EP1775380B1 - Verfahren zur Herstellung von Tissuepapier - Google Patents

Verfahren zur Herstellung von Tissuepapier Download PDF

Info

Publication number
EP1775380B1
EP1775380B1 EP06121949A EP06121949A EP1775380B1 EP 1775380 B1 EP1775380 B1 EP 1775380B1 EP 06121949 A EP06121949 A EP 06121949A EP 06121949 A EP06121949 A EP 06121949A EP 1775380 B1 EP1775380 B1 EP 1775380B1
Authority
EP
European Patent Office
Prior art keywords
process according
fabric
tissue paper
paper web
stock suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06121949A
Other languages
English (en)
French (fr)
Other versions
EP1775380A3 (de
EP1775380A2 (de
Inventor
Thomas Scherb
Luiz Carlos Silva
Rogerio Berardi
Davilo Oyakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Publication of EP1775380A2 publication Critical patent/EP1775380A2/de
Publication of EP1775380A3 publication Critical patent/EP1775380A3/de
Application granted granted Critical
Publication of EP1775380B1 publication Critical patent/EP1775380B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/14Secondary fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution

Definitions

  • This invention relates to a process for the production of tissue paper and to a process for the preparation of a pulp suspension for particular use in the manufacture of tissue paper.
  • Tissue paper ideally has high absorbency and high water absorption coupled with high tear resistance.
  • the document WO 971034047 describes a tissue paper web made from a suspension of partially coarse cellulosic fibers derived, for example, from CTMP or recycled wastepaper.
  • the coarse pulp fibers lead from a certain proportion to an unexpectedly high softness of the tissue web. Unexpected high softness is also achieved by treating the cellulosic fibers with chemical softening agents, thereby lowering the coefficient of friction of the fibers.
  • the porosity, permeability, absorbency and drainability of the tissue paper are critically determined by the degree of beating of the fibers in the stock suspension from which the tissue paper is made. This requires a high freeness a high fines content in the suspension, resulting in a low porosity and permeability in the tissue paper web produced.
  • the tensile strength is influenced by the freeness of the fibers in the pulp suspension in that the tear strength is increased by increasing the fines content.
  • tissue paper with high water absorption capacity and high absorbency (so-called bulky tissue ) suitable is.
  • the inventive method for producing a tissue paper web, which is made from a fiber comprising pulp, wherein the Substance suspension is at least partially formed by a recovered by treatment of waste paper pulp, is characterized in that the pulp suspension is ground immediately after the refiner to a freeness of less than 30 ° SR and that from this pulp suspension according to TAPPI 205 SP 95 (Rapid Köthen) has a breaking length, measured according to TAPPI 220 and TAPPI 494, of 4.0 km or more.
  • tissue paper which is partially compressed more in its production than in other areas, a sufficient porosity and dewaterability is given if the freeness of the stock suspension, comprising a recovered by treatment of waste paper pulp, immediately after the refiner is less than 30 ° SR (Schopper latch).
  • Sufficient tensile strength of the tissue paper web is provided, as tests have shown, if a laboratory sheet according to TAPPI 205 SP 95 (Rapid Köthen) can be produced from the stock suspension, whose tearing length is 4.0 km or more, measured according to TAPPI 220 and TAPPI 494.
  • the laboratory sheet produced according to TAPPI 205 SP 95 has a weight per unit area of 60 g / m 2 .
  • the pulp suspension fraction obtained by processing recovered paper may in particular comprise deinked pulp (DIP).
  • DIP deinked pulp
  • tissue paper can be produced at a high machine speed, ie 1200 m / min or more, if the pulp suspension is a TAPPI 205 SP 95 (Rapid Köthen) laboratory sheet having a tenacity of 4.3km or more measured according to TAPPI 220 and TAPPI 494, can be formed.
  • the pulp suspension has an ash content of less than 4% and / or a fines content of less than 25%.
  • the stock suspension may comprise a suspension portion made from a low consistency recovered stock recovered by treating recovered paper, the lower consistency stock having a consistency of less than 5%.
  • the stock suspension of the invention In order to prepare the stock suspension of the invention from the low-consistency starting material suspension, it can be ground, for example, at the low consistency of less than 10%.
  • the disadvantage here is that often a high proportion of fines is generated by the grinding of the starting material suspension at low consistency to produce a sufficient tensile strength.
  • Attempt by the Applicant have shown that the grinding can be greatly reduced if the low-consistency starting material suspension so-called enzymes and / or means for increasing the dry strength.
  • "D ry S trenght A gent" (DSA) and / or means for increasing the wet strength, so-called " W et S trenght A gent" (WSA) to be added. In such a case, in the ideal case, it is even possible to completely dispense with grinding.
  • DSA's makes it possible to further reduce the degree of grinding in the pulp suspension while maintaining the tear resistance constant.
  • DSA for example, carbon methyl cellulose and / or starch can be used.
  • ESC can, for example, the product sold by Hercules under the trade name Kymene ® are used.
  • the enzymes of the low-consistency starting suspension are added at a temperature in the range from 25 ° C. to 70 ° C., preferably 30 ° C. to 60 ° C., particularly preferably at about 35 ° C. to 45 ° C. because their effectiveness is highest in this temperature range.
  • the effectiveness of the enzymes can be increased if they are added to the low-consistency starting suspension at a pH in the range from 5 to 8, preferably 5.5 to 7.5, particularly preferably at about 6.5 to 7.
  • the enzymes may be added to the stock suspension, for example in the pulper, i. be added before the grinding process.
  • the stock suspension of the invention may also comprise a suspension portion made from a high consistency stock suspension having a consistency of 20% or more, preferably 20% to 40%, most preferably 25% to 35%.
  • the high consistency stock suspension is ground at the above high consistency.
  • the highly consistent starting material suspension can be obtained, in particular, by thickening a low-consistency starting suspension, the thickening taking place, for example, by means of a screw press.
  • the high-consistency raw material suspension is milled at a temperature in the range between 20 ° C and 80 ° C, preferably at 40 ° C.
  • the stock suspension prefferably provided only from the suspension prepared from a high-consistency stock suspension or for this suspension portion (first suspension portion) to be mixed with a suspension portion (second suspension portion) made from a low-consistency stock suspension Consistency less than 10% was made.
  • the second suspension portion has a higher freeness than the first suspension portion.
  • tissue paper web can be easily dewatered during its production in order to achieve a satisfactory dry content if the fibers of the stock suspension have a retention value of 1.5 g / g or less, preferably 1.4 g / g measured according to TAPPI UM 256 have.
  • the process of the present invention is then particularly effective in increasing the dewaterability during production and increasing the water absorption and absorbency of the finished product with satisfactory tear strength when the tissue paper web is compressed less in its production in areas than in other areas.
  • the tissue paper web is not compressed at all in the areas.
  • tissue paper web should comprise areas of different compression, it makes sense if the tissue paper web from the stock suspension is already formed on a structured, in particular 3-dimensional structured sieve.
  • the side facing the tissue paper web comprises at least partially recessed regions and elevated regions relative to the recessed regions, the tissue paper web being formed at least in sections in the recessed and raised regions of the structured sieve.
  • the sections of the tissue paper web formed in the recessed areas of the structured screen in this case have a higher volume and basis weight than the sections formed in the raised areas of the screen.
  • tissue paper web here has bulky pillow-like high area (pillow area) portions formed in the recessed areas of the structured screen and intervening lower loft lower weight portions formed in the raised areas of the structured screen.
  • the structured screen may comprise a TAD screen or a DSP screen.
  • a TAD screen has the advantage of high permeability, ensuring rapid dewatering during formation.
  • the tissue paper web is preferably passed in a dewatering step between an upper textured, in particular 3-dimensional, and permeable fabric and a lower permeable fabric, wherein in the dewatering step along a Entskyss mecanicsumble pressure on the upper fabric, the tissue paper web and the lower clothing is exercised.
  • the pressure exerted here on the arrangement of structured and permeable covering, tissue paper web and lower permeable covering can be effected by a gas flow. Additionally or alternatively, the pressure exerted can be effected by a mechanical pressing force.
  • tissue paper web In order to compress the tissue paper web only partially by the action of pressure and thus to provide a tissue paper with regions - in the unpressed or less pressed areas - high volume for good absorbency and with areas - in the more compressed areas - high strength, it makes sense when the side of the structured fabric facing the tissue paper web comprises recessed regions and elevated regions relative to the recessed regions. As a result, as already mentioned, the tissue paper web is less strongly compressed in the recessed regions, in particular not compressed at all, than in the raised regions.
  • the upper structured and permeable fabric is preferably a structured fabric, in particular TAD fabric or DSP fabric, and the lower permeable fabric is preferably a felt having a sufficiently high water absorption capacity for the water extruded from the tissue paper web.
  • the structure of the lower clothing is on the PCT / EP2005 / 050198 directed.
  • the compressibility (thickness change in mm when force is applied in N) of the upper clothing is smaller than the compressibility of the lower clothing.
  • the voluminous structure of the tissue paper web is maintained at the pressure.
  • the dynamic stiffness (K) as a measure of the compressibility of the lower fabric is 100000N / mm or less, preferably 90000N / mm, more preferably 70000N / mm or less.
  • the G-modulus as a measure of the elasticity of the lower clothing is 2N / mm 2 or more, preferably 4N / mm 2 or more.
  • the dewatering step first the upper fabric then the tissue paper web and then the lower fabric is traversed by a gas.
  • the dewatering of the paper web takes place in the direction of the lower clothing.
  • the arrangement of upper covering, tissue paper web and lower covering is guided at least in sections along the dewatering section between a tensioned press belt and a smooth surface, wherein the press belt on the upper clothing acts and the lower fabric is supported on the smooth surface.
  • a dewatering of the tissue paper web takes place in the direction of the lower clothing.
  • the arrangement of upper covering, tissue paper web and lower covering is at least partially flowed through in the region of the dewatering section of the gas stream, so that the dewatering takes place simultaneously by the pressing force of the press belt and the flow of the gas.
  • the gas flow can be generated by a suction zone in a roller.
  • the suction zone has a length in the range between 200mm and 2500mm, preferably between 800mm and 1800mm, more preferably between 1200mm and 1600mm and the negative pressure in the suction zone is between -0.2bar and -0.8bar, preferably between -0, 4bar and -0,6bar.
  • the gas flow can also be generated by an overpressure hub arranged above the upper clothing.
  • the overpressure hood may, for example, be a steam blower box.
  • the temperature of the gas flow between 50 ° C and 180 ° C, preferably between 120 ° C and 150 ° C and the pressure is less than 0.2bar, preferably less than 0.1bar and more preferably less than 0.05bar ,
  • the gas can be hot air or steam.
  • the press belt By a high tension of the press belt, the pressing force can be increased.
  • the press belt is under a tension of at least 30 kN / m, preferably at least 60 kN / m or 80 kN / m.
  • the press belt can in this case have a spiral structure and, for example, be designed as a so-called SiralLinkFabric. Furthermore, it is possible that the press belt has a woven structure.
  • the press belt has an open area of at least 25% and a contact area of at least 10% of its total to the upper clothing has facing surface.
  • the press belt has an open area between 75% and 85% and a contact area between 15% and 25% of its total to the upper Has covering surface.
  • the press belt has an open area between 68% and 76% and a contact area between 24% and 32% of its total surface facing the upper clothing.
  • the press belt has an open area of 50% or more and a contact area of 50% or more of its entire upper clothing facing surface. In this way, both a good gas flow through the press belt as well as a homogeneous pressing force can be provided by means of the press belt.
  • the smooth surface is preferably formed by the lateral surface of a roller.
  • tissue paper web By the dewatering process described above, it is possible for the tissue paper web to leave the dewatering section at a dry content of between 25% and 55%.
  • the structured sieve in the dewatering step is the same sieve as that in the formation of the tissue paper web.
  • the voluminous pillow-like portions of the tissue paper web will remain in the recessed areas of the structured screen during the pressurization, thereby leaving the bulky portions in front of the screen Pressure are largely protected and applied to this significantly less pressure than on the intervening sections of the tissue paper web.
  • the bulky structure of the pillow-like portions therefore remains in the dewatering step.
  • the tissue paper web is guided in a further dewatering step subsequent to the dewatering step together with the structured covering of the dewatering step through a press nip and further dehydrated.
  • tissue paper web in the press nip b is preferably arranged between the structured and permeable upper clothing and a, in particular smooth and heated, roller surface, wherein the heated and smooth surface is preferably formed by the jacket surface of a Yankee drying cylinder.
  • the transfer of the tissue paper web on the structured upper clothing through the press nip ensures that even in this dewatering step, the voluminous pillow-like sections of the tissue paper are pressed less strongly than the intervening sections.
  • the recessed areas and the relatively elevated areas of the structured and permeable clothing are designed and arranged in such a way that only 35% or less, in particular only 25% or less, of the tissue paper web is pressed in the press nip.
  • the 3-dimensional structure of the paper is already formed during the formation.
  • the 3-dimensional structure of the tissue paper only becomes effective at a subsequent dewatering step formed in that the tissue paper web is pressed into a structured sieve, whereby a substantially double-sided wavy tissue paper is formed.
  • the formation of the tissue paper between the structured fabric and a forming fabric having a relatively smooth surface forms a tissue paper web which is substantially smooth on the side formed on the smooth forming fabric.
  • this side comes into contact with the jacket surface of the Yankee drying cylinder, which prevents burning of the tissue paper web at high temperatures of the Yankee drying cylinder due to the relatively large contact surface compared to the prior art.
  • the temperature of the Yankee drying cylinder over the prior art can be increased, resulting in a higher dry content of the tissue paper web produced.
  • the press nip is an extended press nip, i. is formed by the roller surface and a shoe press unit.
  • the press nip is formed by a suction press roll and the roll surface instead of the shoe press unit and the roll surface.
  • the tissue paper web In order to remove water which is carried along in the structured upper clothing and which impedes dewatering in the press nip, it is expedient for the tissue paper web to be guided together with the structured clothing around an evacuated deflection roller, the structured clothing between the tissue paper web and the paper web sucked deflecting roller is arranged.
  • FIG. 1 shows an apparatus 1 for providing a stock suspension according to the invention, which is subsequently used in the inventive method for producing a tissue paper web.
  • the device 1 comprises a pulper 2 in which a raw material suspension obtained by spreading waste paper is in a pumpable state. From the pulper 2, the starting material suspension is fed to a mixing vessel 3.
  • the fabric at this stage has a consistency of less than 10%, i. usually 5% or less and is referred to in this context as a low-consistency starting material.
  • the low-consistency starting material is a Thickener 4, which may be formed, for example, as a screw press, supplied and thickened in this example. From a consistency of 5% to a consistency of 25% to 35%, ideally about 30%, whereby a highly consistent feedstock suspension is generated.
  • the highly consistent starting material suspension thus formed is subjected to a milling process.
  • the high-consistency raw material suspension in a heating channel 5 to a temperature up to 80 ° C, ideally about 40 ° C, heated and then fed to a refiner 6 for grinding.
  • the high-consistency raw material suspension is ground to a freeness of less than 30 ° SR, ideally less than 25 ° SR.
  • the highly consistent stock suspension is ground with a total grinding energy in the range of 150kWh to 300kWh, especially 180kWh to 250kWh per ton, and it is conceivable to carry out the grinding process in succession in one step or in several grinding steps.
  • enzymes and agents for increasing the dry strength (DSA) and / or agents for increasing the wet strength (WSA) can be added to the substance, for example already in the pulper 2.
  • the enzymes of the low-consistency starting suspension at a temperature in the range of 25 ° C to 70 ° C, preferably 30 ° C to 60 ° C, more preferably at about 35 ° C to 45 ° C. be added, wherein the low-consistency starting suspension has a pH in the range of 5 to 8, preferably 5.5 to 7.5, more preferably at about 6.5 to 7 and the exposure time of the enzymes on the low-consistency starting suspension 1-2 hours , preferably 1.5 hours.
  • the stock suspension obtained by the Hochkonsistenzmahlvorgang is diluted in a dilution tank 7 with water, which is at least partially recovered during thickening in the thickener 4 of the low-consistency feedstock suspension.
  • the thus obtained low-consistency stock suspension can then be fed to the machine chest 8.
  • the pulp suspension obtained by the high-consistency grinding process can be mixed with the low-consistency suspension.
  • the stock suspension comprises only one pulp suspension fraction, which was prepared by adding the enzymes and grinding or only by adding the enzymes at low consistency.
  • the stock suspension is very strongly diluted with white water 9 and fed to a headbox 10.
  • a pulp suspension 11 with the above-mentioned properties emerges from the headbox 10 in such a way that it is injected into the incoming gap between a forming fabric 12 and a structured, in particular 3-dimensional structured fabric 13, whereby a tissue paper web 14 is formed.
  • the forming fabric 12 has a side facing the tissue paper web 14 that is smooth relative to that of the structured fabric 13.
  • the tissue paper web 14 facing side 15 of the structured screen 13 recessed areas 16 and relative to the recessed areas 16 elevated areas 17, so that the tissue paper web 14 in the recessed areas 16 and the elevated areas 17 of the structured screen 13 is formed.
  • the height difference between the recessed areas 16 and the raised areas 17 is preferably 0.07 mm and 0.6 mm.
  • the area formed by the raised areas 16 is preferably 10% or more, more preferably 20% or more, and most preferably 25% to 30%.
  • the structured sieve 13 is designed as a TAD sieve 13.
  • the array of TAD wire 13, tissue paper web 14 and forming wire 12 is directed around a forming roller 18 and the tissue paper web 14 is substantially dewatered through the forming wire 12 before the forming wire 12 is removed from the tissue paper web 14 and the tissue paper web 14 on the TAD Sieve 13 is transported on.
  • FIG. 3 the structure of the tissue paper web 14 formed between the flat Formierieb 12 and the TAD screen 13 can be seen.
  • the voluminous pillow-like portions C 'of the tissue paper web 14 formed in the recessed areas 16 of the TAD mesh 13 have a higher volume and a higher basis weight than the portions A' of the tissue paper web 14 formed in the raised areas 17 of the TAD mesh 13.
  • the tissue paper web 14 therefore already has a 3-dimensional structure due to its formation on the structured sieve 13.
  • tissue paper web 114 is formed which has been formed between two smooth forming fabrics 112 and 112 '.
  • the tissue paper web 114 is formed due to their formation between two smooth Formiersieben 112 and 112 'substantially smooth and without 3-dimentionale structure.
  • tissue paper web 14 is guided between the structured sieve 13, which is arranged at the top, and a lower, permeable fabric 19 which is formed as a felt 19, wherein pressure is applied to the structured sieve 13, in the dewatering step along a dewatering path Tissue paper web 14 and the felt 19 is applied such that the tissue paper web 14 is dewatered in the direction of the felt 19, as indicated by the arrows 20 in the FIG. 5 indicated.
  • the bulky portions C ' are compressed less than the portions A'. so that, as a result, the bulky structure of the sections C 'is maintained.
  • FIG. 6 Detected tissue paper web 114 to recognize.
  • the tissue paper web 114 must be pressed into a structured sieve 113.
  • the tissue paper web 114 is stretched in the sections C which are pressed into the recessed areas 116 of the structured screen 113, which reduces the weight per unit area in the sections C.
  • the tissue paper web 114 is strongly pressed in the sections C, so that also the volume of the sections C is reduced.
  • the pressure for dewatering the tissue paper web 14 is generated in the dewatering step at least in sections simultaneously by a gas flow and by a mechanical pressing force.
  • the gas stream flows through first the structured sieve 13 then the tissue paper web 14 and then the formed as a felt 19 lower fabric.
  • the gas flow through the tissue paper web 14 is about 150m 3 per minute and meter of web length.
  • the gas flow is generated by a suction zone 25 in the roller 24, wherein the suction zone 25 has a length in the range between 200mm and 2500mm, preferably between 800mm and 1800mm, more preferably between 1200mm and 1600mm.
  • the negative pressure in the suction zone 25 is between -0.2bar and -0.8bar, preferably between -0.4bar and -0.6bar.
  • the mechanical pressing force is generated by the fact that in the dewatering step, the arrangement of structured wire 13, tissue paper web 14 and felt 19 a dewatering section 21 between a tensioned press belt 22 and a smooth surface 23 is guided, wherein the press belt 22 on the structured sieve 13th acting and the felt 19 is supported on the smooth surface 23.
  • the smooth surface 23 is in this case formed by the lateral surface 23 of a roller 24.
  • the dewatering section 21 is essentially defined by the wrap-around region of the press belt 22 around the lateral surface 23 of the roller 24, wherein the wrap-around region is determined by the spacing of the two deflection rollers 25 and 26.
  • the press belt 22 is under a tension of at least 30 kN / m, preferably at least 60kN / m or 80kN / m and has an open area of at least 25% and a contact area of at least 10% of its total upper facing area.
  • the press belt is designed as a spiral link fabric and has an open area of between 51% and 62% and a contact area of between 38% and 49% of its total area facing the upper clothing.
  • the tissue paper web 14 leaves the dewatering section 21 with a dry content of between 25% and 55%.
  • the tissue paper web 14 is guided in a further dewatering step subsequent dewatering step together with the structured screen 13 through a press nip 27, wherein the tissue paper web 14 is disposed in the press nip 27 between the structured wire 13 and a smooth roll surface 28 of a Yankee drying cylinder 29.
  • the press nip 27 is in this case a shoe press nip formed by the Yankee drying cylinder 29 and a shoe press 30.
  • the tissue paper web 14 rests on one side with a relatively large area on the lateral surface 28 of the Yankee drying cylinder 29, wherein the tissue paper web 14 rests on the structured sieve 13 on the other side.
  • the recessed areas 16 and the relatively elevated areas 17 of the structured screen 13 are in this case designed and arranged relative to one another such that the pillow-like sections C 'in the press nip 27 are essentially not pressed these are 35% or less, in particular 25% or less, of the tissue paper web 14.
  • the tissue paper web 114 known from the prior art comes into contact with the jacket surface 128 of the Yankee drying cylinder in comparison to the tissue paper web 14 with a relatively small area. This has the disadvantage that the tissue paper 114 can burn on the lateral surface, which is why the temperature of the Yankee cylinder must be kept lower in the method known from the prior art. This has the consequence that with the method known from the prior art, a lower dry content can be achieved ( FIG. 8 ).
  • the tissue paper web 14 before it passes through the press nip 27 is guided together with the structured wire 13 around an evacuated deflection roller, the structured wire 13 being arranged between the tissue paper web 14 and the evacuated deflection roller (not shown).
  • the gas flow can additionally be generated by an overpressure hub 31 arranged above the structured sieve 13, the dewatering step in this case taking place without mechanical pressing force, ie it is in contrast to FIG FIG. 9 no press belt 22 is provided which wraps around the roller 24 in sections.

Landscapes

  • Paper (AREA)

Description

  • Diese Erfindung betrifft ein Verfahren zur Herstellung von Tissuepapier sowie ein Verfahren zur Herstellung einer Stoffsuspension zur insbesonderen Verwendung für die Herstellung von Tissuepapier.
  • Tissuepapier weist idealerweise eine hohe Saugfähigkeit und ein hohes Wasseraufnahmevermögen gekoppelt mit einer hohen Reißfestigkeit auf.
  • Die Saugfähigkeit und das Wasseraufnahmevermögen werden wesentlich durch das Volumen und die Porosität des Tissuepapiers bestimmt.
  • Zur Erhöhung des Volumens wurde bereits im Stand der Technik in der WO03/062528 vorgeschlagen, die Tissuepapierbahn bei deren Herstellung nur zonal zu pressen, um somit nur leicht gepresste oder ungepresste voluminöse Bereiche und gepresste reißfestere Bereiche zu erhalten.
  • Das Dokument WO 971034047 beschreibt eine Tissuepapierbahn, welche aus einer Suspension aus teilweise groben Zellulosefasern, die beispielsweise aus CTMP oder aus aufbereitetem Altpapier stammen, hergestellt ist. Die groben Zellstofffasern führen ab eines bestimmten Anteils zu einer unerwartet hohen Weichheit der Tissuebahn. Eine unerwartete hohe Weichheit wird auch dadurch erreicht, dass die Zellulosefasern mit chemischen Weichmachern behandelt werden, wodurch der Reibungskoeffizient der Fasern gesenkt wird.
  • Die Porosität, die Permeabilität, die Saugfähigkeit und die Entwässerbarkeit des Tissuepapiers werden entscheidend mit durch den Mahlgrad der Fasern in der Stoffsuspension bestimmt, aus der das Tissuepapier hergestellt wird. Hierbei bedingt ein hoher Mahlgrad einen hohen Feinstoffgehalt in der Suspension, was zu einer geringen Porosität und Permeabilität bei der hergestellten Tissuepapierbahn führt.
  • Auf der anderen Seite wird die Reißfestigkeit mit durch den Mahlgrad der Fasern in der Stoffsuspension dahingehend beeinflusst, dass die Reißfestigkeit durch Erhöhung des Feinstoffanteils erhöht wird.
  • Die Anforderungen an die Reißfestigkeit widerstreben somit den genannten Anforderungen an das Wasseraufnahmevermögen, die Saugfähigkeit und die Entwässerbarkeit.
  • Um Produktionskosten zu sparen besteht des weiteren der Wunsch für die Herstellung von Tissuepapier zumindest teilweise Altpapier anstelle von Zellstoff zu verwenden.
  • Da erfahrungsgemäß eine aus aufbereitetem Altpapier hergestellte Stoffsuspension einen höheren Mahlgrad und somit einen höheren Feinstoffanteil hat, bestand im Stand der Technik die Auffassung, dass Altpapier nur unzureichend für die Herstellung von Tissuepapier, insbesondere von Tissuepapier mit hohem Wasseraufnahmevermögen und hoher Saugfähigkeit (sog. bulky tissue) geeignet ist.
  • Es ist die Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung einer Tissuepapierbahn vorzuschlagen, mit dem es möglich ist, reißfestes Tissuepapier mit hohem Wasseraufnahme- und Saugvermögen aus einer Stoffsuspension mit Altpapier herzustellen.
  • Die Erfindung wird gelöst durch ein Verfahren mit den Merkmalen des Patentanspruchs 1.
  • Das erfindungsgemäße Verfahren zur Herstellung einer Tissuepapierbahn, die aus einer Fasern umfassenden Stoffsuspension hergestellt wird, wobei die Stoffsuspension zumindest teilweise durch einen durch Aufbereitung von Altpapier gewonnenen Stoffsuspensionsanteil gebildet wird, ist dadurch gekennzeichnet, dass die Stoffsuspension hierbei unmittelbar nach dem Refiner auf einen Mahlgrad von weniger als 30°SR gemahlen wird und dass ein aus dieser Stoffsuspension nach TAPPI 205 SP 95 (Rapid Köthen) hergestelltes Laborblatt eine Reißlänge, gemessen nach TAPPI 220 und TAPPI 494, von 4,0 km oder mehr besitzt.
  • Versuche haben gezeigt, dass, insbesondere bei Tissuepapier, welches bei seiner Herstellung bereichsweise stärker komprimiert wird als in anderen Bereichen, eine ausreichende Porosität und Entwässerbarkeit dann gegeben ist, wenn der Mahlgrad der Stoffsuspension, die einen durch Aufbereitung von Altpapier gewonnenen Stoffsuspensionsanteil umfasst, unmittelbar nach dem Refiner kleiner als 30°SR (Schopper Riegel) ist. Eine ausreichende Reißfestigkeit der Tissuepapierbahn wird, wie Versuche gezeigt haben dann bereitgestellt, wenn aus der Stoffsuspension ein Laborblatt nach TAPPI 205 SP 95 (Rapid Köthen) hergestellt werden kann, dessen Reißlänge 4,0km oder mehr ist, gemessen nach TAPPI 220 und TAPPI 494.
  • Das nach TAPPI 205 SP 95 (Rapid Köthen) hergestellte Laborblatt hat hierbei ein Flächengewicht von 60g/m2.
  • Des weiteren hat sich gezeigt, dass zur Herstellung der Stoffsuspension mit den o.g. Eigenschaften nur wenig Mahlenergie notwendig ist, um die erforderlichen Festigkeitswerte zu erreichen.
  • Der durch Aufbereitung von Altpapier gewonnene Stoffsuspensionsanteil kann insbesondere Deinked Pulp (DIP) umfassen.
  • Versuche haben gezeigt, dass das Tissuepapier mit hoher Maschinengeschwindigkeit d.h. 1200m/min oder mehr hergestellt werden kann, wenn aus der Stoffsuspension ein Laborblatt nach TAPPI 205 SP 95 (Rapid Köthen) mit einer Reißlänge von 4,3km oder mehr gemessen nach TAPPI 220 und TAPPI 494, gebildet werden kann.
  • Altpapier gewonnenen Stoffsuspensionsanteils gebildet wird, bzw. wenn der Faseranteil der Stoffsuspension vollständig durch die Fasern des durch Aufbereitung von Altpapier gewonnenen Stoffsuspensions gebildet wird.
  • Vorzugsweise hat die Stoffsuspension einen Ascheanteil von weniger als 4% und / oder einen Feinstoffanteil von weniger als 25%.
  • Es sind unterschiedliche Möglichkeiten denkbar, wie die Stoffsuspension hergestellt werden kann. So kann die Stoffsuspension bspw. einen Suspensionsanteil umfassen, der aus einer niederkonsistenten durch Aufbereitung von Altpapier gewonnenen Ausgangsstoffsuspension hergestellt wurde, wobei die niederkonsistente Ausgangsstoffsuspension eine Konsistenz von weniger als 5% hat.
  • Um die erfindungsgemäße Stoffsuspension aus der niederkonsistenten Ausgangsstoffsuspension herzustellen, kann diese bspw. bei der niederen Konsistenz von weniger als 10% gemahlen werden. Nachteilig ist hierbei, dass durch die Mahlung der Ausgangsstoffsuspension bei niederer Konsistenz zur Erzeugung einer ausreichenden Reißfestigkeit oftmals ein hoher Feinstoffanteil erzeugt wird. Versuch der Anmelderin haben gezeigt, dass die Mahlung deutlich reduziert werden kann, wenn der niederkonsistenten Ausgangsstoffsuspension Enzyme und / oder Mittel zur Erhöhung der Trockenfestigkeit sog. "Dry Strenght Agent" (DSA) und / oder Mittel zur Erhöhung der Naßfestigkeit, sog. "Wet Strenght Agent" (WSA) zugesetzt werden. In einem solchen Fall kann im Idealfall sogar vollkommen auf ein Mahlen verzichtet werden.
  • Durch die Zugabe von DSA's ist es möglich, den Mahlgrad in der Stoffsuspension bei gleich bleibender Reißfestigkeit weiter zu reduzieren.
  • Als DSA kann bspw. Carbon Methyl Cellulose und / oder Stärke verwendet werden.
  • Als WSA kann bspw. das von der Firma Hercules unter dem Markennamen vertriebene Kymene® verwendet werden.
  • Als vorteilhaft hat sich hierbei erwiesen, wenn die Enzyme der niederkonsistenten Ausgangssuspension bei einer Temperatur im Bereich von 25°C bis 70°C, bevorzugt 30°C bis 60°C, besonders bevorzugt bei ca. 35°C bis 45°C zugesetzt werden, da in diesem Temperaturbereich deren Wirksamkeit an höchsten ist.
  • Die Wirksamkeit der Enzyme kann dadurch erhöht werden, wenn diese der niederkonsistenten Ausgangssuspension bei einem ph-Wert im Bereich von 5 bis 8, bevorzugt 5,5 bis 7,5, besonders bevorzugt bei ca. 6,5 bis 7 zugesetzt werden.
  • Gute Ergebnisse werden erzielt, wenn die Enzyme für eine Einwirkdauer von 1-2Stunden, vorzugsweise 1,5Stunden auf die niederkonsistente Ausgangssuspension einwirken.
  • Die Enzyme können der Ausgangsstoffsuspension bspw. im Pulper, d.h. vor dem Mahlvorgang, zugesetzt werden.
  • Die erfindungsgemäße Stoffsuspension kann auch einen Suspensionsanteil umfassen, der aus einer hochkonsistenten Ausgangsstoffsuspension mit einer Konsistenz von 20% oder mehr, bevorzugt 20% bis 40%, besonders bevorzugt 25% bis 35% hergestellt wurde. Bei der Herstellung der Stoffsuspension wird die hochkonsistente Ausgangsstoffsuspension bei der oben angegebenen hohen Konsistenz gemahlen.
  • Die hochkonsistente Ausgangsstoffsuspension kann insbesondere durch Eindicken einer niederkonsistenten Ausgangssuspension gewonnen werden, wobei das Eindicken bspw. mittels einer Schneckenpresse erfolgt.
  • Um die erforderliche Festigkeit zu erreichen kann es sinnvoll sein, wenn der Mahlvorgang mehrmals nacheinander durchgeführt wird.
  • Die besten Ergebnis bzgl. der erreichten Festigkeit bei geringem Mahlgrad werden erreicht, wenn die hochkonsistente Ausgangsstoffsuspension mit einer Mahlenergie im Bereich von 150kWh bis 300kWh, insbesondere 180kWh bis 250kWh pro Tonne gemahlen wird.
  • Zur Einstellung der oben genannten vorteilhaften Eigenschaften der Stoffsuspension ist es sinnvoll, wenn die hochkonsistente Ausgangsstoffsuspension bei einer Temperatur im Bereich zwischen 20°C und 80°C, vorzugsweise bei 40°C gemahlen wird.
  • Die oben beschriebene Zugabe von Enzymen bringt auch für die Erfindung vorteilhafte Ergebnisse, wenn diese der hochkonsistenten Ausgangsstoffsuspension zugesetzt werden.
  • Es ist sowohl möglich, dass die Stoffsuspension nur aus der aus einer hochkonsistenten Ausgangsstoffsuspension hergestellten Suspension bereit gestellt wird oder aber dass dieser Suspensionsanteil (erste Suspensionsanteil) zur Herstellung der Stoffsuspension mit einem Suspensionsanteil (zweite Suspensionsanteil) gemischt wird, der aus einer niederkonsistenten Ausgangsstoffsuspension mit einer Konsistenz kleiner als 10% hergestellt wurde.
  • Vorzugsweise hat hierbei der zweite Suspensionsanteil einen höheren Mahlgrad hat als der erste Suspensionsanteil.
  • Versuche haben gezeigt, dass die Tissuepapierbahn bei deren Herstellung zur Erzielung eines zufrieden stellenden Trockengehalts dann gut entwässerbar ist, wenn die Fasern der Stoffsuspension einen Retentionswert für Wasser von 1,5 g/g oder weniger, bevorzugt 1,4g/g gemessen nach TAPPI UM 256 haben.
  • Das erfindungsgemäße Verfahren ist dann besonders effektiv in Bezug auf Erhöhung der Entwässerbarkeit während der Produktion sowie Erhöhung des Wasseraufnahme- und Saugvermögens des fertig gestellten Produkts bei zufrieden stellender Reißfestigkeit, wenn die Tissuepapierbahn bei deren Herstellung in Bereichen weniger stark als in anderen Bereichen komprimiert wird. Insbesondere wird die Tissuepapierbahn in den Bereichen überhaupt nicht komprimiert.
  • Soll die Tissuepapierbahn unterschiedlich stark komprimierte Bereiche umfassen, ist es sinnvoll, wenn die Tissuepapierbahn aus der Stoffsuspension bereits auf einem strukturierten, insbesondere 3-dimensional strukturierten Sieb gebildet wird.
  • Bei einem solchen strukturierten Sieb umfasst die zur Tissuepapierbahn weisende Seite zumindest abschnittweise vertiefte Bereiche und relativ zu den vertieften Bereichen erhöhte Bereiche, wobei die Tissuepapierbahn zumindest abschnittweise in den vertieften und den erhöhten Bereiche des strukturierten Siebs gebildet wird. Die in den vertieften Bereichen des strukturierten Siebs gebildeten Abschnitte der Tissuepapierbahn haben hierbei ein höheres Volumen und Flächengewicht als die in den erhöhten Bereiche des Siebs gebildeten Abschnitte.
  • Im Ergebnis wird eine 3-dimensionale Tissuepapierbahn gebildet. Die Tissuepapierbahn weist hierbei in den vertieften Bereichen des strukturierten Siebs gebildete voluminöse kissenartige Abschnitte mit hohem Flächengewicht (pillow area) und dazwischen liegende, in den erhöhten Bereichen des strukturierten Siebs gebildete geringer voluminöse Abschnitte mit geringerem Flächengewicht auf.
  • Das strukturierte Sieb kann ein TAD-Sieb oder ein DSP-Sieb umfassen. Ein TAD-Sieb hat den Vorteil einer hohen Permeabilität, wodurch eine schnelle Entwässerung bei der Formierung gewährleistet wird.
  • Bezüglich der Struktur des strukturierten sieb und bezüglich der Bildung der Tissuepapierbahn auf dem strukturierten Sieb wird auf die PCT/EP2005/050203 verwiesen.
  • Nach der Bildung der Tissuepapierbahn wird die Tissuepapierbahn vorzugsweise bei einem Entwässerungsschritt zwischen einer oberen strukturierten, insbesondere 3-dimensional strukturierten, und permeablen Bespannung und einer unteren permeablen Bespannung geführt, wobei bei dem Entwässerungsschritt entlang einer Entwässerungsstrecke Druck auf die obere Bespannung, die Tissuepapierbahn und die untere Bespannung ausgeübt wird.
  • Der hierbei auf die Anordnung aus strukturierter und permeabler Bespannung, Tissuepapierbahn und unterer permeabler Bespannung ausgeübte Druck kann durch eine Gasströmung bewirkt werden. Zusätzlich oder alternativ kann der ausgeübte Druck durch eine mechanische Presskraft bewirkt werden.
  • Um die Tissuepapierbahn nur bereichsweise durch die Druckeinwirkung zu komprimieren und somit ein Tissuepapier mit bereichsweise - in den ungepressten bzw. weniger gepressten Bereichen - hohem Volumen für eine gute Saugfähigkeit und mit bereichsweise - in den stärker gepressten Bereichen - hoher Festigkeit bereitzustellen, ist es sinnvoll, wenn die zur Tissuepapierbahn weisende Seite der strukturierten Bespannung vertiefte Bereiche und relativ zu den vertieften Bereichen erhöhte Bereiche umfasst. Hierdurch wird, wie bereits erwähnt, die Tissuepapierbahn in den vertieften Bereichen weniger stark komprimiert, insbesondere überhaupt nicht komprimiert, als in den erhöhten Bereichen.
  • Die obere strukturierte und permeable Bespannung ist vorzugsweise ein strukturiertes Sieb, insbesondere TAD-Sieb oder DSP-Sieb, und die untere permeable Bespannung ist vorzugsweise ein Filz mit einem ausreichend hohen Wasseraufnahmevermögen für das aus der Tissuepapierbahn ausgepresste Wasser. Bezüglich der Struktur der unteren Bespannung sei auf die PCT/EP2005/050198 verwiesen.
  • Vorzugsweise ist die Kompressibilität (Dickenänderung in mm bei Krafteinwirkung in N) der oberen Bespannung kleiner als die Kompressibilität der unteren Bespannung. Hierdurch bleibt die voluminöse Struktur der Tissuepapierbahn bei der Druckeinwirkung erhalten.
  • Versuche haben gezeigt, dass eine besonders gute und schonende Entwässerung möglich ist, wenn die dynamische Steifigkeit (K) als Maß für die Kompressibilität der oberen Bespannung 3000N/mm oder mehr ist.
  • Durch eine harte oder zu harte untere Bespannung würden die voluminösen kissenartigen Abschnitte der Tissuepapierbahn überhaupt nicht komprimiert werden. Durch die kompressible Struktur der unteren Bespannung werden die voluminösen kissenartigen Abschnitte des Tissuepapiers leicht gepresst und somit schonend entwässert. Versuche haben in diesem Zusammenhang gezeigt, dass die dynamische Steifigkeit (K) als Maß für die Kompressibilität der unteren Bespannung 100000N/mm oder weniger, vorzugsweise 90000N/mm, besonders bevorzugt 70000N/mm oder weniger ist.
  • Ebenso ist es vorteilhaft, wenn der G-Modul als Maß für die Elastizität der unteren Bespannung 2N/mm2 oder mehr, vorzugsweise 4N/mm2 oder mehr ist.
  • Weiter haben Versuche gezeigt, dass das in der unteren Bespannung, bspw. dem Filz, gespeicherte Wasser leichter mit einem Gasstrom ausgetrieben werden kann, wenn die Permeabilität der unteren Bespannung nicht zu hoch ist. Als Vorteilhaft erweist sich, wenn die Permeabilität der unteren Bespannung 80cfm oder weniger, vorzugsweise 40cfm oder weniger, besonders bevorzugt 25cfm oder weniger ist. In den oben genannten Bereiche wird eine Rückbefeuchtung der Tissuepapierbahn durch die untere Bespannung weitestgehend unterbunden.
  • Vorzugsweise wird bei dem Entwässerungsschritt zuerst die obere Bespannung dann die Tissuepapierbahn und anschließend die untere Bespannung von einem Gas durchströmt. Die Entwässerung der Papierbahn findet hierbei in Richtung der unteren Bespannung statt.
  • Zusätzlich oder optional zur Gasdurchströmung der oben genannten Anordnung kann vorgesehen sein, dass bei dem Entwässerungsschritt die Anordnung aus oberer Bespannung, Tissuepapierbahn und unterer Bespannung zumindest abschnittweise entlang der Entwässerungsstrecke zwischen einem unter Spannung stehenden Pressband und einer glatten Oberfläche geführt wird, wobei das Pressband auf die obere Bespannung einwirkt und sich die untere Bespannung an der glatten Oberfläche abstützt. Auch hier findet eine Entwässerung der Tissuepapierbahn in Richtung der unteren Bespannung statt.
  • Vorzugsweise wird die Anordnung aus oberer Bespannung, Tissuepapierbahn und unterer Bespannung zumindest abschnittweise im Bereich der Entwässerungsstrecke von dem Gasstrom durchströmt, sodass die Entwässerung gleichzeitig durch die Presskraft des Pressbandes und die Durchströmung des Gases erfolgt.
  • Versuche haben gezeigt, dass der Gasstrom durch die Tissuepapierbahn ca. 150m3 pro Minute und Meter Länge entlang der Entwässerungsstrecke beträgt.
  • Die Gasströmung kann hierbei durch eine Saugzone in einer Walze erzeugt werden. In diesem Fall hat die Saugzone eine Länge im Bereich zwischen 200mm und 2500mm, bevorzugt zwischen 800mm und 1800mm, besonders bevorzugt zwischen 1200mm und 1600mm und der Unterdruck in der Saugzone beträgt zwischen -0,2bar und -0,8bar, bevorzugt zwischen -0,4bar und -0,6bar.
  • Optional oder zusätzlich kann die Gasströmung auch durch eine oberhalb der oberen Bespannung angeordnete Überdruckhabe erzeugt werden. Bei der Überdruckhaube kann es sich bspw. um einen Dampfblaskasten handeln.
  • Im letztgenannten Fall beträgt die Temperatur der Gasströmung zwischen 50°C und 180°C, vorzugsweise zwischen 120°C und 150°C und der Überdruck beträgt weniger als 0,2bar, bevorzugt weniger als 0,1bar und besonders bevorzugt weniger als 0,05bar. Bei dem Gas kann es sich um heiße Luft oder um Dampf handeln.
  • Durch eine hohe Spannung des Pressbandes kann die Presskraft gesteigert werden. Versuche haben gezeigt, dass für eine ausreichende Entwässerung insbesondere der nicht voluminösen Abschnitte des Tissuepapiers das Pressband unter einer Spannung von zumindest 30kN/m, vorzugsweise zumindest 60kN/m oder 80kN/m steht.
  • Das Pressband kann hierbei eine spiralisierte Struktur haben und bspw. als sog. SiralLinkFabric ausgebildet sein. Des weiteren ist es möglich, dass das Pressband eine gewobene Struktur hat.
  • Um sowohl eine gute Entwässerung der Tissuepapierbahn durch die mechanische Spannung des Pressbandes als auch aufgrund des Gasstroms durch das Pressband erzielen zu können ist es sinnvoll, wenn das Pressband eine offene Fläche von zumindest 25% und eine Kontaktfläche von zumindest 10% seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  • Durch eine Erhöhung der Kontaktfläche des Pressbandes wird ein gleichmäßiger mechanischer Druck auf die Anordnung aus strukturierter oberer Bespannung, Tissuepapier und unterer Bespannung ausgeübt.
  • Mit allen der nachfolgend genannten Angaben zu Kontaktfläche und offener Fläche des Pressbandes werden zufrieden stellende Ergebnis erzielt.
  • Demnach ist vorgesehen, dass das Pressband eine offene Fläche zwischen 75% und 85% und eine Kontaktfläche zwischen 15% und 25% seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  • Des weiteren ist vorgesehen, dass das Pressband eine offene Fläche zwischen 68% und 76% und eine Kontaktfläche zwischen 24% und 32% seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  • Sehr gute Ergebnisse bzgl. Trockengehalt und Voluminität des Tissuepapiers werden erreicht, wenn das Pressband eine offene Fläche zwischen 51% und 62% und eine Kontaktfläche zwischen 38% und 49% seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  • Insbesondere durch die Ausbildung des Pressbandes mit einer gewobenen Struktur ist es möglich, dass das Pressband eine offene Fläche von 50% oder mehr und eine Kontaktfläche von 50% oder mehr seiner gesamten zur oberen Bespannung weisenden Fläche hat. Hierdurch kann sowohl eine gute Gasdurchströmung durch das Pressband wie auch eine homogene Presskraft mittels dem Pressband bereitgestellt werden.
  • Die glatte Oberfläche wird vorzugsweise durch die Mantelfläche einer Walze gebildet.
  • Durch den oben beschriebenen Entwässerungsvorgang ist es möglich, dass die Tissuepapierbahn die Entwässerungsstrecke mit einem Trockengehalt zwischen 25% und 55% verlässt.
  • Um zu gewährleisten, dass die voluminösen Abschnitten des Tissuepapiers bei dem Entwässerungsschritt nur wenig gepresst werden ist es sinnvoll, wenn das strukturierte Sieb bei dem Entwässerungsschritt das selbe Sieb ist wie das bei der Bildung der Tissuepapierbahn. Hierdurch bleiben die voluminösen kissenartigen Abschnitte der Tissuepapierbahn während der Druckeinwirkung in den vertieften Bereichen des strukturiertern Siebs, wodurch die voluminösen Abschnitte vor der Druckeinwirkung in großem Maße geschützt sind und auf diese bedeutend weniger Druck ausgeübt wird als auf die dazwischen liegenden Abschnitte der Tissuepapierbahn. Die voluminöse Struktur der kissenartigen Abschnitte bleibt daher bei dem Entwässerungsschritt erhalten.
  • Vorzugsweise wird die Tissuepapierbahn in einem dem Entwässerungsschritt nachfolgenden weiteren Entwässerungsschritt zusammen mit der struktuierten Bespannung des Entwässerungsschrittes durch einen Pressspalt geführt und weiter entwässert.
  • Des weiteren ist die Tissuepapierbahn im Pressspaltbvorzugsweise zwischen der strukturierten und permeablen oberen Bespannung und einer, insbesondere glatten und beheizten Walzenoberfläche angeordnet, wobei die beheizte und glatte Oberfläche vorzugsweise durch die Mantelfläche eines Yankee-Trockenzylinders gebildet wird.
  • Durch den Transfer der Tissuepapierbahn auf der strukturierten oberen Bespannung durch den Pressspalt wird gewährleistet, dass auch bei diesem Entwässerungsschritt die voluminösen kissenartigen Abschnitte des Tissuepapiers weniger stark gepresst werden als die dazwischen liegenden Abschnitte.
  • Vorzugsweise sind die vertieften und die relativ dazu erhöhten Bereiche der strukturierten und permeable Bespannung derart ausgebildet und zueinander angeordnet, dass nur 35% oder weniger, insbesondere nur 25% oder weniger der Tissuepapierbahn im Pressspalt gepresst wird.
  • Handelt es sich bei der strukturierten oberen Bespannung, wie bereits erwähnt um dieselbe strukturierte Bespannung auf der das Tissuepapier gebildet wurde, so wird die 3-dimensionale Struktur des Tisuepapiers bereits während der Formation gebildet. Bei den aus dem Stand der Technik Verfahren wird die 3-dimensionale Struktur des tissuepapiers hingegen erst bei einem nachfolgenden Entwässerungsschritt dadurch gebildet, dass die Tissuepapierbahn in ein strukturiertes Sieb gepresst wird, wodurch ein im wesentlichen beidseitig welliges Tissuepapier gebildet wird.
  • Bei erfindungsgemäßen Verfahren wird durch die Formation des Tissuepapiers zwischen der strukturierten Bespannung und einem Formiersieb mit dazu relativ glatter Oberfläche eine Tissuepapierbahn gebildet, die im wesentlichen auf der Seite glatt ist, die auf dem glatten Formiersieb gebildet wurde. Beim Durchgang durch den Pressspalt kommt diese Seite mit der Mantelfläche des Yankee-Trockenzylinders in Kontakt, wodurch aufgrund der relativ großen Kontaktfläche gegenüber dem Stand der Technik ein Verbrennen der Tissuepapierbahn bei hohen Temperaturen des Yankee-Trockenzylinders verhindert wird. Hierdurch kann die Temperatur des Yankee-Trockenzylinders gegenüber dem Stand der Technik erhöht werden, was einen höheren Trockengehalt der produzierten Tissuepapierbahn zur Folge hat.
  • Für eine schonende Pressung im Pressspalt ist es sinnvoll, wenn der Pressspalt ein verlängerter Pressspalt ist, d.h. durch die Walzenoberfläche und eine Schuhpresseinheit gebildet wird.
  • Ist das Ziel den Trockengehalt zu steigern, was auf die Voluminität der hergestellten Tissuepapierbahn geht, so kann auch vorgesehen sein, dass der Pressspalt anstelle durch die Schuhpresseinheit und die Walzenoberfläche durch eine Saugpresswalze und die Walzenoberfläche gebildet wird.
  • Um Wasser zu entfernen, welches in der strukturierten oberen Bespannung mitgeführt wird und welches eine Entwässerung in dem Pressspalt behindert, ist es sinnvoll, wenn die Tissuepapierbahn zusammen mit der strukturierten Bespannung um eine besaugte Umlenkrolle geführt wird, wobei die strukturierte Bespannung zwischen der Tissuepapierbahn und der besaugten Umlenkrolle angeordnet ist.
  • Die Erfindung soll anhand der folgenden schematischen Zeichnungen näher erläutert werden. Es zeigen:
  • Fig. 1
    Eine Vorrichtung zur Herstellung einer erfindungsgemäßen Stoffsuspension,
    Fig. 2
    eine abschnittweise Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens zur Herstellung von Tissuepapier,
    Fig. 3
    die Struktur einer Tissuepapierbahn bei deren Formation mit dem erfindungsgemäßen Verfahren,
    Fig. 4
    die Struktur einer Tissuepapierbahn bei deren Formation mit einem nach dem Stand der Technik bekannten Verfahren,
    Fig. 5
    die Struktur einer Tissuepapierbahn bei deren Entwässerung mit dem erfindungsgemäßen Verfahren,
    Fig. 6
    die Struktur einer Tissuepapierbahn bei deren 3-dimensionalen Strukturierung mit einem nach dem Stand der Technik bekannten Verfahren,
    Fig. 7
    die Struktur einer Tissuepapierbahn bei deren Entwässerung im Pressspalt mit dem erfindungsgemäßen Verfahren,
    Fig. 8
    die Struktur einer Tissuepapierbahn bei deren Entwässerung im Pressspalt mit einem aus dem Stand der Technik bekannten Verfahren,
    Fig. 9
    eine erste Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens,
    Fig. 10
    eine zweite Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens.
  • Die Figur 1 zeigt eine Vorrichtung 1 zur erfindungsgemäßen Bereitstellung einer Stoffsuspension, die nachfolgend bei dem erfindungsgemäßen Verfahren zur Herstellung einer Tissuepapierbahn verwendet wird.
  • Die Vorrichtung 1 umfasst einen Pulper 2 in dem eine durch Aufbreitung von Altpapier gewonnene Ausgangsstoffsuspension in einen pumpfähigen Zustand vorliegt. Vom Pulper 2 wird die Ausgangsstoffsuspension einer Mischbütte 3 zugeführt. Der Stoff hat in diesem Stadium eine Konsistenz von kleiner 10%, d.h. in der Regel von 5% oder weniger und wird in diesem Zusammenhang als niederkonsistenter Ausgangsstoff bezeichnet.
  • Im vorliegenden Ausführungsbeispiel wird der niederkonsistente Ausgangsstoff einem Eindicker 4, der bspw. als Schneckenpresse ausgebildet sein kann, zugeführt und in diesem bspw. von einer Konsistenz von 5% auf eine Konsistenz von 25% bis 35%, idealerweise ca. 30% eingedickt, wodurch eine hochkonsistente Ausgangsstoffsuspension erzeugt wird.
  • Die so gebildete hochkonsistente Ausgangsstoffsuspension wird einem Mahlprozess unterzogen.
  • Hierzu wird die hochkonsistente Ausgangsstoffsuspension in einem Heizkanal 5 auf eine Temperatur bis zu 80°C, idealerweise ca. 40°C, erhitzt und anschließend zum Mahlen einem Refiner 6 zugeführt.
  • Beim Mahlvorgang wird die hochkonsistente Ausgangsstoffsuspension auf einen Mahlgrad von weniger als 30°SR, idealerweise weniger als 25°SR gemahlen.
  • Zum Erhalt der hochkonsistenten Stoffsuspension wird die hochkonsistente Ausgangsstoffsuspension mit einer gesamten Mahlenergie im Bereich von 150kWh bis 300kWh, insbesondere 180kWh bis 250kWh pro Tonne gemahlen, wobei es denkbar ist, den Mahlvorgang in einem Schritt oder in mehreren Mahlschritten nacheinander durchzuführen.
  • Vor dem Mahlvorgang können dem Stoff, bspw. bereits im Pulper 2, Enzyme und Mittel zur Erhöhung der Trockenfestigkeit (DSA) und / oder Mittel zur Erhöhung der Nassfestigkeit (WSA) beigemengt werden.
  • Besonders vorteilhaft in Bezug auf die gewünschten Eigenschaften bzgl. der später gebildeten Tissuepapierbahn im Hinblick auf deren Porosität und Permeabilität gekoppelt mit hoher Reißfestigkeit erweist sich, wenn die Enzyme der niederkonsistenten Ausgangssuspension bei einer Temperatur im Bereich von 25°C bis 70°C, bevorzugt 30°C bis 60°C, besonders bevorzugt bei ca. 35°C bis 45°C zugesetzt werden, wobei die niederkonsistente Ausgangssuspension einen ph-Wert im Bereich von 5 bis 8, bevorzugt 5,5 bis 7,5, besonders bevorzugt bei ca. 6,5 bis 7 hat und die Einwirkdauer der Enzyme auf die niederkonsistente Ausgangssuspension 1-2Stunden, vorzugsweise 1,5Stunden beträgt.
  • Anschließend wird die durch den Hochkonsistenzmahlvorgang gewonnene Stoffsuspension in einem Verdünnungstank 7 mit Wasser verdünnt, welches zumindest teilweise beim Eindicken im Eindicker 4 der niederkonsistenten Ausgangsstoffsuspension gewonnen wird.
  • Danach wird die so gewonnene wieder verdünnte Suspension einer Maschinenbütte 8 zugeführt.
  • Bei manchen niederkonsistenten Ausgangsstoffsuspensionen ist es möglich, bei keiner oder nur geringer Mahlung eine ausreichende Festigkeit zu erzielen, wenn diesen Enzyme und / oder Mittel zur Erhöhung der Trockenfestigkeit (DSA) und / oder Mittel zur Erhöhung der Nassfestigkeit (WSA) beigemengt werden. Ein Überführen einer solchen niederkonsistenten Ausgangsstoffsuspension, diese hat eine Konsistenz von weniger als 5%, in eine hochkonsistente Ausgangsstoffsuspension durch Eindicken erübrigt sich in diesem Fall. Zur geringen Mahlung wird eine solche niederkonsistente Ausgangsstoffsuspension direkt einem Heizkanal 5' und anschließend einem Refiner 6'zum Mahlen zugeführt.
  • Die so gewonnene niederkonsistente Stoffsuspension kann dann der Maschinenbütte 8 zugeführt werden.
  • In der Maschinenbütte 8 kann die durch den Hochkonsistenzmahlvorgang gewonnene Stoffsuspension mit der niederkonsistenten Suspension gemischt werden.
  • Des weiteren ist es auch denkbar, wenn bspw. bereits der niederkonsistente Ausgangsstoff eine hohe Festigkeit umfasst, dass die Stoffsuspension nur einen Stoffsuspensionsanteil umfasst, die durch Zugabe der Enzyme und Mahlung oder nur durch Zugabe der Enzyme bei niederer Konsistenz hergestellt wurde.
  • Nach der Maschinenbütte 8 wird die Stoffsuspension mit Siebwasser 9 sehr stark verdünnt und einem Stoffauflauf 10 zugeführt.
  • Unabhängig davon wie die Stoffsuspension erhalten wird, ist es für die Herstellung von Tissuepapier wichtig, dass die aus dem Stoffauflauf 10 austretende und einen Altpapieranteil umfassende Stoffsuspension unmittelbar nach dem Refiner 6, 6' einen Mahlgrad von weniger als 30°SR hat und derart beschaffen ist, dass aus dieser ein Laborblatt nach TAPPI 205 SP 95 (Rapid Köthen) hergestellt werden kann, dessen Reißlänge 4,0km oder mehr ist, gemessen nach TAPPI 220 und TAPPI 494.
  • Das weitere Verfahren wird nun in den folgenden Figuren 2 bis 10 weiter erläutert, wobei die Figuren 10 und 11 zwei Ausführungsformen unterschiedlicher Vorrichtungen zur Durchführung des Verfahrens zeigen.
  • Eine Stoffsuspension 11 mit den oben genannten Eigenschaften tritt aus dem Stoffauflauf 10 derart aus, dass diese in den einlaufenden Spalt zwischen einem Formiersieb 12 und einem strukturierten, insbesondere 3-dimensional strukturierten Sieb 13 injiziert wird, wodurch eine Tissuepapierbahn 14 gebildet wird.
  • Das Formiersieb 12 weist eine zur Tissuepapierbahn 14 gerichtete Seite auf, die relativ zu der des strukturierten Siebs 13 glatt ist.
  • Hierbei weist die zur Tissuepapierbahn 14 weisende Seite 15 des strukturierten Siebs 13 vertiefte Bereiche 16 und relativ zu den vertieften Bereichen 16 erhöhte Bereiche 17 auf, so dass die Tissuepapierbahn 14 in den vertieften Bereichen 16 und den erhöhten Bereichen 17 des strukturierten Siebs 13 gebildet wird. Der Höhenunterschied zwischen den vertieften Bereichen 16 und den erhöhten Bereichen 17 beträgt vorzugsweise 0,07mm und 0,6mm. Die durch die erhöhten Bereiche 16 gebildete Fläche beträgt vorzugsweise 10% oder mehr, besonders bevorzugt 20% oder mehr und besonders bevorzugt 25% bis 30%. In der in der Figur 3 dargestellten Ausführungsform ist das strukturierte Sieb 13 als TAD-Sieb 13 ausgebildet.
  • In der in der Figur 2 dargestellten Ausführungsform wird die Anordnung aus TAD-Sieb 13, Tissuepapierbahn 14 und Formiersieb 12 um eine Formierwalze 18 gelenkt und die Tissuepapierbahn 14 im wesentlichen durch das Formiersieb 12 entwässert, bevor das Formiersieb 12 von der Tissuepapierbahn 14 abgenommen wird und die Tissuepapierbahn 14 auf dem TAD-Sieb 13 weiter transportiert wird.
  • In der Figur 3 ist die Struktur der zwischen dem flachen Formiersieb 12 und dem TAD-Sieb 13 gebildeten Tissuepapierbahn 14 zu erkennen. Die in den vertieften Bereichen 16 des TAD-Siebs 13 gebildeten voluminösen kissenartigen Abschnitte C' der Tissuepapierbahn 14 haben ein höheres Volumen und ein höheres Flächengewicht als die in den erhöhten Bereichen 17 des TAD-Siebs 13 gebildeten Abschnitte A' der Tissuepapierbahn 14.
  • Die Tissuepapierbahn 14 weist demzufolge bereits aufgrund deren Formierung auf dem strukturierten Sieb 13 eine 3-dimensionale Struktur auf.
  • In der Figur 4 ist eine Tissuepapierbahn 114 zu erkennen, die zwischen zwei glatten Formiersieben 112 und 112' gebildet wurde.
  • Die Tissuepapierbahn 114 ist aufgrund deren Formierung zwischen zwei glatten Formiersieben 112 und 112' im wesentlichen glatt und ohne 3-dimentionale Struktur ausgebildet.
  • Bei einem der Bildung der Tissuebahn 14 nachfolgenden Entwässerungsschritt wird die Tissuepapierbahn 14 zwischen dem strukturierten Sieb 13, welches oben angeordnet ist und einer unteren permeablen als Filz 19 ausgebildeten Bespannung 19 geführt, wobei bei dem Entwässerungsschritt entlang einer Entwässerungsstrecke Druck auf das strukturierte Sieb 13, die Tissuepapierbahn 14 und das Filz 19 derart ausgeübt wird, dass die Tissuepapierbahn 14 in Richtung des Filzes 19 entwässert wird, wie durch die Pfeile 20 in der Figur 5 angedeutet.
  • Dadurch dass die Tissuepapierbahn 14 bei diesem Entwässerungsschritt in Richtung des Filzes 19 entwässert wird und dadurch dass die Tissuepapierbahn 14 auf dem strukturierten Sieb 13 entwässert wird, auf dem diese bereits gebildet wurde, werden die voluminösen Abschnitte C' weniger stark komprimiert als die Abschnitte A', so dass im Ergebnis die voluminöse Struktur der Abschnitte C' erhalten bleibt.
  • In der Figur 6 ist die Erzeugung einer 3-dimensionalen Struktur der in der Figur 5 gebildeten Tissuepapierbahn 114 zu erkennen. Um die 3-dimensionale Struktur zu erzeugen, muss die Tissuepapierbahn 114 in ein strukturiertes Sieb 113 gepresst werden. Hierzu wird die Tissuepapierbahn 114 in den Abschnitten C, die in die vertieften Bereiche 116 des strukturierten Siebs 113 eingepresst werden, gedehnt, wodurch sich das Flächengewicht in den Abschnitten C verringert. Des weiteren wird die Tissuepapierbahn 114 in den Abschnitten C stark gepresst, so dass auch das Volumen der Abschnitte C verringert wird.
  • Der Druck zur Entwässerung der Tissuepapierbahn 14 wird bei dem Entwässerungsschritt zumindest abschnittweise gleichzeitig durch einen Gasstrom und durch eine mechanische Presskraft erzeugt.
  • Der Gasstrom durchströmt hierbei zuerst das strukturierte Sieb 13 dann die Tissuepapierbahn 14 und anschließend die als Filz 19 ausgebildete untere Bespannung. Der Gasstrom durch die Tissuepapierbahn 14 beträgt ca. 150m3 pro Minute und Meter Bahnlänge.
  • Im vorliegenden Fall wird die Gasströmung durch eine Saugzone 25 in der Walze 24 erzeugt, wobei die Saugzone 25 eine Länge im Bereich zwischen 200mm und 2500mm, bevorzugt zwischen 800mm und 1800mm, besonders bevorzugt zwischen 1200mm und 1600mm hat.
  • Der Unterdruck in der Saugzone 25 beträgt zwischen -0,2bar und -0,8bar, bevorzugt zwischen -0,4bar und -0,6bar.
  • Im Hinblick auf die Durchführung des durch mechanische Presskraft und optional oder zusätzlich mit Gasströmung durchgeführten Entwässerungsschritts sowie auf die verschiedenen Konfigurationen von Vorrichtungen zur Durchführung eines solchen Entwässerungsschritts wird auf die PCT/EP2005/050198 verwiesen.
  • Die mechanische Presskraft wird dadurch erzeugt, dass bei dem Entwässerungsschritt die Anordnung aus strukturiertem Sieb 13, Tissuepapierbahn 14 und Filz 19 einer Entwässerungsstrecke 21 zwischen einem unter Spannung stehenden Pressband 22 und einer glatten Oberfläche 23 geführt wird, wobei das Pressband 22 auf das strukturierte sieb 13 einwirkt und sich das Filz 19 an der glatten Oberfläche 23 abstützt.
  • Die glatte Oberfläche 23 wird hierbei durch die Mantelfläche 23 einer Walze 24 gebildet.
  • Die Entwässerungsstrecke 21 wird im wesentlichen durch den Umschlingungsbereich des Pressbandes 22 um die Mantelfläche 23 der Walze 24 festgelegt, wobei der Umschlingungsbereich durch den Abstand der beiden Umlenkrollen 25 und 26 festgelegt wird.
  • Das Pressband 22 steht unter einer Spannung von zumindest 30kN/m, vorzugsweise zumindest 60kN/m oder 80kN/m und hat eine offene Fläche von zumindest 25% und eine Kontaktfläche von zumindest 10% seiner gesamten zur oberen Bespannung weisenden Fläche.
  • Im konkreten Fall ist das Pressband ist als Spiral Link Fabric ausgebildet und eine offene Fläche zwischen 51% und 62% und eine Kontaktfläche zwischen 38% und 49% seiner gesamten zur oberen Bespannung weisenden Fläche.
  • Im Hinblick auf die Struktur des Pressbandes wird auf die PCT/EP2005/050198 verwiesen.
  • Die Tissuepapierbahn 14 verlässt die Entwässerungsstrecke 21 mit einem Trockengehalt zwischen 25% und 55%.
  • Nachfolgend wird die Tissuepapierbahn 14 in einem dem Entwässerungsschritt nachfolgenden weiteren Entwässerungsschritt zusammen mit dem struktuierten Sieb 13 durch einen Pressspalt 27 geführt, wobei die Tissuepapierbahn 14 im Pressspalt 27 zwischen dem strukturierten Sieb 13 und einer glatten Walzenoberfläche 28 eines Yankee-Trockenzylinders 29 angeordnet ist. Der Pressspalt 27 ist hierbei ein durch den Yankee-Trockenzylinder 29 und einer Schuhpresse 30 gebildeter Schuhpressspalt.
  • Die Tissuepapierbahn 14 liegt auf einer Seite mit einer relativ großen Fläche auf der Mantelfläche 28 der Yankee-Trockenzylinders 29 auf, wobei die Tissuepapierebahn 14 auf der anderen Seite auf dem strukturierten Sieb 13 aufliegt.
  • Die vertieften Bereiche 16 und die relativ dazu erhöhten Bereiche 17 des strukturierten Siebs 13 sind hierbei derart ausgebildet und zueinander angeordnet, dass die kissenartigen Abschnitte C' im Pressspalt 27 im wesentlichen nicht gepresst werden, dies sind 35% oder weniger, insbesondere 25% oder weniger der Tissuepapierbahn 14. Die Abschnitte A' werden dagegen gepresst, wodurch die Festigkeit der Tissuepapierbahn 14 weiter erhöht wird (Figur 7).
  • Die aus dem Stand der Technik bekannte Tissuepapierbahn 114 kommt im Vergleich zur tissuepapierbahn 14 mit einer relativ kleinen Fläche auf der Mantelfläche 128 des Yankee-Trockenzylinders zur Anlage. Dies hat den Nachteil, dass das Tissuepapier 114 an der Mantelfläche verbrennen kann, weshalb die Temperatur des Yankee-Zylinders bei dem aus dem Stand der Technik bekannten Verfahren niediger gehalten werden muss. Dies hat zur Folge, dass mit dem aus dem Stand der Technik bekannten Verfahren ein geringerer Trockengehalt erzielbar ist (Figur 8).
  • Zwischen den beiden beschriebenen Entwässerungsschritten kein ein weiterer Entwässerungsschritt vorgesehen sein, der mittels einer Vorrichtung 31 durchführbar ist.
  • Optional kann vorgesehen sein, dass die Tissuepapierbahn 14 bevor diese durch den Pressspalt 27 läuft zusammen mit dem strukturierten Sieb 13 um eine besaugte Umlenkrolle geführt wird, wobei das strukturierte Sieb 13 zwischen der Tissuepapierbahn 14 und der besaugten Umlenkrolle angeordnet ist (nicht dargestellt).
  • Aus der Figur 10 ist ersichtlich, dass die Gasströmung zusätzlich durch eine oberhalb des strukturierten Siebs 13 angeordnete Überdruckhabe 31 erzeugt werden kann, wobei der Entwässerungsschritt in diesem Fall ohne mechanische Presskraft erfolgt, d.h. es ist im Gegensatz zur Figur 9 kein Pressband 22 vorgesehen, das die Walze 24 abschnittweise umschlingt.

Claims (63)

  1. Verfahren zur Herstellung einer Tissuepapierbahn, die aus einer Fasern umfassenden Stoffsuspension hergestellt wird und wobei die Stoffsuspension zumindest teilweise durch einen durch Aufbereitung von Altpapier gewonnenen Stoffsuspensionsanteil gebildet wird,
    dadurch gekennzeichnet,
    dass die Stoffsuspension unmittelbar nach dem Refiner auf einen Mahlgrad von weniger als 30°SR gemahlen wird und dass ein aus der Stoffsuspension nach TAPPI 205 SP 95 (Rapid Köthen) hergestelltes Laborblatt eine Reißlänge, gemessen nach TAPPI 220 und TAPPI 494, von 4,0 km oder mehr besitzt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass aus der Stoffsuspension ein Laborblatt nach TAPPI 205 SP 95 (Rapid Köthen) mit einer Reißlänge von 4,3km oder mehr, gemessen nach TAPPI 220 und TAPPI 494, gebildet werden kann.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Stoffsuspension einen Mahlgrad von 28°SR oder weniger, insbesondere von 25°SR oder weniger hat.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass der Faseranteil der Stoffsuspension zum größeren Teil durch die Fasern des durch Aufbereitung von Altpapier gewonnenen Stoffsuspensionsanteils gebildet wird.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    dass der Faseranteil der Stoffsuspension vollständig durch die Fasern des durch Aufbereitung von Altpapier gewonnenen Stoffsuspensionsanteils gebildet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der durch Aufbereitung von Altpapier gewonnene Stoffsuspensionsanteil Deinked Pulp (DIP) umfasst.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Stoffsuspension einen Ascheanteil von weniger als 4% hat.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass die Stoffsuspension einen Feinstoffanteil von weniger als 25% hat.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass die Stoffsuspension einen Suspensionsanteil umfasst, der aus einer niederkonsistenten Ausgangsstoffsuspension mit einer Konsistenz von weniger als 5% hergestellt wurde.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet,
    dass der niederkonsistenten Ausgangsstoffsuspension Enzyme und / oder Mittel zur Erhöhung der Trockenfestigkeit (DryStrenghtAgent) und / oder Mittel zur Erhöhung der Naßfestigkeit (WetStrenghtAgent) zugesetzt werden.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass DSA Carbon Methyl Cellulose und / oder Stärke umfasst.
  12. Verfahren nach Anspruch 10 oder 11,
    dadurch gekennzeichnet,
    dass WSA Kymene ® umfasst.
  13. Verfahren nach einem der Ansprüche 10 bis 12,
    dadurch gekennzeichnet,
    dass die Enzyme der niederkonsistenten Ausgangsstoffsuspension bei einer Temperatur im Bereich von 25°C bis 70°C, bevorzugt 30°C bis 60°C, besonders bevorzugt bei ca. 35°C bis 45°C zugesetzt wird.
  14. Verfahren nach einem der Ansprüche 9 bis 13,
    dadurch gekennzeichnet,
    dass die Enzyme der niederkonsistenten Ausgangsstoffsuspension bei einem ph-Wert im Bereich von 5 bis 8, bevorzugt 5,5 bis 7,5, besonders bevorzugt bei ca. 6,5 bis 7 zugesetzt wird.
  15. Verfahren nach einem der Ansprüche 9 bis 14,
    dadurch gekennzeichnet,
    dass die Enzyme für eine Einwirkdauer von 1-2Stunden, vorzugsweise 1,5Stunden auf die niederkonsistente Ausgangsstoffsuspension einwirken.
  16. Verfahren nach einem der Ansprüche 9 bis 15,
    dadurch gekennzeichnet,
    dass die Enzyme der niederkonsistenten Ausgangsstoffsuspension vor der Mahlung zugesetzt werden.
  17. Verfahren nach Anspruch 16,
    dadurch gekennzeichnet,
    dass die Enzyme im Pulper zugesetzt werden.
  18. Verfahren nach einem der Ansprüche 1 bis 17,
    dadurch gekennzeichnet,
    dass die Stoffsuspension einen Suspensionsanteil umfasst, der aus einer hochkonsistenten Ausgangsstoffsuspension mit einer Konsistenz von 20% oder mehr, bevorzugt 20% bis 40%, besonders bevorzugt 25% bis 35% hergestellt wurde.
  19. Verfahren nach Anspruch 18,
    dadurch gekennzeichnet,
    dass die hochkonsistenten Ausgangsstoffsuspension aus einer niederkonsistenten Ausgangsstoffsuspension durch deren Eindicken hergestellt wird.
  20. Verfahren nach Anspruch 19,
    dadurch gekennzeichnet,
    dass das Eindicken mittels einer Schneckenpresse erfolgt.
  21. Verfahren nach einem der Ansprüche 18 bis 20,
    dadurch gekennzeichnet,
    dass die hochkonsistente Ausgangsstoffsuspension mit einer Mahlenergie im Bereich von 150kWh bis 300kWh, insbesondere 180kWh bis 250kWh pro Tonne gemahlen wird.
  22. Verfahren nach einem der Ansprüche 18 bis 21,
    dadurch gekennzeichnet,
    dass die hochkonsistente Ausgangsstoffsuspension bei einer Temperatur bis zu 80°C, vorzugsweise bei 40°C gemahlen wird.
  23. Verfahren nach einem der Ansprüche 1 bis 22,
    dadurch gekennzeichnet,
    dass die Stoffsuspension einen Retentionswert für Wasser von 1,5 g/g oder weniger, bevorzugt 1,4g/g oder weniger gemessen nach TAPPI UM 256 hat.
  24. Verfahren nach einem der Ansprüche 1 bis 23,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn in Bereichen stärker komprimiert wird als in anderen Bereichen, insbesondere dass die Tissuepapierbahn in den anderen Bereichen nicht komprimiert wird.
  25. Verfahren nach einem der Ansprüche 1 bis 24,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn aus der Stoffsuspension auf einem strukturierten, insbesondere 3-dimensional strukturierten Sieb gebildet wird.
  26. Verfahren nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die zur Tissuepapierbahn weisende Seite des strukturierten Siebs vertiefte Bereiche und relativ zu den vertieften Bereichen erhöhte Bereiche umfasst.
  27. Verfahren nach Anspruch 25 oder 26,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn in den vertieften und den erhöhten Bereiche des strukturierten Siebs gebildet wird.
  28. Verfahren nach einem der Ansprüche 25 bis 27,
    dadurch gekennzeichnet,
    dass das strukturierte Sieb eine TAD-Sieb oder ein DSP-Sieb umfasst.
  29. Verfahren nach einem der Ansprüche 1 bis 28,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn bei einem Entwässerungsschritt zwischen einer oberen strukturierten, insbesondere 3-dimensional strukturierten, und permeablen Bespannung und zwischen einer unteren permeablen Bespannung geführt wird, wobei bei dem Entwässerungsschritt entlang einer Entwässerungsstrecke Druck auf die obere Bespannung, die Tissuepapierbahn und die untere Bespannung ausgeübt wird.
  30. Verfahren nach Anspruch 29,
    dadurch gekennzeichnet,
    dass die zur Tissuepapierbahn weisende Seite der strukturierten Bespannung vertiefte Bereiche und relativ zu den vertieften Bereichen erhöhte Bereiche umfasst.
  31. Verfahren nach Anspruch 30,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn in den vertieften Bereichen weniger stark, insbesondere überhaupt nicht, komprimiert wird als in den erhöhten Bereichen.
  32. Verfahren nach einem der Ansprüche 29 bis 31,
    dadurch gekennzeichnet,
    dass die obere strukturierte und permeable Bespannung ein strukturiertes Sieb, insbesondere TAD-Sieb oder DSP-Sieb, und die untere permeable Bespannung ein Filz ist.
  33. Verfahren nach einem der Ansprüche 29 bis 32,
    dadurch gekennzeichnet,
    dass die Kompressibilität der oberen Bespannung kleiner als die der unteren Bespannung ist.
  34. Verfahren nach einem der Ansprüche 29 bis 33,
    dadurch gekennzeichnet,
    dass die dynamische Steifigkeit (K) als Maß für die Kompressibilität der oberen Bespannung 3000N/mm oder mehr ist.
  35. Verfahren nach einem der Ansprüche 29 bis 34,
    dadurch gekennzeichnet,
    dass die dynamische Steifigkeit (K) als Maß für die Kompressibilität der unteren Bespannung 100000N/mm oder weniger, vorzugsweise 90000N/mm, besonders bevorzugt 70000N/mm oder weniger ist.
  36. Verfahren nach einem der Ansprüche 29 bis 35,
    dadurch gekennzeichnet,
    dass der G-Modul als Maß für die Elastizität der unteren Bespannung 2N/mm2 oder mehr, vorzugsweise 4N/mm2 oder mehr ist.
  37. Verfahren nach einem der Ansprüche 29 bis 36,
    dadurch gekennzeichnet,
    dass die Permeabilität der unteren Bespannung 80cfm oder weniger, vorzugsweise 40cfm oder weniger, besonders bevorzugt 25cfm oder weniger ist.
  38. Verfahren nach einem der Ansprüche 29 bis 37,
    dadurch gekennzeichnet,
    dass bei dem Entwässerungsschritt zuerst die obere Bespannung dann die Tissuepapierbahn und anschließend die untere Bespannung von einem Gas durchströmt wird.
  39. Verfahren nach einem der Ansprüche 29 bis 38,
    dadurch gekennzeichnet,
    dass bei dem Entwässerungsschritt die Anordnung aus oberer Bespannung,
    Tissuepapierbahn und unterer Bespannung zumindest abschnittweise entlang der Entwässerungsstrecke zwischen einem unter Spannung stehenden Pressband und einer glatten Oberfläche geführt wird, wobei das Pressband auf die obere Bespannung einwirkt und sich die untere Bespannung an der glatten Oberfläche abstützt.
  40. Verfahren nach einem der Ansprüche 29 bis 39,
    dadurch gekennzeichnet,
    dass die Anordnung aus oberer Bespannung, Tissuepapierbahn und unterer Bespannung zumindest abschnittweise im Bereich der Entwässerungsstrecke von dem Gasstrom durchströmt wird.
  41. Verfahren nach einem der Ansprüche 38 bis 40,
    dadurch gekennzeichnet,
    dass der Gasstrom durch die Tissuepapierbahn ca. 150m3 pro Minute und Meter Länge entlang der Entwässerungsstrecke beträgt.
  42. Verfahren nach einem der Ansprüche 39 bis 41,
    dadurch gekennzeichnet,
    dass das Pressband unter einer Spannung von zumindest 30kN/m, vorzugsweise zumindest 60kN/m oder 80kN/m steht.
  43. Verfahren nach einem der Ansprüche 39 bis 42,
    dadurch gekennzeichnet,
    dass das Pressband eine spiralisierte Struktur hat.
  44. Verfahren nach einem der Ansprüche 39 bis 43,
    dadurch gekennzeichnet,
    dass das Pressband eine gewobene Struktur hat.
  45. Verfahren nach einem der Ansprüche 39 bis 44,
    dadurch gekennzeichnet,
    dass das Pressband eine offene Fläche von zumindest 25% und eine Kontaktfläche von zumindest 10% seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  46. Verfahren nach Anspruch 45,
    dadurch gekennzeichnet,
    dass das Pressband eine offene Fläche zwischen 75% und 85% und eine Kontaktfläche zwischen 15% und 25% seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  47. Verfahren nach Anspruch 45,
    dadurch gekennzeichnet,
    dass das Pressband eine offene Fläche zwischen 68% und 76% und eine Kontaktfläche zwischen 24% und 32% seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  48. Verfahren nach Anspruch 45,
    dadurch gekennzeichnet,
    dass das Pressband eine offene Fläche zwischen 51% und 62% und eine Kontaktfläche zwischen 38% und 49% seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  49. Verfahren nach Anspruch 45,
    dadurch gekennzeichnet,
    dass das Pressband eine offene Fläche von 50% oder mehr und eine Kontaktfläche von 50% oder mehr seiner gesamten zur oberen Bespannung weisenden Fläche hat.
  50. Verfahren nach einem der Ansprüche 39 bis 49,
    dadurch gekennzeichnet,
    dass die glatte Oberfläche durch die Mantelfläche einer Walze gebildet wird.
  51. Verfahren nach Anspruch 50,
    dadurch gekennzeichnet,
    dass die Gasströmung durch eine Saugzone in der Walze erzeugt wird.
  52. Verfahren nach Anspruch 51,
    dadurch gekennzeichnet,
    dass die Saugzone eine Länge im Bereich zwischen 200mm und 2500mm, bevorzugt zwischen 800mm und 1800mm, besonders bevorzugt zwischen 1200mm und 1600mm hat.
  53. Verfahren nach Anspruch 51 oder 52,
    dadurch gekennzeichnet,
    dass der Unterdruck in der Saugzone zwischen -0,2bar und -0,8bar, bevorzugt zwischen -0,4bar und -0,6bar ist.
  54. Verfahren nach einem der Ansprüche 38 bis 53,
    dadurch gekennzeichnet,
    dass die Gasströmung durch eine oberhalb der oberen Bespannung angeordnete Überdruckhabe erzeugt wird.
  55. Verfahren nach einem der Ansprüche 29 bis 54,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn die Entwässerungsstrecke mit einem Trockengehalt zwischen 25% und 55% verlässt.
  56. Verfahren nach einem der Ansprüche 29 bis 55,
    dadurch gekennzeichnet,
    dass das strukturiete Sieb bei der Bildung der Tissuepapierbahn das selbe Sieb wie bei dem Entwässerungsschritt ist.
  57. Verfahren nach einem der Ansprüche 29 bis 56,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn in einem dem Entwässerungsschritt nachfolgenden weiteren Entwässerungsschritt zusammen mit der struktuierten Bespannung des Entwässerungsschrittes durch einen Pressspalt geführt wird.
  58. Verfahren nach Anspruch 57,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn im Pressspalt zwischen der strukturierten und permeablen Bespannung und einer, insbesondere glatten Walzenoberfläche angeordnet ist.
  59. Verfahren nach Anspruch 57 oder 58,
    dadurch gekennzeichnet,
    dass die vertieften und die relativ dazu erhöhten Bereiche der strukturierten und permeable Bespannung derart ausgebildet und zueinander angeordnet sind, dass nur 35% oder weniger, insbesondere nur 25% oder weniger der Tissuepapierbahn im Pressspalt gepresst wird.
  60. Verfahren nach einem der Ansprüche 57 bis 59,
    dadurch gekennzeichnet,
    dass der Pressspalt ein Schuhpressspalt ist.
  61. Verfahren nach einem der Ansprüche 57 bis 59,
    dadurch gekennzeichnet,
    dass der Pressspalt zwischen der Walzenoberfläche und einer Saugpresswalze gebildet wird.
  62. Verfahren nach einem der Ansprüche 58 bis 61,
    dadurch gekennzeichnet,
    dass die Walzenoberfläche durch die Mantelfläche eines Yankee-Trockenzylinders gebildet wird.
  63. Verfahren nach einem der Ansprüche 57 bis 62,
    dadurch gekennzeichnet,
    dass die Tissuepapierbahn zusammen mit der strukturierten Bespannung um eine besaugte Umlenkrolle geführt wird, wobei die strukturierte Bespannung zwischen der Tissuepapierbahn und der besaugten Umlenkrolle angeordnet ist.
EP06121949A 2005-10-13 2006-10-09 Verfahren zur Herstellung von Tissuepapier Not-in-force EP1775380B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005049502A DE102005049502A1 (de) 2005-10-13 2005-10-13 Verfahren zur Herstellung von Tissuepapier

Publications (3)

Publication Number Publication Date
EP1775380A2 EP1775380A2 (de) 2007-04-18
EP1775380A3 EP1775380A3 (de) 2007-05-16
EP1775380B1 true EP1775380B1 (de) 2012-02-29

Family

ID=37199206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06121949A Not-in-force EP1775380B1 (de) 2005-10-13 2006-10-09 Verfahren zur Herstellung von Tissuepapier

Country Status (5)

Country Link
US (1) US7972476B2 (de)
EP (1) EP1775380B1 (de)
AT (1) ATE547564T1 (de)
BR (1) BRPI0604656A (de)
DE (1) DE102005049502A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036075A1 (de) * 2005-08-01 2007-02-15 Voith Patent Gmbh Verfahren zur Herstellung von Tissuepapier
DE102005049502A1 (de) * 2005-10-13 2007-04-19 Voith Patent Gmbh Verfahren zur Herstellung von Tissuepapier
DE102006062237A1 (de) * 2006-12-22 2008-06-26 Voith Patent Gmbh Maschine zur Herstellung einer Faserstoffbahn
BRPI0718883A2 (pt) * 2006-12-23 2014-02-18 Voith Patent Gmbh Processo para produção de papel de seda
DE102007022749A1 (de) * 2007-05-11 2008-11-13 Voith Patent Gmbh Lignocellulosischer Faserstoff aus Holz
DE102007022750A1 (de) * 2007-05-11 2008-11-13 Voith Patent Gmbh Verfahren zum Zerfasern von chemisch behandeltem lignocellulosischem Rohstoff
DE102007036382A1 (de) * 2007-07-31 2009-02-05 Voith Patent Gmbh Lignocellulosischer Faserstoff aus Einjahrespflanzen
DE102007036376A1 (de) * 2007-07-31 2009-02-05 Voith Patent Gmbh Gebleichter Faserstoff
DE102008019839A1 (de) 2008-04-19 2009-10-22 Voith Patent Gmbh Verfahren zur Entfernung von unerwünschten Feinstoffen aus einer wässrigen Faserstoffsuspension
EP2365126A1 (de) * 2010-03-05 2011-09-14 Cartiera Lucchese S.p.A. Papierprodukt, besonders für hygienisch-sanitäre Beschäftigungen
FR2965570B1 (fr) * 2010-09-30 2012-11-02 Arjo Wiggins Fine Papers Ltd Procede de raffinage en milieu enzymatique d'une pate papetiere comportant des fibres cellulosiques afin de reduire leur longueur
JP5649632B2 (ja) 2012-05-02 2015-01-07 山田 菊夫 水解紙の製造方法
JP6300912B2 (ja) 2014-05-30 2018-03-28 山田 菊夫 繊維シート
US10941520B2 (en) 2015-08-21 2021-03-09 Pulmac Systems International, Inc. Fractionating and refining system for engineering fibers to improve paper production
US10041209B1 (en) 2015-08-21 2018-08-07 Pulmac Systems International, Inc. System for engineering fibers to improve paper production
US11214925B2 (en) 2015-08-21 2022-01-04 Pulmac Systems International, Inc. Method of preparing recycled cellulosic fibers to improve paper production
MX2018004729A (es) 2015-11-03 2018-07-06 Kimberly Clark Co Papel tisu con gran volumen y pocas pelusas.
US10519607B2 (en) * 2016-05-23 2019-12-31 Gpcp Ip Holdings Llc Dissolved air de-bonding of a tissue sheet
BR112020007694B1 (pt) 2017-11-29 2022-12-13 Kimberly-Clark Worldwide, Inc Método para produzir um substrato multicamada formado por espuma
BR112021001335B1 (pt) 2018-07-25 2024-03-05 Kimberly-Clark Worldwide, Inc Método para fazer um substrato absorvente não tecido tridimensional (3d)

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301745A (en) * 1963-04-26 1967-01-31 Scott Paper Co Pulp processing method for mixed cellulosic materials
US3756913A (en) * 1971-06-18 1973-09-04 Scott Paper Co Modified cellulosic fibers and products containing said fibers
SE441282B (sv) * 1984-02-22 1985-09-23 Mo Och Domsjoe Ab Forfarande for framstellning av forbettrad hogutbytesmassa
US4718980A (en) * 1985-12-30 1988-01-12 Weyerhaeuser Company Interstage treatment of mechanical pulp
DE68922024T2 (de) * 1988-06-14 1995-09-28 Procter & Gamble
US5080758A (en) * 1990-08-02 1992-01-14 Macmillan Bloedel Limited Chemi-mechanical liner board
DE69218805D1 (de) * 1991-01-15 1997-05-15 James River Corp Seidenpapier mit grosser Weichheit
CA2082557C (en) * 1992-02-24 1997-03-11 Charles W. Hankins Integrated pulping process of waste paper yielding tissue-grade paper fibers
US5262007A (en) * 1992-04-09 1993-11-16 Procter & Gamble Company Soft absorbent tissue paper containing a biodegradable quaternized amine-ester softening compound and a temporary wet strength resin
SE503101C2 (sv) * 1994-05-18 1996-03-25 Eka Nobel Ab Sätt att bestämma våtstyrkan hos papper och medel för processkontroll genom användning av sättet
US5582681A (en) * 1994-06-29 1996-12-10 Kimberly-Clark Corporation Production of soft paper products from old newspaper
US6001218A (en) * 1994-06-29 1999-12-14 Kimberly-Clark Worldwide, Inc. Production of soft paper products from old newspaper
US5679218A (en) 1994-07-29 1997-10-21 The Procter & Gamble Company Tissue paper containing chemically softened coarse cellulose fibers
US5770012A (en) * 1994-11-18 1998-06-23 P. H. Glatfelter Co. Process for treating paper machine stock containing bleached hardwood pulp with an enzyme mixture to reduce vessel element picking
US5725732A (en) * 1994-11-18 1998-03-10 P. H. Glatfelter Company Process for treating hardwood pulp with an enzyme mixture to reduce vessel element picking
US6296736B1 (en) * 1997-10-30 2001-10-02 Kimberly-Clark Worldwide, Inc. Process for modifying pulp from recycled newspapers
US5916417A (en) * 1997-08-22 1999-06-29 International Paper Company Method of making multi-ply paperboard sheet having layers of different fiber properties
US6899790B2 (en) * 2000-03-06 2005-05-31 Georgia-Pacific Corporation Method of providing papermaking fibers with durable curl
DE10032251A1 (de) * 2000-07-03 2002-01-17 Voith Paper Patent Gmbh Maschine sowie Verfahren zur Herstellung einer Faserstoffbahn
US7150110B2 (en) 2002-01-24 2006-12-19 Voith Paper Patent Gmbh Method and an apparatus for manufacturing a fiber web provided with a three-dimensional surface structure
JP2007519834A (ja) * 2004-01-30 2007-07-19 ボイス ペ−パ− パテント ゲ−エムベ−ハ− 最新式脱水システム
US7387706B2 (en) * 2004-01-30 2008-06-17 Voith Paper Patent Gmbh Process of material web formation on a structured fabric in a paper machine
US8178025B2 (en) * 2004-12-03 2012-05-15 Georgia-Pacific Consumer Products Lp Embossing system and product made thereby with both perforate bosses in the cross machine direction and a macro pattern
DE102005036075A1 (de) * 2005-08-01 2007-02-15 Voith Patent Gmbh Verfahren zur Herstellung von Tissuepapier
DE102005036891A1 (de) * 2005-08-05 2007-02-08 Voith Patent Gmbh Maschine zur Herstellung von Tissuepapier
DE102005046903A1 (de) * 2005-09-30 2007-04-05 Voith Patent Gmbh Verfahren und Vorrichtung zur Herstellung einer Tissuebahn
DE102005049502A1 (de) * 2005-10-13 2007-04-19 Voith Patent Gmbh Verfahren zur Herstellung von Tissuepapier
DE102005060379A1 (de) * 2005-12-16 2007-06-21 Voith Patent Gmbh Vorrichutng und Verfahren zur Behandlung einer Faserstoffbahn, insbesondere zur Herstellung einer Tissuepapierbahn
DE102005060378A1 (de) * 2005-12-16 2007-06-21 Voith Patent Gmbh Vorrichtung und Verfahren zur Behandlung einer Faserstoffbahn, insbesondere zur Herstellung einer Tissuepapierbahn
US7527709B2 (en) * 2006-03-14 2009-05-05 Voith Paper Patent Gmbh High tension permeable belt for an ATMOS system and press section of paper machine using the permeable belt
EP1845187A3 (de) * 2006-04-14 2013-03-06 Voith Patent GmbH Doppelsiebformer für ein Atmos-System

Also Published As

Publication number Publication date
US7972476B2 (en) 2011-07-05
EP1775380A3 (de) 2007-05-16
US20070119558A1 (en) 2007-05-31
EP1775380A2 (de) 2007-04-18
DE102005049502A1 (de) 2007-04-19
BRPI0604656A (pt) 2008-04-01
ATE547564T1 (de) 2012-03-15

Similar Documents

Publication Publication Date Title
EP1775380B1 (de) Verfahren zur Herstellung von Tissuepapier
EP1749935A2 (de) Verfahren zur Herstellung von Tissuepapier
EP1749934B1 (de) Maschine zur Herstellung von Tissuepapier
EP1397587B1 (de) Verfahren und vorrichtung zur herstellung einer mit einer dreidimensionalen oberflächenstruktur versehen faserstoffbahn
EP1770209B1 (de) Verfahren und Vorrichtung zur Herstellung einer Tissuebahn
DE69812186T2 (de) Verfahren zur herstellung von papier mit einem dreidimensionalen muster
DE102005039015A1 (de) Verfahren zur Herstellung von Tissuepapier
DE9422107U1 (de) Weichtissueprodukt
DE1796366B2 (de) Weiches, voluminöses und saugfähiges Papier
DE2659407A1 (de) Weiche, absorbierende und voluminoese (papier)-bahn und verfahren zu ihrer herstellung
DE102010029580A1 (de) Maschine zur Herstellung einer Papierbahn insbesondere Sackpapierbahn
DE102005054510A1 (de) Tissuemaschine
EP1397553A1 (de) Verfahren und maschine zur herstellung einer faserstoffbahn
DE19912226A1 (de) Verfahren und Vorrichtung zum Herstellen von Tissue-Papier sowie das damit erhältliche Tissue-Papier
AT510540A2 (de) Verfahren zum trocknen von zellstoff, zellstofftrocknungsmaschine und zellstofftrocknungslinie
DE60316971T2 (de) Verfahren zur herstellung von pappe und maschine zur herstellung von pappe
WO2008087107A1 (de) Verfahren zum herstellen von hochwertigen papieren
EP4367323A1 (de) Verfahren und maschine zur herstellung einer faserstoffbahn
WO2023280806A1 (de) Verfahren und maschine zur herstellung einer faserstoffbahn
AT395186B (de) Siebbandpresse
EP1407074A1 (de) Verfahren und vorrichtung zur herstellung einer mit einer dreidimensionalen struktur versehenen faserstoffbahn
WO2021151540A1 (de) Vorrichtung zur herstellung von white top kraftliner und verwendung dieser vorrichtung zur herstellung von white top kraftliner
EP0511951A1 (de) Siebbandpresse bzw. Manchon
AT395187B (de) Manchon
DE102018123899A1 (de) Maschine und Verfahren zur Herstellung einer Faserstoffbahn

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOITH PATENT GMBH

17P Request for examination filed

Effective date: 20071116

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080111

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SILVA, LUIZ CARLOS

Inventor name: OYAKAWA, DAVILO

Inventor name: BERARDI, ROGERIO

Inventor name: SCHERB, THOMAS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 547564

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011040

Country of ref document: DE

Effective date: 20120426

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120229

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011040

Country of ref document: DE

Effective date: 20121130

BERE Be: lapsed

Owner name: VOITH PATENT G.M.B.H.

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121009

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120529

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121009

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006011040

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 547564

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061009