66 in the width, whereby the narrow sides 7 and 8 assume a position perpendicular to the upper and lower broad sides 2 and 3, which then ensure proper guidance of the profile strip on the way through the progressive tool.
- Fig. 15 and 16 are in the embodiment according to Fig. 26 and 27 the punches 84 and 86 are arranged above the profile strip 1, while the corresponding dies 100, 102 are located below the profile strip 1.
- two expansion dies 704, 706 which serve to expand the cylindrical rivet portion 210 and the end formation of the expanded hollow cylindrical portion 288 with the conical portion 288 "forming the thread entry and the tapered entry portion 288 'below the profile strip
- two punches 700, 702 which are in the already formed cylindrical recess 208 engage when closing the press and intercept the forces acting from the Aufweitmatrizen 704, 706 in the direction of the longitudinal axis 226 of the individual hollow body elements.
- They can also be used for correcting the shape of the hollow body element in the region of the thread outlet and / or for calibrating the inner diameter of the region 208 or the through hole 204 before carrying out the threading process, which only after separation of the individual elements from the profile strip by the knock-stamp 222 and removal of individual hollow body elements takes place from the press.
- the small surveys at reference numeral 708 are observed. These bumps serve to form notches such as 514. Note also the item numbered 710. This is a position sensor that dips into a cylindrical cavity 208 to ensure that the profile strip has been processed properly so far and is in the right place in the progressive tool.
- the probe 710 does not dip into such a cavity 208 at the intended amount every stroke of the press, it encounters, for example, the upper broad side 2 of the profile strip adjacent to such a cavity or in the absence of such a cavity because it simply does not exist, For example, since the puncturing punches 64, 66 are worn or broken, the feeler 710 is displaced upward against the force of the spring 714 acting on the collar 712 of the probe 710 when closing the press, coming close to the force of the spring 714 Proximity sensor 716, which emits a corresponding signal that serves to immediately stop the press. The cause of the fault can then be investigated and the press put back into service after the required correction or repair has been carried out.
- the upper tool must be raised so far that the puncture punches 64, 66, the probe 710, the punches 84, 86 and the Abstützstempel 700, 702 and the tee punches 22 come free from the top 2 of the profile strip, said the profile strip must be raised to the extent that it comes free of projecting parts of the lower tool, such as the fürrißmatrizen 92, 94, the notch-generating projections 708, the Lochmatrizen 100, 102 and the fixed Aufweitmatrizen 704, 706 and the tee die 30.
- each station corresponds to a length which is an integer multiple of the length of a single hollow body member 200. It will be here, as shown in the drawings, several empty stations provided to create space for the individual tools of progressive die tool.
- the present invention is intended for the production of rectangular or square elements in the outer contour, it could also be used for the production of polygonal, oval or circular elements in the outer contour or of another shape, provided the tools used are designed to be the profile strip to produce the desired contour shape, for example by the use of appropriately designed punching tools.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Forging (AREA)
- Prostheses (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Toys (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005024220A DE102005024220A1 (de) | 2005-05-25 | 2005-05-25 | Verfahren zum Herstellen von Hohlkörperelementen, Hohlkörperelement, Zusammenbauteil, Folgeverbundwerkzeug zum Herstellen von Hohlkörperelementen sowie Walzwerk |
PCT/EP2006/004977 WO2006125634A1 (de) | 2005-05-25 | 2006-05-24 | Verfahren zur herstellung von hohlkörperelementen, hohlkörperelement, zusammenbauteil, folgeverbundwerkzeug zum herstellen von hohlkörperelementen sow |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1871553A1 EP1871553A1 (de) | 2008-01-02 |
EP1871553B1 true EP1871553B1 (de) | 2014-04-23 |
Family
ID=36940614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06753856.1A Not-in-force EP1871553B1 (de) | 2005-05-25 | 2006-05-24 | Verfahren zur herstellung von hohlkörperelementen, hohlkörperelement, zusammenbauteil, folgeverbundwerkzeug zum herstellen von hohlkörperelementen sowie walzwerk |
Country Status (12)
Country | Link |
---|---|
US (5) | US8123446B2 (ko) |
EP (1) | EP1871553B1 (ko) |
JP (2) | JP5208731B2 (ko) |
KR (1) | KR101366602B1 (ko) |
CN (4) | CN101198426A (ko) |
BR (1) | BRPI0609931A2 (ko) |
CA (2) | CA2864261C (ko) |
DE (1) | DE102005024220A1 (ko) |
ES (1) | ES2470334T3 (ko) |
MX (1) | MX2007014684A (ko) |
RU (1) | RU2414985C2 (ko) |
WO (1) | WO2006125634A1 (ko) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10119505A1 (de) * | 2001-04-20 | 2002-10-24 | Profil Verbindungstechnik Gmbh | Funktionselement zur Anbringung an ein Blechteil, aus diesen hergestelltes Zusammenbauteil sowie Verfahren zur Anbringung des Funktionselements an ein Bauteil |
DE102004017866A1 (de) * | 2004-04-13 | 2005-11-03 | Profil-Verbindungstechnik Gmbh & Co. Kg | Verfahren zur Herstellung von Hohlkörperelementen, Hohlkörperelement, Zusammenbauteil sowie Folgeverbundwerkzeug zur Durchführung des Verfahrens |
RU2418206C2 (ru) | 2006-01-05 | 2011-05-10 | Профиль-Фербиндунгстехник Гмбх Унд Ко. Кг | Крепежный элемент, узловая сборка, состоящая из крепежного элемента и детали из листового металла, а также способ закрепления крепежного элемента на детали из листового металла |
DE102006015148A1 (de) * | 2006-03-31 | 2007-10-11 | Reinz-Dichtungs-Gmbh | Halterungsvorrichtung |
DE202006008721U1 (de) | 2006-06-01 | 2007-10-11 | Profil Verbindungstechnik Gmbh & Co. Kg | Nietmutter und Kombination einer Nietmutter mit einem Blechteil |
JP5688568B2 (ja) * | 2008-07-15 | 2015-03-25 | 山野井精機株式会社 | 被加工金属部材に突起を形成する突起形成方法 |
DE102009039817A1 (de) * | 2009-09-02 | 2011-03-03 | Profil Verbindungstechnik Gmbh & Co. Kg | Selbststanzendes Mutterelement und Zusammenbauteil bestehend aus dem Mutterelement und einem Blechteil |
DE102010011248A1 (de) | 2010-03-12 | 2011-09-15 | Daimler Ag | Verfahren und Vorrichtung zum Herstellen eines Bauteilverbundes |
DE102012001088A1 (de) * | 2012-01-20 | 2013-07-25 | Profil Verbindungstechnik Gmbh & Co. Kg | Zweiteiliges Mutterelement für Kunststoffbauteile |
CN102601294B (zh) * | 2012-04-01 | 2014-11-05 | 常熟新华远紧固件有限公司 | 一种用于弹垫螺母底部成型的模具组合 |
JP6359801B2 (ja) * | 2013-01-11 | 2018-07-18 | 三晃金属工業株式会社 | ドリル螺子 |
US9366279B2 (en) * | 2013-03-13 | 2016-06-14 | Ford Global Technologies, Llc | Rivets with anti-rotational features |
DE102013212964B4 (de) * | 2013-07-03 | 2022-11-03 | Aktiebolaget Skf | Verfahren und Vorrichtung zur Herstellung eines Schraubelements |
DE102013218548A1 (de) * | 2013-09-16 | 2015-03-19 | Profil Verbindungstechnik Gmbh & Co. Kg | Lochstempel sowie Verfahren zum Durchstanzen eines Werkstücks, das als Schaummaterial und/oder als Sandwichmaterial vorliegt, sowie Verfahren zur Herstellung des Lochstempels |
MX2017009575A (es) * | 2015-04-10 | 2017-11-01 | R B & W Mfg Llc | Metodos para instalar un sujetador de autobloqueo. |
CN106311857B (zh) * | 2015-12-21 | 2017-11-07 | 青岛世冠装备科技有限公司 | 一种复杂截面中空构件低压镦胀成形方法 |
CN106812774B (zh) * | 2017-03-07 | 2019-05-28 | 吉安大禾工业机械制造有限公司 | 一种防松铆合螺母及其铆合方法 |
US10697484B2 (en) | 2018-02-07 | 2020-06-30 | Rb&W Manufacturing Llc | Method for installing a self-piercing and self-clinching fastener |
JP7118537B2 (ja) * | 2018-07-27 | 2022-08-16 | 株式会社青山製作所 | ナット及びナットの固定構造 |
EP3999746B1 (en) * | 2019-07-15 | 2024-08-28 | RB&W Manufacturing LLC | Self-clinching fastener |
US11209040B2 (en) | 2019-07-15 | 2021-12-28 | Rb&W Manufacturing Llc | Self-clinching fastener |
CA3153113A1 (en) * | 2019-09-17 | 2021-03-25 | Gaurian Corporation | Press-fit nut for assembly, press-fit nut-bolt assembly, and method of constructing steel-concrete composite structure using same |
CN110541875A (zh) * | 2019-09-17 | 2019-12-06 | 上海纳特汽车标准件有限公司 | 翻铆套筒 |
DE102019130280A1 (de) * | 2019-11-11 | 2021-05-12 | Schaeffler Technologies AG & Co. KG | Zerspanungsfreie Herstellung einer Nabe für einen Riemenscheibenentkoppler |
CN112555265B (zh) * | 2020-10-28 | 2021-07-27 | 浙江自紧王机械有限公司 | 一种旋升自紧螺母及自紧垫片的压制成型方法 |
US11913488B2 (en) | 2021-05-27 | 2024-02-27 | Rb&W Manufacturing Llc | Self-clinching and self-piercing construction element with multi-purpose pilot |
CN113967690B (zh) * | 2021-09-15 | 2024-08-20 | 惠州市海尚科技有限公司 | 一种拉高强度牙孔的加工工艺 |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1332686A (en) * | 1919-01-16 | 1920-03-02 | Henry S Reynolds | Sput for metallic receptacles |
US2096623A (en) * | 1935-04-26 | 1937-10-19 | Midland Steel Prod Co | Method of making grommets |
US2057527A (en) * | 1935-06-05 | 1936-10-13 | David E Johnson | Method of and apparatus for making nuts |
DE671536C (de) | 1937-02-14 | 1939-02-09 | Nurka De Fries & Co G M B H | Kaltpresse zur Herstellung von Schraubenmuttern |
US2206740A (en) * | 1938-12-08 | 1940-07-02 | Bert L Quarnstrom | Nut and method of forming same |
GB551845A (en) * | 1942-05-19 | 1943-03-11 | Charles Thompson Langmaid | Clinch nut |
US2486769A (en) * | 1942-12-31 | 1949-11-01 | Rca Corp | Staked fastener |
US2432844A (en) * | 1944-04-22 | 1947-12-16 | Waterbury Farrel Foundry & Mac | Method of and means for making nut blanks |
US3704507A (en) * | 1970-03-23 | 1972-12-05 | Mac Lean Fogg Lock Nut Co | Method of fabricating and attaching pierce nuts to a panel |
US3999659A (en) | 1970-03-23 | 1976-12-28 | Maclean-Fogg Lock Nut Company | Pierce nuts in strip form |
US3775791A (en) | 1970-03-23 | 1973-12-04 | Mac Lean Fogg Lock Nut Co | Method of making pierce nuts in strip form |
CA983251A (en) * | 1970-10-23 | 1976-02-10 | William L. Grube | Apparatus and method for applying pierce nuts to a workpiece |
ES428903A1 (es) * | 1974-08-05 | 1977-01-01 | Tolwood Multifasteners | Aparato para formar una tira de organos de sujecion. |
US4237567A (en) * | 1977-11-28 | 1980-12-09 | Maclean-Fogg Company | Method of making a fastener strip |
JPS56150610A (en) * | 1980-04-23 | 1981-11-21 | Mitsubishi Electric Corp | Ridged nut |
JPS58109710A (ja) | 1981-12-24 | 1983-06-30 | 有限会社新城製作所 | ピアスナツト |
JPS60252814A (ja) * | 1984-05-29 | 1985-12-13 | 株式会社 青山製作所 | クリンチナツト |
US5531552A (en) * | 1984-08-03 | 1996-07-02 | Multifastener Corporation | Self-attaching nut and method of making same |
US4971499A (en) | 1984-12-24 | 1990-11-20 | Ladouceur Harold A | Nut and panel assembly |
US4627776A (en) * | 1985-05-14 | 1986-12-09 | Russell, Burdsall & Ward Corporation | Fastener |
US5251370A (en) * | 1991-10-31 | 1993-10-12 | Profil Verbindungstechnik Gmbh & Co. | Method of attaching a fastening element to a panel |
US5528812A (en) * | 1991-10-31 | 1996-06-25 | Profil-Verbindungstechnik Gmbh & Co. Kg | Method of attaching a fastener to a plurality of panels |
US5423645A (en) * | 1993-08-04 | 1995-06-13 | Profil Verbindungstechnik Gmbh & Co. Kg | Fastener and panel assembly |
JPH05215115A (ja) * | 1992-01-31 | 1993-08-24 | Tokyo Multi Fastener Kk | ピアスナット |
US5549430A (en) * | 1992-01-31 | 1996-08-27 | Multifastener Corporation | Self-attaching fastener and installation die |
JPH0829392B2 (ja) | 1993-12-17 | 1996-03-27 | 有限会社新城製作所 | ピアスナットの製造装置 |
US5882159A (en) * | 1996-08-16 | 1999-03-16 | Profil Verbindungstechnik, Gmbh & Co. | Element, method of attaching the element to a plate-like component, component assembly and die button |
DE19710246A1 (de) * | 1997-03-12 | 1998-09-17 | Profil Verbindungstechnik Gmbh | Element und Verfahren zum Einsetzen des Elements in ein plattenförmiges Bauteil |
US6220804B1 (en) * | 1999-03-24 | 2001-04-24 | R B & W Corporation | Self-piercing clinch nut |
SE515042C2 (sv) | 1999-10-19 | 2001-06-05 | Hydropulsor Ab | Slagpressanordning och metod för kapning och formning av ett ämne |
DE10015956A1 (de) * | 2000-03-30 | 2001-10-04 | Saxonia Franke Gmbh | Käfigmutter zur Blindbefestigung an einem plattenförmigen Trägerteil |
DE102004045159A1 (de) * | 2004-01-29 | 2005-09-01 | Profil Verbindungstechnik Gmbh & Co. Kg | Verfahren zur Herstellung von Hohlkörperelementen, Hohlkörperelement sowie Folgeverbundwerkzeug zur Durchführung des Verfahrens |
DE50103988D1 (de) | 2000-03-31 | 2004-11-11 | Profil Verbindungstechnik Gmbh | Verfahren zur herstellung von hohlkörperelementen, hohlkörperelement, zusammenbauteil und matrize |
US7314417B2 (en) | 2000-03-31 | 2008-01-01 | Profil Verbindungstechnik Gmbh & Co. Kg | Method for the manufacture of hollow body elements, hollow body element and also progressive tool for carrying out the method |
DE60135725D1 (de) * | 2000-10-11 | 2008-10-23 | Toyo Tire & Rubber Co | Federbeinlagerbefestigung |
DE20205192U1 (de) * | 2002-04-03 | 2002-11-07 | Profil Verbindungstechnik GmbH & Co. KG, 61381 Friedrichsdorf | Profil zur Herstellung von Hohlkörperelementen, Hohlkörperelement sowie Zusammenbauteil |
DE10228103A1 (de) | 2002-06-24 | 2004-01-15 | Bayer Cropscience Ag | Fungizide Wirkstoffkombinationen |
US6851904B2 (en) | 2002-08-30 | 2005-02-08 | Fabristeel Products, Inc. | Self-attaching female fastener and method of installation |
US20040042871A1 (en) * | 2002-09-04 | 2004-03-04 | Wojciechowski Stanley E. | Self-attaching female fastener element, sealed fastener and panel assembly and method of forming same |
AU2003295872A1 (en) | 2002-11-27 | 2004-06-23 | Fabristeel Products Incorporated | Self-attaching female fastener elements and method fo forming same |
FR2852870B1 (fr) * | 2003-03-24 | 2005-06-10 | Bollhoff Otalu Sa | Procede de fabrication d'un ecrou noye a sertir et ecrou noye a sertir realise par un tel procede. |
JP3933605B2 (ja) * | 2003-05-12 | 2007-06-20 | 有限会社新城製作所 | ピアスナットの製造方法 |
US7563748B2 (en) | 2003-06-23 | 2009-07-21 | Cognis Ip Management Gmbh | Alcohol alkoxylate carriers for pesticide active ingredients |
EP1559488B1 (de) | 2004-01-29 | 2017-04-26 | PROFIL-Verbindungstechnik GmbH & Co. KG | Verfahren zur Herstellung von Hohlkörperelement sowie Folgeverbundwerkzeug zur Durchführung des Verfahrens |
DE102004017866A1 (de) | 2004-04-13 | 2005-11-03 | Profil-Verbindungstechnik Gmbh & Co. Kg | Verfahren zur Herstellung von Hohlkörperelementen, Hohlkörperelement, Zusammenbauteil sowie Folgeverbundwerkzeug zur Durchführung des Verfahrens |
USD551960S1 (en) * | 2005-09-15 | 2007-10-02 | Shinjo Manufacturing Co., Ltd. | Self-piercing nut |
-
2005
- 2005-05-25 DE DE102005024220A patent/DE102005024220A1/de not_active Withdrawn
-
2006
- 2006-05-24 CA CA2864261A patent/CA2864261C/en not_active Expired - Fee Related
- 2006-05-24 WO PCT/EP2006/004977 patent/WO2006125634A1/de active Application Filing
- 2006-05-24 CN CNA2006800216283A patent/CN101198426A/zh active Pending
- 2006-05-24 ES ES06753856.1T patent/ES2470334T3/es active Active
- 2006-05-24 KR KR1020077030184A patent/KR101366602B1/ko not_active IP Right Cessation
- 2006-05-24 RU RU2007148446/02A patent/RU2414985C2/ru not_active IP Right Cessation
- 2006-05-24 CN CN2010102561676A patent/CN101947631B/zh not_active Expired - Fee Related
- 2006-05-24 EP EP06753856.1A patent/EP1871553B1/de not_active Not-in-force
- 2006-05-24 CN CN201210007249.6A patent/CN102554110B/zh not_active Expired - Fee Related
- 2006-05-24 JP JP2008512766A patent/JP5208731B2/ja not_active Expired - Fee Related
- 2006-05-24 CA CA2609689A patent/CA2609689C/en not_active Expired - Fee Related
- 2006-05-24 MX MX2007014684A patent/MX2007014684A/es active IP Right Grant
- 2006-05-24 US US11/915,210 patent/US8123446B2/en active Active
- 2006-05-24 BR BRPI0609931-9A patent/BRPI0609931A2/pt not_active IP Right Cessation
- 2006-05-24 CN CN2010102562077A patent/CN101954440B/zh not_active Expired - Fee Related
-
2012
- 2012-02-13 US US13/371,961 patent/US8398348B2/en not_active Expired - Fee Related
- 2012-02-14 US US13/372,875 patent/US8690693B2/en active Active
- 2012-02-14 US US13/372,830 patent/US8534973B2/en not_active Expired - Fee Related
- 2012-02-14 US US13/372,855 patent/US8434985B2/en active Active
- 2012-07-10 JP JP2012154302A patent/JP5706854B2/ja not_active Expired - Fee Related
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1871553B1 (de) | Verfahren zur herstellung von hohlkörperelementen, hohlkörperelement, zusammenbauteil, folgeverbundwerkzeug zum herstellen von hohlkörperelementen sowie walzwerk | |
EP1725355B1 (de) | Verfahren zur herstellung von hohlkörperelementen, hohlkörperelement sowie folgeverbundwerkzeug | |
EP1806509B1 (de) | Funktionselement, Zusammenbauteil bestehend aus dem Funktionselement und einem Blechteil sowie Verfahren zum Anbringen eines Funktionselements | |
EP2177776B1 (de) | Vorrichtung bestehend aus einem Befestigunselement und einem Blechteil sowie ein Verfahren zur Herstellung einer solchen Vorrichtung | |
EP0993902B1 (de) | Verfahren zur Anbringung eines Funktionselementes, Matrize, Funktionselement, Zusammenbauteil | |
EP2479442B1 (de) | Funktionselement in Form eines Einpresselements | |
EP2292940B1 (de) | Selbststanzendes Mutterelement und Zusammenbauteil bestehend aus dem Mutterelement und einem Blechteil | |
EP2302234B1 (de) | Selbstanzendes hohles Einpresselement, Zusammenbauteil bestehend aus einem Einpresselement und einem Blechteil sowie ein Verfahren zur Herstellung einer selbststanzenden Einpressmutter sowie zur Anbringung einer selbststanzenden Einpressmutter | |
DE3623123A1 (de) | Selbstverstopfendes blind-befestigungselement | |
EP1690013B1 (de) | Funktionselement, zusammenbauteil bestehend aus dem funktionselement in kombination mit einem blechteil, verfahren zur herstellung des zusammenbauteils sowie verfahren zur herstellung des funktionselements | |
EP2644911A2 (de) | Funktionselement in Form eines Einpresselements | |
EP1442809B1 (de) | Verfahren zur Herstellung von Hohlkörperelementen | |
DE20205192U1 (de) | Profil zur Herstellung von Hohlkörperelementen, Hohlkörperelement sowie Zusammenbauteil | |
EP0759510B1 (de) | Hohlkörperelement, Matrize zur Anwendung mit dem Hohlkörperelement, Verfahren zur Anbringung des Hohlkörperelementes an ein plattenförmiges Bauteil und Zusammenbauteil | |
DE602004000126T2 (de) | Verfahren zur Herstellung von selbststanzenden Muttern | |
DE102008053346A1 (de) | Abstandselement für die Anbringung an einem Blechteil, Zusammenbauteil und Verfahren zu dessen Herstellung | |
EP1559488B1 (de) | Verfahren zur Herstellung von Hohlkörperelement sowie Folgeverbundwerkzeug zur Durchführung des Verfahrens | |
EP1003243A2 (de) | Verfahren zur Herstellung einer elektrischen Verbindung zu einem Blechteil und Zusammenbauteil | |
DE102010011711B4 (de) | Verfahren und Vorrichtung zur spanlosen Herstellung von Verbindungs-, Befestigungs- oder Verschlusselementen aus Metall mit Außengewinde | |
EP3564545B1 (de) | Zusammenbauteil bestehend aus einem bauteil und einem element mit einem kopfteil und einem auf einer seite des kopfteils angeordneten kragen sowie herstellungsverfahren | |
EP2266725A2 (de) | Hohlkörperelement | |
EP2042751B1 (de) | Verfahren zur Anbringung eines Funktionselements an ein Blechteil sowie Zusammenbauteil | |
DE102012008179A1 (de) | Verbindungssystem und Verfahren zum Verbinden von wenigstens zwei Bauteillagen | |
DE19918196A1 (de) | Stellschraube | |
EP2042750B1 (de) | Verfahren zum Anbringen eines Funktionselementes an ein Blechteil sowie Zusammenbauteil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071116 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20120203 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20131108 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 663491 Country of ref document: AT Kind code of ref document: T Effective date: 20140515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006013686 Country of ref document: DE Effective date: 20140528 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2470334 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140623 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140423 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140724 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140723 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140823 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140825 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006013686 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140531 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140524 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006013686 Country of ref document: DE Effective date: 20150126 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 663491 Country of ref document: AT Kind code of ref document: T Effective date: 20140524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140524 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060524 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140531 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140524 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190527 Year of fee payment: 14 Ref country code: ES Payment date: 20190620 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20190521 Year of fee payment: 14 Ref country code: FR Payment date: 20190523 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190521 Year of fee payment: 14 Ref country code: DE Payment date: 20190730 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006013686 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200524 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20211004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200524 |