EP1777068B1 - Direktantrieb einer Druckmaschine - Google Patents

Direktantrieb einer Druckmaschine Download PDF

Info

Publication number
EP1777068B1
EP1777068B1 EP06122396A EP06122396A EP1777068B1 EP 1777068 B1 EP1777068 B1 EP 1777068B1 EP 06122396 A EP06122396 A EP 06122396A EP 06122396 A EP06122396 A EP 06122396A EP 1777068 B1 EP1777068 B1 EP 1777068B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
rotor
stator
electric motor
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06122396A
Other languages
English (en)
French (fr)
Other versions
EP1777068A2 (de
EP1777068A3 (de
Inventor
Günter Schmid
Thomas Dittenhöfer
Stephan Popp
Jürgen Weyh
Detlef Rode
Karl Robert Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Schaeffler Industrial Drives AG and Co KG
Original Assignee
INA Drives and Mechatronics GmbH and Co KG
Schaeffler KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INA Drives and Mechatronics GmbH and Co KG, Schaeffler KG filed Critical INA Drives and Mechatronics GmbH and Co KG
Publication of EP1777068A2 publication Critical patent/EP1777068A2/de
Publication of EP1777068A3 publication Critical patent/EP1777068A3/de
Application granted granted Critical
Publication of EP1777068B1 publication Critical patent/EP1777068B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/004Electric or hydraulic features of drives
    • B41F13/0045Electric driving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/08Cylinders
    • B41F13/20Supports for bearings or supports for forme, offset, or impression cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2213/00Arrangements for actuating or driving printing presses; Auxiliary devices or processes
    • B41P2213/10Constitutive elements of driving devices
    • B41P2213/11Motors
    • B41P2213/124Electric motors
    • B41P2213/126Rotary electric motors

Definitions

  • the invention relates to a device for driving a cylinder of a printing press, according to the preamble of claim 1 or 13.
  • a device for driving a cylinder of a printing press according to the preamble of claim 1 or 13.
  • Such a device is for example from the EP 1 431 034 A2 known.
  • a device for driving a cylinder of a printing press, with an electric motor whose rotor is arranged coaxially to the cylinder of the printing press and rotatably connected thereto, and whose stator is held on a frame structure in which the cylinder is mounted axially displaceable, is also made of the DE 102 19 903 A1 known.
  • Another, from the EP 1 277 575 B1 known printing machine drive is part of an offset printing machine, which has at least one printing unit with at least one forming and a transfer cylinder, wherein a lateral displacement of the forme cylinder can be provided. Since the rotor of the forme cylinder directly driving electric motor is rigidly connected to the forme cylinder and thus in its lateral, that is displaced with axial displacement, while the stator of the motor is stationary, a change in the performance of the electric motor in an axial displacement of the forme cylinder is to be assumed ,
  • the WO 03/025406 A1 relates to a bearing arrangement for cylinders, rollers or drums.
  • This bearing assembly comprises a bearing for a printing cylinder provided Rotativlager and connected to the outer ring of Rotativlagers linear bearing, which allows an adjustment of the printing cylinder orthogonal to its axis of rotation.
  • An electric direct drive of the pressure cylinder is at the out of the WO 03/025406 A1 known device is not provided.
  • the invention has for its object to provide an electric direct drive for a cylinder of a printing press, in which there is at most a slight dependence between the axial position of the cylinder and the properties of the electric drive.
  • each of these devices is an electric direct drive with an electric motor whose rotor relative to Cylinder of the printing press is not rotatable and coaxial with this is arranged.
  • the stator of the electric motor is held on a frame construction of the printing machine, wherein the Cylinder is mounted axially displaceable in the frame construction.
  • the gap space formed between the rotor and the stator is constant with respect to both the gap width and the length measured in the axial direction of the cylinder at each possible position of the cylinder during normal operation of the printing press.
  • stator and rotor This is achieved by the geometry of the stator and rotor and / or by the way the rotor is coupled to the cylinder and the stator to the frame construction.
  • a gap between the stator and rotor is generally understood that volume range between the stator and the rotor, in the exact radial direction, based on the axis of rotation of the cylinder of the printing press and the rotor, on the one hand by the rotor and on the other hand by the stator provided for direct electrical drive of the cylinder Motors is limited.
  • stator and rotor of the electric motor a different length measured in the axial direction, so that each axis of rotation of the cylinder intersecting, arranged perpendicular to this axis straight line which intersects the axially shorter of the two parts stator and rotor, in each operating state of the electric motor, ie in any possible axial positioning of the Cylinder, even in the axial direction longer of the parts stator and rotor cuts.
  • Other ways to keep the gap between the stator and rotor constant are by a variability of the axial position of the rotor or the stator relative to a rotor or the stator bearing member, ie relative to the rotatable cylinder or relative to the frame structure connected Housing of the electric motor, given.
  • the stator accommodating housing of the electric motor is fixed to an outer ring of a rolling bearing supporting the cylinder in the frame construction.
  • direct electric drive performance data such as torque and angular acceleration are not dependent on the displacement of the cylinder in the direction of its rotation axis.
  • the rotor of the cylinder directly driving electric motor is guided axially displaceable relative to the cylinder of the printing press.
  • the stator is also fixedly arranged in the housing of the electric motor, which is connected directly or indirectly, in particular via a linear guide, which allows an adjustment of the cylinder perpendicular to its axis to the frame construction of the printing press.
  • the rotor of the electric motor in the radially inner region of a particular made of non-ferrous metal bushing, which is mounted axially displaceably on the cylinder or a pin fixedly connected thereto.
  • Such a bushing in particular non-ferrous metal bush, may also be provided in embodiments in which the rotor is held immovably on the cylinder or a component firmly connected thereto. Irrespective of the extent to which an axial displaceability of the rotor relative to the cylinder is provided is, the bearing of the rotor is designed such that no or only a negligible small rotation of the rotor relative to the cylinder is possible.
  • a roller bearing of the rotor is provided in an advantageous embodiment, as it can in principle also be used in conventional linear technology products.
  • a sliding bearing is feasible, which allows an adjustability of the rotor relative to the cylinder only in the axial direction.
  • a bearing is provided according to an advantageous development, which defines the axial position of the rotor relative to the housing of the electric motor, regardless of the axial positioning of the cylinder.
  • This bearing is preferably a deep groove ball bearing whose bearing rings are fixedly connected to the rotor or to the stator of the electric motor.
  • the rotor of the electric motor is connected by means of at least one axially compliant, at the same time rigid in the circumferential direction connecting element with the cylinder or a rigidly attached to this part.
  • the connecting element is in its, relative to the axis of rotation of the cylinder, axially outer region with the rotor and in the axially inner region with the cylinder or rigidly attached to this part, in particular pin connected.
  • the resilient connecting element between the cylinder and the rotor preferably has a spring action in the axial direction. The forces acting thereon in the axial direction on the rotor are less than the electromagnetic forces which likewise act in the axial direction and which occur during operation of the electric motor.
  • the rotor is centered at least approximately relative to the stator. Under no circumstances is the rotor displaceable beyond the stator in the axial direction.
  • the connecting element by laser welding to the rotor and / or with the cylinder or a rigidly attached to this part connected. Likewise, laser welding process can be used in the manufacture of the connecting element itself.
  • vibration-damping properties of the connecting element can be achieved by this is made of a composite material, in particular a sandwich composite of sheet metal and plastic.
  • a further embodiment of the invention provides that the stator is guided axially displaceable relative to a housing of the electric motor connected to the frame construction of the printing press.
  • the rotor is in this case rigidly connected to the cylinder of the printing press.
  • Between the end faces of the longitudinally displaceable in the housing of the electric motor mounted stator and these opposite inner faces of the housing are preferably elements with resilient properties, in particular in each case an O-ring arranged.
  • the stator always aligns so relative to the rotor that the geometry of the gap formed between the stator and rotor is independent of the axial position of the cylinder.
  • an axial bearing can be provided which keeps the stator always in an axially unchangeable position relative to the rotor, independently of the operation of the electric motor.
  • a particularly easy displacement of the stator in the longitudinal direction, i. in the axial direction, is given in the case of a rolling bearing of the stator in the housing of the electric motor.
  • Corresponding linear guide elements preferably have an adjustable bias, so that the compliance of the leadership of the stator can be minimized in the circumferential direction.
  • the electric direct drive of the printing machine cylinder has an intrinsically safe brake, ie, in the event of a power failure.
  • interacting Friction linings of this brake are fastened on the one hand to the rotor and on the other hand to the housing of the electric motor. If the brake, in particular by means of compressed air, solved, the rotor is moved in the housing of the electric motor in the axial direction. A displacement of the rotor in the opposite direction and thus a closing of the brake is preferably effected by means of spring force.
  • the Figures 1 to 9a . 9b each show in schematic view different embodiments of an electric direct drive of a printing press.
  • This has a rotatable about an axis A cylinder 1, which is mounted in a frame structure 2 of the press not shown and directly driven by an electric motor 3.
  • the cylinder 1 is repeatedly stepped to the front side 4 with decreasing diameter, wherein a rotation about the axis A enabling rolling bearing 5 is arranged on an annular portion 6 of the cylinder 1.
  • the outer ring 7 of the rolling bearing 5, namely cylindrical roller bearing is not directly attached to the frame structure 2, but connected to this via a linear guide 8, which allows an adjustment of the cylinder 1 perpendicular to the axis of rotation A.
  • the housing 9 of the electric motor 3 is further attached. With each adjustment of the cylinder 1 perpendicular to the axis of rotation A thus the electric motor 3 is automatically adjusted with. Separate facilities for tracking the electric motor 3 are not required.
  • a pin 11 Adjacent to the end face 4 of the cylinder 1 is a pin 11, also referred to as a shaft journal extension, whose axis of rotation is identical to the axis A of the cylinder 1.
  • a pin 11 Adjacent to the end face 4 of the cylinder 1 is a pin 11, also referred to as a shaft journal extension, whose axis of rotation is identical to the axis A of the cylinder 1.
  • an edge 12 of the pin 11 engages around an annular portion 10 of the cylinder 1 bordering the end face 4.
  • the pin 11, which is fixed on the cylinder 1 by means of a tensioning device 13, carries the rotor 14 the electric motor 3.
  • stator 15 of the electric motor 3 designed as a torque motor is connected to the outer ring 7 of the roller bearing 5 via the housing 9.
  • the entire composite comprising the cylinder 1, the pin 11 and the rotor 14 is displaceable along the axis of rotation A.
  • This axial displacement is given by the nature of the rolling bearing 5.
  • the axial length L R of the rotor 14 is less than the measured in the same direction length L S of the stator 15.
  • the lengths L R , L S of the parts 14, 15 of the electric motor 3 are dimensioned such that in any possible operating state of the Rotor 14 projects beyond the stator 15 in the axial direction.
  • a gap formed between the rotor 14 and stator 15 16 remains constant under all possible conditions of normal operation of the electric motor 1. All relevant characteristics of the electric motor 3, such as the speed-dependent relationship between power consumption and torque, are thus independent of the axial positioning of the cylinder 1.
  • the gap width of the gap space 16 is denoted by s; the length of the gap space 16 is identical to the length L R of the rotor 14.
  • the rotor 14 has an inner part 17 directly surrounding the pin 11 and an outer part 18, which are connected to one another by means of a tensioning device 19.
  • the tensioning device 19, which fixes the rotor 14 rigidly on the pin 11, comprises a number of screws 20 and wedges 21, wherein the screws 20 can be actuated through openings 22 of the housing 9.
  • the rotor 14 of this electric motor 3 is not rigidly fixed on the pin 11, but displaceably mounted by means of a guide 23 in the direction of the axis of rotation A.
  • the guide 23 comprises a fastened by means of a screw 24 on the pin 11 Sliding nut 25 on which a made of brass, a part of the rotor 14 forming bushing 26 slides.
  • the rotor 14 is thus rotationally fixed despite axial displacement on the pin 11, and thus also rotatably relative to the cylinder 1 ge Stahl h rt.
  • FIG. 3 a and 3 b Details of the electric motor 3 after FIG. 2 that are relevant in the assembly are in the Figures 3 a and 3 b are shown.
  • An assembly pin 28 can be inserted through a bore 29 of the front plate 27 into a blind hole 30 of the rotor 14, so that the rotor 14 is positioned in the circumferential direction exactly relative to the pin 11.
  • the sliding block 25 after FIG. 3 b is constructed in two parts, wherein two wedge pieces 31, 32 by means of a screw 33 which can be actuated through a bore 34 in the front panel 27, against each other can be moved.
  • the game of the rotor 14 in the circumferential direction and the friction of the sliding block 25 in a groove 35 of the stator 14 is adjustable.
  • FIGS. 4 a and 4 b show a further developed variant of the bearing of the rotor 14 on the pin 11.
  • the sliding block 25 in the embodiment after the FIGS. 3 a, b is also the needle shoe 37 arbitrarily biased. Due to the rolling bearing of the rotor 14, both a clearance-free in the circumferential direction and a low-friction and hysteresis-free storage in the axial direction is given.
  • the rotor 14 is not held directly on the pin 11, but coupled with this by means of a flexible connecting element 41, which is connected on the one hand with the rotor 14 and on the other hand with a fixedly arranged on the pin 11 hub 42.
  • the connecting element 41 comprises a plurality, in the axially front and in the axially rear region of the rotor 14 and the pin 11 held on the pin 11 by a play-free hub 42 arranged composite sheets 43.
  • Each composite sheet 43 is constructed as a sheet metal / plastic / sheet sandwich component and per Laser welding with both the rotor 14, which surrounds the connecting element 41, and with the hub 42, which is arranged radially within the connecting element 41, materially connected.
  • the connecting element 41 has elastically yielding properties exclusively in the direction of the axis of rotation A, so that the rotor 14 is rigidly mounted in the circumferential direction by means of the connecting element 41, but is resiliently mounted in the axial direction. Similar to the displaceably mounted by means of the sleeve 26 rotor 14 FIG. 2 also positions the spring-mounted rotor 14 after FIG. 5 automatically, solely due to the electromagnetic forces occurring during operation of the electric motor 3, relative to the stator 15.
  • the embodiment according to FIG. 6 differs from the above-described embodiments substantially in that the stator 15 is mounted displaceably in the axial direction in the housing 9 of the electric motor 3, while the rotor 14 is rigidly connected to the pin 11 and thus also to the cylinder 1, for example, a plate, rubber, printing or transfer cylinder is connected.
  • an O-ring 45 is disposed on both end faces 44 of the stator 15, which abuts against an inner end face 46 of the housing 9.
  • a coil spring or a leaf spring may be provided.
  • the compliance of the O-rings 45 is sufficient to move in a side register adjustment, ie an axial displacement of the cylinder 1 and thus also of the rotor 14, the stator 15 by the electromagnetic forces occurring with.
  • a rotation of the stator 15 relative to the housing 9 is prevented by a screwed into the stator 15 pin 47, which dips into a bore 48 in the housing 9.
  • the stator length L S and the rotor length L R are identical, thus also remains in the exemplary embodiment FIG. 6 the gap 16 between the rotor 14 and stator 15 constant in each operating state.
  • FIGS. 7 a and 7b show a further development of the embodiment FIG. 6 , wherein the stator 15 is guided longitudinally displaceably in the housing 9 by means of an adjustable needle shoe 49.
  • the needle shoe 49 Figure 7 a, b two mutually displaceable wedge pieces 50, 51, so that the game of the stator 15 is adjustable in the circumferential direction.
  • a bearing of the stator 15 is adjustable with bias.
  • the bias of the needle shoe 49 by means of a tool, not shown, changeable, which can be recognized through a bore 52 in the housing 9 to the needle shoe 49.
  • a bearing in particular a rolling bearing, between the rotor 14 and the stator 15 may be provided by means of which, similar to the embodiment according to Figure 4 a in that the axial position of the stator 15 relative to the rotor 14 is fixed unchangeable.
  • a cooling medium in particular water
  • through-flowable cooling channels 63 which are directly adjacent to the housing 9, wherein seals 64 are provided to seal against the housing 9.
  • the cooling medium is passed through a bore 65 in the housing 9 into the cooling channels 63.
  • FIG. 8 is a further development of an electric direct drive shown in a printing press, with an intrinsically safe brake 53 is integrated into the electric motor 3.
  • the rotor 14 of the electric motor 3 is similar to the embodiment according to FIG. 2 slidably mounted on the pin 11 connected to the cylinder 1 by means of a sliding bearing.
  • On the side facing away from the cylinder 1 front side of the rotor 14 is a first brake pad 54, which cooperates with a second, attached to the inside of the front panel 27 brake pad 55.
  • the brake pads 54, 55 are pressed together by means of a helical spring designed as a compression spring 56 which surrounds the pin 11.
  • the compression spring 56 may be formed, for example, as a plate spring.
  • one of the rotary decoupling rolling bearing 57 is disposed between the compression spring 56 and the rotor 14, wherein the arranged on the side of the compression spring 56 bearing ring 58th of the rolling bearing 57 is axially displaceable, but not rotatably mounted in the housing 9.
  • Another rolling bearing 59 transmits a force upon release of the brake 53 and is disposed between the front plate 27 of the housing 9 and the rotor 14.
  • arranged on the side of the front panel 27 bearing shell 60 of the rolling bearing 59 is not rigidly connected to the front panel 27, but coupled to a feed element 61 of an actuator 62 acting in the axial direction.
  • the actuator 62 is in the illustrated embodiment, a compressed air actuated actuator, but may for example be designed as an electrically actuated or hydraulic actuator. In any case, a release of the brake 53 is only possible when energized to the actuator 62.
  • FIGS. 9 a and 9 b show an electric direct drive of a printing press, in which the stator 15 of the electric motor 3 is fixedly arranged in the housing 9, while the rotor 14 by means of a compensating coupling 66 rotatably, but axially displaceably guided on the pin 11 connected to the cylinder 1 is.
  • a sliding bush 67 is provided for supporting the rotor 14 on the pin 11.
  • the axial position of the rotor 14 relative to the housing 9 is always constant even with an axial displacement, that is traversing movement of the pin 11.
  • the compensating coupling 66 is disposed between the rotor 14 and a clamping set 68 mounted on the pin 11.
  • the rotational movement of the pin 11 is transferred with decoupling of axial movement components to an angle encoder 70, which is arranged outside of the housing 9.
  • the angle sensor 70 is connected via a housing cap 71 with the rest of the housing 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Character Spaces And Line Spaces In Printers (AREA)
  • Control Of Electric Motors In General (AREA)
  • Rotary Presses (AREA)

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft eine Vorrichtung zum Antrieb eines Zylinders einer Druckmaschine, nach dem Oberbegriff des Anspruchs 1 oder 13. Eine derartige Vorrichtung ist beispielsweise aus der EP 1 431 034 A2 bekannt.
  • Hintergrund der Erfindung
  • Eine Vorrichtung zum Antrieb eines Zylinders einer Druckmaschine, mit einem Elektromotor, dessen Rotor koaxial zum Zylinder der Druckmaschine angeordnet und mit diesem drehfest verbunden ist, und dessen Stator an einer Rahmenkonstruktion, in welcher der Zylinder axial verschieblich gelagert ist, gehalten ist, ist auch aus der DE 102 19 903 A1 bekannt.
  • Ein weiterer, aus der EP 1 277 575 B1 bekannter Druckmaschinenantrieb ist Teil einer Offset-Druckmaschine, welche mindestens eine Druckeinheit mit mindestens einem Form- und einem Übertragungszylinder aufweist, wobei eine seitliche Verschiebbarkeit des Formzylinders vorgesehen sein kann. Da der Rotor des den Formzylinder direkt antreibenden Elektromotors starr mit dem Formzylinder verbunden ist und somit bei dessen seitlicher, d.h. axialer Verschiebung mit verschoben wird, während der Stator des Motors ortsfest ist, ist eine Änderung der Leistungsdaten des Elektromotors bei einer axialen Verschiebung des Formzylinders anzunehmen.
  • Die WO 03/025406 A1 betrifft eine Lageranordnung für Zylinder, Walzen oder Trommeln. Diese Lageranordnung umfasst ein zur Lagerung eines Druckzylinders vorgesehenes Rotativlager sowie ein mit dem Außenring des Rotativlagers verbundenes Linearlager, welches eine Verstellung des Druckzylinders orthogonal zu seiner Rotationsachse ermöglicht. Ein elektrischer Direktantrieb des Druckzylinders ist bei der aus der WO 03/025406 A1 bekannten Vorrichtung nicht vorgesehen.
  • Aufgabe der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, einen elektrischen Direktantrieb für einen Zylinder einer Druckmaschine anzugeben, bei welchem eine höchstens geringfügige Abhängigkeit zwischen der Axialposition des Zylinders und den Eigenschaften des elektrischen Antriebs besteht.
  • Zusammenfassung der Erfindung
  • Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung zum Antrieb eines Zylinders einer Druckmaschine mit den Merkmalen des Anspruchs 1 sowie durch eine Vorrichtung mit den Merkmalen des Anspruchs 13. Bei jeder dieser Vorrichtungen handelt es sich um einen elektrischen Direktantrieb mit einem Elektromotor, dessen Rotor relativ zum Zylinder der Druckmaschine nicht drehbar und koaxial zu diesem angeordnet ist. Der Stator des Elektromotors ist an einer Rahmenkonstruktion der Druckmaschine gehalten, wobei der Zylinder axial verschieblich in der Rahmenkonstruktion gelagert ist. Der zwischen Rotor und Stator gebildete Spaltraum ist sowohl hinsichtlich Spaltbreite als auch hinsichtlich in Axialrichtung des Zylinders gemessener Länge bei jeder im bestimmungsgemäßen Betrieb der Druckmaschine möglichen Position des Zylinders konstant. Dies wird durch die Geometrie von Stator und Rotor und / oder durch die Art der Kopplung des Rotors mit dem Zylinder sowie des Stators mit der Rahmenkonstruktion erreicht. Als Spaltraum zwischen Stator und Rotor wird allgemein derjenige Volumenbereich zwischen Stator und Rotor verstanden, der in exakt radialer Richtung, bezogen auf die Rotationsachse des Zylinders der Druckmaschine sowie des Rotors, einerseits durch den Rotor und andererseits durch den Stator des zum elektrischen Direktantrieb des Zylinders vorgesehenen Motors begrenzt ist. Im einfachsten Fall weisen Stator und Rotor des Elektromotors eine unterschiedliche in Axialrichtung gemessene Länge auf, so dass jede die Rotationsachse des Zylinders schneidende, senkrecht zu dieser Achse angeordnete Gerade, welche das in Axialrichtung kürzere der beiden Teile Stator und Rotor schneidet, in jedem Betriebszustand des Elektromotors, d.h. in jeder möglichen axialen Positionierung des Zylinders, auch das in axiale Richtung längere der Teile Stator und Rotor schneidet. Weitere Möglichkeiten, den Spaltraum zwischen Stator und Rotor konstant zu halten, sind durch eine Veränderbarkeit der axialen Position des Rotors oder des Stators relativ zu einem den Rotor bzw. den Stator tragenden Bauteil, d.h. relativ zum rotierbaren Zylinder bzw. relativ zum mit der Rahmenkonstruktion verbundenen Gehäuse des Elektromotors, gegeben. Das den Stator aufnehmende Gehäuse des Elektromotors ist an einem Außenring eines der Lagerung des Zylinders in der Rahmenkonstruktion dienenden Wälzlagers befestigt.In allen Fällen sind Leistungsdaten des elektrischen Direktantriebs wie Drehmoment und Winkelbeschleunigung nicht von der Verschiebung des Zylinders in Richtung dessen Rotationsachse abhängig. Dies gilt auch für Bauformen, in denen der Zylinder mittels einer Linearführung senkrecht zu seiner Rotationsachse in der Rahmenkonstruktion verschiebbar ist.
  • Nach einer ersten Ausführungsform ist der Rotor des den Zylinder direkt antreibenden Elektromotors relativ zum Zylinder der Druckmaschine axial verschieblich geführt. Der Stator ist zugleich fest im Gehäuse des Elektromotors angeordnet, welches direkt oder indirekt, insbesondere über eine Linearführung, die eine Verstellung des Zylinders senkrecht zu seiner Achse ermöglicht, an die Rahmenkonstruktion der Druckmaschine angebunden ist. Vorzugsweise weist der Rotor des Elektromotors in dessen radial innerem Bereich eine insbesondere aus Buntmetall gefertigte Buchse auf, welche auf dem Zylinder oder einem fest mit diesem verbundenen Zapfen axial verschieblich gelagert ist. Eine solche Buchse, insbesondere Buntmetall-Buchse, kann auch in Ausführungsformen vorgesehen sein, in denen der Rotor unverschieblich auf dem Zylinder bzw. einem mit diesem fest verbundenen Bauteil gehalten ist. Unabhängig davon, inwieweit eine axiale Verschiebbarkeit des Rotors relativ zum Zylinder vorgesehen ist, ist die Lagerung des Rotors derart gestaltet, dass keine oder nur eine vernachlässigbare geringe Verdrehung des Rotors relativ zum Zylinder möglich ist.
  • Um bei einer solchen drehfesten Lagerung des Rotors am Zylinder bzw. einem starr mit diesem verbundenen Bauteil gleichzeitig eine Axialverschiebung des Rotors zu ermöglichen, ist in vorteilhafter Ausgestaltung eine Wälzlagerung des Rotors vorgesehen, wie sie prinzipiell auch in herkömmlichen Produkten der Lineartechnik verwendbar ist. Ebenso ist jedoch auch eine Gleitlagerung realisierbar, welche eine Verstellbarkeit des Rotors relativ zum Zylinder ausschließlich in axialer Richtung ermöglicht. In jedem der genannten Fälle ist nach einer vorteilhaften Weiterbildung ein Lager vorgesehen, welches die axiale Position des Rotors relativ zum Gehäuse des Elektromotors unabhängig von der Axialpositionierung des Zylinders festlegt. Bei diesem Lager handelt es sich vorzugsweise um ein Rillenkugellager, dessen Lagerringe mit dem Rotor bzw. mit dem Stator des Elektromotors fest verbunden sind.
  • Nach einer alternativen Ausgestaltung ist der Rotor des Elektromotors mittels mindestens eines in Axialrichtung nachgiebigen, zugleich in Umfangsrichtung steifen Verbindungselementes mit dem Zylinder oder einem starr an diesem befestigten Teil verbunden. Hierbei ist das Verbindungselement in dessen, bezogen auf die Rotationsachse des Zylinders, axial äußerem Bereich mit dem Rotor und im axial inneren Bereich mit dem Zylinder bzw. dem an diesem starr befestigten Teil, insbesondere Zapfen, verbunden. Das nachgiebige Verbindungselement zwischen dem Zylinder und dem Rotor weist vorzugsweise in Axialrichtung eine Federwirkung auf. Die hierdurch in Axialrichtung auf den Rotor einwirkenden Kräfte sind geringer als die ebenfalls in Axialrichtung wirkenden elektromagnetischen Kräfte, die beim Betrieb des Elektromotors auftreten. Auf diese Weise bleibt bei einer Axialverschiebung des Zylinders der Rotor zumindest annähernd relativ zum Stator zentriert. Keinesfalls ist der Rotor in Axialrichtung über den Stator hinaus verschiebbar. In fertigungstechnisch vorteilhafter Weise ist das Verbindungselement durch Laserschweißung mit dem Rotor und / oder mit dem Zylinder bzw. einem starr an diesem befestigten Teil verbunden. Ebenso sind Laser-Schweißverfahren bei der Fertigung des Verbindungselementes selbst einsetzbar.
  • Besonders schwingungsdämpfende Eigenschaften des Verbindungselementes sind erzielbar, indem dieses aus einem Verbundmaterial, insbesondere einem Sandwichverbund aus Blech und Kunststoff, gefertigt wird.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Stator relativ zu einem mit der Rahmenkonstruktion der Druckmaschine verbundenen Gehäuse des Elektromotors axial verschieblich geführt ist. Der Rotor ist in diesem Fall starr mit dem Zylinder der Druckmaschine verbunden. Zwischen den Stirnseiten des längs verschieblich im Gehäuse des Elektromotors gelagerten Stators und diesen gegenüberliegenden inneren Stirnflächen des Gehäuses sind vorzugsweise Elemente mit federnden Eigenschaften, insbesondere jeweils ein O-Ring, angeordnet. Solange der elektrische Direktantrieb nicht betätigt wird, zentriert sich somit der Stator innerhalb des ihm zur Verfügung stehenden Verschiebeweges. Bei laufendem Elektromotor dagegen wird die axiale Position des Stators hauptsächlich durch die zwischen Stator und Rotor wirkenden Kräfte bestimmt. Hierbei richtet sich der Stator stets so relativ zum Rotor aus, dass die Geometrie des zwischen Stator und Rotor gebildeten Spaltraums unabhängig von der axialen Position des Zylinders ist. Um den Stator besonders exakt relativ zum Rotor zu positionieren, kann eine Axiallagerung vorgesehen sein, welche den Stator unabhängig vom Betrieb des Elektromotors stets in axial unveränderlicher Position relativ zum Rotor hält. Eine besonders leichte Verschiebbarkeit des Stators in Längsrichtung, d.h. in Axialrichtung, ist im Fall einer Wälzlagerung des Stators im Gehäuse des Elektromotors gegeben. Entsprechende Linearführungselemente weisen vorzugsweise eine einstellbare Vorspannung auf, so dass die Nachgiebigkeit der Führung des Stators in Umfangrichtung minimiert werden kann.
  • Nach einer mit den vorstehend erläuterten Ausführungsbeispielen kombinierbaren Weiterbildung weist der elektrische Direktantrieb des Druckmaschinenzylinders eine eigensichere, d.h. bei Energieausfall schließende, Bremse auf. Zusammenwirkende Reibbeläge dieser Bremse sind einerseits am Rotor und andererseits am Gehäuse des Elektromotors befestigt. Wird die Bremse, insbesondere mittels Druckluft, gelöst, so wird der Rotor im Gehäuse des Elektromotors in Axialrichtung verschoben. Eine Verschiebung des Rotors in Gegenrichtung und damit ein Schließen der Bremse erfolgt vorzugsweise mittels Federkraft.
  • Nachfolgend werden mehrere Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Hierin zeigen:
  • Kurze Beschreibung der Zeichnung
  • Figur 1
    ein erstes Ausführungsbeispiel eines elektrischen Direktantriebs eines Druckmaschinenzylinders,
    Figur 2
    ein zweites Ausführungsbeispiel eines elektrischen Direktantriebs eines Druckmaschinenzylinders,
    Figur 3 a und b
    Details des elektrischen Direktantriebs eines Druckmaschinenzylinders nach Figur 2,
    Figur 4 a und 4
    Details eines dritten Ausführungsbeispiels eines elektrischen Direktantriebs eines Druckmaschinenzylinders in Ansichten analog Figur 3 a und b,
    Figur 5
    ein viertes Ausführungsbeispiel eines elektrischen Direktantriebs eines Druckmaschinenzylinders,
    Figur 6
    ein fünftes Ausführungsbeispiel eines elektrischen Direktantriebs eines Druckmaschinenzylinders,
    Figur 7 a und b
    ein sechstes Ausführungsbeispiel eines elektrischen Direktantriebs eines Druckmaschinenzylinders,
    Figur 8
    ein siebtes Ausführungsbeispiel eines elektrischen Direktantriebs eines Druckmaschinenzylinders, und
    Figur 9 a und b
    ein achtes Ausführungsbeispiel eines elektrischen Direktantriebs eines Druckmaschinenzylinders.
    Ausführliche Beschreibung der Zeichnung
  • Die Figuren 1 bis 9a, 9b zeigen jeweils in schematisierter Ansicht verschiedene Ausführungsbeispiele eines elektrischen Direktantriebs einer Druckmaschine. Diese weist einen um eine Achse A drehbaren Zylinder 1 auf, der in einer Rahmenkonstruktion 2 der nicht weiter dargestellten Druckmaschine gelagert und mittels eines Elektromotors 3 direkt angetrieben ist. Der Zylinder 1 ist zu dessen Stirnseite 4 hin mit kleiner werdendem Durchmesser mehrfach abgestuft, wobei ein die Rotation um die Achse A ermöglichendes Wälzlager 5 an einem ringförmigen Abschnitt 6 des Zylinders 1 angeordnet ist. Der Außenring 7 des Wälzlagers 5, nämlich Zylinderrollenlagers, ist nicht direkt an der Rahmenkonstruktion 2 befestigt, sondern mit dieser über eine Linearführung 8 verbunden, die eine Verstellung des Zylinders 1 senkrecht zur Rotationsachse A ermöglicht. An dem Außenring 7 ist weiter das Gehäuse 9 des Elektromotors 3 befestigt. Bei jeder Verstellung des Zylinders 1 senkrecht zu dessen Rotationsachse A wird somit automatisch der Elektromotor 3 mit verstellt. Gesonderte Einrichtungen zur Nachführung des Elektromotors 3 sind nicht erforderlich.
  • An die Stirnseite 4 des Zylinders 1 grenzt ein auch als Wellenzapfenverlängerung bezeichneter Zapfen 11, dessen Rotationsachse mit der Achse A des Zylinders 1 identisch ist. Um den Zapfen 11 starr am Zylinder 1 zu halten, umgreift ein Rand 12 des Zapfens 11 einen an die Stirnseite 4 grenzenden ringförmigen Abschnitt 10 des Zylinders 1. Der Zapfen 11, welcher mittels einer Spannvorrichtung 13 am Zylinder 1 fixiert ist, trägt den Rotor 14 des Elektromotors 3.
  • Dagegen ist der Stator 15 des als Torque-Motors ausgebildeten Elektromotors 3 über das Gehäuse 9 mit dem Außenring 7 des Wälzlagers 5 verbunden. Der gesamte den Zylinder 1, den Zapfen 11 sowie den Rotor 14 umfassende Verbund ist längs der Rotationsachse A verschiebbar.
  • Diese axiale Verschiebbarkeit ist durch die Art des Wälzlagers 5 gegeben. Eine gesonderte Linearführung zur Verschiebung des Zylinders 1 längs der Achse A ist dagegen nicht vorgesehen.
  • Wie aus Figur 1 ersichtlich, ist die axiale Länge LR des Rotors 14 geringer als die in derselben Richtung gemessene Länge LS des Stators 15. Die Längen LR, LS der Teile 14, 15 des Elektromotors 3 sind derart bemessen, dass in keinem möglichen Betriebszustand der Rotor 14 in Axialrichtung über den Stator 15 hinausragt. Somit bleibt ein zwischen Rotor 14 und Stator 15 gebildeter Spaltraum 16 unter allen möglichen Bedingungen des bestimmungsgemäßen Betriebs des Elektromotors 1 konstant. Alle relevanten Kenngrößen des Elektromotors 3, wie beispielsweise der drehzahlabhängige Zusammenhang zwischen Stromaufnahme und Drehmoment, sind somit von der axialen Positionierung des Zylinders 1 unabhängig. Die Spaltbreite des Spaltraums 16 ist mit s bezeichnet; die Länge des Spaltraums 16 ist mit der Längen LR des Rotors 14 identisch.
  • Der Rotor 14 weist ein den Zapfen 11 direkt umgebendes Innenteil 17 sowie ein Außenteil 18 auf, welche mittels einer Spannvorrichtung 19 miteinander verbunden sind. Die Spannvorrichtung 19, welche den Rotor 14 starr auf dem Zapfen 11 fixiert, umfasst eine Anzahl Schrauben 20 sowie Keile 21, wobei die Schrauben 20 durch Öffnungen 22 des Gehäuses 9 hindurch betätigbar sind.
  • Die Ausführungsform nach Figur 2 umfasst ebenfalls einen permanentmagnetisch erregten Synchronmotor als Elektromotor 3. Der Rotor 14 dieses Elektromotors 3 ist jedoch nicht starr auf dem Zapfen 11 fixiert, sondern mittels einer Führung 23 in Richtung der Rotationsachse A verschieblich gelagert. Die Führung 23 umfasst einen mittels einer Schraube 24 auf dem Zapfen 11 befestigten Nutenstein 25, auf welchem eine aus Messing gefertigte, ein Teil des Rotors 14 bildende Buchse 26 gleitet. Der Rotor 14 ist damit trotz axialer Verschiebbarkeit drehfest auf dem Zapfen 11, und damit auch drehfest relativ zum Zylinder 1 gefü h rt.
  • Die beim Betrieb des Elektromotors 3 auftretenden Kräfte richten den Rotor 14 in Axialrichtung stets zentrisch zum Stator 15, wie in Figur 2 dargestellt, aus. Wird eine axiale Verstellbewegung des Zylinders 1, auch als Seitenregisterverstellung bezeichnet, durchgeführt, so verschiebt sich der Rotor 14 relativ zum Zylinder 1 und behält dabei seine absolute Position, d.h. die Position relativ zur Rahmenkonstruktion 2, zumindest annähernd bei.
  • Sowohl im Ausführungsbeispiel nach Figur 1 als auch im Ausführungsbeispiel nach Figur 2 dient eine stirnseitige Frontplatte 27 des Gehäuses 9 zugleich als Montagehilfe beim Zusammenbau des Elektromotors 3. Bei Bedarf ist es auch möglich, den Stator 15 und / oder den Rotor 14 des Elektromotors 3 auszutauschen, ohne den Elektromotor 3 komplett von der Druckmaschine abzubauen.
  • Details des Elektromotors 3 nach Figur 2, die bei der Montage relevant sind, sind in den Figuren 3 a und 3 b dargestellt. Ein Montagestift 28 kann durch eine Bohrung 29 der Frontplatte 27 hindurch in ein Sackloch 30 des Rotors 14 eingesetzt werden, so dass der Rotor 14 in Umfangsrichtung exakt relativ zum Zapfen 11 positioniert wird. Der Nutenstein 25 nach Figur 3 b ist zweiteilig aufgebaut, wobei zwei Keilstücke 31, 32 mittels einer Schraube 33, welche durch eine Bohrung 34 in der Frontplatte 27 hindurch betätigbar ist, gegeneinander verschoben werden können. Damit ist das Spiel des Rotors 14 in Umfangsrichtung sowie die Reibung des Nutensteins 25 in einer Nut 35 des Stators 14 einstellbar.
  • Die Figuren 4 a und 4 b zeigen eine weiter entwickelte Variante der Lagerung des Rotors 14 auf dem Zapfen 11. Hierbei ist jedes der Keilstücke 31, 32 des Nutensteins 25 mit Wälzkörpern 36, nämlich Nadeln, bestückt, wodurch ein so genannter Nadelschuh 37 gebildet ist. Wie der Nutenstein 25 im Ausführungsbeispiel nach den Figuren 3 a, b ist auch der Nadelschuh 37 beliebig vorspannbar. Durch die Wälzlagerung des Rotors 14 ist sowohl eine in Umfangsrichtung spielfreie als auch eine reibungsarme und hysteresefreie Lagerung in Axialrichtung gegeben.
  • Jegliche axiale Verschiebung des Rotors 14 relativ zur Rahmenkonstruktion 2 wird durch ein Rillenkugellager 38 verhindert, dessen Lagerringe 39, 40 einerseits mit der Frontplatte 27 und andererseits mit dem Rotor 14 fest verbunden sind.
  • Im Ausführungsbeispiel nach Figur 5 ist der Rotor 14 nicht direkt auf dem Zapfen 11 gehalten, sondern mit diesem mittels eines flexiblen Verbindungselementes 41 gekoppelt, welches einerseits mit dem Rotor 14 und andererseits mit einer fest auf dem Zapfen 11 angeordneten Nabe 42 verbunden ist. Das Verbindungselement 41 umfasst mehrere, im axial vorderen und im axial hinteren Bereich des Rotors 14 sowie der auf dem Zapfen 11 per Klemmverbindung spielfrei gehaltenen Nabe 42 angeordnete Verbundbleche 43. Jedes Verbundblech 43 ist als Blech/Kunststoff/Blech-Sandwich-Bauteil aufgebaut und per Laserschweißung sowohl mit dem Rotor 14, welcher das Verbindungselement 41 umgibt, als auch mit der Nabe 42, welche radial innerhalb des Verbindungselementes 41 angeordnet ist, stoffschlüssig verbunden. Das Verbindungselement 41 weist ausschließlich in Richtung der Rotationsachse A elastisch nachgiebige Eigenschaften auf, so dass der Rotor 14 mittels des Verbindungselementes 41 in Umfangsrichtung starr, jedoch in Axialrichtung federnd gelagert ist. Ähnlich wie der mittels der Buchse 26 verschiebbar gelagerte Rotor 14 nach Figur 2 positioniert sich auch der federnd gelagerte Rotor 14 nach Figur 5 selbsttätig, allein aufgrund der beim Betrieb des Elektromotors 3 auftretenden elektromagnetischen Kräfte, relativ zum Stator 15.
  • Das Ausführungsbeispiel nach Figur 6 unterscheidet sich von den vorstehend erläuterten Ausführungsbeispielen wesentlich dadurch, dass der Stator 15 in Axialrichtung verschieblich im Gehäuse 9 des Elektromotors 3 gelagert ist, während der Rotor 14 starr mit dem Zapfen 11 und damit auch mit dem Zylinder 1, beispielsweise einem Platten-, Gummi, Druck- oder Transferzylinder, verbunden ist. Um den Stator 15 bei abgeschaltetem Elektromotor 3 innerhalb des zur Verfügung stehenden Verschiebeweges zu zentrieren, ist an beiden Stirnseiten 44 des Stators 15 jeweils ein O-Ring 45 angeordnet, welcher an einer inneren Stirnfläche 46 des Gehäuses 9 anliegt. An Stelle eines O-Rings 45 kann beispielsweise auch eine Spiralfeder oder eine Blattfeder vorgesehen sein. Die Nachgiebigkeit der O-Ringe 45 ist ausreichend, um bei einer Seitenregisterverstellung, d.h. einer axialen Verschiebung des Zylinders 1 und damit auch des Rotors 14, den Stator 15 durch die auftretenden elektromagnetischen Kräfte mit zu verschieben. Eine Verdrehung des Stators 15 relativ zum Gehäuse 9 wird durch einen in den Stator 15 eingeschraubten Stift 47 verhindert, welcher in eine Bohrung 48 im Gehäuse 9 eintaucht. Obwohl im Gegensatz zu den Ausführungsbeispielen nach den Figuren 1 und 2 die Statorlänge LS und die Rotorlänge LR identisch sind, bleibt somit auch im Ausführungsbeispiel nach Figur 6 der Spaltraum 16 zwischen Rotor 14 und Stator 15 in jedem Betriebszustand konstant.
  • Die Figuren 7 a und 7 b zeigen eine Weiterentwicklung des Ausführungsbeispiels nach Figur 6, wobei der Stator 15 mittels eines einstellbaren Nadelschuhs 49 längs verschieblich im Gehäuse 9 geführt ist. Vergleichbar mit dem Ausführungsbeispiel nach Figur 4 a, b weist auch der Nadelschuh 49 nach Figur 7 a, b zwei gegeneinander verschiebbare Keilstücke 50, 51 auf, so dass das Spiel des Stators 15 in Umfangsrichtung verstellbar ist. Insbesondere ist eine Lagerung des Stators 15 mit Vorspannung einstellbar. Auch bei komplett montiertem Elektromotor 3 ist die Vorspannung des Nadelschuhs 49 mittels eines nicht dargestellten Werkzeugs veränderbar, welches durch eine Bohrung 52 im Gehäuse 9 hindurch an den Nadelschuh 49 angesetzt werden kann. Ferner kann in nicht dargestellter Weise eine Lagerung, insbesondere eine Wälzlagerung, zwischen dem Rotor 14 und dem Stator 15 vorgesehen sein, mittels welcher, ähnlich wie im Ausführungsbeispiel nach Figur 4 a, die axiale Position des Stators 15 relativ zum Rotor 14 unveränderbar festgelegt ist.
  • Um beim Betrieb des Elektromotors 3 entstehende Wärme abzuführen, befinden sich am Umfang des Stators 15 von einem Kühlmedium, insbesondere Wasser, durchströmbare Kühlkanäle 63, die unmittelbar an das Gehäuse 9 grenzen, wobei Dichtungen 64 zur Abdichtung gegenüber dem Gehäuse 9 vorgesehen sind. Das Kühlmedium wird eine Bohrung 65 im Gehäuse 9 hindurch in die Kühlkanäle 63 geleitet.
  • In Figur 8 ist eine Weiterentwicklung eines elektrischen Direktantriebs in einer Druckmaschine dargestellt, wobei eine eigensichere Bremse 53 in den Elektromotor 3 integriert ist. Der Rotor 14 des Elektromotors 3 ist ähnlich wie im Ausführungsbeispiel nach Figur 2 mittels einer Gleitlagerung verschiebbar auf dem mit dem Zylinder 1 verbundenen Zapfen 11 gelagert. An der dem Zylinder 1 abgewandten Stirnseite des Rotors 14 befindet sich ein erster Bremsbelag 54, welcher mit einem zweiten, an der Innenseite der Frontplatte 27 befestigten Bremsbelag 55 zusammenwirkt. Ohne Energiezufuhr werden die Bremsbeläge 54, 55 mittels einer als Schraubenfeder ausgebildeten Druckfeder 56, welche den Zapfen 11 umgibt, aneinander gepresst. Abweichend von der Darstellung kann die Druckfeder 56 beispielsweise auch als Tellerfeder ausgebildet sein. Um eine Kraft von der Druckfeder 56 auf den Rotor 14 und damit auf die Bremsbeläge 54, 55 zu übertragen, ist ein der Drehentkopplung dienendes Wälzlager 57 zwischen der Druckfeder 56 und dem Rotor 14 angeordnet, wobei der auf der Seite der Druckfeder 56 angeordnete Lagerring 58 des Wälzlagers 57 axial verschieblich, jedoch nicht drehbar im Gehäuse 9 gelagert ist.
  • Ein weiteres Wälzlager 59 überträgt beim Lösen der Bremse 53 eine Kraft und ist zwischen der Frontplatte 27 des Gehäuses 9 und dem Rotor 14 angeordnet. Hierbei ist die auf der Seite der Frontplatte 27 angeordnete Lagerschale 60 des Wälzlagers 59 nicht starr mit der Frontplatte 27 verbunden, sondern an ein Vorschubelement 61 eines in Axialrichtung wirkenden Aktuators 62 gekoppelt. Der Aktuator 62 ist im dargestellten Ausführungsbeispiel ein druckluftbetätigtes Stellelement, kann jedoch beispielsweise auch als elektrisch betätigbares oder hydraulisches Stellelement ausgebildet sein. In jedem Fall ist ein Lösen der Bremse 53 nur bei Energiezuführung zum Aktuator 62 möglich.
  • Die Figuren 9 a und 9 b zeigen einen elektrischen Direktantrieb einer Druckmaschine, bei welchem der Stator 15 des Elektromotors 3 fest in dessen Gehäuse 9 angeordnet ist, während der Rotor 14 mittels einer Ausgleichskupplung 66 drehfest, jedoch axial verschieblich auf dem mit dem Zylinder 1 verbundenen Zapfen 11 geführt ist. Zur Lagerung des Rotors 14 auf dem Zapfen 11 ist eine Gleitbuchse 67 vorgesehen. Die axiale Position des Rotors 14 relativ zum Gehäuse 9 ist auch bei einer Axialverschiebung, das heißt Changierbewegung des Zapfens 11 stets gleichbleibend. Die Ausgleichskupplung 66 ist zwischen dem Rotor 14 und einem auf dem Zapfen 11 befestigten Spannsatz 68 angeordnet.
  • Mittels eines weiteren Ausgleichselementes 69, welches sich stirnseitig am Zapfen 11 befindet, wird die Drehbewegung des Zapfens 11 unter Entkoppelung von axialen Bewegungskomponenten an einen Winkelgeber 70 übertragen, welcher außerhalb des Gehäuses 9 angeordnet ist. Der Winkelgeber 70 ist über eine Gehäusekappe 71 mit dem übrigen Gehäuse 9 verbunden.
  • Bezugszeichenliste
  • 1
    Zylinder
    2
    Rahmenkonstruktion
    3
    Elektromotor
    4
    Stirnseite
    5
    Wälzlager
    6
    Abschnitt
    7
    Außenring
    8
    Linearführung
    9
    Gehäuse
    10
    Abschnitt
    11
    Zapfen
    12
    Rand
    13
    Spannvorrichtung
    14
    Rotor
    15
    Stator
    16
    Spaltraum
    17
    Innenteil
    18
    Außenteil
    19
    Spannvorrichtung
    20
    Schraube
    21
    Keil
    22
    Öffnung
    23
    Führung
    24
    Schraube
    25
    Nutenstein
    26
    Buchse
    27
    Frontplatte
    28
    Montagestift
    29
    Bohrung
    30
    Sackloch
    31
    Keilstück
    32
    Keilstück
    33
    Schraube
    34
    Bohrung
    35
    Nut
    36
    Wälzkörper
    37
    Nadelschuh
    38
    Rillenkugellager
    39
    Lagerring
    40
    Lagerring
    41
    Verbindungselement
    42
    Nabe
    43
    Verbundblech
    44
    Stirnseite
    45
    O-Ring
    46
    innere Stirnfläche
    47
    Stift
    48
    Bohrung
    49
    Nadelschuh
    50
    Keilstück
    51
    Keilstück
    52
    Bohrung
    53
    Bremse
    54
    Bremsbelag
    55
    Bremsbelag
    56
    Druckfeder
    57
    Wälzlager
    58
    Lagerring
    59
    Wälzlager
    60
    Lagerschale
    61
    Vorschubelement
    62
    Aktuator
    63
    Kühlkanal
    64
    Dichtung
    65
    Bohrung
    66
    Ausgleichskupplung
    67
    Gleitbuchse
    68
    Spannsatz
    69
    Ausgleichselement
    70
    Winkelgeber
    71
    Gehäusekappe
    A
    Achse
    LR
    Länge des Rotors
    Ls
    Länge des Stators
    s
    Spaltbreite

Claims (19)

  1. Vorrichtung zum Antrieb eines Zylinders (1) einer Druckmaschine, mit einem Elektromotor (3), dessen Rotor (14) koaxial zum Zylinder (1) angeordnet und mit diesem drehfest verbunden ist, und dessen Stator (15) an einer Rahmenkonstruktion (2), in welcher der Zylinder (1) axial verschieblich gelagert ist, gehalten ist, wobei der Rotor (14) und der Stator (15) derart bemessen sowie mit dem Zylinder (1) beziehungsweise der Rahmenkonstruktion (2) gekoppelt sind, dass bei jeder beim Betrieb der Druckmaschine möglichen Axialverschiebung des Zylinders (1) der zwischen Stator (15) und Rotor (14) gebildete Spaltraum (16) sowohl hinsichtlich Spaltbreite (s) als auch hinsichtlich Länge konstant bleibt, und wobei das den Stator (15) aufnehmende Gehäuse (9) des Elektromotors (3) an einem Außenring (7) eines der Lagerung des Zylinders (1) in der Rahmenkonstruktion (2) dienenden Wälzlagers (5) befestigt ist, dadurch gekennzeichnet, dass der Rotor (14) relativ zum Zylinder (1) axial verschieblich geführt ist.
  2. Vorrichtung nach Anspruch 1, gekennzeichnet durch eine Linearführung (8), mittels welcher das der Lagerung des Zylinders (1) dienende Wälzlager (5) senkrecht zur Rotationsachse (A) des Zylinders (1) in der Rahmenkonstruktion (2) verschiebbar ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Rotor (14) in dessen radial innerem Bereich eine Buchse (26) aufweist, welche auf dem Zylinder (1) oder einem fest mit diesem verbundenen Zapfen (11) axial verschieblich gelagert ist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Buchse (26) aus Buntmetall gefertigt ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Rotor (14) mittels einer Wälzlagerung (36) relativ zum Zylinder (1) längs verschieblich geführt ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, gekennzeichnet durch ein Lager (38), welches die axiale Position des Rotors (14) relativ zu einem Gehäuse (9) des Elektromotors (3) unabhängig von der Axialpositionierung des Zylinders (1) festlegt.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass als Lager (38) ein Rillenkugellager vorgesehen ist, dessen Lagerringe (39,40) mit dem Rotor (14) bzw. mit dem Stator (15) des Elektromotors (3) fest verbunden sind.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Rotor (14) mittels mindestens eines in Axialrichtung nachgiebigen, zugleich in Umfangsrichtung steifen Verbindungselementes (41), welches einerseits, in einem radial inneren Bereich, mit dem Zylinder (1) oder einem starr an diesem befestigten Teil (11,42) verbunden ist, und andererseits, in einem radial äußeren Bereich, mit dem Rotor (14) verbunden ist, am Zylinder (1) angelenkt ist.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das Verbindungselement (41) in Axialrichtung federnd ist.
  10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Verbindungselement (41) durch Laserschweißung gefertigt und / oder mit dem Rotor (14) und / oder mit dem Zylinder (1) oder einem starr an diesem befestigten Teil (11,42) verbunden ist.
  11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Verbindungselement (41) aus einem Verbundmaterial gefertigt ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass das Verbundmaterial des Verbindungselementes (41) einen metallischen Werkstoff sowie einen Polymerwerkstoff umfasst.
  13. Vorrichtung zum Antrieb eines Zylinders (1) einer Druckmaschine, mit einem Elektromotor (3), dessen Rotor (14) koaxial zum Zylinder (1) angeordnet und mit diesem drehfest verbunden ist, und dessen Stator (15) an einer Rahmenkonstruktion (2), in welcher der Zylinder (1) axial verschieblich gelagert ist, gehalten ist, wobei der Rotor (14) und der Stator (15) derart bemessen sowie mit dem Zylinder (1) beziehungsweise der Rahmenkonstruktion (2) gekoppelt sind, dass bei jeder beim Betrieb der Druckmaschine möglichen Axialverschiebung des Zylinders (1) der zwischen Stator (15) und Rotor (14) gebildete Spaltraum (16) sowohl hinsichtlich Spaltbreite (s) als auch hinsichtlich Länge konstant bleibt, und wobei das den Stator (15) aufnehmende Gehäuse (9) des Elektromotors (3) an einem Außenring (7) eines der Lagerung des Zylinders (1) in der Rahmenkonstruktion (2) dienenden Wälzlagers (5) befestigt ist, dadurch gekennzeichnet, dass der Stator (15) relativ zum mit der Rahmenkonstruktion (2) verbundenen Gehäuse (9) des Elektromotors (3) axial verschieblich geführt ist.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass zwischen einer Stirnseite (44) des Stators (15) und einer inneren Stirnfläche (46) des Gehäuses (9) eine O-Ring-Dichtung (45) angeordnet ist.
  15. Vorrichtung nach Anspruch 13 oder 14, gekennzeichnet durch eine Axiallagerung, welche den Stator (15) in axial unveränderlicher Position relativ zum Rotor (14) hält.
  16. Vorrichtung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass der Stator (15) verdrehgesichert im Gehäuse (9) gelagert ist.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass der Stator (15) mittels eines verstellbaren Nutensteins (49) mit einem in Umfangsrichtung des Stators (15) einstellbaren Spiel oder mit Vorspannung im Gehäuse (9) gelagert ist.
  18. Vorrichtung nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass der Stator (15) einen zum Gehäuse (9) hin abgedichteten Kühlkanal (63) aufweist.
  19. Vorrichtung nach einem der Ansprüche 13 bis 18, gekennzeichnet durch eine eigensichere Bremse (53) zur Abbremsung des Verbundes aus Zylinder (1) und Rotor (14).
EP06122396A 2005-10-20 2006-10-17 Direktantrieb einer Druckmaschine Not-in-force EP1777068B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005050651A DE102005050651A1 (de) 2005-10-20 2005-10-20 Direktantrieb einer Druckmaschine

Publications (3)

Publication Number Publication Date
EP1777068A2 EP1777068A2 (de) 2007-04-25
EP1777068A3 EP1777068A3 (de) 2008-01-23
EP1777068B1 true EP1777068B1 (de) 2009-08-12

Family

ID=37781881

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06122396A Not-in-force EP1777068B1 (de) 2005-10-20 2006-10-17 Direktantrieb einer Druckmaschine

Country Status (4)

Country Link
US (1) US7576464B2 (de)
EP (1) EP1777068B1 (de)
AT (1) ATE439237T1 (de)
DE (2) DE102005050651A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005052497B4 (de) * 2005-10-31 2011-09-01 Koenig & Bauer Aktiengesellschaft Antrieb eines Zylinders einer Druckmaschine
JP6029854B2 (ja) * 2012-05-22 2016-11-24 ミネベア株式会社 振動子及び振動発生器
US20140015355A1 (en) * 2012-07-12 2014-01-16 Deere & Company Electric Machine Cooling Arrangement And Method
CN111376729B (zh) * 2018-12-30 2021-08-31 江苏太航信息科技有限公司 一种提升电池续航能力的车辆系统
CN116404771B (zh) * 2023-04-23 2024-02-27 浙江硕驰泵业有限公司 一种排水泵用电动机组合式定子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE495589A (de) * 1950-05-06 1950-05-31
US3090879A (en) * 1955-03-31 1963-05-21 Barmag Barmer Maschf Variable speed motor for winding apparatus
US2922098A (en) * 1958-10-22 1960-01-19 Miles B Hutson Adjustable speed induction motor
US3460016A (en) * 1967-08-30 1969-08-05 William S Rouverol Shiftable rotor variable speed induction motor
DE3614006A1 (de) * 1986-04-25 1987-10-29 Heidelberger Druckmasch Ag Druckmaschine, insbesondere bogenoffsetdruckmaschine
EP0722831B1 (de) * 1993-04-22 1999-08-18 Baumüller Nürnberg Gmbh Verfahren und Anordnung für einen Elektromotor zum Antrieb eines Drehkörpers, insbesondere des druckgebenden Zylinders einer Druckmaschine
DE4422097A1 (de) * 1994-06-24 1996-01-04 Roland Man Druckmasch Anordnung eines Elektromotors zum Antrieb eines Drehkörpers
DE4430693B4 (de) * 1994-08-30 2005-12-22 Man Roland Druckmaschinen Ag Antriebe für eine Rollenrotations-Offsetdruckmaschine
CH691225A8 (fr) * 1996-02-09 2001-08-15 Bobst Sa Machine d'impression rotative.
DE29823527U1 (de) * 1998-04-24 1999-08-05 Koenig & Bauer AG, 97080 Würzburg Walze für eine Rotationsdruckmaschine
DE19930998B4 (de) * 1998-07-31 2011-11-10 Heidelberger Druckmaschinen Ag Druckmaschinenantrieb
WO2002081213A2 (de) * 2001-04-09 2002-10-17 Koenig & Bauer Aktiengesellschaft Druckwerk einer druckmaschine, verfahren zum an- und abstellen eines zylinders sowie verfahren zur herstellung eines druckproduktes
DE10145322A1 (de) 2001-09-14 2003-04-03 Ina Schaeffler Kg Lageranordnung für Zylinder, Walzen oder Trommeln
DE10255041A1 (de) * 2001-12-27 2003-07-17 Heidelberger Druckmasch Ag Antrieb für einen umlaufenden Zylinder einer drucktechnischen Maschine
DE10219903B4 (de) * 2002-05-03 2014-10-09 Manroland Web Systems Gmbh Zylinder einer Rotationsdruckmaschine
DE10260491A1 (de) 2002-12-21 2004-07-01 Koenig & Bauer Ag Vorrichtung zur Lageverstellung eines Drehkörpers mit Direktantrieb
WO2005056195A1 (de) * 2003-12-12 2005-06-23 Maschinenfabrik Wifag Aussenläuferantrieb
US20050257704A1 (en) * 2004-05-21 2005-11-24 Pas Jon V Method for lateral adjustment of a directly driven load without shifting the entire drive assembly
US20090205520A1 (en) * 2005-06-23 2009-08-20 Schaefer Karl Robert Drive units of a rotating component of a printing press

Also Published As

Publication number Publication date
EP1777068A2 (de) 2007-04-25
US7576464B2 (en) 2009-08-18
EP1777068A3 (de) 2008-01-23
DE102005050651A1 (de) 2007-04-26
DE502006004493D1 (de) 2009-09-24
US20070090721A1 (en) 2007-04-26
ATE439237T1 (de) 2009-08-15

Similar Documents

Publication Publication Date Title
DE69816747T2 (de) Betätigungsglied
EP1817126B1 (de) Spannvorrichtung
EP1777068B1 (de) Direktantrieb einer Druckmaschine
EP2056987B1 (de) Fräswerkzeug, insbesondere einer handfräsmaschine zum fräsen von fasen
EP1590143A1 (de) Granulator zur erzeugung von granulat aus schmelzflüssigem kunststoff
EP1453638B1 (de) Vorrichtung zur befestigung eines werkzeugs an einer welle sowie maschinenspindel mit einer derartigen vorrichtung
EP1880796A1 (de) Mehrachsendrehkopf für eine Werkzeugmaschine
EP1752741A1 (de) Drehgeber
DE202009015840U1 (de) Linearaktuator
DE102013107378A1 (de) Antriebsvorrichtung
DE19948265C2 (de) Linearstellglied
AT520949A1 (de) Fixierelement zur Fixierung der Rotorwelle einer elektrischen Maschine an deren Stator, sowie elektrische Maschine mit einem solchen Fixierelement
EP1915552B1 (de) Kugelgewindetrieb und verfahren zur verschiebung einer gewindespindel bei einem kugelgewindetrieb
EP1749929B1 (de) Vorrichtung zur Herstellung und/oder Behandlung einer Materialbahn, insbesondere Papier- oder Kartonbahn
DE102016119821A1 (de) Motorspindel
EP1089019B1 (de) Linearstellglied
WO2001043904A1 (de) Werkzeugantrieb für werkzeugmaschinen
EP1856421B1 (de) Aerostatisches lager mit einem schwenkbar abgestützten lager fuss und kupplung mit dem lager
DE102011116703B4 (de) Motorisch angetriebene Werkzeugmaschineneinheit
WO2020152365A1 (de) Elektromechanischer linearantrieb
DE19822587A1 (de) Axiallager einer Offenend-Spinnvorrichtung
EP1637771A2 (de) Gewindetrieb
DE102018209543A1 (de) Lenkgetriebe für ein Kraftfahrzeug
EP4111077B1 (de) Linearsystem für eine fertigungsanlage und verfahren zur montage solch eines linearsystems
DE19718723C2 (de) Drehsensor-Anordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DITTENHOEFER, THOMAS

Inventor name: POPP, STEPHAN

Inventor name: SCHAEFER, KARL ROBERT

Inventor name: WEYH, JUERGEN

Inventor name: SCHMID, GUENTER

Inventor name: RODE, DETLEF

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080308

17Q First examination report despatched

Effective date: 20080421

AKX Designation fees paid

Designated state(s): AT CH DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502006004493

Country of ref document: DE

Date of ref document: 20090924

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091013

Year of fee payment: 4

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: INA-DRIVES & MECHATRONICS GMBH & CO OHG

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101029

Year of fee payment: 5

Ref country code: IT

Payment date: 20101025

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111115

Year of fee payment: 6

Ref country code: CH

Payment date: 20111026

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: INA - DRIVES & MECHATRONICS GMB, SCHAEFFLER TECHNOLOGIES GMBH &, , DE

Effective date: 20120828

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: INA - DRIVES & MECHATRONICS GMBH & CO. OHG, DE

Free format text: FORMER OWNER: INA - DRIVES & MECHATRONICS GMB, SCHAEFFLER TECHNOLOGIES GMBH &, , DE

Effective date: 20120828

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: INA - DRIVES & MECHATRONICS GMB, SCHAEFFLER TECHNOLOGIES GMBH &, , DE

Effective date: 20120828

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNERS: INA - DRIVES & MECHATRONICS GMBH & CO. OHG, 98527 SUHL, DE; SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: INA - DRIVES & MECHATRONICS GMB, SCHAEFFLER TECHNOLOGIES AG & CO, , DE

Effective date: 20121120

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: INA - DRIVES & MECHATRONICS GMB, SCHAEFFLER TECHNOLOGIES AG & CO, , DE

Effective date: 20121120

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNERS: INA - DRIVES & MECHATRONICS GMBH & CO. OHG, 98527 SUHL, DE; SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20121120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 439237

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121017

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121017

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121017

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20131016

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20131016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140214

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004493

Country of ref document: DE

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20150213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170102

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006004493

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501