EP1829843B1 - Appareil pour traiter des pieces poreuses en carbone - Google Patents

Appareil pour traiter des pieces poreuses en carbone Download PDF

Info

Publication number
EP1829843B1
EP1829843B1 EP06026557.6A EP06026557A EP1829843B1 EP 1829843 B1 EP1829843 B1 EP 1829843B1 EP 06026557 A EP06026557 A EP 06026557A EP 1829843 B1 EP1829843 B1 EP 1829843B1
Authority
EP
European Patent Office
Prior art keywords
chamber
workpieces
workpiece
silicon
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06026557.6A
Other languages
German (de)
English (en)
Other versions
EP1829843A3 (fr
EP1829843A2 (fr
Inventor
Andreas Kienzle
Johann Daimer
Rudi Beck
Otto Mederle
Matthieu Schwartz
Jens Rosenlöcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP1829843A2 publication Critical patent/EP1829843A2/fr
Publication of EP1829843A3 publication Critical patent/EP1829843A3/fr
Application granted granted Critical
Publication of EP1829843B1 publication Critical patent/EP1829843B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the present invention relates to a device for siliconising carbonaceous materials.
  • a method for producing a silicon-impregnated body of silicon carbide in which a mixture of silicon carbide powder with graphite powder and a silicone resin is granulated, compacted and calcined at about 800 ° C. The calcined body is heated under reduced pressure to 1500 ° C and impregnated with molten silicon. The thus prepared body is then sintered at 1600 ° C to 1800 ° C.
  • EP 0 453 592 discloses a method of making siliconized silicon carbide articles by first injecting an injection molded body of silicon carbide particles and an organic binder into a porous body containing silicon carbide and elemental carbon, which is subsequently infiltrated with molten silicon, by heating; wherein the elemental carbon is converted to silicon carbide.
  • the sprue of the injection-molded body is used as a feed for the molten silicon.
  • the patent application EP 1 607 704 A1 relates to a continuously operated furnace for burning tiles or for tempering pressed steel parts.
  • the patent application DE 197 10 105 A1 relates to a silicon carbide body reinforced with graphite short fibers, and a process for the production thereof, in which the body to be silicided, which must have an open pore system penetrating the whole body, is placed in a container, on the bottom of which is molten silicon. See page 4, line 67, to page 5, line 1.
  • the bodies which are to be silicided are porous carbon bodies which are very absorbent in relation to the silicon and whose lower part is in liquid silicon. The silicon then passes through these wick bodies into the bodies to be silicided without the latter having direct contact with the silicon bath. See page 5, lines 29 to 31.
  • a furnace at the bottom of which is a well with silicon, in the three columnar supports made of highly porous CFC material (with fibers of Carbon reinforced carbon) are arranged as wicks on which the body to be silicided is applied.
  • the furnace is pumped to a pressure of 3 hPa (3 mbar) and heated to a temperature of 1750 ° C within two hours, maintained at this temperature for a further ten minutes at 1750 ° C, and then cooled.
  • step b the pressure is lowered to the operating pressure p B 1 after or before heating or during heating, but always after the step of purging with inert gas.
  • the device according to the invention consists of at least four chambers O1 to O4 which are interconnected by locks, each of the chambers being heatable, coolable, evacuatable and to be filled or flushed with suitable gases independently of their neighbors.
  • each of the chambers O i is provided with at least one transport or conveyor, by means of which the workpieces are transported from the previous chamber O i-1 into the chamber O i and out of the chamber O i into the following chamber O i + 1
  • the index i can assume the values 1, 2, 3 and 4.
  • the device according to the invention allows the spatial separation of the individual process steps and a tact-like semi-continuous promotion of workpieces in separate chambers by locks and the environment, this gives rise to the possibility of the operating state (temperature, pressure) in the individual chambers as constant as possible; this leads to uniform operating states, reduction of energy requirements, and higher flexibility in production.
  • the conveyance or transport of the workpieces can be done by known means and methods, for example by sliding or conveying by means of a slider, by transport on rollers, by means of one or more lifting bars, or on a link chain.
  • materials are used for the transport, which withstand the selected temperatures and the media used, for example, selected from graphite and other carbon materials, the fibers z.
  • the steps a and b and the steps d and e can each be carried out in a common chamber, while otherwise at least one separate chamber is provided for each of the method steps.
  • the heating in the chambers is done with known heaters, especially infrared heaters, inductive heaters, microwave heating and heating by warmed gas (inert gas).
  • the cooling is carried out by flowing through the relevant chamber with a cooled gas stream, with inert gases such as nitrogen and argon are preferred at higher temperatures, while at temperatures of at most 300 ° C and air can be used.
  • induction heating in the chamber O1 , since this type of heating can very quickly introduce large amounts of energy into the workpiece.
  • a flushed with an inert gas preferably with nitrogen or argon
  • an induction heater 11 from room temperature to the operating temperature T B 1 heated, which may be from 1300 ° C to 1800 ° C, preferably 1350 ° C to 1750 ° C.
  • the operating pressure of 1 bar is lowered to a value p B 1 of at most 100 mbar (100 hPa), more preferably up to 50 hPa (50 mbar), and in particular at most 20 mbar (20 hPa) .
  • p B 1 of at most 100 mbar (100 hPa), more preferably up to 50 hPa (50 mbar), and in particular at most 20 mbar (20 hPa) .
  • a negative pressure is generated in the chamber O1 , as he also preferably constantly prevails in the chamber O2 , of at most 1 Pa (10 -2 mbar).
  • this pressure is reached, the workpiece is transported through the lock 20 into the chamber O2 , where it is now referred to as 95 .
  • a new workpiece is introduced from outside through the lock 10 into the chamber O1 and heated as described above.
  • the workpiece 95 is received at an operating pressure p B 2 of at most 10 -2 mbar (1 Pa) and at an adjustable via the heater 21 operating temperature T B 2 of 1450 ° C to 1700 ° C by a transport device, not shown and placed on the pads (porous wicks) 26 placed in the siliconizer 27 .
  • this siliconizing device 27 according to method step c, liquid silicon 25 located in a basin 22 passes via the porous wicks 26 into the workpiece 95 made of carbon.
  • silicon penetrates into the pores of the workpiece 95 and reacts, at least in part, according to process step d with the carbon present in the workpiece to silicon carbide.
  • the workpiece is called a "siliconized workpiece" after this treatment.
  • the basin 22 in the chamber O2 becomes one or more (in the drawing Fig. 2a in the number of two shown) pressure cells 28 ; this makes it possible to determine the mass of the silicon absorbed in the workpiece by weighing the basin before placing the workpiece 95 and after infiltration and removing the workpiece 95 .
  • the siliconized workpiece 95 is lifted off the wicks and transported through the sheath 30 into the chamber O3 .
  • the level of liquid silicon in the basin 22 is restored to the preset value after each cycle (extension of a siliconized workpiece 95 from O2 and inlet of a fresh preheated workpiece from the chamber O1 ) to a liquid silicon reservoir 23 passing through a pipe 24 is connected to the basin 22 .
  • the reaction according to the process step d in the siliconized workpiece is completed to the desired extent, whereby the spatial separation from the chamber O2 affords the favorable possibility, at a temperature T B 3, which is at least 50 K above the temperature T B 2, to anneal the workpiece in the chamber O3 without running the risk that escapes from the tank 22 as in the election of a higher temperature in the chamber O2 due to the higher vapor pressure of silicon.
  • T B 3 which is at least 50 K above the temperature T B 2
  • the temperature range for such a post-reaction is from 1500 ° C to 1900 ° C, more preferably from 1600 ° C to 1900 ° C, and especially from 1700 ° C to 1800 ° C.
  • the formation of silicon carbide can thus proceed much faster, leading to a desirable shortening of the cycle times in the process.
  • the heating in the chambers O2 and O3 is preferably carried out by radiant heating, for example, brought by Joule'sche heat annealed graphite heaters 21 and 31.
  • the workpiece in the chamber O3 by blowing cold inert gas according to the method step e cooled to a conditioning temperature T K in the range of 500 ° C to 300 ° C.
  • the workpiece 96 is brought through the lock 40 in the chamber O4 and there in the position 97 according to the method step f further first with inert gas, cooled from temperatures of at most 300 ° C and with air to room temperature. Through the lock 50 then the finished workpiece 98 can be discharged. Of course, before the next workpiece 95 is transferred into the chamber O3 for post-reaction, this chamber O3 is evacuated back to the operating pressure p B 3.
  • a residence time of the workpieces in the chambers O1 to O4 of three minutes to twenty minutes has been found to be favorable.
  • the process ensures that the workpieces 95 placed in the O2 chamber are always brought to the operating temperature prevailing in O2 , and that the operating pressure in O2 is always maintained.
  • This uniformity of pressure and temperature in the siliconizing step has proven to be essential for achieving consistent product quality.
  • a further advantage is that the workpieces are not cooled in contact with the silicon bath, thereby avoiding that pores formed by volume contraction of the silicon upon cooling are filled by post-sucked silicon. If several process steps are carried out in one of the chambers, for example in the step of post-reaction O3, optionally at elevated temperature compared to O2 takes place, and then the cooling, it is further preferred to divide these chambers.
  • the workpieces may have molded nipples 201 on a flat side, these nipples 201 having a constriction towards this flat side, as shown in FIG Fig. 2b and enlarged in the Fig. 2c is shown.
  • These nipples 201 submerge in the liquid silicon 25 in the silicon bath 27 , or stand on the supports 29. After removal of the finished workpieces from the device, these nipples 201 are easily broken off, since the extent of constriction is chosen such that in order to make this possible.
  • alloys or liquid mixtures of silicon with one or more other elements for infiltration.
  • additions of iron in a proportion by mass of up to 6% in the mixture
  • refractory metals such as chromium, molybdenum, tungsten, zirconium (in a proportion by mass of up to 3% in the mixture) as well as manganese, aluminum, Cobalt and nickel (in a proportion by mass of up to 3% in the mixture) proved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Claims (5)

  1. Dispositif de traitement de pièces en carbone poreux avec du silicium liquide avec formation de carbure de silicium, constitué d'au moins quatre chambres (O1, O2, O3 et O4) qui peuvent être séparément chauffées, refroidies, vidées et remplies avec des gaz et qui sont reliées les unes aux autres par des vannes,
    dans lequel, dans une forme de réalisation avec quatre chambres, il est prévu à chaque fois une chambre pour les étapes de procédé c et f et à chaque fois une chambre pour les étapes de procédé a et b ainsi que d et e à mettre en oeuvre l'une après l'autre à chaque fois à l'intérieur,
    dans lequel les étapes sont définies comme suit
    a préchauffage de pièces en carbone poreux dans une atmosphère de gaz inerte à la température de service choisie TB1 dans la chambre O1 dans une plage allant de 1 300 °C à 1 800 °C, par introduction des pièces dans la première chambre O1, rinçage de la chambre après la fermeture de la vanne avec un jet de gaz inerte et chauffage de la température ambiante à la température de service TB1,
    b diminution de la pression dans la chambre O1 au plus tard avant l'ouverture de la vanne 20 vers la chambre O2 à la pression de service inférieure à 10 hPa,
    c amenée du silicium liquide aux pièces de carbone poreux qui ont été reçues par un dispositif de transport dans la chambre O2 et posées sur les supports 26, agencés dans le dispositif d'imprégnation de silicium et réalisés sous forme de mèches poreuses, à une pression de service pB2 dans la chambre O2 de 1 Pa au maximum et à une température de service TB2 dans la chambre O2 dans une plage allant de 1450 °C à 1700 °C, et imprégnation des pièces en carbone poreux avec du silicium liquide, le silicium réagissant au moins partiellement avec le carbone présent dans la pièce pour former du carbure de silicium, avec formation d'une pièce imprégnée de silicium,
    d soulèvement des pièces imprégnées de silicium des mèches 26 et transport des pièces imprégnées de silicium via la vanne 30 dans la chambre O3, réaction du silicium liquide dans les pièces à une température TB3 dans la chambre O3 dans une plage allant de 1 500 °C à 1 900 °C, la température de service TB3 dans la chambre O3 étant supérieure d'au moins 50 K à la température de service TB2 avec formation de carbure de silicium à partir du carbone et du silicium,
    e gazage de la pièce dans la chambre O3 par insufflation de gaz inerte froid et refroidissement de la température de service TB3 à une température de conditionnement Tk dans une plage allant de 500 °C à 300 °C, la pression augmentant de moins de 1 hPa initialement à la pression normale de 105 Pa,
    f transport des pièces 96 via la vanne 40 dans la chambre O4, et refroidissement des pièces dans la position 97 à la température ambiante, d'abord avec du gaz inerte et à partir de températures de 300 °C au maximum également avec de l'air, et retrait des pièces fabriquées 98 via la vanne 50,
    dans lequel il est prévu dans la chambre O2 pour l'étape de procédé c un dispositif d'imprégnation de silicium qui comprend un bassin avec du silicium liquide et des supports réalisés sous forme de mèches poreuses pour la pièce
    et dans lequel la température TB3 est supérieure d'au moins 50 K à la température de service TB2, et la pièce dans la chambre O3 pour l'étape de procédé d n'est plus en contact avec le silicium liquide en dehors de la pièce.
  2. Dispositif selon la revendication 1 avec cinq chambres qui peuvent être séparément chauffées, refroidies, vidées et remplies avec des gaz et qui sont reliées les unes aux autres par des vannes, dans lequel des chambres séparées sont prévues à chaque fois pour les étapes de procédé d et e.
  3. Dispositif selon la revendication 1 avec cinq chambres qui peuvent être séparément chauffées, refroidies, vidées et remplies avec des gaz et qui sont reliées les unes aux autres par des vannes, dans lequel des chambres séparées sont prévues à chaque fois pour les étapes de procédé a et b.
  4. Dispositif selon la revendication 1 avec six chambres qui peuvent être séparément chauffées, refroidies, vidées et remplies avec des gaz et qui sont reliées les unes aux autres par des vannes, dans lequel des chambres séparées sont prévues à chaque fois pour les étapes de procédé a et b et pour les étapes de procédé d et e.
  5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il est prévu à chaque fois au moins deux chambres pour au moins l'une des étapes a à f.
EP06026557.6A 2006-03-01 2006-12-21 Appareil pour traiter des pieces poreuses en carbone Active EP1829843B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006009388A DE102006009388B4 (de) 2006-03-01 2006-03-01 Vorrichtung zur Silicierung von kohlenstoffhaltigen Werkstoffen und darin durchführbares Verfahren

Publications (3)

Publication Number Publication Date
EP1829843A2 EP1829843A2 (fr) 2007-09-05
EP1829843A3 EP1829843A3 (fr) 2008-07-02
EP1829843B1 true EP1829843B1 (fr) 2018-06-27

Family

ID=37900526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06026557.6A Active EP1829843B1 (fr) 2006-03-01 2006-12-21 Appareil pour traiter des pieces poreuses en carbone

Country Status (3)

Country Link
US (2) US7763224B2 (fr)
EP (1) EP1829843B1 (fr)
DE (1) DE102006009388B4 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10792845B2 (en) 2017-05-19 2020-10-06 Toyota Jidosha Kabushiki Kaisha Fuel tank producing apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044122A1 (de) 2007-09-15 2009-03-19 Audi Ag Verfahren zum Einbringen von Füllstoffen in flüssiger Form in poröse Körper
DE102007044783A1 (de) 2007-09-19 2009-04-09 Audi Ag Verfahren und Vorrichtung zur Silicierung von kohlenstoffhaltigen Werkstoffen
FR2935622B1 (fr) * 2008-09-05 2017-02-03 Commissariat A L'energie Atomique Procede d'assemblage de pieces carbonees par brasage refractaire
DE102010038914A1 (de) 2010-08-04 2012-02-09 Sgl Carbon Se Vorrichtung und Verfahren zum Silizieren
ITMI20110401A1 (it) * 2011-03-14 2012-09-15 Petroceramics S P A Metodo per l'infiltrazione di un materiale poroso con un secondo materiale e relativo impianto
WO2013082342A2 (fr) * 2011-11-30 2013-06-06 Corning Incorporated Appareil et procédé d'activation de charbon à l'aide d'un four périodique à chambres multiples
US9523149B2 (en) 2013-03-14 2016-12-20 Rolls-Royce Corporation Rapid ceramic matrix composite production method
WO2014148634A1 (fr) * 2013-03-21 2014-09-25 株式会社谷黒組 Dispositif et procédé de brasage, et substrat et composant électronique manufacturés
US20160023910A1 (en) * 2014-07-23 2016-01-28 Corning Incorporated Apparatus and method of making alkali activated carbon
US20160280609A1 (en) * 2015-03-23 2016-09-29 Rolls-Royce Corporation Self-propagating braze
US10293424B2 (en) 2015-05-05 2019-05-21 Rolls-Royce Corporation Braze for ceramic and ceramic matrix composite components
WO2019017536A1 (fr) * 2017-07-18 2019-01-24 엘지전자 주식회사 Appareil de moulage par infusion
NO20191003A1 (en) * 2019-08-20 2021-02-22 Norsk Hydro As Equipment and process for homogenization of cast products
DE102022102091A1 (de) * 2022-01-28 2023-08-03 The Yellow SiC Holding GmbH Verfahren und Vorrichtung zur Herstellung eines siliziumkarbidhaltigen Werkstücks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710105A1 (de) * 1997-03-12 1998-09-17 Sgl Technik Gmbh Mit Graphitkurzfasern verstärkter Siliciumcarbidkörper

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389683A (en) * 1966-02-23 1968-06-25 Sylvania Electric Prod Solder striping apparatus
US3609295A (en) * 1970-07-01 1971-09-28 Alco Standard Corp Heating apparatus with workpiece carriers
US3930787A (en) * 1970-08-10 1976-01-06 General Electric Company Sintering furnace with hydrogen carbon dioxide atmosphere
US3879165A (en) * 1974-04-22 1975-04-22 Abar Corp Vacuum electric furnaces
DE3037199C2 (de) * 1980-10-02 1983-03-10 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zum Herstellen von Formkörpern aus Siliziumkarbid oder Formkörpern aus Graphit oder graphitähnlichem Werkstoff mit einer aus Siliziumkarbid bestehenden Oberfläche
DE3240245A1 (de) * 1982-10-29 1984-05-03 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zum herstellen von bandfoermigen siliziumkoerpern fuer solarzellen
JPS60138065A (ja) * 1983-12-27 1985-07-22 Chugai Ro Kogyo Kaisha Ltd ガス浸炭焼入方法およびその連続式ガス浸炭焼入設備
US4861416A (en) * 1985-04-04 1989-08-29 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Ribbon growing method and apparatus
US4626516A (en) * 1985-07-31 1986-12-02 General Electric Company Infiltration of Mo-containing material with silicon
GB8925498D0 (en) * 1989-11-10 1989-12-28 Atomic Energy Authority Uk A method of producing a silicon carbide article
DE69003091T2 (de) * 1990-04-24 1994-04-14 T & N Technology Ltd Herstellung von Siliciumcarbidgegenständen.
JP2630180B2 (ja) * 1992-07-24 1997-07-16 信越化学工業株式会社 半導体製造用炭化珪素質部材
US5672376A (en) * 1994-07-05 1997-09-30 Nd Industries, Inc. Method and apparatus for application of liquid materials onto substrates
KR0165868B1 (ko) * 1995-05-22 1999-01-15 김은영 탄화규소 반응소결체의 제조장치 및 그의 연속제조방법
EP0835853A1 (fr) * 1996-10-14 1998-04-15 Societe Europeenne De Propulsion Elément de friction en matériau composite carbone/carbone-carbure de silicium et procédé pour sa fabrication
US5736199A (en) * 1996-12-05 1998-04-07 Northeastern University Gating system for continuous pressure infiltration processes
JP4014254B2 (ja) * 1997-07-18 2007-11-28 日本碍子株式会社 Si濃度段階的変化型Si−SiC材料及びSi濃度段階的変化型SiC繊維強化Si−SiC複合材料並びにこれらの製造方法
DE19747018A1 (de) * 1997-10-24 1999-04-29 Ald Vacuum Techn Gmbh Vorrichtung zur Wärmebehandlung von Werkstücken
JP4450919B2 (ja) * 1999-02-09 2010-04-14 日本碍子株式会社 炭素繊維複合材料
JP4316767B2 (ja) * 2000-03-22 2009-08-19 株式会社半導体エネルギー研究所 基板処理装置
CN1251827C (zh) * 2000-06-22 2006-04-19 株式会社丰荣商会 熔融金属供给容器
US6652654B1 (en) * 2000-09-27 2003-11-25 Bechtel Bwxt Idaho, Llc System configured for applying multiple modifying agents to a substrate
DE10164229B4 (de) * 2001-12-31 2006-03-09 Sgl Carbon Ag Reibscheiben, Verfahren zu ihrer Herstellung und ihre Verwendung
US6512206B1 (en) * 2002-01-02 2003-01-28 Mrl Industries Continuous process furnace
EP1607704A4 (fr) * 2002-10-23 2006-08-02 Internat Customer Service Four continu
US6878207B2 (en) * 2003-02-19 2005-04-12 Energy Conversion Devices, Inc. Gas gate for isolating regions of differing gaseous pressure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710105A1 (de) * 1997-03-12 1998-09-17 Sgl Technik Gmbh Mit Graphitkurzfasern verstärkter Siliciumcarbidkörper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10792845B2 (en) 2017-05-19 2020-10-06 Toyota Jidosha Kabushiki Kaisha Fuel tank producing apparatus

Also Published As

Publication number Publication date
US7763224B2 (en) 2010-07-27
DE102006009388B4 (de) 2009-02-26
DE102006009388A1 (de) 2007-09-06
US20080213155A1 (en) 2008-09-04
EP1829843A3 (fr) 2008-07-02
US9663406B2 (en) 2017-05-30
US20100043699A1 (en) 2010-02-25
EP1829843A2 (fr) 2007-09-05

Similar Documents

Publication Publication Date Title
EP1829843B1 (fr) Appareil pour traiter des pieces poreuses en carbone
DE3232525C2 (de) Heizkammer für Anlagen zum Sintern und isostatischen Heißpressen von Preßkörpern aus Pulver
DE2852410C2 (de) Verfahren und Vorrichtung zur Herstellung von Siliciumcarbid-Formkörpern
EP2039666B1 (fr) Procédé et dispositif d'enrichissement en silicium de matières premières contenant du carbone
DE69423215T2 (de) Verfahren und vorrichtung zum infiltrationsgiessen
DE69419159T2 (de) Verfahren zur schnellverdichtung einer porösen struktur
DE69409005T2 (de) Verfahren zum abdichten poröser substrate
WO2006134054A2 (fr) Dispositif et procede de demoulage catalytique continu, dans des conditions d'ecoulement ameliorees
DE3141982A1 (de) Bienenwabenfoermiger kohlenstofformkoerper und verfahren zu dessen herstellung
EP1558417A1 (fr) Masse de moulage par injection de poudre metallique et procede de moulage par injection de poudre metallique
EP2123377A1 (fr) Procédé de fabrication d'une pièce à usiner, en particulier un outil de bloc de jeu de construction ou une pièce d'outil de bloc de jeu de construction
DE3232523A1 (de) Verfahren zur isostatischen heisspressbehandlung
EP0404943A1 (fr) Matiere refractaire poreuse, article fabrique a partir de celle-ci et procede de fabrication dudit article
EP2445670B1 (fr) Procédé de déliantage thermique continu d une matière moulable thermoplastique
EP1681278B1 (fr) Procédé et dispositif pour l' infiltration d'un corps preliminaire contenant de carbone pour former un carbure
DE3611271C2 (fr)
DE102011107456A1 (de) Verfahren und Vorrichtung zum Entbindern und Sintern von pulvermetallurgisch hergestellten Produkten
DE102005022242B4 (de) Anlage zur Entbinderung/Restentbinderung und Sinterung
EP1036615B1 (fr) Procédé pour le moussage d'articles métalliques
DE2329261B2 (de) Verfahren und Vorrichtung zum Sintern kohlenstoffhaltiger Metall- und Legierungspulver
DE19854385C2 (de) Verfahren zur Herstellung von Diamantverbundwerkstoffen
WO2008077776A2 (fr) Procédé de déliantage thermique d'un corps moulé métallique et/ou céramique fabriqué par moulage par injection, extrusion ou injection sous pression d'une matière thermoplastique
DE102022102091A1 (de) Verfahren und Vorrichtung zur Herstellung eines siliziumkarbidhaltigen Werkstücks
EP2815822A2 (fr) Procédé et installation de dégagement et de frittage de pièces
EP4284577A1 (fr) Appareil pour le déliantage et le frittage d'une pièce de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090105

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20090525

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F27B 9/20 20060101ALI20180320BHEP

Ipc: C04B 35/64 20060101ALI20180320BHEP

Ipc: C04B 35/573 20060101AFI20180320BHEP

Ipc: F27B 9/36 20060101ALI20180320BHEP

Ipc: F27B 9/04 20060101ALI20180320BHEP

Ipc: F27B 9/02 20060101ALI20180320BHEP

INTG Intention to grant announced

Effective date: 20180409

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015932

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015932

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190328

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231218

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231227

Year of fee payment: 18

Ref country code: FR

Payment date: 20231220

Year of fee payment: 18

Ref country code: DE

Payment date: 20231231

Year of fee payment: 18