EP1843874B1 - Dispositif et procede pour nettoyer, activer ou pretraiter des pieces par projection de neige carbonique - Google Patents

Dispositif et procede pour nettoyer, activer ou pretraiter des pieces par projection de neige carbonique Download PDF

Info

Publication number
EP1843874B1
EP1843874B1 EP05822749A EP05822749A EP1843874B1 EP 1843874 B1 EP1843874 B1 EP 1843874B1 EP 05822749 A EP05822749 A EP 05822749A EP 05822749 A EP05822749 A EP 05822749A EP 1843874 B1 EP1843874 B1 EP 1843874B1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
mixing chamber
gas
blasting
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05822749A
Other languages
German (de)
English (en)
Other versions
EP1843874A1 (fr
Inventor
Felix Elbing
Raphael Rotstein
Marc Knackstedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryosnow GmbH
Original Assignee
Cryosnow GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryosnow GmbH filed Critical Cryosnow GmbH
Publication of EP1843874A1 publication Critical patent/EP1843874A1/fr
Application granted granted Critical
Publication of EP1843874B1 publication Critical patent/EP1843874B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • B24C5/04Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2

Definitions

  • the invention relates to an apparatus and a method for cleaning, activating or pretreating workpieces by means of carbon dioxide snow produced from pressurized CO2 fluids and at least one carrier pressure gas, accelerated by an outlet nozzle, wherein a two-phase carbon dioxide mixture consisting of carbon dioxide gas and carbon dioxide particles in a Agglomeration caused by agglomeration and compression of carbon dioxide snow crystals and the carrier gas is mixed.
  • the document US-A 4962891 describes a device for producing a mixture of CO2 particles and CO2 gas from liquid CO2 and accelerating them to high speeds through a narrow slot nozzle for removing contaminants from a substrate material such as optical apparatus or wafers.
  • a narrow slot nozzle for removing contaminants from a substrate material such as optical apparatus or wafers.
  • the surface to be cleaned may only be subjected to a low energy density.
  • the document US-A 5405283 describes a method and apparatus for cooling low pressure compressed air with nitrogen and passing the resulting gas into a chamber along with expanded CO2 fluid. Via a jet nozzle with convergent and divergent section for transporting, mixing and accelerating the CO2 particles at supersonic speed, the gas mixture is directed to substrates with strongly adhering impurities for cleaning.
  • a jet sweep and a spray device for cleaning surfaces are described.
  • an additional abrasive blasting agent or a liquid from a pressure source to a Strahimedium with a blasting agent, such as dry ice are dosed. It should be achieved with the arrangement a high beam power and / or a wide fanning of the beam.
  • WO00 / 74897 A1 is a jet tool for generating a beam of CO2 snow with a first nozzle and a second nozzle for generating a support beam, which encloses the first beam described. At the nozzle exit of the first nozzle, the phase transformation takes place from liquid CO2.
  • a blasting method and apparatus for cleaning surfaces will be described.
  • pressurized CO2 gas is converted in a relaxation space in dry snow or liquid CO2, partly in dry ice particles, and fed at an acute angle to the jet pipe
  • the carrier gas stream acts as an injector.
  • the carrier gas volume or the liquid CO2 can be metered by throttle valves; the jet mixture is then directed, preferably at the speed of sound, via the Laval nozzle onto the substrate to be cleaned.
  • the cleaning effect should be increased by supplying water drops and / or ice pellets.
  • the invention is based on the problem of providing a method and a device for cleaning by means of carbon dioxide snow blasting, with low investment and operating costs and without damaging the processed substrate surfaces high beam powers, measured as a surface effect per Time unit during cleaning / pretreatment / activation of Surfaces, is possible.
  • the technology in continuous operation should be automated with low logistics costs.
  • the first solution comprises a method for cleaning, activating or pretreating workpieces by means of carbon dioxide snow jets generated from pressurized CO2 fluids and at least one carrier pressurized gas expelled through an outlet nozzle, wherein a two-phase carbon dioxide mixture consisting of carbon dioxide gas and carbon dioxide particles in an agglomeration chamber Agglomeration and compression of carbon dioxide snow crystals produced and mixed with the carrier gas, via a metering of a mixing chamber, in which a centric gas flow of carrier gas flows supplied, the gas flow metered radially from the outside, turbulent mixing, accelerated in an outlet nozzle with the mixed turbulent gas and is directed to a workpiece.
  • the admixing should preferably take place in a three-stage mixing chamber, wherein in the first region of the mixing chamber the two-phase carbon dioxide mixture flows uniformly around a jet pipe projecting into the mixing chamber, in the second region of the mixing chamber the gas flow flowing from the jet pipe into the mixing chamber, and in the third region the mixing chamber is turbulently mixed.
  • turbulence formation can be promoted in the middle or rear region by means of specifically predeterminable geometry of the inner wall of the mixing chamber, by directing the CO.sub.2 mixture into the flow of the jet pipe.
  • the process usually proceeds with a gas flow, which is set when entering the mixing chamber to a temperature of 10 ° C to 40 ° C; This is easily achieved in compressed air generation.
  • the gas flow can be adjusted to a temperature greater than 50 ° C when entering the mixing chamber, for example by arranging a heater on the jet pipe. This makes it possible to obtain condensate water neither at the outlet nozzle nor at the workpiece to be machined. Due to the resulting higher average temperature or the temperature spread between carrier gas and CO2 mixture, the cleaning shock on the workpiece is greater. Experiments have shown improved cleaning as a result.
  • the mixing effect of the gases and the stabilization of the gas stream can be supported according to the invention, if the components to be mixed a swirl / helical rotation is impressed by corresponding internals in the device.
  • the process becomes more energy-rich if liquid droplets, preferably water droplets, are supplied to the gas flow or to the mixing chamber according to the invention.
  • the process is supported in the agglomeration of the CO2 when the two-phase carbon dioxide mixture consisting of carbon dioxide gas and carbon dioxide particles in the agglomeration chamber before the metering from the outside, preferably with liquid nitrogen, is cooled.
  • inert liquid nitrogen is added.
  • the second solution comprises a device for cleaning, activating or pretreating workpieces by means of carbon dioxide snow blasting, in particular for carrying out the method described, comprising a jet device with controllable feeders and pressure sources for carrier gas and carbon dioxide fluid, an agglomeration chamber for the production of carbon dioxide snow crystals and a Mixing device for the carrier gas and carbon dioxide and outlet nozzle arranged behind it, in which the carrier gas supply device is designed as a jet pipe protruding into the mixing device, the agglomeration chamber for agglomeration and compression of carbon dioxide snow crystals in a two-phase carbon dioxide mixture has a metering opening which opens into an annular space, the mixing device as a multi-part mixing chamber is formed at one end with an annular space and at the other end has an outlet opening, which opens into the outlet nozzle.
  • the mixing chamber can have a constriction or internals in the rear part regions for enhancing the turbulence of the gas streams.
  • the agglomeration chamber may preferably be formed as a tube with inner ribs, wherein the inner ribs of the agglomeration chamber in the flow direction of the carbon dioxide CO2 (arrow) are linear or arranged in the form of a helix on the inner circumference of the tube. This can increase the formation of CO2 snow.
  • the outlet nozzle will usually be a Laval nozzle, but according to the invention, other shapes with flat cross-section or circular or annular outlet applicable and their application according to the requirements of the workpiece offered, depending on whether large areas or holes, ribs, grooves or the like are to be cleaned.
  • the limits of - according to previous practical experiments - useful usable nozzles with good results are determined in the dependent claims.
  • the carbon dioxide particles are generated in an agglomeration chamber of carbon dioxide snow crystals by agglomeration and compression processes.
  • This type of production of carbon dioxide particles compared to the prior art significantly higher beam performance in cleaning, pretreatment and activation of surfaces.
  • the technology can be automated in continuous operation and operated with low logistics costs.
  • the parameters pressure, volume flow and / or temperature of the fluids used in the method are sensed by a computer by means of sensors and detected and controlled after adjustment with predetermined or calculated setpoints.
  • a relative movement of the outlet nozzle to the workpiece to be machined can also be regulated by means of computers, and thus any workpieces can be sensed for position and orientation, and the surface to be treated can be swept over by the blasting device.
  • a control computer For the automation, a control computer is used, which accesses a pneumatic control via electrical actuators. The process and adjustment parameters are detected by means of sensors and fed to the control computer as electrical signals.
  • the primary control of the carbon dioxide snow jet or the device is purely pneumatic, so that the method can be used without electrical connection.
  • pneumatic components are significantly less susceptible to interference and maintenance compared to electrical ones.
  • the cleaning and pretreatment process for carbon dioxide snow blasting can be used industrially for the automated cleaning of plastic components before painting processes.
  • the aim is to completely clean the plastic surfaces before painting, ie in particular the removal of fats, oils, release agents, fingerprints, dust particles and sanding dust.
  • the carrier gas used was particle, oil and water-free compressed air, which was generated by a screw compressor and then processed.
  • the carbon dioxide supply was via a low-pressure tank.
  • the setting parameters for the jet pressure of the compressed air were between 2 bar and 6 bar at a volume flow between 2 m 3 / min and 6 m 3 / min and for the pressure of the carbon dioxide between 18 bar and 22 bar.
  • a round or flat nozzle is used.
  • the nozzle was guided over the component to be cleaned with the aid of a six-axis industrial robot.
  • a computer was used to control the system parameters, in this case pressures and volume flows of compressed air and CO2, as well as the speed of the relative movement of the blasting device and its position relative to the workpiece surface to be machined.
  • the consumption of carbon dioxide is dependent on the nozzle used and the amount or adhesive force of the impurities of the plastic surface and is between 0.2 kg / min and 1.0 kg / min.
  • the feed rate of the jet nozzle is between 200 mm / s and 600 mm / s. If a flat nozzle with a jet width of 80mm is used, a surface between 1 m 2 / min and 3 m 2 / min can be cleaned. The surface cleanliness analysis after cleaning was performed optically with a light microscope and a wipe test. In addition, analyzes of the directly applied paint system were carried out.
  • Cleaning large injection molds which may have a surface area of 1 m 2 to 8 m 2 , requires the removal of baked-on, highly adhesive release agent residues from these tool surfaces. It is compressed air with a jet pressure of 8 bar to 10 bar at a volume flow of 6 to 8 m 3 / min generated by a screw compressor.
  • the carbon dioxide supply is carried out by means of riser bottles, preferably arranged in a bottle bundle. The pressure of the carbon dioxide is between 40 bar and 60 bar.
  • the cleaning device is manually guided over the tool surface to be cleaned. Depending on the adhesive force and the amount of impurities on the mold surface, the cleaning performance is between 0.2 m 2 / min and 1.0 m 2 / min.
  • the carbon dioxide consumption when using a round nozzle with a beam diameter of 20 mm was 1 kg / min.
  • the beam energy was varied on the one hand by deliberately introducing water droplets into the mixing chamber.
  • a control of the jet velocity in the range of 100 m / s to 300 m / s has proven to be favorable.
  • the cleanliness of the mold surface is improved, thereby improving the quality of the molded parts in the mold at the surface thereof.
  • Fig. 1 shows the apparatus for carbon dioxide snow blasting.
  • a gas flow 2 is passed via the gas supply line 3 and a jet pipe 4 projecting into the mixing chamber 1.
  • the gas flow is clean air generated by a compressor 5.
  • inert gas such as nitrogen, which is taken from a pressure tank 6, find application.
  • an agglomeration chamber 8 for CO2 snow particles Arranged transversely to the jet pipe 4 and the mixing chamber 1 is an agglomeration chamber 8 for CO2 snow particles, which encloses the jet pipe 4 on its outlet side.
  • a non-illustrated valve CO2 (arrow) is passed in liquid form from a tank, not shown in the agglomeration chamber 8 and relaxed there.
  • a two-phase carbon dioxide mixture 9 consisting of carbon dioxide gas and carbon dioxide particles of the mixing chamber 1 is supplied.
  • the two-phase carbon dioxide mixture flows around the jet pipe 4 of the gas supply line 3 projecting into the mixing chamber 1 and is radially metered into the gas flow 2 in a second region 11 of the mixing chamber 1.
  • a turbulent mixing of two-phase carbon dioxide mixture 9 consisting of carbon dioxide gas and carbon dioxide particles takes place with the gas flow 2.
  • a mixed gas flow with carbon dioxide particles flows into an outlet nozzle 14 and is accelerated there. From the nozzle opening 15 exits a carbon dioxide snow jet 16, which can be used for cleaning or pretreating or activating a workpiece surface 17.
  • Control via computer is not explicitly shown; preferred is a pneumatic control, wherein sensors and actuators are attached to all in the following also in detail to be supplemented functional units.
  • sensors and actuators are attached to all in the following also in detail to be supplemented functional units.
  • the device at least as a basic unit, for small-area applications also be designed as a portable "backpack device" for manual applications.
  • a heater 19 with temperature sensor is integrated in the Gaszu slaughter Plant Extract 3 in front of the projecting into the mixing chamber 1 piece of pipe 4.
  • pretreatment and / or activation are directly into the mixing chamber, preferably in the first region 10 and second region 11 of the mixing chamber 1, water droplets and / or corrosion inhibiting substances, preferably Phosphates, and / or solid abrasive particles introduced via a feed system 22
  • the biphasic carbon dioxide mixture consisting of carbon dioxide gas and carbon dioxide particles 9 before the supply via the Dosing 7 cooled in the mixing chamber 1 from the outside with a cooling system 24 with thermosensor with liquid nitrogen from the reservoir 25.
  • Another possibility for cooling is the direct metering of liquid nitrogen into the two-phase carbon dioxide mixture consisting of carbon dioxide gas and carbon dioxide particles 9 before being fed via the metering opening 7 into the mixing chamber 1 via a nitrogen metering system 26.
  • the inner fin 27 serves in the agglomeration chamber 8 as an aid to increased snow formation and leads that the carbon dioxide snow crystals aggregate into larger and denser carbon dioxide particles 9.
  • the inner fins of the chamber designed as a finned tube extend in the direction of flow of the CO 2 (arrow) flowing liquid from a source, which of course is in all embodiments of the device via a nozzle (not shown) with a predeterminable or adjustable cross section.
  • the jet power can be additionally increased if the inner ribs 27 of the inner fin tube are formed in the form of a helix on the inner circumference of the chamber 8.
  • Fig. 2 shows some embodiments A, B, C, D for the nozzle 14, from the nozzle opening 15 of the carbon dioxide snow jet 16 exits and can be used to clean, pretreat and activate a workpiece surface 17.
  • a Laval nozzle 28 having a convergent portion 29, a cylindrical portion 30 and a divergent portion 31 can be used as the nozzle 14.
  • the geometry of the exit cross section corresponds to a circle 32.
  • Fig. 2B The device for carbon dioxide snow blasting offers the possibility, depending on the application, of round nozzles 33 with an outlet cross-sectional area of the geometry of a circle 34.
  • Fig. 2C / 2D Flat nozzles 35 with an exit cross-sectional area of the geometry of a rectangle 36 or an ellipse 37, but also ring nozzles 38 with flow fixtures 39 and an exit cross-sectional area of the geometry of a circular ring 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Nozzles (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Carbon And Carbon Compounds (AREA)

Claims (28)

  1. Procédé pour nettoyer, activer ou prétraiter des pièces (17) au moyen de jets de neige carbonique, produits à partir de CO2 fluide se trouvant sous pression et d'au moins un gaz porteur comprimé (2), accélérés par une buse de sortie (14), dans lequel on produit un mélange biphasique de dioxyde de carbone composé de dioxyde de carbone gazeux et de particules de dioxyde de carbone (9) dans une chambre d'agglomération (8) par agglomération et compression de cristaux de neige carbonique (9) et on l'ajoute au gaz porteur (2), caractérisé en ce qu'on l'envoie par une ouverture de dosage (7) à une chambre de mélange (1), dans laquelle pénètre un courant de gaz central (2) en un gaz porteur comprimé, on l'ajoute de façon dosée radialement par l'extérieur au courant de gaz (2), on le mélange de façon turbulente, on l'accélère dans une buse de sortie (14) avec le gaz turbulent mélangé et on le conduit sur une pièce (17).
  2. Procédé selon la revendication 1, caractérisé en ce que le mélange est effectué dans une chambre de mélange à trois étages (1), dans lequel, dans la première région (10) de la chambre de mélange, le mélange biphasique de dioxyde de carbone (9) s'écoule uniformément autour d'un tube de projection (4) pénétrant dans la chambre de mélange (1), dans la deuxième région (11) de la chambre de mélange (1), il est ajouté au courant de gaz (2) qui s'écoule dans la chambre de mélange (1) à partir du tube de projection (4) et, dans la troisième région (12) de la chambre de mélange (1), il est mélangé de façon turbulente.
  3. Procédé selon les revendications 1 ou 2, caractérisé en ce que les paramètres pression, débit volumétrique et/ou température des fluides utilisés dans le procédé sont captés et détectés par un ordinateur au moyen de capteurs et ils sont ensuite commandés après compensation avec des valeurs de consigne prédéterminées ou calculées.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, en plus des paramètres des fluides, un mouvement relatif de la buse de sortie (14) par rapport à la pièce à traiter (17) est également régulé au moyen d'ordinateurs.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le courant de gaz (2) agit par l'air de la source d'air comprimé (5) ou par l'azote d'un réservoir sous pression (6).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le courant de gaz (2) est réglé à une température de 10°C à 40°C à l'entrée dans la chambre de mélange (1).
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le courant de gaz (2) est réglé à une température supérieure à 50°C à l'entrée dans la chambre de mélange (1).
  8. Procédé selon l'une quelconque des revendications, précédentes, caractérisé en ce que le courant de gaz (2) est mis en rotation giratoire avant l'entrée dans la chambre de mélange (1).
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le mélange biphasique de dioxyde de carbone (9) composé de dioxyde de carbone gazeux et de particules de dioxyde de carbone est mis en rotation giratoire avant l'ouverture de dosage (7).
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que des gouttes de liquide, en particulier des gouttes d'eau, sont ajoutées dans le courant de gaz (2).
  11. Procédé selon la revendication 10, caractérisé en ce que des gouttes de liquide, en particulier des gouttes d'eau, sont ajoutées dans la chambre de mélange (1).
  12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que des particules d'agent de sablage solides sont ajoutées dans le courant de gaz (2).
  13. Procédé selon la revendication 12, caractérisé en ce que l'on utilise comme particules de sablage de préférence des particules organiques, y compris la farine, le bois, les matières plastiques, ou des particules inorganiques, y compris des matières solides très finement broyées en silicium, en sel.
  14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le mélange biphasique de dioxyde de carbone composé de dioxyde de carbone gazeux et de particules de dioxyde de carbone (9) est refroidi de l'extérieur, de préférence avec de l'azote liquide, dans la chambre d'agglomération (8) avant l'ouverture de dosage (7).
  15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on ajoute de l'azote liquide avant l'ouverture de dosage (7) dans le mélange biphasique de dioxyde de carbone composé de dioxyde de carbone gazeux et de particules de dioxyde de carbone (9).
  16. Dispositif pour nettoyer, activer ou prétraiter des pièces (17) au moyen de jets de neige carbonique, en particulier pour la mise en oeuvre d'un procédé selon l'une quelconque des revendications précédentes, comprenant un dispositif de projection (3, 4) avec des dispositifs d'alimentation et des sources de pression réglables (5, 6) pour un gaz porteur (2) et un fluide de dioxyde de carbone, une chambre d'agglomération (8) pour la production de cristaux de neige carbonique (9) et un dispositif de mélange (1) pour le gaz porteur (2) et le dioxyde de carbone (9) ainsi qu'une buse de sortie (14) disposée derrière ceux-ci, caractérisé en ce que:
    - le dispositif d'alimentation (3) pour un gaz porteur est réalisé sous la forme d'un tube de projection (4) pénétrant dans le dispositif de mélange (1),
    - la chambre d'agglomération (8) présente, pour l'agglomération et la compression de cristaux de neige carbonique en un mélange biphasique de dioxyde de carbone, une ouverture de dosage (7) qui débouche dans un espace annulaire (10),
    - le dispositif de mélange (1) est réalisé sous la forme d'une chambre de mélange en plusieurs parties (10, 11, 12) avec un espace annulaire (10) à une extrémité et comporte à l'autre extrémité une ouverture de sortie (13), qui débouche dans la buse de sortie (14).
  17. Dispositif selon la revendication 16, caractérisé en ce que la chambre de mélange (1) est une chambre de mélange à trois étages, dans lequel la première région (10) de la chambre de mélange est configurée de façon à faire circuler uniformément le mélange biphasique de dioxyde de carbone (9) autour d'un tube de projection (4) pénétrant dans la chambre de mélange (1), la deuxième région (11) de la chambre de mélange (1) est configurée de façon à ajouter le mélange biphasique au courant de gaz (2) provenant du tube de projection (4) et une troisième région (12) de la chambre de mélange (1) est configurée de façon à provoquer un mélange turbulent de dioxyde de carbone (CO2; 9) et de gaz porteur (2, 5, 6).
  18. Dispositif selon les revendications 16 ou 17, caractérisé en ce que la chambre d'agglomération (8) est réalisée sous la forme d'un tube avec des nervures intérieures (27).
  19. Dispositif selon l'une quelconque des revendications 16 à 18, caractérisé en ce que les nervures intérieures (27) de la chambre d'agglomération (8) s'étendent linéairement dans la direction d'écoulement du dioxyde de carbone CO2 (flèche).
  20. Dispositif selon l'une quelconque des revendications 16 à 18, caractérisé en ce que les nervures intérieures de la chambre d'agglomération (8) sont disposées sous la forme d'une hélice sur la périphérie intérieure du tube.
  21. Dispositif selon l'une quelconque des revendications 16 à 20, caractérisé en ce que la chambre de mélange (1) présente dans des zones partielles arrière (11 ou 12) un étranglement ou des chicanes pour accentuer la turbulence des écoulements de gaz.
  22. Dispositif selon l'une quelconque des revendications 16 à 21, caractérisé en ce que la buse de sortie (14) est constituée par une tuyère de Laval.
  23. Dispositif selon l'une quelconque des revendications 16 à 21, caractérisé en ce que la buse de sortie (14) est une buse de section transversale ronde (32, 34), plate (36, 37) ou annulaire (40).
  24. Dispositif selon la revendication 23, caractérisé en ce que la buse plate présente une ouverture de sortie (36, 37) ayant une largeur de 20 mm à 120 mm et une hauteur de 1 mm à 4 mm.
  25. Dispositif selon la revendication 23, caractérisé en ce que la buse ronde présente une ouverture de sortie (32, 34) ayant un diamètre de 2 mm à 20 mm.
  26. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par un ordinateur pour la commande des paramètres pression, débit volumétrique et/ou température des fluides utilisés dans le procédé, qui sont captés et détectés et compensés avec des valeurs de consigne prédéterminées ou calculées.
  27. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par un ordinateur convenant pour réguler, en plus des paramètres des fluides, également un mouvement relatif de la buse de sortie (14) par rapport à la pièce à traiter (17).
  28. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par un dispositif d'automatisation, dans lequel un ordinateur de commande peut intervenir au moyen d'organes de réglage électriques sur une commande pneumatique pour l'ensemble du dispositif.
EP05822749A 2005-02-05 2005-11-28 Dispositif et procede pour nettoyer, activer ou pretraiter des pieces par projection de neige carbonique Active EP1843874B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005005638A DE102005005638B3 (de) 2005-02-05 2005-02-05 Verfahren und Vorrichtung zum Reinigen, Aktivieren oder Vorbehandeln von Werkstücken mittels Kohlendioxidschnee-Strahlen
PCT/EP2005/012866 WO2006081856A1 (fr) 2005-02-05 2005-11-28 Dispositif et procede pour nettoyer, activer ou pretraiter des pieces par projection de neige carbonique

Publications (2)

Publication Number Publication Date
EP1843874A1 EP1843874A1 (fr) 2007-10-17
EP1843874B1 true EP1843874B1 (fr) 2013-02-27

Family

ID=35613066

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05822749A Active EP1843874B1 (fr) 2005-02-05 2005-11-28 Dispositif et procede pour nettoyer, activer ou pretraiter des pieces par projection de neige carbonique

Country Status (8)

Country Link
US (1) US7967664B2 (fr)
EP (1) EP1843874B1 (fr)
JP (1) JP4939439B2 (fr)
CN (1) CN101124065B (fr)
CA (1) CA2597005C (fr)
DE (1) DE102005005638B3 (fr)
ES (1) ES2409161T3 (fr)
WO (1) WO2006081856A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13392U1 (de) * 2012-10-22 2013-12-15 Inova Lisec Technologiezentrum Verfahren und Anordnung zum Reinigen von Vorrichtungen zum Füllen der Randfuge von Isolierglas mit einer Füllmasse
US11358183B2 (en) 2017-12-20 2022-06-14 Halliburton Energy Services, Inc. Capture and recycling methods for non-aqueous cleaning materials

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1839883B1 (fr) * 2006-03-08 2016-08-24 Homag Holzbearbeitungssysteme AG Procédé et dispositif pour imprimer sur des objets en forme de plaque
AT503825B1 (de) * 2006-06-23 2012-04-15 Leopold-Franzens-Universitaet Innsbruck Vorrichtung und verfahren zur bearbeitung eines festen werkstoffs mit einem wasserstrahl
DE502006005293D1 (de) * 2006-08-25 2009-12-17 Homag Holzbearbeitungssysteme Vorrichtung zum Bemustern von Werkstücken
CN101177074B (zh) * 2006-11-07 2011-07-20 豪迈木材加工系统公司 在工件上制作图案的设备及使用该设备制作图案的方法
EP1935657B1 (fr) * 2006-12-20 2013-02-13 Homag Holzbearbeitungssysteme AG Dispositif et procédé destinés au revêtement de pièces à usiner
EP1974928B1 (fr) 2007-03-27 2009-11-18 Homag Holzbearbeitungssysteme AG Procédé d'impression d'un recipient
ES2564242T3 (es) * 2007-05-10 2016-03-21 Homag Holzbearbeitungssysteme Ag Procedimiento y dispositivo para el revestimiento de una superficie
US20080314513A1 (en) * 2007-06-19 2008-12-25 Achim Gauss Device for imparting a pattern onto the surface of work pieces
US20090120249A1 (en) * 2007-11-14 2009-05-14 Achim Gauss Device For Refining Workpieces
ES2420974T3 (es) * 2007-12-10 2013-08-28 Jens-Werner Kipp Dispositivo de proyección de hielo seco
DE102008037088A1 (de) 2008-08-08 2010-02-11 Linde Ag Düsenelement zum Ausgeben CO2-Schnee und Verfahren zur Herstellung von CO2-Schnee
DE102008037089A1 (de) 2008-08-08 2010-02-11 Linde Ag Vorrichtung und Verfahren zum Reinigen von Gegenständen mittels Trockenschnee
DE102008047432A1 (de) 2008-09-15 2010-04-15 Linde Ag Vorrichtung und Verfahren zum Erzeugen von Trockeneisschnee
DE102008057942A1 (de) 2008-11-19 2010-05-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Entfernen von Fremdkörpern aus einem offenen Hohlraum eines Maschinenteils sowie Einrichtung zur Durchführung des Verfahrens
DE102009040498A1 (de) * 2009-09-08 2011-03-10 Messer Group Gmbh Verfahren und Vorrichtung zum Herstellen fester Kohlendioxid-Partikel
CN101823237B (zh) * 2010-04-29 2012-06-06 沈阳理工大学 微磨料气射流加工用螺旋芯控制流束的喷嘴装置
CN101823238B (zh) * 2010-04-29 2012-01-25 沈阳理工大学 微磨料气射流加工用锥芯控制流束的喷嘴装置
EP2420353A1 (fr) 2010-08-16 2012-02-22 desisa GmbH Dispositif et procédé destinés au dépôt de glace sèche
CN102441546A (zh) * 2010-10-14 2012-05-09 刘忠炯 电子器材塑胶外壳表面清洗方法
FR2966371B1 (fr) * 2010-10-22 2013-08-16 Air Liquide Procede et installation d'usinage avec refroidissement cryogenique
DE102010064406A1 (de) * 2010-12-30 2012-07-05 ipal Gesellschaft für Patentverwertung Berlin mbH Vorrichtung und Verfahren zum Partikelstrahlen mittels gefrorener Gaspartikel
DE102011008894A1 (de) * 2011-01-19 2012-07-19 Air Liquide Deutschland Gmbh Verfahren und Düse zur Unterdrückung einer Entwicklung von eisenhaltigem Dampf
JP2013059711A (ja) * 2011-09-12 2013-04-04 Japan Display East Inc 洗浄方法
DE102011057068A1 (de) 2011-12-27 2013-06-27 Quiel Gmbh Sondermaschinen Verfahren und Vorrichtung zur Reinigung von Transportvorrichtungen, insbesondere für feuchte Lebensmittel
DE202011052493U1 (de) 2011-12-27 2012-02-13 Quiel Gmbh Sondermaschinen Vorrichtung zur Reinigung von Transportvorrichtungen, insbesondere für feuchte Lebensmittel
CN102580940A (zh) * 2012-02-15 2012-07-18 上海鸣华化工科技有限公司 均匀稳定喷射的液态二氧化碳清洗用喷枪
CN102527660A (zh) * 2012-02-15 2012-07-04 上海鸣华化工科技有限公司 液态二氧化碳单独或与压缩气体混合作为清洗剂均匀稳定喷射的清洗方法
DE102012006567A1 (de) 2012-03-30 2013-10-02 Dürr Systems GmbH Trockeneis-Reinigungseinrichtung für eine Lackieranlage
DE102012008593A1 (de) * 2012-04-27 2013-10-31 Messer France S.A.S Verfahren und Vorrichtung zum Kühlen von Produkten
CN103802031A (zh) * 2012-11-15 2014-05-21 黄智� 任意面形的高精度光学表面确定性加工系统
US20140137910A1 (en) * 2012-11-20 2014-05-22 Bratney Companies Dry ice blasting cleaning system and method of using the same
CN103831263A (zh) * 2012-11-23 2014-06-04 上海华虹宏力半导体制造有限公司 工艺腔部品的清洗方法
CN103084961B (zh) * 2013-02-05 2015-02-18 浙江工业大学 硬脆材料零件的约束磨粒流超精密加工装置
ES2759005T3 (es) * 2013-05-06 2020-05-07 Ics Ice Cleaning Systems S R O Dispositivo para mezclar partículas sólidas de hielo seco con un flujo de medio gaseoso
DE102013107400B4 (de) 2013-07-12 2017-08-10 Ks Huayu Alutech Gmbh Verfahren zur Entfernung des Oversprays eines thermischen Spritzbrenners
CN103433164A (zh) * 2013-09-05 2013-12-11 浙江大学台州研究院 射流器
US11260503B2 (en) 2013-12-20 2022-03-01 Flow International Corporation Abrasive slurry delivery systems and methods
US9931639B2 (en) 2014-01-16 2018-04-03 Cold Jet, Llc Blast media fragmenter
CN104308749B (zh) * 2014-10-24 2016-08-17 浙江工业大学 一种强约束流可控抛光装置
KR20160065226A (ko) * 2014-11-07 2016-06-09 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
DE102015106914A1 (de) * 2014-11-18 2016-05-19 Jens-Werner Kipp Verfahren und Vorrichtung zur Reinigung von Rohren, Tanks und sonstigen Oberflächen von Teilen, mit Rückständen aus Fett, Oel und ähnlichen Stoffen
US20160325469A1 (en) * 2015-05-04 2016-11-10 Matthew Hershkowitz Methods for improved spray cooling of plastics
DE102015209994A1 (de) 2015-05-29 2016-12-15 Lufthansa Technik Ag Verfahren und Vorrichtung zur Reinigung eines Strahltriebwerks
CN106269333A (zh) * 2016-08-04 2017-01-04 深圳朝伟达科技有限公司 管道内发泡剂或者起泡密封剂涂敷方法
CN106076687A (zh) * 2016-08-06 2016-11-09 云南电网有限责任公司昆明供电局 一种高效二氧化碳雪喷枪
KR101964204B1 (ko) * 2016-11-09 2019-04-02 무진전자 주식회사 유체 혼합 노즐
DE102016123812A1 (de) * 2016-12-08 2018-06-14 Air Liquide Deutschland Gmbh Anordnung und Verfahren zum Behandeln einer Oberfläche
JP6897179B2 (ja) * 2017-03-10 2021-06-30 株式会社デンソー岩手 ドライアイス洗浄装置
CN106965092B (zh) * 2017-04-17 2018-09-07 南京航空航天大学 聚合物用智能可控温低温磨料射流加工装置
CN108554936A (zh) * 2018-04-08 2018-09-21 苏州珮凯科技有限公司 半导体8寸晶元薄膜制程的e-max工艺的石英零部件的再生方法
CN108441925A (zh) * 2018-04-18 2018-08-24 北京理贝尔生物工程研究所有限公司 一种新型阳极氧化工艺预处理方法
FR3080791B1 (fr) 2018-05-04 2021-06-04 Critt Techniques Jet Fluide Et Usinage Dispositif et procede pour le traitement superficiel d'un materiau
DE102018208753A1 (de) * 2018-06-04 2019-12-05 Bausch + Ströbel Maschinenfabrik Ilshofen GmbH + Co. KG Verfahren und Vorrichtung zum Reinigen von Primärpackmitteln
DE102019108289A1 (de) * 2019-03-29 2020-10-01 acp systems AG Vorrichtung zum Erzeugen eines CO2-Schnee-Strahls
KR20220126730A (ko) * 2019-12-31 2022-09-16 콜드 제트 엘엘씨 강화된 블라스트 스트림을 위한 방법 및 장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389820A (en) * 1980-12-29 1983-06-28 Lockheed Corporation Blasting machine utilizing sublimable particles
JPS58158599A (ja) * 1982-03-17 1983-09-20 三菱重工業株式会社 汚染表面層の除去装置
US4962891A (en) * 1988-12-06 1990-10-16 The Boc Group, Inc. Apparatus for removing small particles from a substrate
US5125979A (en) * 1990-07-02 1992-06-30 Xerox Corporation Carbon dioxide snow agglomeration and acceleration
US5390450A (en) * 1993-11-08 1995-02-21 Ford Motor Company Supersonic exhaust nozzle having reduced noise levels for CO2 cleaning system
US5405283A (en) * 1993-11-08 1995-04-11 Ford Motor Company CO2 cleaning system and method
US5785581A (en) * 1995-10-19 1998-07-28 The Penn State Research Foundation Supersonic abrasive iceblasting apparatus
US5616067A (en) * 1996-01-16 1997-04-01 Ford Motor Company CO2 nozzle and method for cleaning pressure-sensitive surfaces
DE19747838C2 (de) * 1997-10-19 2001-07-12 Gp Granulate Pneumatic Geraete Verfahren und Vorrichtung zum trockenen Entfernen von Beschichtungen, Graffiti oder sonstigen oberflächlichen Verunreinigungen
DE19807917A1 (de) * 1998-02-25 1999-08-26 Air Liquide Gmbh Verfahren und Einrichtung zur Erzeugung eines zweiphasigen Gas-Partikel-Strahls, insbesondere mit CO¶2¶-Trockeneispartikeln
JP3498837B2 (ja) * 1999-05-07 2004-02-23 島田理化工業株式会社 洗浄装置用ノズル
DE19926119C2 (de) * 1999-06-08 2001-06-07 Fraunhofer Ges Forschung Strahlwerkzeug
US6405283B1 (en) 1999-11-23 2002-06-11 Roxio, Inc. Method for handling buffer under-run during disc recording
WO2001098030A1 (fr) * 2000-06-22 2001-12-27 Eikichi Yamaharu Dispositif de soufflage de glace carbonique
WO2003022525A2 (fr) * 2001-09-11 2003-03-20 Jens Werner Kipp Procede et dispositif de decapage
JP2004008995A (ja) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd 部品の洗浄方法
ES2260691T3 (es) * 2002-09-20 2006-11-01 Jens-Werner Kipp Procedimiento y dispositivo de limpieza por proyeccion.
KR20040101948A (ko) * 2004-05-31 2004-12-03 (주)케이.씨.텍 표면세정용 승화성 고체입자 분사용 노즐 및 이를 이용한 세정방법
KR101365504B1 (ko) * 2006-03-10 2014-02-21 후지필름 가부시키가이샤 용액 캐스팅 방법 및 석출물 제거 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT13392U1 (de) * 2012-10-22 2013-12-15 Inova Lisec Technologiezentrum Verfahren und Anordnung zum Reinigen von Vorrichtungen zum Füllen der Randfuge von Isolierglas mit einer Füllmasse
US11358183B2 (en) 2017-12-20 2022-06-14 Halliburton Energy Services, Inc. Capture and recycling methods for non-aqueous cleaning materials

Also Published As

Publication number Publication date
CN101124065B (zh) 2012-01-04
WO2006081856A1 (fr) 2006-08-10
CA2597005A1 (fr) 2006-08-10
JP4939439B2 (ja) 2012-05-23
US20080092923A1 (en) 2008-04-24
CN101124065A (zh) 2008-02-13
EP1843874A1 (fr) 2007-10-17
CA2597005C (fr) 2013-05-07
DE102005005638B3 (de) 2006-02-09
US7967664B2 (en) 2011-06-28
ES2409161T3 (es) 2013-06-25
JP2008529760A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
EP1843874B1 (fr) Dispositif et procede pour nettoyer, activer ou pretraiter des pieces par projection de neige carbonique
EP2741862B1 (fr) Dispositif de production d'un jet pulsé de fluide sous pression
DE10102924C1 (de) Verfahren und Vorrichtung zum Strahlbearbeiten, insbesondere formgenauen Abtragen und/oder Verdichten und/oder Beschichten, von festen Flächen
EP2723508B1 (fr) Dispositif pour le traitement des pieces d'ouvrage
EP2151300B1 (fr) Dispositif et procédé de nettoyage d'objets à l'aide de neige carbonique
DE102006002653B4 (de) Trockeneisstrahlverfahren
WO2011023302A1 (fr) Procédé et dispositif de production d'une couche pulvérisée en matière plastique réactive
EP0004106A1 (fr) Procédé et dispositif pour le traitement de surface de pièces
DE102010064406A1 (de) Vorrichtung und Verfahren zum Partikelstrahlen mittels gefrorener Gaspartikel
EP2136965B1 (fr) Dispositif et procédé pour la projection de particules grâce à des particules de gaz surgelées
DE102007027944B4 (de) Verfahren und Einrichtung zum Reinigen von Gegenständen in einer Behandlungskammer
WO2018184798A1 (fr) Dispositif et procédé de découpage au jet de fluide haute pression
DE102004001346A1 (de) Vorrichtung und Verfahren zur Zerstäubung von Fluiden, insbesondere metallischen und keramischen Schmelzen
EP2512737B1 (fr) Procédé et dispositif de nettoyage, d'activation et de prétraitement d'une pièce au moyen de particules de neige carbonique
DE19923102A1 (de) Verfahren und Vorrichtung zum Reinigen von ebenen und unebenen, sowie profilierten und strukturierten Flächen
EP2926951B1 (fr) Procédé de nettoyage et d'activation simultanés de surfaces de composants par une combinaison de pulvérisation de neige carbonique et d'application de substances adhésives
DE102012021576A1 (de) Verfahren und Vorrichtung zum Abschrecken eines Werkstücks
DE102011012287A1 (de) Sprühvorrichtung für ein Reaktivharz und Verfahren zur Herstellung desselben
WO2021094363A1 (fr) Dispositif de traitement de surfaces à la glace sèche et procédé de traitement de surfaces
WO2005063441A1 (fr) Procede et dispositif de rectification de surfaces
DE10237402A1 (de) Verfahren zum Erzeugen einer Partikelströmung aus feinkörnigen Teilchen in einem Gasstrom, Anwendung des Verfahrens zur Erzeugung eines Schleuderstrahles und Strahlpistole zur Formierung eines Schleuderstrahles
DE102009060096A1 (de) Automatisierte Reinigung von Wechselwerkzeugen von Werkzeugmaschinen
WO2012110407A1 (fr) Dispositif de pulvérisation pour une résine réactive et procédé de production d'une résine réactive
DE2809376A1 (de) Kontinuierliches verfahren und vorrichtung zur oberflaechenbehandlung von endlosformkoerpern
DE102011011241A1 (de) Sprühvorrichtung für ein Reaktivharz und Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071122

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005013507

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B24C0001000000

Ipc: B24C0005040000

RIC1 Information provided on ipc code assigned before grant

Ipc: B24C 1/00 20060101ALI20120717BHEP

Ipc: B24C 5/04 20060101AFI20120717BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 598241

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013507

Country of ref document: DE

Effective date: 20130425

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2409161

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130625

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 13967

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130528

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013507

Country of ref document: DE

Effective date: 20131128

BERE Be: lapsed

Owner name: CRYOSNOW G.M.B.H.

Effective date: 20131130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 598241

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131128

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051128

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231116

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231215

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231121

Year of fee payment: 19

Ref country code: IT

Payment date: 20231130

Year of fee payment: 19

Ref country code: FR

Payment date: 20231123

Year of fee payment: 19

Ref country code: DE

Payment date: 20231130

Year of fee payment: 19