EP1749093A2 - Methode zur identifizierung von pde5-modulatoren - Google Patents

Methode zur identifizierung von pde5-modulatoren

Info

Publication number
EP1749093A2
EP1749093A2 EP05743032A EP05743032A EP1749093A2 EP 1749093 A2 EP1749093 A2 EP 1749093A2 EP 05743032 A EP05743032 A EP 05743032A EP 05743032 A EP05743032 A EP 05743032A EP 1749093 A2 EP1749093 A2 EP 1749093A2
Authority
EP
European Patent Office
Prior art keywords
gaf
domain
pde5
amino acid
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05743032A
Other languages
English (en)
French (fr)
Inventor
Tobias Kanacher
Juergen Linder
Joachim Schultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda GmbH
Original Assignee
Altana Pharma AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altana Pharma AG filed Critical Altana Pharma AG
Publication of EP1749093A2 publication Critical patent/EP1749093A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Definitions

  • the present invention relates to a new polypeptide comprising the GAF A domain and GAF B domain of a human phosphodiesterase 5 (PDE5) and the catalytic domain of an adenylate cyclase and the use of this polypeptide in a method for identifying PDE5 modulators.
  • PDE5 human phosphodiesterase 5
  • PDEs Phosphodiesterases
  • PDEs are eukaryotic proteins and are known as modulators of the cydic nucleotides cAMP and cGMP.
  • PDEs are divided into 3 classes (I, II and III), of which only class I with its 11 PDE families (called PDE1 to 11) occurs in mammals.
  • PDE5 plays a role in the relaxation and contraction of smooth muscles and in the survival of neurons.
  • a number of PDE5 inhibitors are known and three (Sildenafii, Tadalafil and Vardenafil) are used to treat erectile dysfunction or pulmonary hypertension.
  • GAF domains are ubiquitous in all realms of life and were developed by Aravind and Ponting (Aravind L. and Ponting CP: The GAF domain: an evolutionary link between diverse phototransducing proteins. 1997, TIBS, 22, 458-459) due to protein structure and - sequence comparison defined.
  • PDE2, PDE5 and PDE6 contain so-called cGMP-binding GAF domains, which play a role in the allosteric activation of the PDEs.
  • Adenylate cyclases catalyze the conversion of ATP to cAMP in all areas of life (Cooper DM: Regulation and organizaüon of adenylyl cyclases and cAMP. 2003, Biochem J., 375 (Pt 3), 517-29; Tang WJ and Gilman AG: Construction of a soluble adenylyl cyclase activated by Gs ⁇ and forskolin. 1995, Sdence, 268, 1769-1772). Based on sequence comparisons and structural considerations, they are divided into 5 classes (I to V).
  • the bacterial class III ACs from cyanobacteria, in particular from Nostoc sp., Are of molecular biological interest.
  • PCC 7120 which also includes CyaB1.
  • the cyanobacterial ACs CyaB1 and CyaB2 also contain N-terminal GAF domains that are structurally similar to those of the PDEs, but have cAMP as the activating ligand.
  • the 9 known families of human class III ACs are all membrane-bound and regulated by G proteins (Tang WJ and Gilman AG: Construction of a soluble adenylyl cyclase activated by Gs ⁇ and forskolin. 1995, Science, 268, 1769-1772). A combination with GAF domains is not known.
  • a chimer from human PDE5 and bacterial adenylate cyanase is not known. Likewise, the use of such a chimer in a method for identifying PDE5 modulators is not known from the prior art.
  • the object on which the invention is based is to provide a method for identifying PDE5 modulators.
  • the object is achieved by providing the polypeptide according to the invention comprising functionally linked (a) the GAF A domain and GAF B domain of a human phosphodiesterase 5 (PDE5) or its functionally equivalent variants and (b) the catalytic domain of an adenylate cyanase or its functionally equivalent Variants and its use in a method for identifying PDE5 modulators solved.
  • PDE5 human phosphodiesterase 5
  • a chimeric protein from N-terminal human PDE5-GAF domains and C-terminal catalytic center of an adenylate cyclase is suitable as an effector molecule.
  • the GAF domains are the activation domains that change their conformation upon ligand binding and thereby modulate the catalytic activity of the adenylate cyclase domain, which serves as a read-out.
  • the present invention enables PDE5 modulators, ie PDE5 antagonists or PDE5 agonists, to be identified that do not have the binding and blocking of the catalytic center the PDE5 act, but act through allosteric regulation at the N-terminus of the PDE5, ie on the GAF domains.
  • the invention relates to a polypeptide which is functionally linked
  • a human phosphodiesterase or PDE is understood to mean an enzyme of human origin which is capable of converting cAMP or cGMP into the corresponding inactive 5'-monophosphates. Based on their structure and properties, the PDEs are classified into different families.
  • a human phosphodiesterase 5 or PDE5 is understood to mean in particular an enzyme family of human origin which is able to convert cGMP into the inactive 5'-monophosphate.
  • PDE5 can be any PDE5 which has a GAF A domain and GAFß domain.
  • the GAF domains of PDE5 are located as tandem N-terminal in the protein.
  • the GAF domain that is closest to the N-terminus is referred to as GAF A and the immediately following one as GAF B.
  • the beginning and end of the GAF domains can be determined using protein sequence comparisons.
  • a SMART sequence comparison (Schultz J., Milpetz F., Bork P. and Pointing CP: SMART a simple modular architecture research tool: identification of signaling domains. 1998, PNAS, 95, 5857-5864) shows, for example, the isoform for GAF A.
  • PDE5A1 D164 to L324 and for GAF B : S346 to E513. ' !
  • adenylate cyclase is an enzyme that is able to convert ATP to cAMP. Accordingly, adenylate cyclase activity is understood to mean the amount of ATP or amount of cAMP converted by the polypeptide according to the invention in a certain time.
  • a catalytic domain of an adenylate cyclase is understood to mean that part of the amino acid sequence of an adenylate cyclase which is necessary so that the adenylate cyclase still has the property of converting ATP to cAMP, that is to say is still essentially functional and thus has an adenylate cyclase activity.
  • the catalytic domain of an adenylate cyanase can be easily determined by iteratively shortening the amino acid sequence and then measuring the adenylate cyclase activity.
  • the adenylate cyanase activity can be determined, for example, by measuring the conversion of radioactive [ ⁇ - 32 P] -ATP in [ ⁇ - 32 P] -cAMP.
  • adenylate cyanase activity is easily possible by measuring the resulting cAMP via antibody binding.
  • assay kits such as the cAMP [ 3 H-] or [ 125 -l] Biotrak ® cAMP SPA assays from Amersham ® or the AlphaScreen ® or the Lance ® cAMP assay from PerkinElmer ® : They are all based on the principle that arises in the AC reaction from ATP unlabeled cAMP. This competes with exogenously added 3H, 1251, or biotin-labeled cAMP for binding to a cAMP-specific antibody.
  • Alexa ® flour is bound to the antibody, which generates a TR-FRET signal at 665 nm with the tracer.
  • the signal strengths can be assigned to the corresponding cAMP concentrations using a standard curve.
  • HEFP TM High-Efficiency Fluorescence Polarization
  • Fl-AMP fluorescein-labeled 5'AMP
  • the FI-AMP binds selectively to special beads and the fluorescence is strongly polarized.
  • FI-cAMP does not bind to the beads, so an increase in polarization is proportional to the amount of FI-AMP produced.
  • fluorescence-labeled ATP can be used instead of FI-cAMP and beads which bind selectively to FI-cAMP instead of FI-cAMP (e.g. beads which are loaded with cAMP antibodies).
  • “Functionally equivalent variants” of polypeptides or domains ie sequence sections of the polypeptides with a specific function, are understood to mean polypeptides or domains which differ structurally, as described below, but still perform the same function.
  • Functions equivalent variants of domains can the person skilled in the art can easily find these domains with suitable sequences from other organisms by coding and functional testing of the corresponding domains, by sequence comparisons with corresponding domains of other known proteins or by hybridization of the corresponding nucleic acid sequences.
  • a “functional linkage” is understood to mean links, preferably covalent connections, of domains which leads to an arrangement of the domains such that they can fulfill their function.
  • a functional linkage of the GAF A domain, GAF ⁇ domain and the catalytic domain the adenylate cyanase understood a connection of these domains, which leads to an arrangement of the domains, so that the GAF domains with ligand binding, for example of cGMP or PDE5 modulators Change conformation and thereby modulate the catalytic activity of the adenylate cyclase domain.
  • a functional link between the GAF A domain and the GAFa domain is understood to mean a connection of these domains, which leads to an arrangement of the domains such that the GAF A domain and the GAFß domain together as a GAF domain in league Binding, for example cGMP or PDE5 modulators change their conformation.
  • the human phosphodiesterases 5 which are suitable for the GAF domains, GAF A and GAF B , are preferably selected from the group of isoforms PDE5A1 (Accession: NP_001074), PDE5A2 (Accession: NP_236914), PDE5A3 (Accession: NP_246273) and PDE5A4 (Accession: NP_237223) or their respective functionally equivalent variants, particularly preferred is the use according to the invention of the GAF domains of the isoform PDE5A1 or their functionally equivalent variants.
  • the GAF A domain of the polypeptide according to the invention has an amino acid sequence containing the amino acid sequence SEQ. ID. NO. 6 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90%, preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98%, more preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 6 and has the property of a GAF A domain.
  • substitution is to be understood as meaning the replacement of one or more amino acids by one or more amino acids. So-called conservative exchanges are preferably carried out, in which the replaced amino acid has a similar property to the original amino acid, for example exchange of Glu by Asp, Gin by Asn, Val by He, Leu by He, Ser by Thr.
  • Deletion is the replacement of an amino acid with a direct link.
  • Preferred positions for deletions are the termini of the polypeptide and the links between the individual protein domains.
  • Inserts are insertions of amino acids into the polypeptide chain, with a direct bond being formally replaced by one or more amino acids.
  • Identity between two proteins is understood to mean the identity of the amino acids over the respective total protein length, in particular the identity obtained by comparison with the aid of the laser genes software from DNASTAR, ine. Madison, Wisconsin (USA) using the Clustal method (Higgins DG, Sha ⁇ PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosd. 1989 Apr; 5 (2): 151-1) using the following parameters becomes:
  • a protein or a domain which has an identity of at least 90% at the amino acid level with the sequence SEQ ID NO: 6 is accordingly understood to mean a protein or a domain which, when its sequence is compared with the sequence SEQ ID NO: 6 , in particular according to the above program logarithm with the above parameter set has an identity of at least 90%.
  • the property of a GAF A domain means in particular its function to bind cGMP.
  • the GAF A domain of the polypeptide according to the invention has the amino acid sequence SEQ. ID. NO. 6 on.
  • the GAF B domain of the polypeptide according to the invention has an amino acid sequence containing the amino acid sequence SEQ. ID. NO. 8 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 90%, preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98%, more preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 8 and has the property of a GAF B domain.
  • GAF B domain The property of a GAF B domain is understood to mean, in particular, its function of being responsible for the formation of dimers and, in particular, its property of activating the PDE5 together with the GAF A domain by binding cGMP or the PDE5 by binding PDE5 modulators -Modulate activity, ie increase or decrease.
  • the GAF B domain of the polypeptide according to the invention has the amino acid sequence SEQ. ID. NO. 8 on.
  • the functionally linked GAF A domain and GAF B domain ie the complete GAF domain, of a human phosphodiesterase 5 (PDE5) or its functionally equivalent variants have an amino acid sequence containing the amino acid sequence SEQ. ID. NO.
  • amino acids 10 or a sequence derived from this sequence by substitution, insertion or deletion of amino acids, which has an identity of at least 70%, preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 93%, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, more preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 10 and the regulatory property of the GAF domain of a human phosphodiesterase 5 (PDE5), the amino acid sequences contained the GAF A domain, SEQ. ID. NO. 6 and the GAFß domain, SEQ. ID. NO.
  • the N-terminal residue of the particularly preferred GAF domain SEQ. ID. NO. 10 is from the N-terminus to the GAF A domain SEQ. ID. NO. 6 freely variable and in particular shortenable.
  • the N-terminal residue of the particularly preferred GAF domain is preferably SEQ. ID. NO. 10 by 100 amino acids, more preferably by 90 amino acids, more preferably by 80 amino acids, more preferably by 70 amino acids, more preferably by 60 amino acids, more preferably by 50 amino acids, more preferably by 40 amino acids, more preferably by 30 amino acids, more preferably by 20 amino acids, more preferably by 10 amino acids, more preferably 5 amino acids N-terminal shortened.
  • the partial amino acid sequences of the GAF A domain SEQ. ID. NO. 6 and the GAF B domain, SEQ. ID. NO. 8 can be replaced by substitution, insertion or deletion of amino acids by at most 10%, more preferably at most 9%, more preferably at most 8%, more preferably at most 7%, more preferably at most 6%, more preferably at most 5%, more preferably at most 4%, more preferably at most 3% , more preferably at most 2%, more preferably at most 1, more preferably at most 0.5%, without the respective functions described above being lost.
  • the functionally linked GAF A domain and GAF ⁇ domain ie the complete GAF domain, of a human phosphodiesterase 5 (PDE5) or its functionally equivalent variants preferably have an amino acid sequence selected from the group
  • adenylate cyclases which have a GAF domain in natural form.
  • Particularly preferred adenylate cyclases are adenylate cyanases of bacterial origin, in particular from cyanobacteria, which have a GAF domain in natural form or their respective functionally equivalent variants.
  • adenylate cyclases are selected from the group consisting of:
  • the catalytic domain of an adenylate cyclase or its functionally equivalent variants has an amino acid sequence containing the amino acid sequence SEQ. ID. NO.
  • the property of a catalytic domain of an adenylate cyclase means the above-described catalytic property of an adenylate cyclase, in particular the ability to convert ATP to cAMP.
  • the catalytic domain of an adenylate cyanase or its functionally equivalent variants preferably has an amino acid sequence selected from the group
  • the polypeptide according to the invention comprises the amino acid sequence SEQ. ID. NO. 1 or SEQ. ID. NO.4 or a sequence derived from these sequences by substitution, insertion or deletion of amino acids, which have an identity of at least 70%, preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 93 %, more preferably at least 95%, more preferably at least 97%, more preferably at least 98%, more preferably at least 99% at the amino acid level with the sequence SEQ ID NO: 1 or 4 and the regulatory properties of the GAF domain of a human phosphodiesterase 5 (PDE5) and the has catalytic properties of an adenylate cyclase, the amino acid sequences contained in the GAF A domain, SEQ. ID. NO. 6, the GAF B domain, SEQ. ID. NO. 8 and the catalytic domain of adenylate cyclase, SEQ. ID.
  • the N-terminal residue of the particularly preferred polypeptides SEQ according to the invention. ID. NO. 1 and SEQ. ID. NO.4 is from the N-terminus to the GAF A domain SEQ. ID. NO. 6 freely variable and in particular shortenable.
  • the N-terminal residue of the particularly preferred polypeptides according to the invention is preferably SEQ. ID. NO. 1 or SEQ. ID. NO.
  • amino acids 4 by 100 amino acids, more preferably by 90 amino acids, more preferably by 80 amino acids, more preferably by 70 amino acids, more preferably by 60 amino acids, more preferably by 50 amino acids, more preferably by 40 amino acids, more preferably by 30 amino acids, more preferably by 20 amino acids, more preferably by 10 amino acids, more preferably shortened by 5 amino acids at the N-terminal.
  • the partial amino acid sequences of the GAF A domain SEQ. ID. NO. 6, the GAF B domain, SEQ. ID. NO. 8 and the catalytic domain of adenylate cyanase, SEQ. ID. NO. 12 can be replaced by substitution, insertion or deletion of amino acids by at most 10%, more preferably at most 9%, more preferably at most 8%, more preferably at most 7%, more preferably at most 6%, more preferably at most 5%, more preferably at most 4%, more preferably at most 3% , more preferably at most 2%, more preferably at most 1, more preferably at most 0.5%, without the respective function described above being lost.
  • the chimeric polypeptide according to the invention particularly preferably contains the N-terminus to E513 up to the N-terminus of the human PDE5A1 (Accession: NP_001074). This is followed by the C-terminal of V386, which was mutated from L386 when the cloning interface was inserted, to K859, the C-terminus of CyaBI (Accession: NP_486306).
  • a polypeptide according to the invention comprising the amino acid sequence SEQ is particularly preferred. ID. NO. 1 or SEQ. ID. NO.4.
  • Very particularly preferred polypeptides according to the invention are polypeptides with the amino acid sequence SEQ. ID. NO. 1 or SEQ. ID. NO.4.
  • the invention further relates to polynucleotides, also referred to below as nucleic acids, encoding one of the polypeptides according to the invention described above.
  • All polynucleotides or nucleic acids mentioned in the description can be, for example, an RNA, DNA or cDNA sequence.
  • Particularly preferred polynucleotides according to the invention contain SEQ as partial sequences (a). ID. NO. 5 or a nucleic acid sequence with the nucleic acid sequence SEQ. ID. NO. 5 hybridized under constant conditions and
  • SEQ. ID. NO. 5 represents a particularly preferred partial nucleic acid sequence encoding the particularly preferred GAF A domain SEQ. ID. NO. 6th
  • SEQ. ID. NO. 7 shows a particularly preferred partial nucleic acid sequence encoding the particularly preferred GAF B domain SEQ. ID. NO. 8th.
  • SEQ. ID. NO. 11 represents a particularly preferred partial nucleic acid sequence encoding the particularly preferred catalytic domain of an adenylate cyanase SEQ. ID. NO. 12th
  • nucleic acids or partial nucleic acids encoding the domains described above can furthermore be derived from the partial nucleic acid sequences described above, in particular from the sequences SEQ ID NO: 5, 7 or 11 from different organisms, the genomic sequence of which is not known, by hybridization techniques easy to find in a manner known per se.
  • the hybridization can take place under moderate (low stringency) or preferably under constant (high stringency) conditions.
  • the conditions during the washing step can be selected from the range of conditions limited by those with low stringency (with 2X SSC at 50_C) and those with high stringency (with 0.2X SSC at 50_C, preferably at 65_C) (20X SSC: 0, 3 M sodium dtrate, 3 M sodium chloride, pH 7.0).
  • the temperature during the washing step can be raised from moderate conditions at room temperature, 22_C, to stringent conditions at 65_C.
  • Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can be kept constant and only the other can be varied. While In the hybridization, denaturing agents such as formamide or SDS can also be used. In the presence of 50% formamide, the hybridization is preferably carried out at 42_C.
  • a particularly preferred polynucleotide according to the invention encoding a polypeptide according to the invention contains the nucleic acid sequence SEQ. ID. NO. Second
  • a very particularly preferred polynucleotide according to the invention encoding a polypeptide according to the invention has the nucleic acid sequence SEQ. ID. NO. 2 on.
  • polypeptides according to the invention can preferably be prepared by cloning a polynucleotide described above, encoding a polypeptide according to the invention, into a suitable expression vector, transforming a host cell with this expression vector, this host cell is expressed with expression of the polypeptide according to the invention and the protein according to the invention is then isolated.
  • the invention therefore relates to a method for producing a polypeptide according to the invention by culturing a recombinant host cell, expression and isolation of the polypeptide according to the invention.
  • the invention further relates to a recombinant plasmid vector, in particular an expression vector, comprising a polynucleotide according to the invention encoding a polypeptide according to the invention.
  • the type of expression vector is not critical. Any expression vector which is able to express the desired polypeptide in a corresponding host cell can be used. Suitable expression systems are known to the person skilled in the art.
  • Preferred expression vectors are PQE30 (Quiagen), pQE60 (Quiagen) pMAL (NEB) pIRES.
  • PIVEX2.4a R ⁇ CHE
  • PIVEX2.4b R ⁇ CHE
  • PIVEX2.4c R ⁇ CHE
  • pUMVCI Aldevron
  • pUMVC2 Aldevron
  • PUMVC3 Aldevron
  • PUMVC4a Aldevron
  • PUMVC4b Aldevron
  • pUMVC7 Aldevron
  • PUMVC ⁇ a Aldevron
  • .pSP64T pSP64TS
  • pT7TS pCro7
  • pKJE7 Takara
  • pKM260 pYes260
  • pGEMTeasy pGEMTeasy
  • the invention further relates to a recombinant host cell comprising a plasmid vector according to the invention.
  • This transformed host cell is preferably able to express the polypeptide according to the invention.
  • the type of host cell is not critical. Both prokaryotic host cells and eukaryotic host cells are suitable. Any host cell capable of expressing the desired polypeptide with an appropriate expression vector can be used. Suitable expression systems from expression vectors and host cells are known to the person skilled in the art.
  • Preferred host cells are, for example, prokaryotic cells such as E. coli, Corynebacteria, yeast, streptomycetes or eukaryotic cells such as CHO, HEK293 or insect cell lines such as SF9, SF21, Xenopus oocytes.
  • the cultivation conditions of the transformed host cells such as, for example, culture medium composition and fermentation conditions, are known to the person skilled in the art and depend on the type of host cell chosen.
  • the polypeptide can be isolated and purified by standard methods, for example as described in “The QuiaExpressionist®, Fifth Edition, June 2003”.
  • Transformed host cells described above, which express the polypeptide according to the invention are also particularly suitable for carrying out the methods described below for identifying PDE5 modulators in a cellular assay. To this end, it can further be advantageous to immobilize the corresponding host cells on solid supports and / or to carry out a corresponding screening process on a high-throughput scale (high-through put screening).
  • nucleic acid sequences can be cut out from known nucleic acid sequences by the person skilled in the art, for example enzymatic methods, and can be reassembled with known nucleic acid sequences and thus produced.
  • nucleic acids mentioned above can be prepared in a manner known per se by chemical synthesis from the nucleotide building blocks, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pp. 896-897).
  • the invention further relates to a method for identifying a modulator of a human phosphodiesterase 5 (PDE5) comprising the steps
  • step (a) in addition to the possible modulator of a human phosphodiesterase 5 (PDE5), cGMP is contacted with a polypeptide according to the invention.
  • PDE5 human phosphodiesterase 5
  • the possible PDE5 modulator is used, preferably in vitro the preferably purified polypeptide according to the invention and particularly preferably incubated with cGMP and the change in the adenylate cyanase activity of the polypeptide according to the invention compared to a test batch without PDE5 modulator measured.
  • the change in the adenylate cyclase activity can be measured after adding the possible PDE5 modulator to a test batch which contains the polypeptide according to the invention and optionally cGMP.
  • the adenylate cyanase activity of the PDE5 / CyaB1 chimera is determined, as described in more detail below, by converting a defined amount of ATP into cAMP.
  • a modulator of a human phosphodiesterase 5 (PDE5), hereinafter also referred to as a PDE5 modulator, is understood to mean a substance which is able to modulate PDE5 activity by binding to the GAF domains of PDE5, i.e. to change, measured here via the change in the adenylate cyclase activity.
  • a PDE5 modulator thus acts via the Allostensian center of the PDE5 and not or not alone via the catalytic center of the PDE5.
  • the modulator can be an agonist by increasing the enzymatic activity of PDE5 (PDE5 agonist) or an antagonist by reducing the enzymatic activity of PDE5 (PDE5 antagonist).
  • cGMP is a PDE5 agonist.
  • Preferred PDE5 modulators are furthermore, for example, peptides, peptidomimetics, proteins, in particular antibodies, in particular monoclonal antibodies directed against GAF domains, amino acids, amino acids analogs, nucleotides, nucleotide analogs, polynucleotides, in particular oligonucleotides and particularly preferably so-called “small molecules” or SMOLs
  • Preferred SMOLs are organic or inorganic compounds, including heteroorganic compounds or organometallic compounds with a molecular weight of less than 1000 g / mol, in particular with a molecular weight of 200 to 800 g / mol, particularly preferably with a molecular weight of 300 to 600 g / mol.
  • a PDE5 modulator preferably binds to the GAF domains in the polypeptide according to the invention (PDE5 / CyaB1 chimeric) and leads either directly to a change in the adenylate cyclase activity of the polypeptide according to the invention (PDE5 / CyaB1 chimeric) or to a change in the Adenylate cyclase activity of the PDE5 / CyaB1 chimer by displacement of cGMP from the PDE5 / CyaB1 chimer.
  • the dose-response curve according to FIG. 5 results PDE5 / CyaB1 chimera is activated approximately 7.8 times by 100 ⁇ M cGMP. This corresponds to a% basal value of 780 and shows that cGMP is a PDE5-GAF agonist.
  • cAMP has no activating effect and has a% basal value of approximately 100, ie it is neither a PDE5 agonist nor a PDE5 antagonist.
  • the modulation i.e. the change, i.e. the increase or decrease in the adenylate cyclase activity by the PDE5 modulator in a test batch without cGMP, is calculated as a% basal value using the following formula:
  • the% basal value when using 100 ⁇ M of the possible PDE5 modulator is less than 50, this indicates a PDE5 antagonist that binds to the GAF domains in the PDE5 / CyaB1 chimera, while a% basal value greater than 200 indicates PDE5 agonists suggest.
  • the invention therefore relates to a particularly preferred method according to the invention after a decrease in adenylate cyanase activity is measured in the presence of the modulator compared to the absence of the modulator and the modulator is a PDE5 antagonist.
  • the invention relates to a particularly preferred method according to the invention after an increase in adenylate cyclase activity is measured in the presence of the modulator compared to the absence of the modulator and the modulator is a PDE5 agonist
  • the adenylate cyclase activity is determined by measuring the conversion of radioactive or fluorescence-labeled ATP.
  • the adenylate cyclase activity of the polypeptide according to the invention, the PDE5 / CyaB1 chimeric, can be measured by measuring the conversion of radioactive [ ⁇ - 32 P] -ATP in [ ⁇ - 32 P] -cAMP.
  • the adenylate cyanase activity is easily possible by measuring the resulting cAMP via antibody binding.
  • assay kits such as the cAMP [ 3 H-] or [ 125 -l] Biotrak ® cAMP SPA assays from Amersham ® or the AlphaScreen ® or the Lance ® cAMP assay from PerkinElmer ® : They are all based on the principle that arises in the AC reaction from ATP unlabeled cAMP. This competes with exogenously added 3H, 1251, or Biotin-labeled cAMP for binding to a cAMP-specific antibody.
  • Alexa ® flow is bound to the antibody, which generates a TR-FRET signal at 665 nm with the tracer.
  • the signal strengths can be assigned to the corresponding cAMP concentrations using a standard curve.
  • HEFP TM High-Efficiency Fluorescence Polarization
  • fluorescence-labeled substrates can also be used instead of radioactive.
  • the HEFP-PDE assay uses fluorescein-labeled cAMP (FI-cAMP), which the PDE converts to fluorescein-labeled 5'AMP (FI-AMP).
  • FI-cAMP fluorescein-labeled cAMP
  • the FI-AMP binds selectively to special beads and the fluorescence is strongly polarized.
  • FI-cAMP does not bind to the beads, so an increase in polarization is proportional to the amount of FI-AMP produced.
  • fluorescence-labeled ATP can be used instead of FI-cAMP and beads which bind selectively to FI-cAMP instead of FI-cAMP (e.g. beads which are loaded with cAMP antibodies).
  • a counter screen is additionally carried out in order to differentiate whether the changed% basal value is caused by a GAF-modulatory effect of the substance or by the direct modulation of the AC catalytic center.
  • the invention therefore further relates to a preferred method according to the invention in which, to exclude direct modulators of the catalytic domain of adenylate cyclase, a method according to the invention is carried out using a polypeptide which has the catalytic domain of an adenylate cyclase and does not have a functional GAF domain of a human phosphodiesterase 5 (PDE5) having.
  • PDE5 human phosphodiesterase 5
  • the% basal value is preferably determined analogously to the method described above, preferably instead of using the PDE5 / CayB1 chimera with a protein which preferably only contains a) the AC catalytic center or b) mutations in amino acids essential for the GAF function contains, or c) N-terminal is shortened by the GAF domains.
  • An example of a) is a polypeptide with the amino acid sequence SEQ. ID. NO. 1, with the proviso that N-terminal E2 to L720 are missing.
  • An example of b) is a polypeptide with the amino acid sequence SEQ. ID. NO. 1, provided that it contains the D299A mutation.
  • An example of c) is a polypeptide with the amino acid sequence SEQ. ID. NO. 1, with the proviso that the partial sequence from D164 to E513 is missing.
  • the method is carried out as a cellular assay in the presence of a host cell according to the invention described above.
  • the resulting cAMP as a measure of the adenylate cyclase activity, can also be determined in cellular assays, such as, for example, in Johnston, P. Cellular assays in HTS, M ⁇ thods Mol Biol. 190, 107-16. (2002) and Johnston, P.A. and Johnston, P.A. Cellular platforms for HTS: three case studies.D ⁇ / g Discov Today. 7, 353-63. (2002).
  • cDNA of the polypeptides according to the invention, the PDE5 / CyaB1 chimera is preferably inserted into a transfection vector via suitable interfaces and suitable cells, such as CHO or HEK293 cells, are transfected with the resulting vector construct.
  • suitable cells such as CHO or HEK293 cells
  • the cell clones are selected which stably express the polypeptides according to the invention.
  • the intracellular cAMP level of the transfected cell clones is significantly influenced by the adenylate cyclase activity of the polypeptides according to the invention. Inhibition of adenylate cyclase activity causes GAF antagonists to decrease and GAF agonists to increase intracellular cAMP.
  • the amount of cAMP can be measured either after lysis of the cells with the methods described above (BioTrak ®, Alpha Screen ® or HEFP ®), or directly into the cell.
  • a reporter gene is preferably coupled to a CRE (cAMP response element) in the cell line (Johnston, P. Cellular assays in HTS, Mthods Mol Biol. 190, 107-16. (2002).
  • An increased cAMP level leads to increased binding from CREB (cAMP response element binding protein) to the CRE regulator and thus to increased transcription of the reporter gene.
  • the reporter gene used can be, for example, large fluor ⁇ scent prot ⁇ in, ⁇ -galactosidase or luciferase, the expression level of which can be determined flourometrically, photometrically or luminometrically, as in Greer, LF and Szalay, AA Imaging of light emission from the expression of luciferase in living cells and organisms: a review.Lumin ⁇ sc ⁇ nce 17, 43-72 (2002) or Hill, S. et al. Reporter-gene Systems for the study of G-protein coupled receptors. Curr. Opin. Pharmacol. 1, 526-532 (2001).
  • the method according to the invention described above is used, in particular as a cellular assay on a high-throughput scale
  • the present invention further relates to the following embodiments, which are described in the following 15 paragraphs:
  • the object on which the invention is based is to provide a method for identifying PDE5 antagonists.
  • a chimeric protein from N-terminal human PDE5-GAF domains and preferably C-terminal catalytic center of the adenylate cyanase (AC) CyaBI from Anabaena or Nostoc sp. PCC 7120 is suitable as an effector molecule.
  • the chimeric protein preferably contains N-terminal to E513 the N-terminus of human PDE5A1 (Accession: NP_001074). This is preferably followed by the C-terminal of V386, which was mutated from L386 when the cloning interface was inserted, to K859, the C-terminus of CyaBI (Accession: NP_486306).
  • the GAF domains are preferably the activation domains, which change their conformation upon ligand binding and thereby increase the catalytic activity of the AC domain, which serves as a read-out.
  • the present method makes it possible to identify antagonists which do not act via the binding and blocking of the catalytic center of the PDE5, but by allostene regulation at the N-terminus of the PDE5, i.e. on the GAF domains.
  • the possible PDE5 antagonist is preferably incubated in vitro with the purified polypeptide according to the invention and preferably with cGMP, and the reduction in the adenylate cyclase activity of the polypeptide according to the invention is preferably measured compared to a test batch without a PDE5 antagonist.
  • the reduction in adenylate cyclase activity can be measured after adding the possible PDE5 antagonist to a test batch which contains the polypeptide according to the invention and cGMP.
  • the adenylate cyanase activity of the PDE5 / CyaB1 chimera is preferably determined by converting a defined amount of ATP into cAMP.
  • a PDE5 antagonist (antagonist against PDE5) preferably binds to the GAF domains in the PDE5 / CyaB1 chimer and preferably either delivers directly a reduction in the adenylate cyanase activity of the PDE5 / CyaB1 chimeric or a reduction in the adenylate cyanase activity of the PDE5 / CyaB1 chimeric by displacing cGMP from the PDE5 / CyaB1 chimeric.
  • the dose-response curve according to FIG. 5 results.
  • the PDE5 / CyaB1 chimera is activated approximately 7.8 times by 100 ⁇ M cGMP. This corresponds to a% basal value of 7800 and shows that cGMP is a PDE5-GAF agonist.
  • cAMP has no activating effect and has a% basal value of approximately 100, i.e. it is neither a GAF agonist nor an antagonist.
  • the inhibition of adenylate cyanase by the PDE5 antagonist in a test batch without cGMP is calculated as a% basal value according to the following formula:
  • the% basal value when using 100 ⁇ M of the possible PDE5 antagonist is less than 50, this indicates a PDE5 antagonist that binds to the GAF domains in the PDE5 / CyaB1 chimera, while a% basal value greater than 200 indicates PDE5 agonists suggest.
  • the PDE5 / CyaB1 chimera was inserted into the PQE30 expression vector of Quiagen via the BamHI and Sall restriction enzyme interface of the MCS. Expression can take place in prokaryotic and eukaryotic cells.
  • the protein is purified using standard methods, see above. eg according to The QiaExpressionist ® ", Fifth Edition, June 2003.
  • the adenylate cyclase activity of the PDE5 / CyaB1 chimer can be detected by measuring the conversion of radioactive [ ⁇ - 32 P] -ATP into t ⁇ - 32 P] -cAMP.
  • the adenylate cyanase activity is easily possible by measuring the resulting cAMP via antibody binding.
  • assay kits such as the cAMP [ 3 H-] or [ 1 5 -l] Biotrak ® cAMP SPA assays from Amersham ® or the AlphaScreen ® cAMP assay from PerkinElmer ® : They are all based on the principle that In the AC reaction, unlabeled cAMP arises from ATP. This competes with exogenously added 3H-, 1251-, or biotin-labeled cAMP for binding to a cAMP-specific antibody. The more unmarked cAMP is bound, the weaker is the signal triggered by the marked cAMP.
  • the signal strengths can be assigned to the corresponding cAMP concentrations using a standard curve.
  • fluorescence-labeled substrates can also be used instead of radioactive.
  • the HEFP-PDE assay uses fluorescein-labeled cAMP (FI-cAMP), which the PDE converts to fluorescein-labeled 5'AMP (FI-AMP).
  • FI-cAMP fluorescein-labeled cAMP
  • the FI-AMP binds selectively to special beads and the fluorescence is strongly polarized.
  • FI-cAMP does not bind to the beads, so an increase in polarization is proportional to the amount of FI-AMP produced.
  • fluorescence-labeled ATP can be used instead of FI-cAMP and beads which bind selectively to FI-cAMP instead of FI-cAMP (e.g. beads which are loaded with cAMP antibodies).
  • the assay is carried out with cGMP or cAMP as the substances to be tested, the dose-response curve according to FIG. 5 results.
  • the PDE5 / CyaB1 chimera is activated approximately 7.8 times by 100 ⁇ M cGMP. This corresponds to a% basal value of 7800 and shows that cGMP is a PDE5-GAF agonist.
  • cAMP has no activating effect and has a% basal value of approximately 100, i.e. it is neither a GAF agonist nor an antagonist.
  • the present invention further relates to:
  • a polypeptide comprising (a) the GAF A and GAF B domains from human PDE5 and (b) the catalytic domain of CyaBI.
  • polypeptide according to A characterized in that it (a) the N-terminus of human PDE5A1 up to the amino acid E513 and (b) the C-terminus of CyaBI from the amino acid L386 to K859, L386 of CyaBI being replaced by V386 , includes.
  • polypeptide according to A comprising the polypeptide sequence as shown in FIG. 1.
  • I An isolated DNA molecule comprising the nucleotide sequence as shown in Figure 2.
  • J A recombinant DNA molecule comprising a cDNA sequence encoding a polypeptide according to A, B, C or D.
  • a recombinant DNA molecule comprising a cDNA sequence which codes for a polypeptide with at least 90% sequence identity with a polypeptide according to A, B, C or D.
  • a recombinant plasmid vector comprising a polynucleotide according to E, F, G or H.
  • a recombinant host cell comprising a plasmid vector according to L.
  • a method of identifying an antagonist against PDE5 comprises the steps of (a) contacting a possible antagonist against PDE5 with a polypeptide according to A, B, C or D and (b) determining whether the possible antagonist inhibits the activity of PDE5.
  • step (a) in addition to the antagonist against PDE5 cGMP is contacted with a polypeptide according to A, B, C or D.
  • step (a) The method according to N and O, comprising a further step in which the adenylate cyclase activity of the polypeptide used in step (a) is measured after step (a) and before step (b).
  • the cloning was carried out according to standard methods.
  • the original clone with the gene for human PDE5A1 (Genbank Accession No. AF043731) was provided by Prof. A. Friebe in pcDNA-Zeocin-Vector.
  • PCR was carried out analogously to the cloning described in Kanadier et al., EMBO J. 2002 the PDE2-GAF chimera.
  • hPDE ⁇ i- M ⁇ a gene fragment hPDE ⁇ i- M ⁇ was amplified, which codes for the PDE5-N terminus with the GAF-A domain and contains a BglII N-terminal and a Xbal C-terminal interface Fragment hPDE5 349J ) 5 o, which codes for the GAF-B domain and contains an X-terminal interface at the N-terminal and a Sall interface at the C-terminal.
  • the two fragments were subcloned in the cloning vector pBluescriptil SK (-) via the XbaI interface to hPDE5 1- 50 together.
  • a gene fragment CyaBI 386 59 generated by PCR with the catalytic domain of the adenylate cyclase CyaBI was attached to the gene fragment hPDE5 1-45 o via the Sall interface C-terminal.
  • the N-terminal Sall interface of hPDE5 ⁇ -45o was cloned onto the C-terminal Xhol interface of CyaBI 386 * 59 and L386 was mutated to V by CyaBI. All cloning steps were done in E. coliXUblueMRF.
  • the gene for the PDE5-GAF chimera was cloned into the expression vector pQE30 (from Quiagen).
  • the DNA construct obtained from Example 1, coding a PDE5 / CyaB1 chimera was inserted into the PQE30 expression vector from Quiagen via the BamHI and Sall restriction enzyme interface of the MCS.
  • the pQE30 vector with the gene for the PDE5-GAF chimera was retransformed in E.coli BL21 cells.
  • the expression and purification of the protein was analogous to The QIAexpressionist ® ", Fifth Edition, June 2003. In this case, the optimal protein yield in the expression conditions of induction with 25 uM IPTG, 16h incubation at 16 ° C and subsequent French Press Treatment of E. coli , achieved
  • the adenylate cyclase activity of the PDE5 / CyaB1 chimera is measured with and without the substance to be investigated.
  • the adenylate cyclase activity is converted by converting a defined amount of ATP into cAMP and separating it over 2 column steps according to Salomon et al. (Salomon Y., Londos C, and Rondbell M .: A highly sensitive adenylate cyclase assay. 1974, Anal. Biochem., 58, 541-548).
  • [ ⁇ - 32 P] -ATP is used as the radioactive tracer and the resulting amount of [ ⁇ - 32 P] -AMP is measured.
  • 3 H-cAMP serves as an internal standard for the recovery rate.
  • the incubation time should be between 1 and 120 min, the incubation temperature between 20 and 45 ° C, the Mg ⁇ cofactor concentration between 1 and 20 mM (corresponding amounts of Mn 2+ can also be used as a cofactor) and the ATP concentration between 0 , 5 ⁇ M and 5 mM.
  • An increase in sales with substance compared to that without substance indicates a GAF agonistic effect. If the turnover is inhibited by the addition of substance, this indicates a GAF-antagonistic effect of the substance.
  • GAF antagonism can also be measured by blocking the activation of the PDE5 / CyaB1 chimera by the native GAF ligand cGMP.
  • reaction batch contains: • 50 ⁇ l AC test cocktail (glycerol 43.5% (V / V), 0.1 M Tris / HCl pH 7.5, 20 mM MgCl 2 ) • 40-xy ⁇ l enzyme dilution ( Depending on the activity, contains 0.1-0.3 ⁇ g PDE5 / CyaB1 chimera in 0.1% (W / V) aqueous BSA solution) • x ⁇ l substance • y ⁇ l cGMP • 10 ⁇ l 750 ⁇ M ATP start solution 16-30 kBq [ ⁇ - 32 P] -ATP included. •
  • the protein samples and the cocktail are mixed in 1.5 ml reaction vessels on ice, the reaction started with ATP and incubated for 10 min at 37 ° C. With 150 ul AC stop buffer is completed the reaction, the reaction vessels are placed on ice and 10 ul 20 mM cAMP incl. 100 Bq [2,8- 3 H] -cAMP and 750 ul of water was added.
  • test approach is carried out twice.
  • a test batch with water instead of enzyme was used as blank.
  • the enzyme basal activity is determined with a test mixture without substance and cGMP.
  • each sample is placed on glass columns with 1.2 g of Dowex-50WX4-400 and, after infiltration, washed with 3-4 ml of water.
  • the mixture was then eluted with 5 ml of water on aluminum oxide columns (9 ⁇ 1 cm glass columns with 1.0 g of AL 2 0 3 90 active, neutral) and these with 4 ml of 0.1 M TRIS / HCl, pH 7.5 in distillation vessels eluted with 4 ml of Ultima XR Gold scintillator.
  • the conversion is calculated as enzyme activity using the following formula:
  • the inhibition or activation of the enzyme by the substance is calculated as a% basal value according to the following formula:
  • the% basal value for 100 ⁇ M substance is less than 50, this indicates a PDE5-GAF antagonist, while the% basal value greater than 200 indicates GAF agonists.
  • a PDE5-GAF antagonist is present if the% basal value is less than 90 when 100 ⁇ M of the possible PDE5-GAF antagonist is used.
  • Example 3 Analogously to Example 3, the adenylate cyanase activity of the PDE5 / CyaB1 chimera was measured in the presence of cGMP and the known PDE5 inhibitors Sildenafii, Tadalafil and Vardenafil. The results are shown graphically in FIG. 6. None of the measured PDE5 inhibitors showed a PDE5-anatgonistic effect which works via binding to the GAF domain of PDE5.
  • the adenylate cyclase activity of the PDE5 / CyaB1 chimera is measured with and without the substance to be investigated.
  • the adenylate cyclase activity is determined by converting a defined amount of ATP into cAMP.
  • To detect the cAMP formed by the PDE5 / CyaB1 chimera the actual enzymatic reaction in the reaction mixture is followed by an antibody-based homogeneous assay (eg Lance cAMP, Perkin Elmer; HitHunter cAMP assay, DisvoverX; cAMP AlphaScreen, Perkin Elmer).
  • the incubation time of the enzymatic Assays should be between 1 and 120 min, the incubation temperature between 20 and 45 ° C, the Mg 2+ cofactor concentration between 1 and 20 mM (appropriate amounts of Mn 2+ can also be used as cofactor) and the ATP concentration between 0 , 5 ⁇ M and 5 mM.
  • An increase in sales with substance compared to that without substance indicates a GAF agonistic effect. If the turnover is inhibited by the addition of substance, this indicates a GAF-antagonistic effect of the substance.
  • GAF antagonism can also be measured by blocking the activation of the PDE5 / CyaB1 chimera by the native GAF ligand cGMP (as shown below using a reaction approach). For this purpose, the turnover is measured with increasing or fixed cGMP concentrations with and without substance. If the sales with substance are below those without substance, this indicates a GAF antagonism of the substance.
  • test approach is carried out twice.
  • a test batch without adding ATP as a substrate was used as blank.
  • the enzyme basal activity is determined using a test mixture without substance and cGMP.
  • FIG. 7 An exemplary measurement using different amounts of enzyme is shown in FIG. 7.
  • Figure 1 Amino acid sequence of the PDE5 / CyaB1 chimeric
  • Fig. 4 Schematic representation of the chimeric PDE5 / CYAB1 polypeptide
  • FIG. 5 Activation of the PDE5 / CyaB1 chimera by cydic nucleotides. If the assay is carried out with cGMP or cAMP as the substances to be tested, the dose-response curve according to FIG. 5 results.
  • the PDE5 / CyaB1 chimera is approximately 7.8-fold by 100 ⁇ M cGMP activated. This corresponds to a% basal value of 780 and shows that cGMP is a PDE5-GAF agonist.
  • cAMP has no activating effect and has a% basal value of approximately 100, i.e. it is neither a GAF agonist nor an antagonist.
  • Fig. 7 is an exemplary measurement with the Lance® assay as a read out when using different amounts of enzyme.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein neues Polypeptid, enthaltend die GAFA-Domäne und GAFB­-Domäne einer humanen Phosphodiesterase 5 (PDE5) und die katalytische Domäne einer Adenylatcyclase sowie die Verwendung dieses Polypeptids in einer Methode zur Identifizierung von PDE5-Modulatoren.

Description

Methode zur Identifizierung von PDE5- odulatoren
Technisches Gebiet
Die vorliegende Erfindung betrifft ein neues Polypeptid, enthaltend die GAFA-Domäne und GAFB- Domäne einer humanen Phosphodiesterase 5 (PDE5) und die katalytische Domäne einer Adenylatcyclase sowie die Verwendung dieses Polypeptids in einer Methode zur Identifizierung von PDE5-Modulatoren.
Stand der Technik
Phosphodiesterasen (=PDEs) sind eukaryontische Proteine und als Modulatoren von den cydischen Nukleotiden cAMP und cGMP bekannt. PDEs werden in 3 Klassen (I, II und III) eingeteilt von denen nur die Klasse I mit ihren 11 PDE-Familien (PDE1 bis-11 genannt) bei Säugetieren vorkommt. PDE5 spielt eine Rolle in der Entspannung und Kontraktion von glatter Muskulatur und beim Überleben von Neuronen. Eine ganze Reihe PDE5-lnhibitoren ist bekannt und drei (Sildenafii, Tadalafil und Vardenafil) werden zur Behandlung von erektiler Dysfunktion oder pulmonalem Hochdruck eingesetzt.
GAF-Domänen sind ubiquitär in allen Reichen des Lebens und wurden von Aravind und Ponting (Aravind L. and Ponting C.P: The GAF domain: an evolutionary link between diverse phototransducing proteins. 1997, TIBS, 22, 458-459) aufgrund von Proteinstruktur und - sequenzvergleichen definiert. PDE2, PDE5 und PDE6 enthalten so genannte cGMP-bindende GAF-Domänen, die eine Rolle in der allosterischen Aktivierung der PDEs spielen.
Für die GAFA-Domäne der PDE5 ist hochaffine cGMP-Bindung nachgewiesen, während die GAFB- Domäne eher der Dimerisierung dient (Mc-Allister Lucas L.M., Haik T.L., Colbran J.L., Sonnenburg W.K., Seger D., Turko I.V., Beavo JA, Francis S.H. and Corbin J.D.: An essential aspartic acid at each of the allosteric cGMP-binding sites of a cGMP-specific phosphodiesterase. 1995, JBC, 270, 30671-30679; Turko I.V., Haik T.L., McAllister-Lucas L.M., Bums F., Francis S.H. and Corbin J.D.: Identification of key amino acids in a conserved cGMP-binding site of cGMP-binding. 1996, JBC, 271, 22240-22244). Gemäß Rybalkin et al. (Rybalkin S.D., Rybalkina I.G.. Shimizu-Albergine M., Tang X.B. and Beavo J.A.: PDE5 is converted to an activated state upon cGMP binding to the GAF A domain, 2003, EMBO J. 22, 469-78) kann das GAF-Tandem durch cGMP-Bindung die Aktivität der PDE5 um das Zehnfache erhöhen.
Adenylatcyclasen (=ACs) katalysieren in allen Bereichen des Lebens die Umwandlung von ATP in cAMP (Cooper D.M.: Regulation and organizaüon of adenylyl cyclases and cAMP. 2003, Biochem J., 375(Pt 3),517-29; Tang W.J. and Gilman A.G.: Construction of a soluble adenylyl cyclase activated by Gsα and forskolin. 1995, Sdence, 268, 1769-1772). Aufgrund von Sequenzvergleichen und strukturellen Überlegungen werden sie in 5 Klassen (I bis V) unterteilt. Von molekularbiologischem Interesse sind die bakteriellen Klasse III ACs aus Cyanobakterien insbesondere aus Nostoc sp. PCC 7120 zu denen auch CyaB1 gehört. Die cyanobakteriellen ACs CyaB1 und CyaB2 enthalten ebenfalls N-terminale GAF-Domänen, die strukturell ähnlich zu denen der PDEs sind, aber cAMP als aktivierenden Liganden haben. Die 9 bekannten Familien der Klasse III ACs des Menschen sind alle Membrangebunden und werden über G-Proteine reguliert (Tang W.J. and Gilman A.G.: Construction of a soluble adenylyl cyclase activated by Gsα and forskolin. 1995, Science, 268, 1769-1772). Eine Kombination mit GAF-Domänen ist nicht bekannt.
Die Konstruktion einer Chimäre aus den GAF-Domänen der Ratten-PDE2 und dem katalytischen Zentrum der Adenylatcyclase CyaB1 ist bereits beschrieben (Kanadier T., Schultz A., Linder J. U. and Schultz J.E.: A GAF-domain-regulated adenylyl cyclase from Anabaena is a seif activated cAMP switch. 2002, EMBO J., 21, 3672-3680).
Ein Chimer aus humaner PDE5 und bakterieller Adenylatcydase ist nicht bekannt. Ebenso ist die Verwendung eines solchen Chimers in einer Methode zur Identifizierung von PDE5-Modulatoren aus dem Stand der Technik nicht bekannt.
Beschreibung der Erfindung
Die der Erfindung zugrundeliegende Aufgabe besteht darin, ein Verfahren zur Identifizierung von PDE5-Modulatoren bereitzustellen.
Die Aufgabe wird durch Bereitstellung des erfindungsgemäßen Polypeptids, umfassend funktioneil verknüpft (a) die GAFA-Domäne und GAFB-Domäne einer humanen Phosphodiesterase 5 (PDE5) oder deren funktioneil äquivalenten Varianten und (b) die katalytische Domäne einer Adenylatcydase oder deren funktionell äquivalenten Varianten und dessen Verwendung in einem Verfahren zur Identifizierung von PDE5-Modulatoren gelöst.
Es wurde überraschenderweise festgestellt, dass sich ein chimäres Protein aus N-termiπaleπ humanen PDE5-GAF-Domänen und C-terminalen katalytischem Zentrum einer Adenylatcyclase als Effektormolekül eignet. Im Chimären Protein sind die GAF-Domänen die Aktivierungsdomänen, die bei Liganden-Bindung ihre Konformation ändern und dadurch die katalytische Aktivität der Adenylatcyclase-Domäne, die als read-out dient, modulieren.
Die vorliegende Erfindung ermöglicht, PDE5-Modulatoren, d.h. PDE5-Antagonisten oder PDE5- Agonisten zu identifizieren, die nicht über die Bindung und Blockierung des katalytischen Zentrums der PDE5 wirken, sondern durch allosterische Regulation am N-Terminus der PDE5, d.h. an den GAF-Domänen, wirken.
Wie vorstehend erwähnt, betrifft die Erfindung ein Polypeptid umfassend funktioneil verknüpft
(a) die GAFA-Domäne und GAFB-Domäne einer humanen Phosphodiesterase 5 (PDE5) oder deren funktioneil äquivalenten Varianten und
(b) die katalytische Domäne einer Adenylatcydase oder deren funktioneil äquivalenten Varianten.
Unter einer humanen Phosphodiesterase oder auch PDE wird ein Enzym humanen Ursprungs verstanden, dass in der Lage ist cAMP oder cGMP in die entsprechenden inaktiven 5'- Monophosphate zu überführen. Augrund ihrer Struktur und Eigenschaften werden die PDEs in verschiedene Familien klassifiziert. Unter einer humanen Phosphodiesterase 5 oder auch PDE5 wird insbesondere eine Enzymfamilie humanen Ursprungs verstanden, die in der Lage ist cGMP in das inaktive 5'-Monophosphate zu überführen.
Erfindungsgemäß als PDE5 kommen sämtliche PDE5 in Frage, die eine GAFA-Domäne und GAFß- Domäne aufweisen. Die GAF-Domänen von PDE5 sind als Tandem N-terminal im Protein lokalisiert. Die GAF-Domäne, die dem N-Terminus am nächsten ist, wird als GAFA bezeichnet und die unmittelbar folgende als GAFB. Anfang und Ende der GAF-Domänen können anhand von Proteinsequenzvergleichen bestimmt werden. Ein SMART-Sequenzvergleich (Schultz J., Milpetz F., Bork P. and Pointing C.P.: SMART a simple modular architecture research tool: identification of signaling domains. 1998, PNAS, 95, 5857-5864) ergibt beispielsweise für GAFA der Isoform PDE5A1: D164 bis L324 und für GAFB: S346 bis E513. '!
Unter einer Adenylatcyclase wird ein Enzym verstanden, dass in der Lage ist ATP in cAMP zu überführen. Dementsprechend wird unter Adenylatcyclase-Aktivität die in einer bestimmten Zeit durch das erfindungsgemäße Polypeptid umgesetzte Menge ATP bzw. gebildete Menge cAMP verstanden.
Unter einer katalytischen Domäne einer Adenylatcyclase wird der Teil der Aminosäuresequenz einer Adenylatcyclase verstanden, der nötig ist damit die Adenylatcyclase noch ihre Eigenschaft aufweist, ATP in cAMP zu überführen, also noch im wesentlichen funktioneil ist und somit eine Adenylatcyclase-Aktivität aufweist.
Durch iteratives Verkürzen der Aminosäuresequenz und anschließendem Messen der Adenylatcyclase-Aktivität lässt sich die katalytische Domäne einer Adenylatcydase einfach bestimmen. Die Bestimmung der Adenylatcydase-Aktivität kann beispielsweise durch die Messung des Umsatzes von radioaktivem [α-32P]-ATP in [α-32P]-cAMP erfolgen.
Generell ist die Adenylatcydase-Aktivität leicht über die Messung des entstandenen cAMP über Antikörperbindung möglich. Dafür gibt es verschiedene käufliche Assay-Kits wie die cAMP [3H-] oder [125-l] Biotrak® cAMP SPA-Assays von Amersham® oder den AlphaScreen® bzw. den Lance® cAMP Assay von PerkinElmer®: Sie alle basieren auf dem Prinzip, das bei der AC-Reaktion aus ATP unmarkiertes cAMP entsteht. Dieses konkurriert mit exogen zugesetzten 3H-, 1251-, oder Biotin-markiertem cAMP um die Bindung an einem cAMP-spezifischen Antikö er. Beim nicht radioaktiven Lance®-Assay ist Alexa®-Flour an den Antiköφer gebunden, das mit dem Tracer ein TR-FRET-Signal bei 665 nm erzeugt. Je mehr unmarkiertes cAMP gebunden ist, desto schwächer ist das durch markiertes cAMP ausgelöste Signal. Mit einer Standardkurve können die Signalstärken den entsprechenden cAMP- Konzentrationen zugeordnet werden.
Analog zu dem High-Efficiency Fluorescence Polarization (HEFP™)-PDE-Assay von Molecular Devices, der auf der IMAP-Technologie basiert, kann statt radioaktiv auch fluoreszenz-markiertes Substrat verwendet werden. Beim HEFP-PDE-Assay wird Fluorescein- markiertes cAMP (FI-cAMP) eingesetzt, das von der PDE zu Fluorescein-markierten 5'AMP (Fl- AMP) umgesetzt wird. Das FI-AMP bindet selektiv an spezielle Beads und dadurch wird die Fluoreszenz stark polarisiert. FI-cAMP bindet nicht an die Beads, so das eine Zunahme der Polarisation der Menge an entstandenem FI-AMP proportional ist. Für einen entsprechenden AC- Test kann fluoreszenz-markiertes ATP statt FI-cAMP und Beads, die selektiv an FI-cAMP statt an FI-cAMP binden (z. B. Beads die mit cAMP Antiköφer beladen sind), verwendet werden.
Unter „funktioneil äquivalenten Varianten" von Polypeptiden bzw. Domänen, d.h. Sequenzabschnitten der Polypeptide, mit bestimmter Funktion werden Polypeptide bzw. Domänen verstanden, die sich strukturell unterscheiden, wie nachstehend beschrieben, aber noch die gleiche Funktion erfüllen. Funktionen äquivalente Varianten von Domänen, kann der Fachmann leicht, wie nachstehend näher beschrieben, durch Variation und Funktionstestung der entsprechenden Domänen, durch Sequenzvergleiche mit entsprechenden Domänen anderer bekannter Proteine oder durch Hybridisierung der entsprechenden Nukleinsauresequenzen kodierend diese Domänen mit geeigneten Sequenzen aus anderen Organismen auffinden.
Unter einer „funktioneilen Verknüpfung" werden Verknüpfungen, vorzugsweise kovalente Verbindungen von Domänen verstanden die zu einer Anordnung der Domänen führt, dass sie ihre Funktion erfüllen können. Beispielsweise wird unter einer funktionellen Verknüpfung der GAFA- Domäne, GAFß-Domäne und der katalytischen Domäne der Adenylatcydase eine Verbindung dieser Domänen verstanden, die zu einer Anordnung der Domänen führt, so dass die GAF- Domänen bei Liganden-Bindung, beispielsweise von cGMP oder PDE5-Modulatoren ihre Konformation ändern und dadurch die katalytische Aktivität der Adenylatcyclase-Domäne modulieren. Weiterhin wird beispielsweise unter einer funktionellen Verknüpfung der GAFA- Domäne und der GAFa-Domäne eine Verbindung dieser Domänen verstanden, die zu einer Anordnung der Domänen führt, dass die GAFA-Domäne und die GAFß-Domäne gemeinsam als GAF-Domäne bei Ligaπden-Bindung, beispielsweise von cGMP oder PDE5-Modulatoren ihre Konformation ändern.
Vorzugsweise sind die für die GAF Domänen, GAFA und GAFB, in Frage kommenden humanen Phosphodiesterasen 5 (PDE5) ausgewählt aus der Gruppe der Isoformen PDE5A1 (Accession: NP_001074), PDE5A2 (Accession: NP_236914), PDE5A3 (Accession: NP_246273) und PDE5A4 (Accession: NP_237223) oder deren jeweiligen funktioneil äquivalenten Varianten, besonders bevorzugt ist die erfindungsgemäße Verwendung der GAF-Domänen der Isoform PDE5A1 oder deren funktioneil äquivalenten Varianten.
In einer bevorzugten Ausführungsform weist die GAFA-Domäne des erfindungsgemäßen Polypeptids eine Aminosäuresequenz auf, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 %, bevorzugt mindestens 91%, bevorzugter mindestens 92%, bevorzugter mindestens 93%, bevorzugter mindestens 94%, bevorzugter mindestens 95%, bevorzugter mindestens 96%, bevorzugter mindestens 97%, bevorzugter mindestens 98%, bevorzugter mindestens 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 6 und die Eigenschaft einer GAFA-Domäne aufweist.
Dabei kann es sich um eine natüriiche funktionell äquivalente Variante der GAFA-Domäne handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen mit anderen Proteinen gefunden werden kann oder um eine künstliche GAFA-Domäne, die ausgehend von der Sequenz SEQ ID NO: 6 durch künstiiche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.
Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gin durch Asn, Val durch He, Leu durch He, Ser durch Thr.
Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen. Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch eine oder mehrere Aminosäuren ersetzt wird.
Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, ine. Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Shaφ PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosd. 1989 Apr;5(2): 151-1) unter Einstellung folgender Parameter berechnet wird:
Multiple alignment parameter:
Gap penalty 10
Gap length penalty 10
Pairwise alignment parameter.
K-tuple 1
Gap penalty 3
Diagonals saved 5
Unter einem Protein oder einer Domäne, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 6 aufweist, wird dementsprechend ein Protein bzw. eine Domäne verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 6, insbesondere nach obigem Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 90 % aufweist.
Unter der Eigenschaft einer GAFA-Domäne wird insbesondere dessen Funktion verstanden cGMP zu binden.
In einer weiter bevorzugten Ausführungsform weist die GAFA-Domäne des erfindungsgemäßen Polypeptids die Aminosäuresequenz SEQ. ID. NO. 6 auf.
In einer bevorzugten Ausführungsform weist die GAFB-Domäne des erfindungsgemäßen Polypeptids eine Aminosauresequenz auf, enthaltend die Aminosauresequenz SEQ. ID. NO. 8 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 %, bevorzugt mindestens 91%, bevorzugter mindestens 92%, bevorzugter mindestens 93%, bevorzugter mindestens 94%, bevorzugter mindestens 95%, bevorzugter mindestens 96%, bevorzugter mindestens 97%, bevorzugter mindestens 98%, bevorzugter mindestens 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 8 und die Eigenschaft einer GAFB-Domäne aufweist.
Dabei kann es sich um eine natürliche funktionell äquivalente Variante der GAFB-Domäne handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen mit anderen Proteinen gefunden werden kann oder um eine künstliche GAFß-Domäne, die ausgehend von der Sequenz SEQ ID NO: 6 durch künstiiche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren, wie vorstehend beschrieben, abgewandelt wurde.
Unter der Eigenschaft einer GAFB-Domäne wird insbesondere dessen Funktion verstanden für die Dimer-Bildung verantwortlich zu sein und insbesondere dessen Eigenschaft, zusammen mit der GAFA-Domäne durch Bindung von cGMP die PDE5 zu aktivieren oder durch Bindung von PDE5- Modulatoren die PDE5-Aktivität zu modulieren, d.h. zu erhöhen oder zu erniedrigen.
In einer weiter bevorzugten Ausführungsform weist die GAFB-Domäne des erfindungsgemäßen Polypeptids die Aminosäuresequenz SEQ. ID. NO. 8 auf.
In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Polypeptids weisen die funktionell verknüpfte GAFA-Domäne und GAFB-Domäne, d.h. die komplette GAF-Domäne, einer humanen Phosphodiesterase 5 (PDE5) oder deren funktionell äquivalenten Varianten eine Aminosäuresequenz auf, enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, bevorzugt mindestens 75%, bevorzugter mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 93%, bevorzugter mindestens 95%, bevorzugter mindestens 97%, bevorzugter mindestens 98%, bevorzugter mindestens 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 10 und die regulatorischen Eigenschaft der GAF-Domäne einer humanen Phosphodiesterase 5 (PDE5) auf, wobei die enthaltenen Aminosäuresequenzen der GAFA-Domäne, SEQ. ID. NO. 6 und der GAFß- Domäne, SEQ. ID. NO. 8 durch Substitution, Insertion oder Deletion von Aminosäuren um maximal 10%, bevorzugter maximal 9%, bevorzugter maximal 8%, bevorzugter maximal 7%, bevorzugter maximal 6%, bevorzugter maximal 5%, bevorzugter maximal 4%, bevorzugter maximal 3%, bevorzugter maximal 2%, bevorzugter maximal 1 , bevorzugter maximal 0,5% variieren.
Insbesondere der N-terminale Rest der besonders bevorzugten GAF-Domäne SEQ. ID. NO. 10 ist vom N-Terminus bis zur GAFA-Domäne SEQ. ID. NO. 6 frei variierbar und insbesondere verkürzbar. Vorzugsweise ist der N-terminale Rest der besonders bevorzugten GAF-Domäne SEQ. ID. NO. 10 um 100 Aminosäuren, bevorzugter um 90 Aminosäuren, bevorzugter um 80 Aminosäuren, bevorzugter um 70 Aminosäuren, bevorzugter um 60 Aminosäuren, bevorzugter um 50 Aminosäuren, bevorzugter um 40 Aminosäuren, bevorzugter um 30 Aminosäuren, bevorzugter um 20 Aminosäuren, bevorzugter um 10 Aminosäuren, bevorzugter um 5 Aminosäuren N-terminal verkürzbar.
Die Aminosäureteilsequenzen der GAFA-Domäne SEQ. ID. NO. 6 und der GAFB-Domäne, SEQ. ID. NO. 8 lassen sich durch Substitution, Insertion oder Deletion von Aminosäuren um maximal 10%, bevorzugter maximal 9%, bevorzugter maximal 8%, bevorzugter maximal 7%, bevorzugter maximal 6%, bevorzugter maximal 5%, bevorzugter maximal 4%, bevorzugter maximal 3%, bevorzugter maximal 2%, bevorzugter maximal 1 , bevorzugter maximal 0,5% variieren ohne dass es zu einem Verlust der jeweiligen, vorstehend beschriebenen Funktionen kommt.
Vorzugsweise weist die funktionell verknüpfte GAFA-Domäne und GAFß-Domäne, d.h. die komplette GAF-Domäne, einer humanen Phosphodiesterase 5 (PDE5) oder deren funktionell äquivalenten Varianten eine Aminosäuresequenz auf, ausgewählt aus der Gruppe
(a) N-Terminus von humaner PDE5A1 bis zur Aminosäure E513 oder (b) SEQ. ID. NO. 10
Für den Teil der katalytischen Domäne einer Adenylatcyclase des erfindungsgemäßen Polypeptides werden bevorzugt Adenylatcyclasen verwendet, die in natürlicher Form eine GAF- Domäne aufweisen. Besonders bevorzugte Adenylatcyclasen sind Adenylatcydasen bakteriellen Ursprungs, insbesondere aus Cyanobakterien, die in natürlicher Form eine GAF-Domäne aufweisen oder deren jeweiligen funktionell äquivalenten Varianten.
Besonders bevorzugte Adenylatcyclasen sind ausgewählt aus der Gruppe
(a) Adenylatcydase aus Anabaena sp. PCC 7120 oder deren funktionell äquivalenten Variante,
(b) Adenylatcydase aus Anabaena variabili ATTC 29413 oder deren funktionell äquivalenten Variante,
(c) Adenylatcydase aus Nostoc punctiforme PCC 73102 oder deren funktionell äquivalenten Variante,
(d) Adenylatcyclase aus Trichodesmium erythraeum IMS101 oder deren funktionell äquivalenten Variante,
(e) Adenylatcydase aus Bdellovibrio bacteriovorus HD100 oder deren funktionell äquivalenten Variante,
(f) Adenylatcydase aus Magnetococcus sp. MC-1 oder deren funktionell äquivalenten Variante,
Ganz besonders bevorzugte Adenylatcyclasen sind Adenylatcydasen aus Anabaena sp. PCC 7120 der Isoform CyaB1 oder CyaB2, insbesondere CyaB1 (Accession: NP_486306, D89623) oder deren funktionell äquivalente Variante. In einer bevorzugten Ausführungsform weist die katalytische Domäne einer Adenylatcyclase oder deren funktionell äquivalenten Varianten eine Aminosäuresequenz auf, enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 %, bevorzugt mindestens 91%, bevorzugter mindestens 92%, bevorzugter mindestens 93%, bevorzugter mindestens 94%, bevorzugter mindestens 95%, bevorzugter mindestens 96%, bevorzugter mindestens 97%, bevorzugter mindestens 98%, bevorzugter mindestens 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 und die katalytische Eigenschaft einer Adenylatcyclase aufweist.
Dabei kann es sich um eine natürliche funktionell äquivalente Variante der katalytische Domäne einer Adenylatcydase handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen mit anderen Adenylatcydasen gefunden werden kann oder um eine künstliche katalytische Domäne einer Adenylatcyclase, die ausgehend von der Sequenz SEQ ID NO: 12 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren, wie vorstehend beschrieben, abgewandelt wurde.
Unter der Eigenschaft einer katalytische Domäne einer Adenylatcyclase wird die vorstehend beschriebene katalytische Eigenschaft einer Adenylatcyclase, insbesondere die Fähigkeit, ATP in cAMP zu überführen verstanden.
Vorzugsweise weist die katalytische Domäne einer Adenylatcydase oder deren funktionell äquivalenten Varianten eine Aminosäuresequenz auf, ausgewählt aus der Gruppe
(a) C-Terminus von CyaBI von der Aminosäure L386 bis K859, wobei L386 von CyaBI durch V386 ersetzt ist oder
(b) SEQ. ID. NO. 12
In einer besonders bevorzugten Ausführungsform umfasst das erfindungsgemäße Polypeptid die Aminosäuresequenz SEQ. ID. NO. 1 oder SEQ. ID. NO.4 oder eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, bevorzugt mindestens 75%, bevorzugter mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 93%, bevorzugter mindestens 95%, bevorzugter mindestens 97%, bevorzugter mindestens 98%, bevorzugter mindestens 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 1 oder 4 und die regulatorischen Eigenschaften der GAF-Domäne einer humanen Phosphodiesterase 5 (PDE5) und die katalytischen Eigenschaften einer Adenylatcyclase aufweist, wobei die enthaltenen Aminosäuresequenzen der GAFA-Domäne, SEQ. ID. NO. 6, der GAFB-Domäne, SEQ. ID. NO. 8 und der katalytischen Domäne der Adenylatcyclase, SEQ. ID. NO. 12 durch Substitution, Insertion oder Deletion von Aminosäuren um maximal 10% variieren.
Insbesondere der N-terminale Rest der besonders bevorzugten erfindungsgemäßen Polypeptide SEQ. ID. NO. 1 und SEQ. ID. NO.4 ist vom N-Terminus bis zur GAFA-Domäne SEQ. ID. NO. 6 frei variierbar und insbesondere verkürzbar. Vorzugsweise ist der N-terminale Rest der besonders bevorzugten erfindungsgemäßen Polypeptide SEQ. ID. NO. 1 oder SEQ. ID. NO. 4 um 100 Aminosäuren, bevorzugter um 90 Aminosäuren, bevorzugter um 80 Aminosäuren, bevorzugter um 70 Aminosäuren, bevorzugter um 60 Aminosäuren, bevorzugter um 50 Aminosäuren, bevorzugter um 40 Aminosäuren, bevorzugter um 30 Aminosäuren, bevorzugter um 20 Aminosäuren, bevorzugter um 10 Aminosäuren, bevorzugter um 5 Aminosäuren N-terminal verkürzbar.
Die Aminosäureteilsequenzen der GAFA-Domäne SEQ. ID. NO. 6, der GAFB-Domäne, SEQ. ID. NO. 8 und der katalytischen Domäne der Adenylatcydase, SEQ. ID. NO. 12 lassen sich durch Substitution, Insertion oder Deletion von Aminosäuren um maximal 10%, bevorzugter maximal 9%, bevorzugter maximal 8%, bevorzugter maximal 7%, bevorzugter maximal 6%, bevorzugter maximal 5%, bevorzugter maximal 4%, bevorzugter maximal 3%, bevorzugter maximal 2%, bevorzugter maximal 1, bevorzugter maximal 0,5% variieren ohne dass es zu einem Verlust der jeweiligen vorstehend beschriebenen Funktion kommt.
Besonders bevorzugt enthält das erfindungsgemäße Chimäre Polypeptid N-terminal bis E513 den N-Terminus der humanen PDE5A1 (Accession: NP_001074). Daran schließt C-terminal von V386, dass aus L386 beim Einfügen der Klonierungsschnittstelle mutiert wurde, bis K859 der C-Terminus von CyaBI (Accession: NP_486306) an.
Besonders bevorzugt ist ein erfindungsgemäßes Polypeptid umfassend die Aminosauresequenz SEQ. ID. NO. 1 oder SEQ. ID. NO.4.
Ganz besonders bevorzugte erfindungsgemäße Polypeptide sind Polypeptide mit der Aminosauresequenz SEQ. ID. NO. 1 oder SEQ. ID. NO.4.
In einer weiteren Ausführungsform betrifft die Erfindung ferner Polynukleotide, im folgenden auch Nukleinsäuren genannt, kodierend eines der vorstehend beschriebenen, erfindungsgemäßen Polypeptide.
Alle in der Beschreibung erwähnten Polynukleotide oder Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.
Besonders bevorzugte erfindungsgemäße Polynukleotide enthalten als Teilsequenzen (a) SEQ. ID. NO. 5 oder eine Nukleinsäuresequenz die mit der Nukleinsäuresequenz SEQ. ID. NO. 5 unter stnngenten Bedingungen hybridisiert und
(b) SEQ. ID. NO. 7 oder eine Nukleinsäuresequenz die mit der Nukleinsäuresequenz SEQ. ID. NO. 7 unter stnngenten Bedingungen hybridisiert und
(c) SEQ. ID. NO. 11 oder eine Nukleinsäuresequenz die mit der Nukleinsäuresequenz SEQ. ID. NO. 11 unter stnngenten Bedingungen hybridisiert.
SEQ. ID. NO. 5 stellt eine besonders bevorzugte Teilnukleinsäuresequenz dar, kodierend die besonders bevorzugte GAFA-Domäne SEQ. ID. NO. 6.
SEQ. ID. NO. 7 stellt eine besonders bevorzugte Teilnukleinsäuresequenz dar, kodierend die besonders bevorzugte GAFB-Domäne SEQ. ID. NO. 8.
SEQ. ID. NO. 11 stellt eine besonders bevorzugte Teilnukleinsäuresequenz dar, kodierend die besonders bevorzugte katalytische Domäne einer Adenylatcydase SEQ. ID. NO. 12.
Weitere natürliche Beispiele für Nukleinsäuren bzw. Teilnukleinsäuren kodierend die vorstehend beschriebenen Domänen lassen sich weiterhin ausgehend von den vorstehend beschriebenen Teilnukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 5, 7 oder 11 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.
Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stnngenten (hohe Stringenz) Bedingungen erfolgen.
Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.
Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50_C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50_C, bevorzugt bei 65_C) (20X SSC: 0,3 M Natriumdtrat, 3 M Natriumchlorid, pH 7.0).
Darüber hinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22_C, bis zu stringenten Bedingungen bei 65_C angehoben werden.
Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42_C ausgeführt.
Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:
(1 ) Hybridisierungsbedingungen mit zum Beispiel
(i) 4X SSC bei 65_C, oder
(ii) 6X SSC bei 45_C, oder
(iii) 6X SSC bei 68_C, 100 mg/ml denaturierter Fischsperma-DNA, oder
(iv) 6X SSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68_C, oder
(v) 6XSSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42 C, oder (vi) 50 % Formamid, 4X SSC bei 42_C, oder (vii) 50 % (vol/vol) Formamid, 0.1 % Rinderserumalbumin, 0.1 % Ficoll, 0.1 % Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6.5, 750 mM NaCI, 75 mM Natriumeitrat bei 42_C, oder (viii) 2X oder 4X SSC bei 50_C (moderate Bedingungen), oder (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42_ (moderate Bedingungen).
(2) Waschschritte für jeweils 10 Minuten mit zum Beispiel (i) 0.015 M NaCI/0.0015 M Natriumcitrat/0.1 % SDS bei 50_C, oder (ii) 0.1X SSC bei 65_C, oder (iii) 0.1X SSC, 0.5 % SDS bei 68_C, oder (iv) 0.1X SSC, 0.5 % SDS, 50 % Formamid bei 42_C, oder (v) 0.2X SSC, 0.1 % SDS bei 42_C, oder 2X SSC bei 65_C (moderate Bedingungen).
Ein besonders bevorzugtes erfindungsgemäßes Polynukleotid kodierend ein erfindungsgemäßes Polypeptid enthält die Nukleinsäuresequenz SEQ. ID. NO. 2.
Ein ganz besonders bevorzugtes, erfindungsgemäßes Polynukleotid kodierend ein erfindungsgemäßes Polypeptid weist die Nukleinsäuresequenz SEQ. ID. NO. 2 auf.
Die erfindungsgemäßen Polypeptide lassen sich bevorzugt herstellen, in dem ein vorstehend beschriebenes Polynukleotid, kodierend ein erfindungsgemäßes Polypeptid, in einen geeigneten Expressionsvektor kloniert wird, eine Wirtszelle mit diesem Expressionsvektor transformiert wird, diese Wirtszelle unter Expression des erfindungsgemäßen Polypeptids exprimiert wird und anschließend das erfindungsgemäße Protein isoliert wird.
Die Erfindung betrifft daher ein Verfahren zur Herstellung eines erfindungsgemäßen Polypeptids durch Kultivierung einer rekombinanten Wirtszelle, Expression und Isolierung des erfindungsgemäßen Polypeptides.
Die Transformationsmethoden sind dem Fachmann bekannt und beispielsweise in bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 beschrieben.
Die Erfindung betrifft femer einen rekombinanten Plasmidvektor, insbesondere einen Expressionsvektor, umfassend ein erfindungsgemäßes Polynukleotid kodierend eine erfindungsgemäßes Polypeptid.
Die Art des Expressionsvektors ist nicht kritisch. Es kann jeder Expressionsvektor verwendet werden, der in der Lage ist in einer entsprechenden Wirtszelle das gewünschte Polypeptid zu exprimieren. Geeignete Expressionssysteme sind dem Fachmann bekannt.
Bevorzugte Expressionsvektoren sind PQE30 (Quiagen), pQE60 (Quiagen) pMAL (NEB) pIRES. PIVEX2.4a (RÖCHE), PIVEX2.4b (RÖCHE), PIVEX2.4c (RÖCHE), pUMVCI (Aldevron), pUMVC2 (Aldevron),. PUMVC3 (Aldevron),. PUMVC4a (Aldevron),. PUMVC4b (Aldevron), pUMVC7 (Aldevron),. PUMVCβa (Aldevron), .pSP64T, pSP64TS, pT7TS, pCro7 (Takara), pKJE7 (Takara), pKM260, pYes260, pGEMTeasy.
Die Erfindung betrifft femer eine rekombinante Wirtszelle umfassend einen erfindungsgemäßen Plasmidvektor. Diese transformierte Wirtszelle ist vorzugsweise in der Lage das erfindungsgemäße Polypeptid zu exprimieren.
Die Art der Wirtszelle ist nicht kritisch. Es eigenen sich sowohl prokaryontische Wirtszellen als auch eukaryontische Wirtszellen. Es kann jede Wirtszelle verwendet werden, die in der Lage ist mit einem entsprechenden Expressionsvektor das gewünschte Polypeptid zu exprimieren. Geeignete Expressionssysteme aus Expressionsvektoren und Wirtszellen sind dem Fachmann bekannt.
Bevorzugte Wirtszellen sind beispielsweise prokaryontische Zellen, wie E.coli, Corynebacterien, Hefen, Streptomyceten oder eukariotische Zellen wie beispielsweise CHO, HEK293 oder Insektenzelllinien, wie beispielsweise SF9, SF21 , Xenopus Oozyten. Die Kultivierungsbedingungen der transformierten Wirtszellen, wie beispielsweise Kulturmedium- Zusammensetzung und Fermentationsbedingungen sind dem Fachmann bekannt und richten sich nach der Art der gewählten Wirtszelle.
Die Isolierung und Reinigung des Polypeptids kann nach Standardmethoden erfolgen, beispielsweise wie in „The QuiaExpressionist®, Fifth Edition, June2003, beschrieben.
Vorstehend beschriebene, transformierte Wirtszellen, die das erfindungsgemäße Polypeptid exprimieren eignen sich auch insbesondere zur Durchführung von nachstehend beschriebenen Verfahren zur Identifizierung von PDE5-Modulatoren in einem zellulären Assay. Dazu kann es weiterhin vorteilhaft sein, die entsprechenden Wirtszellen auf festen Trägem zu immobilisieren und/oder ein entsprechendes Screening-Verfahren im Hochdurchsatz Maßstab durchzuführen (High-Through-Put-Screening).
Alle vorstehend erwähnten Nukleinsauresequenzen lassen sich, durch den Fachmann bekannte, beispielsweise enzymatische, Methoden aus bekannten Nukleinsauresequenzen herausschneiden und mit bekannten Nukleinsauresequenzen neu zusammensetzen und somit herstellen. Weiterhin sind alle vorstehend erwähnten Nukleinsäuren in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überiappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow- Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
Die Erfindung betrifft femer ein Verfahren zur Identifizierung eines Modulators einer humanen Phosphodiesterase 5 (PDE5) umfassend die Schritte
(a) Kontaktierung eines möglichen Modulators einer humanen Phosphodiesterase 5 (PDE5) mit einem erfindungsgemäßen Polypeptid und
(b) Bestimmung, ob der mögliche Modulator die Adenylatcyclase-Aktivität des erfindungsgemäßen Polypeptids im Vergleich zur Abwesenheit des möglichen Modulators verändert.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird in Schritt (a) zusätzlich zum möglichen Modulator einer humanen Phosphodiesterase 5 (PDE5) cGMP mit einem erfindungsgemäßen Polypeptid kontaktiert.
Im erfindungsgemäßen Verfahren wird der mögliche PDE5-Modulator, vorzugsweise in vitro mit dem vorzugsweise, aufgereinigten erfindungsgemäßen Polypeptid und besonders bevorzugt mit cGMP inkubiert und die Veränderung der Adenylatcydase-Aktivität des erfindungsgemäßen Polypeptids gegenüber einem Versuchansatz ohne PDE5-Modulator gemessen.
Alternativ dazu kann die Veränderung der Adenylatcyclase-Aktivität nach Zugabe des möglichen PDE5-Modulators zu einem Versuchsansatz, der das erfindungsgemäße Polypeptid und gegebenenfalls cGMP enthält, gemessen werden. Die Adenylatcydase-Aktivität der PDE5/CyaB1- Chimäre wird, wie nachstehend ausführlicher beschrieben, über Umsetzung einer definierten Menge ATP in cAMP bestimmt.
Unter einem Modulator einer humanen Phosphodiesterase 5 (PDE5), im folgenden auch PDE5- Modulator wird eine Substanz verstanden, die in der Lage ist, über Bindung an die GAF-Domänen der PDE5 die PDE5-Aktivität zu modulieren, d.h. zu verändern, hier gemessen über die Veränderung der Adenylatcyclase-Aktivität. Ein PDE5-Modulator wirkt somit über das allostensche Zentrum der PDE5 und nicht oder nicht alleine über das katalytische Zentrum der PDE5. Der Modulator kann ein Agonist sein, indem er die enzymatische Aktivität der PDE5 erhöht (PDE5- Agonist) oder ein Antagonist sein, in dem er die enzymatische Aktivität der PDE5 (PDE5- Antagonist) erniedrigt.
Beispielsweise konnte mit dem erfindungsgemäßen Verfahren, wie nachstehend erläutert, gezeigt werden, dass cGMP einen PDE5-Agonisten darstellt.
Bevorzugte PDE5-Modulatoren sind weiterhin beispielsweise Peptide, Peptidomimetica, Proteine, insbesondere Antiköφer, insbesondere gegen GAF-Domänen gerichtete monoklonale Antiköφer, Aminosäuren, Aminosäuren Analoga, Nukleotide, Nukleotid-Analoga, Polynukleotide, insbesondere Oligonucleotide und besonders bevorzugt sogenannte „small molecules" oder SMOLs. Bevorzugte SMOLs sind organische oder anorganische Verbindungen, einschließlich heteroorganische Verbindungen oder organometallische Verbindungen mit einem Molekulargewicht kleiner 1000 g/mol, insbesondere mit einem Molekulargewicht von 200 bis 800 g/mol, besonders bevorzugt mit einem Molekulargewicht von 300 bis 600 g/mol.
Gemäß voriiegender Erfindung bindet ein PDE5-Modulator vorzugsweise an die GAF-Domänen im erfindungsgemäßen Polypeptid (PDE5/CyaB1-Chimär) und führt entweder direkt zu einer Veränderung der Adenylatcyclase-Aktivität des erfindungsgemäßen Polypeptids (PDE5/CyaB1- Chimär) oder zu einer Veränderung der Adenylatcyclase-Aktivität des PDE5/CyaB1-Chimär durch die Verdrängung von cGMP vom PDE5/CyaB1-Chimär.
Wird die erfindungsgemäße Methode nur mit cGMP oder cAMP und ohne PDE5-Modulator als zu testende Substanzen durchgeführt, so ergibt sich die Dosiswirkungskurve nach Fig. 5. Die PDE5/CyaB1 -Chimäre wird durch 100 μM cGMP etwa 7,8 fach aktiviert. Das entspricht einem %- Basalwert von 780 und zeigt das cGMP ein PDE5-GAF-Agonist ist. cAMP wirkt nicht aktivierend und hat einen %-Basalwert von etwa 100, d.h. es ist weder ein PDE5-Agonist noch ein PDE5- Antagonist.
Die Modulation, also die Veränderung, also die Erhöhung oder Erniedrigung der Adenylatcyclase- Aktivität durch den PDE5-Modulator in einem Versuchsansatz ohne cGMP wird als %-Basalwert nach folgender Formel berechnet:
Umsatz mit Substanz %-Basalwert = 100 x Umsatz ohne Substanz
Ist der %-Basalwert bei Verwendung von 100 μM des möglichen PDE5-Modulators kleiner 50, so deutet das auf einen PDE5-Antagonisten hin, der an die GAF-Domänen im PDE5/CyaB1 -Chimäre bindet, während ein %-Basalwert größer 200 auf PDE5-Agonisten hindeutet.
Die Erfindung betrifft daher ein besonders bevorzugtes, erfindungsgemäßes Verfahren nachdem in Anwesenheit des Modulators eine Erniedrigung der Adenylatcydase-Aktivität im Vergleich zur Abwesenheit des Modulators gemessen wird und der Modulator einen PDE5-Antagonisten darstellt.
Ferner betrifft die Erfindung ein besonders bevorzugtes erfindungsgemaßes Verfahren nachdem in Anwesenheit des Modulators eine Erhöhung der Adenylatcyclase-Aktivität im Vergleich zur Abwesenheit des Modulators gemessen wird und der Modulator einen PDE5-Agonisten darstellt
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Bestimmung der Adenylatcyclase-Aktivität durch Messung des Umsatzes von radioaktiv- oder fluoreszenz-markiertem ATP.
Die Messung der Adenylatcyclase-Aktivität des erfindungsgemäßen Polypeptids, dem PDE5/CyaB1-Chimär, kann durch die Messung des Umsatzes von radioaktivem [α-32P]-ATP in [α-32P]-cAMP erfolgen.
Generell ist die Adenylatcydase-Aktivität leicht über die Messung des entstandenen cAMP über Antiköφerbindung möglich. Dafür gibt es verschiedene käufliche Assay-Kits wie die cAMP [3H-] oder [125-l] Biotrak® cAMP SPA-Assays von Amersham® oder den AlphaScreen® bzw. den Lance® cAMP Assay von PerkinElmer®: Sie alle basieren auf dem Prinzip, das bei der AC-Reaktion aus ATP unmarkiertes cAMP entsteht. Dieses konkurriert mit exogen zugesetzten 3H-, 1251-, oder Biotin-markierten cAMP um die Bindung an einem cAMP-spezifischen Antiköφer. Beim nicht radioaktiven Lance®-Assay ist Alexa®-Flour and den Antiköφer gebunden, das mit dem Tracer ein TR-FRET-Signal bei 665 nm erzeugt. Je mehr unmarkiertes cAMP gebunden ist, desto schwächer ist das durch markiertes cAMP ausgelöste Signal. Mit einer Standardkurve können die Signalstärken den entsprechenden cAMP-Konzentrationen zugeordnet werden.
Analog zu dem High-Efficiency Fluorescence Polarization (HEFP™)-PDE-Assay von Molecular Devices, der auf der IM AP-Technologie basiert, kann statt radioaktiv auch fluoreszenz-markiertes Substrat verwendet werden. Beim HEFP-PDE-Assay wird Fluorescein- markiertes cAMP (FI-cAMP) eingesetzt, das von der PDE zu Fluorescein-markierten 5'AMP (FI- AMP) umgesetzt wird. Das FI-AMP bindet selektiv an spezielle Beads und dadurch wird die Fluoreszenz stark polarisiert. FI-cAMP bindet nicht an die Beads, so das eine Zunahme der Polarisation der Menge an entstandenem FI-AMP proportional ist. Für einen entsprechenden AC- Test kann fluoreszenz-markiertes ATP statt FI-cAMP und Beads, die selektiv an FI-cAMP statt an FI-cAMP binden (z. B. Beads die mit cAMP Antiköφer beladen sind), verwendet werden.
In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird, um zu differenzieren, ob der veränderte %-Basalwert durch einen GAF-modulatorischen Effekt der Substanz oder durch die direkte Modulation des AC-katalytischen Zentrums bedingt ist, zusätzlich ein Counterscreen durchgeführt.
Die Erfindung betrifft daher weiter ein bevorzugtes erfindungsgemäßes Verfahren bei dem man zum Ausschluss von direkten Modulatoren der katalytischen Domäne der Adenylatcyclase ein erfindungsgemäßes Verfahren durchführt unter Verwendung eines Polypeptids das die katalytische Domäne einer Adenylatcyclase aufweist und keine funktioneile GAF-Domäne einer humanen Phosphodiesterase 5 (PDE5) aufweist.
Vorzugsweise wird dazu der %-Basalwert analog dem vorstehend beschriebenen Verfahren, vorzugsweise statt mit der PDE5/CayB1 -Chimäre mit einem Protein ermittelt, das vorzugsweise nur a) das AC-katalytische Zentrum enthält oder b) Mutationen an für die GAF-Funktion essentiellen Aminosäuren enthält, oder c) N-terminal um die GAF-Domänen verkürzt ist.
Ein Beispiel für a) ist ein Polypeptid mit der Aminosäuresequenz SEQ. ID. NO. 1, mit der Maßgabe, dass N-terminal E2 bis L720 fehlen.
Ein Beispiel für b) ist ein Polypeptid mit der Aminosäuresequenz SEQ. ID. NO. 1, mit der Maßgabe, dass es die Mutation D299A enthält. Ein Beispiel für c) ist ein Polypeptid mit der Aminosäuresequenz SEQ. ID. NO. 1 , mit der Maßgabe, dass die Teilsequenz von D164 bis E513 fehlt.
Ergeben 100 μM einer Substanz mit dem nach a, b oder c modifizierten Protein einen %-Basalwert kleiner 50 liegt eine Hemmung des AC-katalytischen Zentrums vor und ein reiner GAF- Antagonismus kann ausgeschlossen werden.
In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Verfahren als zellulärer Assay in Anwesenheit einer vorstehend beschriebenen, erfindungsgemäßen Wirtszelle durchgeführt.
Dazu kann das entstandene cAMP, als Maß für die Adenylatcyclase-Aktivität, auch in Zellulären Assays bestimmt werden, wie beispielsweise in Johnston, P. Cellular assays in HTS, Mβthods Mol Biol. 190, 107-16. (2002) und Johnston, P.A. and Johnston, P.A. Cellular platforms for HTS: three case studies.Dπ/g Discov Today. 7, 353-63. (2002) beschrieben.
Dazu wird vorzugsweise cDNA der erfindungsgemäßen Polypeptide, der PDE5/CyaB1 -Chimäre, über geeignete Schnittstellen in einen Transfektionsvektor eingefügt und mit dem entstandenen Vektorkonstrukt geeignete Zellen, wie beispielsweise CHO oder HEK293-Zellen transfiziert. Es werden die Zellklone selektiert, die die erfindungsgemäßen Polypeptide stabil exprimieren.
Der intrazelluläre cAMP-Spiegel der transfizierten Zellklone wird durch die Adenylatcyclase-Aktivität der erfindungsgemäßen Polypeptide maßgeblich beeinfiusst. GAF-Antagonisten verursachen durch eine Hemmung der Adenylatcyclase-Aktivität ein Absinken und GAF-Agonisten einen Anstieg des intrazellulären cAMP.
Die cAMP-Menge kann entweder nach Lyse der Zellen mit den oben beschriebenen Methoden (BioTrak®, Alphascreen® oder HEFP®) gemessen werden, oder direkt in der Zelle. Dazu wird in der Zellline vorzugsweise ein Reportergen an ein CRE (cAMP response element) gekoppelt (Johnston, P. Cellular assays in HTS, Mθthods Mol Biol. 190, 107-16. (2002). Ein erhöhter cAMP-Spiegel führt zu erhöhter Bindung von CREB (cAMP response element binding Protein) an den CRE-Regulator und so zu erhöhter Transkription des Reportergens. Als Reportergen kann z.B. grββn fluorβscent protθin, ß-Galactosidase oder Luziferase dienen, deren Expressionslevel flourometrisch, photometrisch oder luminometrisch bestimmt werden kann, wie in Greer, L.F. and Szalay, A.A. Imaging of light emission from the expression of luciferase in living cells and organisms: a review. Luminβscβnce 17, 43-72 (2002) oder Hill, S. et al. Reporter-gene Systems for the study of G-protein coupled receptors. Curr. Opin. Pharmacol. 1, 526-532 (2001) beschrieben. In einer besonders bevorzugten Ausführungsform wird das vorstehend beschriebene, erfindungsgemäße Verfahren, insbesondere als zellulärer Assay im Hoch-Durchsatz Maßstab angewendet
Die vorliegende Erfindung betrifft ferner folgende Ausführungsformen, die in den nachstehenden 15 Absätzen beschrieben sind:
Die der Erfindung zugrundeliegende Aufgabe besteht darin, ein Verfahren zur Identifizierung von PDE5-Antagonisten bereitzustellen.
Die Aufgabe wird durch das Polypeptid gemäß Anspruch A, wie nachstehend beschrieben, und durch das Verfahren nach Anspruch Q, wie nachstehend beschrieben, gelöst. Bevorzugte Ausführungsformen sind in den nachstehenden Unteransprüchen formuliert.
Es wurde überraschenderweise festgestellt, dass sich vorzugsweise ein chimäres Protein aus N- terminalen humanen PDE5-GAF-Domänen und vorzugsweise C-terminalen katalytischen Zentrum der Adenylatcydase (AC) CyaBI aus Anabaena bzw. Nostoc sp. PCC 7120 als Effektormolekül eignet. Das Chimäre Protein enthält vorzugsweise N-terminal bis E513 den N-Terminus der humanen PDE5A1 (Accession: NP_001074). Daran schließt vorzugsweise C-terminal von V386, dass aus L386 beim Einfügen der Klonierungsschnittstelle mutiert wurde, bis K859 der C-Terminus von CyaBI (Accession: NP_486306) an. Im Chimären Protein sind vorzugsweise die GAF- Domänen die Aktivierungsdomänen, die bei Liganden-Bindung ihre Konformation ändern und dadurch die katalytische Aktivität der AC-Domäne, die als read-out dient, erhöhen.
Das vorliegende Verfahren ermöglicht, Antagonisten zu identifizieren, die nicht über die Bindung und Blockierung des katalytischen Zentrums der PDE5 wirken, sondern durch allostensche Regulation am N-Terminus der PDE5, d.h. an den GAF-Domänen, wirken.
Dazu wird der mögliche PDE5-Antagonist vorzugsweise in vitro mit dem aufgereinigten erfindungsgemäßen Polypeptid und vorzugsweise mit cGMP inkubiert und die Reduktion der Adenylatcyclase-Aktivität des erfindungsgemäßen Polypeptids vorzugsweise gegenüber einem Versuchansatz ohne PDE5-Antagonist gemessen. Alternativ dazu kann die Reduktion der Adenylatcyclase-Aktivität nach Zugabe des möglichen PDE5-Antagonisten zu einem Versuchsansatz, der das erfindungsgemäße Polypeptid und cGMP enthält, gemessen werden. Die Adenylatcydase-Aktivität der PDE5/CyaB1 -Chimäre wird vorzugsweise über Umsetzung einer definierten Menge ATP in cAMP bestimmt.
Gemäß vorliegender Erfindung bindet vorzugsweise ein PDE5-Antagonist (-Antagonist gegen PDE5) an die GAF-Domänen im PDE5/CyaB1-Chimär und führt vorzugsweise entweder direkt zu einer Reduktion der Adenylatcydase-Aktivität des PDE5/CyaB1-Chimär oder zu einer Reduktion der Adenylatcydase-Aktivität des PDE5/CyaB1 -Chimär durch die Verdrängung von cGMP vom PDE5/CyaB1-Chimär.
Wird die erfindungsgemäße Methode nur mit cGMP oder cAMP und ohne PDE5-Antagonist als zu testende Substanzen durchgeführt, so ergibt sich die Dosiswirkungskurve nach Fig. 5. Die PDE5/CyaB1 -Chimäre wird durch 100 μM cGMP etwa 7,8 fach aktiviert. Das entspricht einem %- Basalwert von 7800 und zeigt das cGMP ein PDE5-GAF-Agonist ist. cAMP wirkt nicht aktivierend und hat einen %-Basalwert von etwa 100, d.h. es ist weder ein GAF-Agonist noch ein Antagonist.
Die Hemmung der Adenylatcydase durch den PDE5-Antagonisten in einem Versuchsansatz ohne cGMP wird als %-Basalwert nach folgender Formel berechnet:
%-Basalwert =
Ist der %-Basalwert bei Verwendung von 100 μM des möglichen PDE5-Antagonisten kleiner 50, so deutet das auf einen PDE5-Antagonisten hin, der an die GAF-Domänen im PDE5/CyaB1 -Chimäre bindet, während ein %-Basalwert größer 200 auf PDE5-Agonisten hindeutet.
Zur Expression wurde die PDE5/CyaB1 -Chimäre über die BamHI und Sall -Restriktionsenzym- Schnittstelle der MCS in den PQE30 Expressionsvektor von Quiagen eingefügt Die Expression kann in prokaryontischen und eukaryontischen Zellen erfolgen. Die Reinigung des Proteins erfolgt nach Standardmethoden, so. z.B. gemäß The QiaExpressionist®", Fifth Edition, June 2003.
Die Detektion der Adenylatcyclase-Aktivität des PDE5/CyaB1-Chimärs kann durch die Messung des Umsatzes von radioaktivem [α-32P]-ATP in tα-32P]-cAMP erfolgen.
Generell ist die Adenylatcydase-Aktivität leicht über die Messung des entstandenen cAMP über Antiköφerbindung möglich. Dafür gibt es verschiedene käufliche Assay-Kits wie die cAMP [3H-] oder [1 5-l] Biotrak® cAMP SPA-Assays von Amersham® oder den AlphaScreen® cAMP Assay von PerkinElmer®: Sie alle basieren auf dem Prinzip, das bei der AC-Reaktion aus ATP unmarkiertes cAMP entsteht. Dieses konkurriert mit exogen zugesetzten 3H-, 1251-, oder Biotin-markierten cAMP um die Bindung an einem cAMP-spezifischen Antiköφer. Je mehr unmarkiertes cAMP gebunden ist, desto schwächer ist das durch markiertes cAMP ausgelöste Signal. Mit einer Standardkurve können die Signalstärken den entsprechenden cAMP-Konzentrationen zugeordnet werden. Analog zu dem High-Efficiency Fluorescence Polarization (HEFP™)-PDE-Assay von Molecular Devices, der auf der IM AP-Technologie basiert, kann statt radioaktiv auch fluoreszenz-markiertes Substrat verwendet werden. Beim HEFP-PDE-Assay wird Fluorescein- markiertes cAMP (FI-cAMP) eingesetzt, das von der PDE zu Fluorescein-markierten 5'AMP (FI- AMP) umgesetzt wird. Das FI-AMP bindet selektiv an spezielle Beads und dadurch wird die Fluoreszenz stark polarisiert. FI-cAMP bindet nicht an die Beads, so das eine Zunahme der Polarisation der Menge an entstandenem FI-AMP proportional ist. Für einen entsprechenden AC- Test kann fluoreszenz-markiertes ATP statt FI-cAMP und Beads, die selektiv an FI-cAMP statt an FI-cAMP binden (z. B. Beads die mit cAMP Antikörper beladen sind), verwendet werden.
Wird der Assay mit cGMP oder cAMP als zu testende Substanzen durchgeführt ergibt sich die Dosiswirkungskurve nach Fig. 5. Die PDE5/CyaB1-Chimäre wird durch 100 μM cGMP etwa 7,8 fach aktiviert. Das entspricht einem %-Basalwert von 7800 und zeigt das cGMP ein PDE5-GAF- Agonist ist. cAMP wirkt nicht aktivierend und hat einen %-Basalwert von etwa 100, d.h. es ist weder ein GAF-Agonist noch ein Antagonist.
Die vorliegende Erfindung betrifft femer:
A. Ein Polypeptid umfassend (a) die GAFA- und GAFB-Domäne aus humaner PDE5 und (b) die katalytische Domäne von CyaBI.
B. Das Polypeptid gemäß A, dadurch gekennzeichnet, dass es (a) den N-Terminus von humaner PDE5A1 bis zurΑminosäure E513 und (b) den C-Terminus von CyaBI von der Aminosäure L386 bis K859, wobei L386 von CyaBI durch V386 ersetzt ist, umfasst.
C. Das Polypeptid gemäß A, umfassend die Polypeptidesequenz wie in Figur 1 dargestellt.
D. Ein Polypeptid wie in Figur 3 dargestellt.
E. Ein Polynukleotid kodierend für das Polypeptid gemäß A.
F. Ein Polynukleotid kodierend für das Polypeptid gemäß B
G. Ein Polynukleotid kodierend für das Polypeptid gemäß C. H. Ein Polynukleotid kodierend für das Polypeptid gemäß D.
I. Ein isoliertes DNA-Molekül, das die Nukleotidsequenz wie in Figur 2 dargestellt umfasst. J. Ein rekombinantes DNA-Molekül umfassend eine cDNA-Sequenz, die ein Polypeptid gemäß A, B, C oder D kodiert.
K. Ein rekombinantes DNA-Molekül umfassend eine cDNA-Sequenz, die für ein Polypeptid mit mindestens 90% Sequenzidentität mit einem Polypeptid gemäß A, B, C oder D kodiert.
L. Ein rekombinanter Plasmidvektor umfassend ein Polynukleotid gemäß E, F, G oder H.
M. Eine rekombinante Wirtszelle umfassend einen Plasmidvektor gemäß L.
N. Eine Methode zur Identifizierung eines Antagonisten gegen PDE5 umfassend die Schritte (a) Kontaktierung eines möglichen Antagonisten gegen PDE5 mit einem Polypeptid gemäß A, B, C oder D und (b) Bestimmung, ob der mögliche Antagonist die Aktivität von PDE5 hemmt.
O. Die Methode nach N, wobei in Schritt (a) zusätzlich zum Antagonisten gegen PDE5 cGMP mit einem Polypeptid gemäß A, B, C oder D kontaktiert wird.
P. Die Methode nach N und O, umfassend einen weiteren Schritt, bei dem nach Schritt (a) und vor Schritt (b) die Adenylatcyclase-Aktivität des in Schritt (a) verwendeten Polypeptids gemessen wird.
'■"' Q. Die Methode nach P, wobei die Reduktion der Adenylatcyclase-Aktivität gemessen wird.
Die folgenden Beispiele veranschaulichen die vorliegende Erfindung ohne sie auf diese Beispiele zu beschränken:
Beispiel 1
Herstellung der rekombinanten DNA kodierend eine PDE5/CyaB1 -Chimäre
Die Klonierung erfolgte nach Standard-Methoden. Der Originalklon mit dem Gen für humane PDE5A1 (Genbank Accession No. AF043731) wurde von Prof. A. Friebe in pcDNA-Zeocin-Vector zur Verfügung gestellt Per PCR wurde analog zu der bei Kanadier et al., EMBO J. 2002, beschriebenen Klonierungen der PDE2-GAF-Chimäre vorgegangen. Mit spezifischen Primern wurde ein Gen-Fragment hPDEδi-Mβ amplifiziert, das für den der PDE5-N-Terminus mit der GAF-A- Domäne codiert und N-terminal eine Bglll sowie C-terminal eine Xbal-Schnittstelle enthält Analog wurde ein Gen-Fragment hPDE5349J)5o, das für die GAF-B-Domäne codiert und N-terminal eine Xbal-Schnittstelle sowie C-terminal eine Sall-Schnittstelle enthält amplifiziert. Die beiden Fragmente wurden über Subklonierungsschritte im Klonierungs-Vektor pBluescriptil SK(-) über die Xbal-Schnittstelle zu hPDE51- 50 zusammengefügt. An das Gen-Fragment hPDE51-45o wurde über die Sall-Schnittstelle C-terminal ein per PCR generiertes Gen-Fragment CyaBI 386 59 mit der katalytische Domäne der Adenylatcyclase CyaBI (Genbank Accession No. D89623) angehängt. Dabei wurde die N-terminale Sall-Schnittstelle von hPDE5ι-45o auf die C-terminale Xhol-Schnittstelle von CyaBI 386*59 kloniert und L386 von CyaBI zu V mutiert. Alle Klonierungsschritte erfolgten in E. coliXUblueMRF.
Das Gen für die PDE5-GAF-Chimäre wurde in den Expressionsvektor pQE30 (von Quiagen) umkloniert.
Beispiel 2
Expression und Reinigung des Polypeptids
Zur Expression wurde die aus Beispiel 1 erhaltene DNA-Konstrukt, kodierend eine PDE5/CyaB1- Chimäre über die BamHI und Sall-Restriktionsenzym-Schnittstelle der MCS in den PQE30 Expressionsvektor von Quiagen eingefügt. Der pQE30 Vektor mit dem Gen für die PDE5-GAF- Chimäre wurde in E.coli BL21 Zellen retransformiert. Die Expression und Reinigung des Proteins erfolgte analog zu The QiaExpressionist®", Fifth Edition, June 2003. Dabei wurde die optimale Proteinausbeute bei den Expressionsbedingungen: Induktion mit 25 μM IPTG, 16h Inkubation bei 16°C und anschließende French Press Behandlung der E. coli, erzielt
Beispiel 3
Durchführung des Assays
Die Adenylatcyclase-Aktivität der PDE5/CyaB1 -Chimäre wird mit und ohne zu untersuchender Substanz gemessen. Dabei wird die Adenylatcyclase-Aktivität über Umsetzung einer definierten Menge ATP in cAMP und dessen Abtrennung über 2 Säulenschritte nach Salomon et al. (Salomon Y., Londos C, and Rondbell M.: A highly sensitive adenylate cyclase assay. 1974, Anal. Biochem., 58, 541-548) bestimmt. Zur Detektion des Umsatzes wird als radioaktiver Tracer [α-32P]-ATP eingesetzt und die entstandene Menge [α-32P]-cAMP gemessen. 3H-cAMP dient als interner Standard für die Wiederfindungsrate. Die Inkubationszeit sollte zwischen 1 und 120 min liegen, die Inkubationstemperatur zwischen 20 und 45 °C, die Mg^-Cofaktorkonzentration zwischen 1 und 20 mM (es können auch entsprechende Mengen Mn2+ als Cofaktor verwendet werden) und die ATP- Konzentration zwischen 0,5 μM und 5 mM. Eine Erhöhung des Umsatzes mit Substanz gegenüber dem ohne Substanz deutet auf einen GAF-agonistischen Effekt hin. Ist der Umsatz durch Substanzzugabe gehemmt, deutet das auf einen GAF-antagonistischen Effekt der Substanz hin. Ein GAF-Antagonismus kann auch über die Blockierung der Aktivierung der PDE5/CyaB1 -Chimäre durch den nativen GAF-Liganden cGMP gemessen werden. Dazu wird der Umsatz bei steigenden oder fixer cGMP-Konzentrationen mit und ohne Substanz gemessen. Liegen die Umsätze mit Substanz unter denen ohne Substanz, deutet das auf einen GAF-Antagonismus der Substanz hin. Ein Reaktionsansatz enthält: • 50 μl AC-Test-Cocktail (Glycerol 43,5 % (V/V), 0,1 M Tris/HCI pH 7,5, 20 mM MgCI2) • 40-x-y μl Enzym-Verdünnung (enthält je nach Aktivität 0,1-0,3 μg PDE5/CyaB1 -Chimäre in 0,1 % (W/V) wässriger BSA-Lösung) • x μl Substanz • y μl cGMP • 10 μl 750 μM ATP-Start-Lösung inkl. 16-30 kBq [α-32P]-ATP. •
Die Proteinproben und der Cocktail werden in 1,5 ml Reaktionsgefäßen auf Eis gemischt, die Reaktion mit ATP gestartet und 10 min bei 37 °C inkubiert. Mit 150 μl AC-Stopppuffer wird die Reaktion beendet, die Reaktionsgefäße werden auf Eis gestellt und 10 μl 20 mM cAMP inkl. 100 Bq [2,8-3H]-cAMP und 750 μl Wasser zugegeben.
Jeder Testansatz wird doppelt ausgeführt. Als Blank diente ein Testansatz mit Wasser statt Enzym. Mit einem Testansatz ohne Substanz und cGMP wird die Enzym-Basalaktivität bestimmt Zur Trennung von ATP und cAMP wird jede Probe auf Glassäulen mit 1 ,2 g Dowex-50WX4-400 gegeben und nach Einsickern mit 3- 4 ml Wasser gewaschen. Anschließend wurde mit 5 ml Wasser auf Aluminiumoxid-Säulen (9 x 1 cm Glassäulen mit 1 ,0 g AL203 90 aktiv, neutral) eluiert und diese mit 4 ml 0,1 M TRIS/HCI, pH 7,5 in Sdntillationsgefäße mit 4 ml vorgelegten Scintillator Ultima XR Gold eluiert. Nach gründlichem Mischen wurde im Liquid Scintillation Countβr ausgezählt. Die eingesetzten Mengen von radioaktiv markierten cAMP und ATP werden als 3H- und 32P-totals direkt in 5 ml Elutionspuffer und 4 ml Scintillator ausgezählt.
Der Umsatz wird als Enzymaktivität nach folgender Formel berechnet:
pmol[cAMP] Substrat |uM] 105 mg [Protein] x min Zeit [min] Proteinmenge [μg]
Probe
Die Hemmung oder Aktivierung des Enzyms durch die Substanz wird als %-Basalwert nach folgender Formel berechnet:
Ist %-Basalwert bei 100 μM Substanz kleiner 50 deutet das auf einen PDE5-GAF-Antagonisten hin, während %-Basalwert größer 200 auf GAF-Agonisten hindeuten. In einem Versuchsansatz mit cGMP liegt ein PDE5-GAF-Antagonist vor, wenn der %-Basalwert bei Verwendung von 100 μM des möglichen PDE5- GAF-Antagonisten kleiner 90 ist.
Die Säulen wurden nach der Benutzung wie folgt regeneriert: Dowex-Säulen: 5 ml 2N HCI, 2x 5 ml Wasser
Aluminiumoxid-Säulen: 2x 5 ml 0,1 M TRIS/HCI, pH 7,5
Beispiel 4
Durchführung des Assays mit Testsubstanzen
Analog zu Beispiel 3 wurde die Adenylatcydase-Aktivität der PDE5/CyaB1 -Chimäre in Anwesenheit von cGMP und den bekannten PDE5-Hemmern Sildenafii, Tadalafil und Vardenafil gemessen. Die Ergebnisse sind in Figur 6 grafisch dargestellt. Keiner der gemessenen PDE5-Hemmer zeigte eine PDE5-anatgonistische Wirkung die über eine Bindung an die GAF-Domäne von PDE5 wirkt.
Beispiel 5
Durchführung des Assays mit nachgeschaltetem LANCE® cAMP assay
Die Adenylatcyclase-Aktivität der PDE5/CyaB1 -Chimäre wird mit und ohne zu untersuchender Substanz gemessen. Dabei wird die Adenylatcyclase-Aktivität über Umsetzung einer definierten Menge ATP in cAMP bestimmt. Zu Detektion des durch die PDE5/CyaB1 -Chimäre gebildeten cAMP wird der eigentlichen enzymatischen Reaktion im Reaktionsansatz ein Antiköφer- basierender homogener Assay (z.B. Lance cAMP, Perkin Eimer; HitHunter cAMP Assay, DisvoverX; cAMP AlphaScreen, Perkin Eimer) nachgeschaltet Die Inkubationszeit des enzymatischen Assays sollte zwischen 1 und 120 min liegen, die Inkubationstemperatur zwischen 20 und 45 °C, die Mg2+-Cofaktorkonzentration zwischen 1 und 20 mM (es können auch entsprechende Mengen Mn2+ als Cofaktor verwendet werden) und die ATP-Konzentration zwischen 0,5 μM und 5 mM. Eine Erhöhung des Umsatzes mit Substanz gegenüber dem ohne Substanz deutet auf einen GAF-agonistischen Effekt hin. Ist der Umsatz durch Substanzzugabe gehemmt, deutet das auf einen GAF-antagonistischen Effekt der Substanz hin. Ein GAF-Antagonismus kann auch über die Blockierung der Aktivierung der PDE5/CyaB1 -Chimäre durch den nativen GAF- Liganden cGMP gemessen werden (wie im folgenden an einem Reaktionsansatz dargestellt). Dazu wird der Umsatz bei steigenden oder fixer cGMP-Konzentrationen mit und ohne Substanz gemessen. Liegen die Umsätze mit Substanz unter denen ohne Substanz, deutet das auf einen GAF-Antagonismus der Substanz hin.
Für die Assays mit nachgeschaltetem LANCE cAMP assay sind folgende Pipettierschritte und Inkubationen in 384er Well-Platten durchzuführen • 1 μl der zu testenden Verbindung (-3 bis -12 log M in DMSO) • 1 μl cGMP (2 bis 0,2 mM; Aktivator der GAF-Domäne) 3 μl Reaktionspuffer (22% Gylcerin, 50mM Tris-HCI pH 8.5, 10 mM MgCl2,1 mg/ml bovines Serumalbumin) 10 μl PDE5/CyaB1 -Enzym in Reaktionspuffer (enthält zwischen 0,001 und 100 ng Enzym) 5 min. Inkubation bei 37°C 5 μl ATP (300 μM) 15 min Inkubation bei 37°C Zugabe von 10 μl AlexaFluor647-anti-cAMP antibody solution (Perkin Eimer, LANCE cAMP Assay) 30-60 min Inkubation Zugabe von 10 μl LANCE Eu-W8044 labbeled streptavidin solution versetzt mit biotin- cAMP ((Perkin Eimer, LANCE cAMP Assay) 30 min - 24 h Inkubation Messung bei einer Anregungswellenlänge von 340 +/- 10 nm und einer Emissionswellenlänge von 665 +/- 10 nm und 615 +/- 10 nm (im LANCE- bzw. HTRF- Modus)
Jeder Testansatz wird doppelt ausgeführt. Als Blank diente ein Testansatz ohne Zugabe von ATP als Substrat. Mit einem Testansatz ohne Substanz und cGMP wird die Enzym-Basalaktivität bestimmt.
Eine exemplarische Messung bei Verwendung unterschiedlicher Enzymmengen ist in Fig. 7 dargestellt.
Figurenbeschreibung
Fig. 1: Aminosäuresequenz des PDE5/CyaB1-Chimärs
Fig. 2: cDNA-Sequenz des PDE5/CyaB1-Chimärs
Fig.3: Proteinsequenz der PDE5/CYAB1 -Chimäre nach Aufreinigung, kursiv = Reinigungs-tag aus dem Expressionsvektor (PQE30 von Quiagen); fett = N-Terminus mit PDE-5 GAF-Domänen; fett und unterstricheπ= GAFA-Domäne und GAFB-Domäne; V386 wurde zum Einfügen der Klonierungsschnittstelle aus L386 mutiert; unterstrichen = C-terminus von CyaBI mit katalytischer Domäne.
Fig.4: Schematische Darstellung des Chimären PDE5/CYAB1 -Polypeptids
Fig. 5 Aktivierung der PDE5/CyaB1 -Chimäre durch cydische Nukleotide Wird der Assay mit cGMP oder cAMP als zu testende Substanzen durchgeführt ergibt sich die Dosiswirkungskurve nach Fig. 5. Die PDE5/CyaB1 -Chimäre wird durch 100 μM cGMP etwa 7,8 fach aktiviert. Das entspricht einem %-Basalwert von 780 und zeigt das cGMP ein PDE5-GAF- Agonist ist. cAMP wirkt nicht aktivierend und hat einen %-Basalwert von etwa 100, d.h. es ist weder ein GAF-Agonist noch ein Antagonist.
Fig. 6 Durchführung des Assays mit Sildenafii, Tadalafil und Vardenafil
Durchführung des Assays durch Messung der Adenylatcydase-Aktivität der PDE5/CyaB1 -Chimäre in Anwesenheit der bekannten PDE5 Hemmer Sildenafii, Tadalafil und Vardenafil. Die Ergebnisse sind in Figur 6 grafisch dargestellt. Keiner der gemessenen PDE5-Hemmer zeigte eine PDE5- anatgonistische Wirkung die über eine Bindung an die GAF-Domäne von PDE5 wirkt.
Fig. 7 Eine exemplarische Messung mit dem Lance®-Assay als Read out bei Verwendung unterschiedlicher Enzymmengen ist.

Claims

Patentansprüche
1. Polypeptid umfassend funktionell verknüpft (a) die GAFA-Domäne und GAFB-Domäne einer humanen Phosphodiesterase 5 (PDE5) oder deren funktionell äquivalenten Varianten und (b) die katalytische Domäne einer Adenylatcydase oder deren funktionell äquivalenten Varianten.
2. Polypeptid nach Anspruch 1, dadurch gekennzeichnet, dass die Phosphodiesterase 5 (PDE5) ausgewählt ist aus der Gruppe PDE5A1 , PDE5A2, PDE5A3, PDE5A4 oder deren jeweiligen funktionell äquivalenten Varianten.
3. Polypeptid nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Phosphodiesterase 5 (PDE5) die Isoform PDE5A1 aufweist.
4. Polypeptid nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die GAFA- Domäne eine Aminosäuresequenz aufweist, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 6 und die Eigenschaft einer GAFA- Domäne aufweist.
5. Polypeptid nach Anspruch 4, dadurch gekennzeichnet, dass die GAFA-Domäne eine Aminosäuresequenz aufweist, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6.
6. Polypeptid nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die GAFß- Domäne eine Aminosauresequenz aufweist, enthaltend die Aminosauresequenz SEQ. ID. NO. 8 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 8 und die Eigenschaft einer GAFß- Domäne aufweist.
7. Polypeptid nach Anspruch 6, dadurch gekennzeichnet, dass die GAFB-Domäne eine Aminosäuresequenz aufweist, enthaltend die Aminosäuresequenz SEQ. ID. NO. 8.
8. Polypeptid nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die funktionell verknüpfte GAFA-Domäne und GAFB-Domäne einer humanen Phosphodiesterase 5 (PDE5) oder deren funktionell äquivalenten Varianten eine Aminosäuresequenz aufweist, enthaltend die Aminosäuresequenz SEQ. ID. NO. 10 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 10 und die regulatorische Eigenschaft der GAF-Domäne einer humanen Phosphodiesterase 5 (PDE5) aufweist, wobei die enthaltenen Aminosäuresequenzen der GAFA-Domäne, SEQ. ID. NO. 6 und der GAFB-Domäne, SEQ. ID. NO. 8 durch Substitution, Insertion oder Deletion von Aminosäuren um maximal 10% variieren.
9. Polypeptid nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die funktionell verknüpfte GAFA-Domäne und GAFB-Domäne einer humanen Phosphodiesterase 5 (PDE5) oder deren funktionell äquivalenten Varianten eine Aminosäuresequenz aufweist, ausgewählt aus der Gruppe
(a) N-Terminus von humaner PDE5A1 bis zur Aminosäure E513 oder (b) SEQ. ID. NO. 10
10. Polypeptid nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Adenylatcydase eine GAF-Domänen enthaltende Adenylatcyclase bakteriellen Ursprungs oder deren jeweiligen funktionell äquivalenten Varianten darstellt.
11. Polypeptid nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet dass die Adenylatcydase eine Adenylatcyclase darstellt ausgewählt aus der Gruppe (a) Adenylatcyclase aus Anabaena sp. PCC 7120 oder deren funktionell äquivalenten Variante, (b) Adenylatcyclase aus Anabaena variabili ATTC 29413 oder deren funktionell äquivalenten Variante, (c) Adenylatcydase aus Nostoc punctiförme PCC 73102 oder deren funktionell äquivalenten Variante, (d) Adenylatcyclase aus Trichodesmium erythraeum IMS101 oder deren funktionell äquivalenten Variante (e) Adenylatcyclase aus Bdellovibrio bacteriovorus HD100 oder deren funktionell äquivalenten Variante, (f) Adenylatcyclase aus Magnetococcus sp. MC-1 oder deren funktionell äquivalenten Variante
12. Polypeptid nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet dass die Adenylatcydase eine Adenylatcyclase aus Anabaena sp. PCC 7120 der Isoform CyaBI oder CyaB2 oder deren funktionell äquivalente Variante darstellt.
13. Polypeptid nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet dass die katalytische Domäne einer Adenylatcyclase oder deren funktionell äquivalenten Varianten eine Aminosäuresequenz aufweist, enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 und die katalytische Eigenschaft einer Adenylatcydase aufweist
14. Polypeptid nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die katalytische Domäne einer Adenylatcyclase oder deren funktionell äquivalenten Varianten eine Aminosäuresequenz aufweist, ausgewählt aus der Gruppe
(a) C-Terminus von CyaBI von der Aminosäure L386 bis K859, wobei L386 von CyaBI durch V386 ersetzt ist oder (b) SEQ. ID. NO. 12
15. Polypeptid nach einem der Ansprüche 1 bis 14, enthaltend die Aminosäuresequenz SEQ. ID. NO. 1 oder SEQ. ID. NO.4 oder eine von diesen Sequenzen durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 1 oder 4 und die regulatorischen Eigenschaften der GAF-Domäne einer humanen Phosphodiesterase 5 (PDE5) und die katalytischen Eigenschaften einer Adenylatcyclase aufweist, wobei die enthaltenen Aminosäuresequenzen der GAFA-Domäne, SEQ. ID. NO. 6, der GAFß- Domäne, SEQ. ID. NO. 8 und der katalytischen Domäne der Adenylatcydase, SEQ. ID. NO. 12 durch Substitution, Insertion oder Deletion von Aminosäuren um maximal 10% variieren.
16. Polypeptid nach Anspruch 1, umfassend die Aminosauresequenz SEQ. ID. NO. 1 oder SEQ. ID. NO. 4.
17. Polypeptid mit der Aminosäuresequenz SEQ. ID. NO. 1 oder SEQ. ID. NO. 4.
18. Polynukleotid kodierend eines der Polypeptide gemäß einem der Ansprüche 1 bis 17.
19. Polynukleotid nach Anspruch 18, enthaltend als Teilsequenzen (a) SEQ. ID. NO. 5 oder eine Nukleinsäuresequenz die mit der Nukleinsäuresequenz SEQ. ID. NO. 5 unter stnngenten Bedingungen hybridisiert und (b) SEQ. ID. NO. 7 oder eine Nukleinsäuresequenz die mit der Nukleinsäuresequenz SEQ. ID. NO. 7 unter stnngenten Bedingungen hybridisiert und (c) SEQ. ID. NO. 11 oder eine Nukleinsäuresequenz die mit der Nukleinsäuresequenz SEQ. ID. NO. 11 unter stnngenten Bedingungen hybridisiert.
20. Polynukleotid enthaltend die Nukleinsäuresequenz SEQ. ID. NO. 2.
21. Polynukleotid der Nukleinsäuresequenz SEQ. ID. NO. 2.
22. Rekombinanter Plasmidvektor umfassend ein Polynukleotid gemäß einem der Ansprüche 18 bis 22.
23. Rekombinante Wirtszelle umfassend einen Plasmidvektor gemäß Anspruch 22.
24. Verfahren zur Herstellung eines Polypeptides gemäß einem der Ansprüche 1 bis 17 durch Kultivierung einer rekombinanten Wirtszelle gemäß Anspruch 23, Expression und Isolierung des Polypeptides gemäß einem der Ansprüche 1 bis 17.
25. Verfahren zur Identifizierung eines Modulators einer humanen Phosphodiesterase 5 (PDE5) umfassend die Schritte (a) Kontaktierung eines möglichen Modulators einer humanen Phosphodiesterase 5 (PDE5) mit einem Polypeptid gemäß einem der Ansprüche 1 bis 17 und (b) Bestimmung, ob der mögliche Modulator die Adenylatcyclase-Aktivität des Polypeptids gemäß einem der Ansprüche 1 bis 17 im Vergleich zur Abwesenheit des möglichen Modulators verändert.
26. Verfahren nach Anspruch 25, wobei in Schritt (a) zusätzlich zum möglichen Modulator einer humanen Phosphodiesterase 5 (PDE5) cGMP mit einem Polypeptid gemäß einem der Ansprüche 1 bis 17 kontaktiert wird.
27. Verfahren nach Anspruch 25 oder 26, dadurch gekennzeichnet dass die Bestimmung der Adenylatcydase-Aktivität durch Messung des Umsatzes von radioaktiv- oder fluoreszenzmarkiertem ATP erfolgt.
28. Verfahren nach Anspruch 25 bis 27, dadurch gekennzeichnet, dass in Anwesenheit des Modulators eine Erniedrigung der Adenylatcydase-Aktivität im Vergleich zur Abwesenheit des Modulators gemessen wird und der Modulator einen PDE5-Antagonisten darstellt.
29. Verfahren nach Anspruch 25 bis 28, dadurch gekennzeichnet, dass in Anwesenheit des Modulators eine Erhöhung der Adenylatcydase-Aktivität im Vergleich zur Abwesenheit des Modulators gemessen wird und der Modulator einen PDE5-Agonisten darstellt.
30. Verfahren nach einem der Ansprüche 25 bis 29, dadurch gekennzeichnet, dass man zum Ausschluss von direkten Modulatoren der katalytischen Domäne der Adenylatcyclase ein Verfahren gemäß einem der Ansprüche 25 bis 27 durchführt unter Verwendung eines Polypeptids das die katalytische Domäne einer Adenylatcyclase aufweist und keine funktionelle GAF-Domäne einer humanen Phosphodiesterase 5 (PDE5) aufweist.
31. Verfahren nach einem der Ansprüche 25 bis 30, dadurch gekennzeichnet, dass das Verfahren als zellulärer Assay in Anwesenheit einer Wirtszelle gemäß Anspruch 23 durchgeführt wird.
32. Verfahren nach Anspruch 31, dadurch gekennzeichnet dass das Verfahren im Hoch- Durchsatz Maßstab angewendet wird.
EP05743032A 2004-05-28 2005-05-18 Methode zur identifizierung von pde5-modulatoren Withdrawn EP1749093A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004026717 2004-05-28
DE102005009671 2005-02-28
PCT/EP2005/052269 WO2005116195A2 (de) 2004-05-28 2005-05-18 Methode zur identifizierung von pde5-modulatoren

Publications (1)

Publication Number Publication Date
EP1749093A2 true EP1749093A2 (de) 2007-02-07

Family

ID=35276430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05743032A Withdrawn EP1749093A2 (de) 2004-05-28 2005-05-18 Methode zur identifizierung von pde5-modulatoren

Country Status (10)

Country Link
US (1) US20090087871A1 (de)
EP (1) EP1749093A2 (de)
JP (1) JP2008500824A (de)
KR (1) KR20070030221A (de)
AU (1) AU2005248079A1 (de)
CA (1) CA2590553A1 (de)
IL (1) IL179057A0 (de)
NO (1) NO20065850L (de)
NZ (1) NZ551240A (de)
WO (1) WO2005116195A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3067211A1 (en) 2017-06-12 2018-12-20 Obsidian Therapeutics, Inc. Pde5 compositions and methods for immunotherapy
US20220403001A1 (en) 2018-06-12 2022-12-22 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
WO2021050789A1 (en) 2019-09-10 2021-03-18 Obsidian Therapeutics, Inc. Ca2-il15 fusion proteins for tunable regulation
CN117187343A (zh) * 2023-09-06 2023-12-08 青岛大学 一种磷酸二酯酶抑制剂的高通量筛选方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTINEZ ET AL: "The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding", PNAS, vol. 99, no. 20, 1 October 2002 (2002-10-01), pages 13260 - 13265, XP002323965 *
ZORAGHI ET AL: "Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins", MOLECULAR PHARMACOLOGY, vol. 65, no. 2, 2004, pages 267 - 276 *

Also Published As

Publication number Publication date
WO2005116195A2 (de) 2005-12-08
JP2008500824A (ja) 2008-01-17
WO2005116195A3 (de) 2006-02-16
IL179057A0 (en) 2007-03-08
AU2005248079A1 (en) 2005-12-08
NO20065850L (no) 2006-12-18
NZ551240A (en) 2009-08-28
US20090087871A1 (en) 2009-04-02
CA2590553A1 (en) 2005-12-08
KR20070030221A (ko) 2007-03-15

Similar Documents

Publication Publication Date Title
DE69233214T2 (de) Für säugetierphosphodiesterasen kodierende dns
DE60021497T2 (de) Menschliche, für zyklische Nukleotide spezifische Phosphodiesterase
Lowrey et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau
Oda et al. Molecular cloning and functional analysis of a new activin β subunit: A dorsal mesoderm-inducing activity in Xenopus
DE69434166T2 (de) Menschliche metabotropische glutamatrezeptor untertype hmglur7 und verwandte dns-verbindungen
DE69730926T2 (de) Modifizierte thermostabile DNA Polymerase
DE69333969T2 (de) Wechselwirkendes Fallensystem zur Isolierung von Proteinen
DE60020146T2 (de) Two-hybrid-Screeningverfahren unter Verwendung des bakteriellen Transcriptionsaktivators sigma-54
WO2006092175A1 (de) Methode zur identifizierung von pde11-modulatoren
WO2005116195A2 (de) Methode zur identifizierung von pde5-modulatoren
EP0955369B1 (de) Hochaktive alkalische Phosphatase
DE19717656A1 (de) DNA-Sequenzen kodierend für die Untereinheit CHLD pflanzlicher Magnesium-Chelatasen, sowie Verfahren zur Aktivitätsbestimmung pflanzlicher Magnesium-Chelatasen
DE69432699T2 (de) Pilze Widerstandsfähig gegenüber Soraphen A
EP1856253A1 (de) Methode zur identifizierung von pde10-modulatoren
EP1141291B1 (de) Methode zur zellulären high-throughput-detektion von nukleären rezeptor-liganden-interaktionen
DE69731682T2 (de) TAB1 Protein und dafür kodierende DNA
WO2008095623A2 (de) Sekretierte luziferase lu164m3 und deren verwendung
DE69924924T2 (de) Verfahren zum Spalten von DNS
EP1198571A2 (de) Chimäre proteine
WO1997035015A2 (de) Tyrosin-phosphatase-verwandtes protein
WO2004070038A1 (de) Mevalonat kinase als target für fungizide
WO1997015657A1 (en) Dna repair
Freire‐Picos et al. The HIS4 gene from the yeast Kluyveromyces lactis
WO1995014773A1 (de) Neue transkriptionsfaktor-mutanten und ihre verwendung
DE10222714B4 (de) Kofaktoren, die spezifisch mit dem Glukokortikoidrezeptor interagieren sowie Verfahren zu deren Identifizierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061128

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KANACHER, TOBIAS

Inventor name: LINDER, JUERGEN

Inventor name: SCHULTZ, JOACHIM

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KANACHER, TOBIAS

Inventor name: LINDER, JUERGEN

Inventor name: SCHULTZ, JOACHIM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NYCOMED GMBH

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071022

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091007