EP1729603A1 - Tabakrauchfilter - Google Patents

Tabakrauchfilter

Info

Publication number
EP1729603A1
EP1729603A1 EP05716527A EP05716527A EP1729603A1 EP 1729603 A1 EP1729603 A1 EP 1729603A1 EP 05716527 A EP05716527 A EP 05716527A EP 05716527 A EP05716527 A EP 05716527A EP 1729603 A1 EP1729603 A1 EP 1729603A1
Authority
EP
European Patent Office
Prior art keywords
tobacco smoke
smoke filter
filter according
filter
active component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05716527A
Other languages
English (en)
French (fr)
Inventor
Gunther Peters
Inga Gurke
Christian Müller
Ludwig Riepert
Bernhard Lücke
Irene Pitsch
Michael Bartoszek
Hendrik Kosslick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reemtsma Cigarettenfabriken GmbH
HF and PhF Reemtsma GmbH and Co
Original Assignee
Reemtsma Cigarettenfabriken GmbH
HF and PhF Reemtsma GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reemtsma Cigarettenfabriken GmbH, HF and PhF Reemtsma GmbH and Co filed Critical Reemtsma Cigarettenfabriken GmbH
Publication of EP1729603A1 publication Critical patent/EP1729603A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • A24D3/166Silicic acid or silicates

Definitions

  • the catalyst support can be in very different forms, for example as microfine dust with particle sizes in the range from 1 ⁇ m to 15 ⁇ m, as powder or granules with particle sizes in the range from 10 ⁇ m to 2.5 mm or in the form of fibers with diameters in the range from 1 ⁇ m to 100 ⁇ m.
  • a filter body extruded from catalyst carrier material is also conceivable, for example per, which preferably has the dimensions of a conventional tobacco smoke filter and can contain one or more longitudinal channels.
  • Mixed forms are also conceivable for the catalyst support, in particular mixed forms with components which are selected from the aforementioned forms.
  • the catalyst carrier can be sprinkled onto the filter material from a conveyor belt, or the catalyst carrier is mixed with the filter material in a drum.
  • Table 2 shows the carrier effect for each catalyst support in the first column, ie the percentage change in the content of the corresponding gas phase component in relation to the comparison measurement when the reactor is empty.
  • a minus sign means, as in example 1, a decrease.
  • the catalyst effect in the respective second column is the percentage change relative to the respective measurement with a catalyst carrier alone, that is to say without an active component, and accordingly gives Table 2 Percentage change in the content of selected gas phase components in cigarette mainstream smoke (reactor model, with Cambridge Reg filter) for various catalyst support materials; Carrier effect: without active component; Catalyst effect: with gold active component (additional effect)
  • Active components of a catalyst are applied to support materials (catalyst support) by precipitation, as explained in the following example for the preparation of a gold / “Siral 5” supported catalyst.
  • a mixture consisting of 900 mg of tetrachloroauric acid, 450 ml of distilled water and 6 g of urea was added with stirring.
  • the reaction mixture was heated to 70 ° C. and stirred at 70 ° C. for 5 hours.
  • Lyocell fibers with 25% carbon were made by an extrusion process, such as described in DE 100 53 359 AI, the grain size of the activated carbon was less than 12 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

In einem Tabakrauchfilter ist zur Reduzierung von Tabakrauchkom­ponenten ein Katalysatorträger angeordnet, der vorzugsweise als Bestandteil eines vollständigen Katalysators mit einer Aktivkom­ponente versehen ist. Beim Herstellen eines derartigen Tabak­rauchfilters mit Filtermaterial wird ein Katalysatorträger in das Filtermaterial eingebracht.

Description

Tabakrauchfilter
Die Erfindung betrifft einen Tabakrauchfilter sowie ein Verfahren zum Herstellen eines derartigen Tabakrauchfilters.
Tabakrauchfilter werden z.B. in Cigaretten verwendet, um den Gehalt an Kondensat oder auch anderer Inhaltsstoffe von Tabakrauch (z.B. Nikotin) zu reduzieren. Viele, oftmals unerwünschte Substanzen im Tabakrauch können jedoch einen herkömmlichen Tabakrauchfilter ungehindert passieren oder werden darin zumindest nicht in ausreichendem Maße zurückgehalten. Derartige Substanzen sind z.B. Blausäure (HGN) , Carbonyle oder Methanol.
Es ist Aufgabe der Erfindung, einen Tabakrauchfilter zu schaffen, der Inhaltsstoffe im Tabakrauch besser vermindert als ein herkömmlicher Tabakrauchfilter.
Diese Aufgabe wird gelöst durch einen Tabakrauchfilter mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Der Anspruch 31 bezieht sich auf ein Rauchprodukt mit einem derartigen Tabakrauchfilter, die Ansprüche 32 und 33 betreffen Verfahren zum Herstellen eines derartigen Tabakrauchfilters.
In dem erfindungsgemäßen Tabakrauchfilter ist zur Reduzierung von Tabakrauchkomponenten ein Katalysatorträger angeordnet. Vorzugsweise ist der Katalysatorträger mit einer Aktivkomponente versehen. Der Begriff "Reduzierung" ist hier allgemein im Sinne von "Verminderung" zu verstehen und nicht eingeschränkt im Sinne einer chemischen Reduktionsreaktion. Die Terminologie ist so gewählt, dass ein Katalysatorträger zusammen mit einer Aktivkomponente einen vollständigen Katalysator (Trägerkatalysator) ergibt. Der hier benutzte Begriff "Katalysatorträger" ist weit gefasst zu verstehen und soll nicht implizieren, dass die Verwendung einer Aktivkomponente zwingend notwendig ist. Denn wie aus den weiter unten beschriebenen Ausführungsbeispielen hervorgeht, hat sich überraschenderweise gezeigt, dass sich eine erhebliche Reduzierung unerwünschter Inhaltsstoffe von Tabakrauch (z.B. von Blausäure) bereits erreichen lässt, wenn nur die Trägerkomponente (also der "Katalysatorträger") ohne (in der Regel kostspielige) Aktivkomponente zum Einsatz kommt. Auch kann der Katalysatorträger mehrere Substanzen aufweisen, insbesondere ein Gemisch verschiedener Materialien.
Als Katalysatorträger kommen insbesondere Feststoffe mit adsorp- tiven und/oder katalytischen Eigenschaften in Frage, also auch Feststoffe, die ohne zusätzlich aufgebrachte Aktivkomponente selbst katalytisch aktiv sind. Geeignet sind z.B. feste Metalloxide, die über saure oder alkalische Oberflächenzentren verfügen, bzw. saure oder alkalische oxidische Festkörper, insbesondere wenn sie sich als Träger für metallische Aktivkomponenten eignen, bzw. Metalloxide mit katalytisch wirksamen Oberflächenzentren, die als Träger von metallischen Aktivkomponenten geeignet sind, bzw. als Träger von metallischen Aktivkomponenten geeignete Metalloxide. Weiter unten werden eine Reihe von Beispielen für Katalysatorträger erläutert.
Die Aktivkomponente weist vorzugsweise metallische Aktivzentren auf. Bevorzugt sind katalytisch aktive Metalle, die als Metall oder Metallverbindung vorliegen, z.B. in Form von Partikeln mit einer Größe im Bereich von 1 nm bis 100 n oder im Bereich von 1 nm bis 20 nm. Die Aktivkomponente kann z.B. Gold, Kupfer, Palladium, Platin, Ruthenium oder Silber sein, aber auch Mischungen dieser Metalle. Eine bevorzugte Aktivkomponente ist Gold. Das bevorzugte Massenverhältnis von Aktivkomponente zu Katalysatortrager liegt im Bereich von 0,002 bis 0,04. In diesem Bereich zeigt sich eine gute katalytische Wirkung, während die Kosten für den Katalysator noch nicht zu hoch sind.
Die Aktivkomponente lässt sich vorteilhafterweise in einem Auffällungsverfahren auf den Katalysatorträger aufbringen. Die Fällung kann z.B. mit Natronlauge (NaOH) oder Harnstoff als Fällungsmittel erfolgen. Im Gegensatz zu einem Tränkungsverfahren hat ein Fällungsverfahren den Vorteil, dass disperse Katalysatoren entstehen. Beim Tränkungsverfahren wird der Feststoff (Katalysatorträger) in einer Lösung getränkt, die die Aktivkomponente enthält, beim Auffällungsverfahren wird ein Aktivmetall mit ei-- nem geeigneten Fällungsmittel als Hydroxid gefällt und dispers mittels eines Chemiesorptionsprozesses auf der Oberfläche des Katalysatorträgers abgeschieden.
Vorzugsweise hat der Katalysatorträger saure oder alkalische' Eigenschaften. Besonders bevorzugt sind saure Eigenschaften. Der Katalysatorträger kann z.B. Titandioxid (Ti02) , Eisenoxide (insbesondere α-Fe203) , Aluminiumoxid (A1203) , Siliciumdioxid (Si02) , Aluminiumhydroxid, Siliciumhydroxid, Zinkoxid (ZnO) , Magnesiumoxid (MgO) , Hydrotalcit, Zeolithe (vorzugsweise der Typen HY, H- Beta, H-ZSM5, und/oder HY(D)), Ionenaustauscher, karbonisierte Ionenaustauscher, Aktivkohlen oder Mischungen derartiger Materialien aufweisen. Mischungen verschiedener Katalysatorträgermaterialien können z.B. nützlich sein, um selektiv bei einer Anzahl vorgegebener Tabakrauchkomponenten eine Verminderung des Gasphasengehalts zu erreichen.
Bei einer besonders bevorzugten Ausführungsform enthält der Katalysatorträger Al03 und Si02. In der Regel weist diese Art von Katalysatorträger zusätzlich Wasser auf, das z.B. als Kristallwasser oder als adsorbiertes Oberflächenwasser oder in wasser- abspaltenden Verbindungen vorliegen kann. Zumindest der überwiegende Wasseranteil ist als Glühverlust messbar, wobei eine Materialprobe z.B. zunächst auf 150°C und nach Erreichen eines konstanten Gewichts weiter auf 950°C erhitzt wird, bis das Gewicht wiederum konstant bleibt. Bei dem bevorzugten Katalysatorträger liegt der als Glühverlust messbare Wasseranteil vorzugsweise im Bereich von 5 Gew.-% bis 30 Gew.-%. Weitere Bestandteile des Katalysatorträgers machen zusammen vorzugsweise weniger als 0,4 Gew.-% aus. Das Gewichtsverhältnis von A1203 zu Si02 liegt vorzugsweise im Bereich von 0,5 bis 100, insbesondere im Bereich von 1,5 bis 40, wobei Werte von oder im Bereich von 1,5 sowie 4 und 19 besonders bevorzugt sind. Ein derartiger Katalysatorträger hat sich bei der Reduzierung von Tabakrauchkomponenten als besonders wirksam erwiesen, auch ohne zusätzliche Aktivkomponente.
Kommt als Katalysatorträger eine feste Säure wie z.B. ein Zeo- lith zum Einsatz, kann als Ausgangsprodukt eine Salzform verwendet werden, vorzugsweise ein Ammoniumsarz, die sich durch Erhitzen und/oder Ansäuern in H-Form überführen lässt.
Der Katalysatorträger hat vorzugsweise eine Porengröße von mindestens 0,3 nm oder mindestens 3 nm oder mindestens 10 nm, wobei eine bevorzugte Obergrenze der Porengröße bei 100 nm liegt. Bei der Porengröße handelt es sich um einen mittleren Porendurchmesser, wie er für kreis- oder kugelförmige Poren angegeben werden kann. Die Begriffe "Porengröße" und "Porendurchmesser" sind beide gebräuchlich; im folgenden wird meist "Porengröße" verwendet.
Der Katalysatorträger kann in ganz unterschiedlichen Formen vorliegen, z.B. als mikrofeiner Staub mit Partikelgrößen im Bereich von 1 μm bis 15 μm, als Pulver oder Granulat mit Partikelgrößen im Bereich von 10 μm bis 2,5 mm oder in Form von Fasern mit Durchmessern im Bereich von 1 μm bis 100 μm. Denkbar ist z.B. auch ein aus Katalysatorträgermaterial extrudierter Filterkör- per, der vorzugsweise die Abmessungen eines herkömmlichen Tabakrauchfilters hat und einen oder mehrere längsverlaufende Kanäle enthalten kann. Ferner sind für den Katalysatorträger Mischformen denkbar, insbesondere Mischformen mit Komponenten, die aus den vorgenannten Formen ausgewählt sind.
Bei einer bevorzugten Ausführungsform hat der Katalysatorträger eine körnige Struktur, wobei vorzugsweise mehr als 98 Gew.-% des Katalysatorträgers eine Korngröße von unter 150 μm haben.
Der erfindungsgemäße Tabakrauchfilter kann in unterschiedlichen Formen gefertigt sein. Beispiele sind Monofilter, Doppelfilter, Dreifachfilter, Vierfachfilter, Fünffachfilter oder allgemein Mehrfachfilter, Corefilter sowie Recessfilter . Eine weitere Möglichkeit sind Kammerfilter, auch Kammerfilter, bei denen Katalysatorträger (mit oder ohne Aktivkomponente) in einer Kammer enthalten ist. Diese Filtertypen sind im Prinzip bekannt; es muss aber dafür gesorgt werden, dass der Katalysatorträger (gegebenenfalls mit Aktivkomponente) in den Tabakrauchfilter eingebracht wird (siehe unten) . Bei einer weiteren Möglichkeit enthält der Tabakrauchfilter einen oder mehrere extrudierte Filterkörper, die aus Katalysatorträger extrudiert sind (siehe oben) , wobei ein derartiger Filterkörper auch im Wesentlichen den gesamten Tabakrauchfilter ausmachen kann.
Vorzugsweise weist der erfindungsgemäße Tabakrauchfilter Filtermaterial auf, in dem zur Reduzierung von Tabakrauchkomponenten Katalysatorträger oder Katalysatorträger mit Aktivkomponente angeordnet ist. Das Filtermaterial kann z.B. in Form von Fasern, auch Endlosfasern oder Stapelfasern, in Form von Papier, auch gekrimptem Papier, in Form von Folie, auch gekrimpter Folie, als Vlies, als extrudierter Schaum oder in einer Mischform vorliegen. Als Material für das Filtermaterial eignen sich z.B. Cellu- loseacetat, Cellulose, Polymere und Polymerderivate (insbesondere Polyolefine, Stärke und Stärkederivate) sowie Naturfasern (vorzugsweise Hanf, Flachs oder auch Tabak) . Mischmaterialien sind ebenfalls denkbar.
Bei einem Verfahren zum Herstellen eines Tabakrauchfilters mit Filtermaterial, in dem zur Reduzierung von Tabakrauchkomponenten Katalysatortrager mit oder ohne Aktivkomponente angeordnet ist, wird der Katalysatorträger, der optional mit einer Aktivkomponente versehen ist, in das Filtermaterial eingebracht. Dazu gibt es verschiedene Möglichkeiten.
So kann der Katalysatorträger von einem Förderband auf das Filtermaterial eingerieselt werden, oder der Katalysatorträger wird mit dem Filtermaterial in einer Trommel gemischt.
Eine andere Möglichkeit ist das Aufstäuben des Katalysatorträgers auf das Filtermaterial, vorzugsweise in einer Pulverkammer. Die EP 0 913 100 A2 beschreibt ein Verfahren und eine Vorrichtung zum Aufbringen von Substanzen auf ein Filtermaterial, die nach diesem Prinzip arbeiten und auch anwendbar sind, wenn als Substanz Katalysatorträger verwendet wird.
Ferner kann der Katalysatorträger in Pulsen mittels einer Luftdüse in einen Strang aus Filtermaterial eingebracht werden. Die Luftdüse mündet dabei koaxial in den Strang aus Filtermaterial. Das Prinzip dieses Verfahrens ist in der DE 100 10 176 AI erläutert.
Auch kann eine Suspension des Katalysatorträgers auf das Filtermaterial aufgebracht werden, wobei anschließend getrocknet wird. Es ist auch denkbar, bei der Herstellung eines aus Papier gefertigten Filtermaterials den Katalysatorträger in die Papierpulpe einzubringen. Eine weitere Möglichkeit ist das Zusetzen des Katalysatorträgers im Spinnprozess von Fasern, wenn das Filtermaterial Fasern aufweist.
Wenn das Filtermaterial aus Schaum gefertigt ist, kann der Katalysatorträger im Extrudierprozess bei der Herstellung eines derartigen Filtermaterials zugesetzt werden.
Die WO 01/80973 AI beschreibt ein Verfahren, in dem Substanzen in die Poren offenporiger Fasern eines offenporige Fasern enthaltenden Filtermaterials eingebracht werden, z.B. mit Hilfe eines elektrostatischen Feldes. Ein' derartiges Verfahren lässt sich auch auf den Katalysatorträger anwenden.
In einem weiteren Beispiel wird der Katalysatorträger zwischen zwei Vlies- oder Papierbahnen aufgestrichen. Danach erfolgt ein Kalandrier- und ein Trocknungsprozess .
Wenn das Filtermaterial aus regenerierter Cellulose (z.B. "Lyocell") gefertigt ist, kann der Katalysatorträger, der optional mit einer Aktivkomponente versehen ist, bei der Extru- sion der Fasern dem Filtermaterial zugesetzt werden.
Daneben sind auch noch weitere Möglichkeiten denkbar, um den Katalysatorträger in Filtermaterial einzubringen.
Vorzugsweise ist der Tabakrauchfilter zur selektiven Reduzierung vorgegebener Tabakrauchkomponenten eingerichtet, z.B. von Blausäure (HCN) , Alkoholen (insbesondere Methanol) und/oder Carbony- len (insbesondere Acrolein, Diacetyl, 2-Butanon und/oder i-Bu- tyraldehyd) . Wie dies erreicht werden kann, ist aus den unten beschriebenen Beispielen ersichtlich. So eignen sich z.B. zur selektiven Reduzierung von HCN besonders gut ein mit Gold als Aktivkomponente versehener Katalysatorträger mit A1203 und Si02 oder ein mit Gold als Aktivkomponente versehener Katalysator- träger mit ZnO oder Hydrotalcit als Katalysatorträger mit oder ohne Aktivkomponente. Zur selektiven Reduzierung von Carbonylen sind Katalysatorträger mit A1203 und Si02, insbesondere bei einem Gewichtsverhältnis von Al203 zu Si02 von 1,5, oder Katalysatorträger mit Zeolithen, vorzugsweise vom Typ HY, besonders geeignet, jeweils mit oder ohne Aktivkomponente.
Der erfindungsgemäße Tabakrauchfilter ist insbesondere für Rauchprodukte wie Cigaretten, Cigarillos oder Filterhülsen (die zum Selbstfertigen von Cigaretten gebräuchlich sind) geeignet.
Im Folgenden wird die Erfindung anhand von Beispielen weiter erläutert.
Beispiel 1
Dieses Beispiel zeigt die Wirkung von einem Katalysatorträger, der keine zusätzliche Aktivkomponente enthält, auf Tabakrauch, und zwar auf den Hauptstromrauch von Cigaretten.
Zur Untersuchung des Effekts von verschiedenen Katalysatorträgermaterialien auf den Gehalt ausgewählter Gasphasensubstanzen wurde eine 20-Kanal-Rauchmaschine der Firma Borgwaldt (RM 20/CS) mit 20 Cigaretten sowie optional mit einem Glasfaserfilter von 92 mm (Cambridgefilter) zur Abscheidung des Feuchtkondensates bestückt. Die Testcigaretten wurden zuvor gemäß ISO 3402 kon- ditioniert. Etwa 1000 mg einer jeweiligen Probe eines Katalysatorträgers wurden in einem Glasreaktor mit Frittenboden (Innendurchmesser 3,6 cm) eingewogen. Der Reaktor wurde während des Abrauchens von der gesamten Gasphase der 20 Cigaretten von oben her durchströmt. Bei Benutzung des Glasfaserfilters wurde der Reaktor unmittelbar hinter dem Glasfaserfilter positioniert. Tabelle 1 Prozentuale Änderung des Gehalts ausgewählter Gasphasenkomponenten im Cigaretten- Hauptstromrauch (Reaktormodell) für verschiedene Katalysatorträgermaterialien ohne zusätzliche Aktivkomponente, mit (CF) und ohne (Ges.-R.) Cambridgefilter
I I
Bei einer Einzelmessung wurden 20 Cigaretten gemäß ISO 3308 abgeraucht, das Feuch kondensat wurde bei vorhandenem Glasfaserfilter auf dem Glasfaserfilter abgeschieden, und die Gasphase wurde durch den Reaktor zur Pumpe der Rauchmaschine geleitet. Mittels eines Probenahmeventils wurden definierte Züge von unterschiedlichen Cigaretten für die anschließende Analyse genommen und in einem Kolbenprober aus Glas gesammelt. Unmittelbar nach dem Abrauchen wurden 6 ml einer jeweiligen Gasprobe mit einer Probenschleife in den Injektor eines GasChromatographen überführt, aufgetrennt und mittels FID (Flame Ionisation Detec- tion) detektiert. Als interner Standard (Kalibrierung) wurde ein zertifiziertes Prüfgas von Methan in Stickstoff verwendet.
Eine Quantifizierung wurde' für die folgenden Gasphasenkomponenten durchgeführt: Isopren, Acetaldehyd, Propionaldehyd, Furan, i-Butyraldehyd, Äceton, Acrolein, 2-Methylfuran, 2-Butanon, Methanol, Benzol-, 3-Buten-2-on, 2, 5-Dimetylfuran,. Diacetyl, Ace- tonitril, Cyanwasserstoff, Toluol, Styrol, Acrylonitril, 1,3- Butadien (Absolutwerte in μg pro Cigarette) . Für die Auswertung der Ergebnisse wurden jeweils zwei Einzelmessungen gemittelt.
Zur Beurteilung der Effekte unterschiedlicher Katalysatorträgermaterialien wurden die Ergebnisse mit denen einer Vergleichsmessung in Relation gesetzt. Die Vergleichsmessung erfolgte ohne Katalysatorträgermaterial, d.h. mit leerem Reaktor.
Die Tabelle 1 zeigt eine Zusammenfassung der Ergebnisse für verschiedene Katalysatorträgermaterialien. ' Angegeben ist jeweils die prozentuale Änderung des Gehalts der jeweiligen Gasphasenkomponente relativ zur Vergleichsmessung mit leerem Reaktor, und zwar für jeden Katalysatorträger in der ersten Spalte bei Verwendung des Glasfaserfilters (CF) bei abgeschiedenem Feuchtkondensat und in der zweiten Spalte ohne Verwendung des Glasfaserfilters, wenn die Trägermaterialien dem Gesamtrauch (Ges.-R.) ausgesetzt waren. Für die Katalysatorträgermaterialien sind als Abkürzung Handelsnamen benutzt.
Das als "Siral 5" bezeichnete Material enthält eine Mischung aus AI2O3 (als Boehmit) und Si02 im Gewichtsverhältnis 95 zu 5 und wurde vor der Verwendung bei etwa 200°C bis 300°C kalziniert, was zu einer Reduzierung des ursprünglichen, als Glühverlust messbaren Wasseranteils von ca. 25 Gew.-% auf einen niedrigeren Wert führte. Ein entsprechendes, aber vom Hersteller bei etwa 600°C kalziniertes Material wird von Sasol- Germany GmbH unter der Bezeichnung "Siralox 5/320" vertrieben. Weitere Bestandteile sind Kohlenstoff mit etwa 0,2 Gew.-%, Fe03 mit etwa 0,01 Gew.-% und Na20 mit etwa 0,005 Gew.-%. Die Schüttdichte liegt im Bereich von 450 bis 650 g/1 und der Medianwert der Teilchengröße bei etwa 50 μm. Zur Bestimmung des Glühverlusts wird eine Materialprobe bei einer Temperatursteigerungsrate von 15 K/min auf 150°C erwärmt und anschließend, nachdem sich die Probenmasse nicht mehr geändert hat, bei einer Temperatursteigerungsrate von ca. 40 K/min auf 950°C. Nach Erreichen einer konstanten Masse ergibt sich der Glühverlust als Differenz zu der Ausgangsmasse der Probe .
Die beiden "Puralox"-Materialien werden ebenfalls von der Sasol Germany GmbH vertrieben und enthalten im Wesentlichen A1203. 98,7 Gew.-% des Materials haben eine Korngröße von weniger als 125 μm.
Das Katalysatorträgermaterial "Kronos 1001" (Kronos International, Inc.) besteht zu mindestens 99% aus Ti02 bei einer Dichte von 3,8 g/cm3 (typisch für Anatas-Pigmente) und einer Schüttdichte von 450 g/1 bis 700 g/1.
"Siralox 1.5/250" (Sasol Germany GmbH) enthält Al203 und Si02 im Gewichtsverhältnis 98,3 zu 1,7 sowie Wasser, wobei der Glühverlust (siehe oben) 8,1 Gew.-% beträgt. Die spezifische Oberfläche des Materials liegt bei 248 m2/g, die Schüttdichte bei ca. 680 g/1. 76,6 Gew.-% des Materials haben eine Korngröße von unter 90 μm.
Beispiel 2
Mit den Messungen zu diesem Beispiel wurde der Effekt verschiedener Katalysatoren mit Aktivkomponente und verschiedenen Katalysatorträgern auf den Gehalt ausgewählter Gasphasenkomponenten untersucht. Die Messungen wurden mit derselben Apparatur (20- Kanal-Rauchmaschine mit Glasfaserfilter und Glasreaktor für die Probe) durchgeführt, wie im Beispiel 1 beschrieben.
In der Tabelle 2 sind die Ergebnisse für verschiedene Katalysatorträger zusammengestellt. Als Aktivkomponente wurde in allen Fällen feindispers verteiltes Gold verwendet. Die Katalysatorträger "Siral 5", "Puralox" sowie "Kronos 1001" wurden bereits im Zusammenhang mit dem Beispiel 1 erläutert. Die Tabelle 2 enthält außerdem Ergebnisse für den Katalysatorträger Zinkoxid (ZnO; hergestellt über Fällung aus Zinknitrat-Hexahydrat und NaOH, dann calciniert bei 250°C für 3 Stunden) .
Bei den in der Tabelle 2 zusammengefassten Messungen wurde stets ein Glasfaserfilter (Cambridgefilter) verwendet, so dass das Feuchtkondensat auf diesem Filter abgeschieden wurde.
In der Tabelle 2 ist für jeden Katalysatorträger in der ersten Spalte der Trägereffekt angegeben, d.h. die prozentuale Änderung des Gehalts der entsprechenden Gasphasenkomponente in Bezug auf die Vergleichsmessung bei leerem Reaktor. Ein Minuszeichen bedeutet dabei, genauso wie im Beispiel 1, eine Abnahme. Der Katalysatoreffekt in der jeweiligen zweiten Spalte ist die prozentuale Änderung relativ zu der jeweiligen Messung mit Katalysatorträger allein, also ohne Aktivkomponente, und gibt demnach Tabelle 2 Prozentuale Änderung des Gehalts ausgewählter Gasphasenkomponenten im Cigaretten- Hauptstromrauch (Reaktormodell, mit Cambridegfilter) für verschiedene Katalysatorträgermaterialien; Trägereffekt: ohne Aktivkomponente; Katalysatoreffekt: mit Gold-Aktivkomponente (Zusatzeffekt)
ω
die zusätzliche Verbesserung an, die sich mit Hilfe der Aktivkomponente erzielen lässt.
Die in den Tabellen 1 und 2 zusammengefassten Ergebnisse zeigen, dass sowohl die untersuchten oxidischen Katalysatorträgermaterialien allein als auch die entsprechenden Goldkatalysatoren geeignete Systeme zur Abreicherung ausgewählter organischer Inhaltsstoffe von Cigarettenrauch sind. Insbesondere für HCN wird eine starke Reduzierung erreicht, bis hin zur völligen Entfernung aus der Gasphase (bei dem System "Siral 5"/Gold-Aktivkomponente) .
In Abhängigkeit von den verwendeten Materialien ("Siral 5", "Puralox", "Kronos 1001", Zinkoxid) werden unterschiedliche Ab- reicherungs- oder Reduzierungseffekte für einzelne Substanzklassen beobachtet. Mit "Siral 5" und "Puralox" wurden schon ohne Verwendung von Gold-Aktivkomponente für i-Butyraldehyd, Methanol, Diacetyl und HCN Absenkungen von 50% bis 80% gefunden. Die entsprechenden Gold-Trägerkatalysatoren bewirken zusätzliche Anreicherungen. Die Versuche mit Trägermaterialien (Tabelle 1) zeigen ähnliche Effekte auch bei Anwesenheit von Kondensat (Ab- rauchen ohne Cambridefilter, d.h. mit Gesamtrauch) . Diese Beobachtungen lassen darauf schließen, dass die Abreicherung einkomplexer Vorgang ist, der wahrscheinlich auf katalytische, ad- sorptive und reaktive Prozesse zurückzuführen ist. Die oberflächenchemischen (Lewis- und Brönstedt-azide, basische, hydrophil-, hydrophobe) und texturellen (spezifische Oberfläche, Porosität) Eigenschaften der Katalysatorträgermaterialien und der kompletten Katalysatoren (mit Aktivkomponente und Katalysatorträger) sind von großem Einfluss. Neben den in den Beispielen 1 und 2 untersuchten oxidischen Trägermaterialien zeigen strukturierte mikroporöse (Zeolithe) und mesoporöse Materialien ebenfalls Abreicherungseigenschaften, insbesondere gegenüber aromatischen Substanzen. Beispiel 3
Weitere Trägermaterialien, nämlich Zeolithe verschiedener Typen, wurden analog zum Beispiel 1 untersucht, wobei die Werte für den Gesamtrauch in Tabelle 3 angegeben sind.
Bei HY(D)-20 handelt es sich um einen 20 Minuten lang dealuminierten HY-Zeolith, der zuvor in der Natriumform vorlag und durch mehrmaligen Ionenaustausch in die Salzform, nämlich die Ammonium-Form, und dann durch hydrothermale Behandlung bzw. thermische Zersetzung bei 400°C in die H-Form überführt wurde. Durch das Herauslösen der Aluminium-Atome aus dem Gerüst wurde die Zahl der Brönsted-Zentren erniedrigt. Gleichzeitig bilden die aus dem Gerüst entfernten AI-Atome Lewis-Zentren aus.
Tabelle 3 Prozentuale Änderung des Gehalts ausgewählter Gasphasenkomponenten im Cigaretten-Hauptstromrauch (Reaktormodell) für verschiedene mikroporöse Katalysatorträgermaterialien mit einer Porengröße von weniger als 2 nm (ohne zusätzliche Aktivkomponente) , ohne Cambridgefilter
Beispiel 4
Die in Tabelle 4 aufgeführten Katalysatorträger bzw. Katalysatorträger mit Aktivkomponente Gold bewirken eine hohe selektive Reduktion von HCN. Die Messungen wurden analog zum Beispiel 1 ausgeführt. In einigen Fällen wurde ein Cambridgefilter verwendet.
Hydrotalcite sind schichtförmig aufgebaute Mg-Al-Doppel- hydroxide,' bei denen der Magnesiumgehalt in % angegeben wird. Das Hydrotalcit Mg30 (550°C) enthält also 30% Magnesium und wurde bei 550°C kalziniert. Bei thermischer Behandlung gehen Hydrotalcite in den amorphen Zustand über.
Mesoporöses A1203 hat einen Porendurchmesser zwischen 2 nm und 50 nm, hier 10 nm.
Tabelle 4 Prozentuale Änderung des Gehalts von HCN im Cigaret- ten-Hauptstromrauch (Reaktormodell) für verschiedene Katalysatorträgermaterialien (ohne zusätzliche Aktivkomponente oder mit Gold (Au) als Aktivkomponente) , mit (+) oder ohne (-) Cambridgefilter (CF)
Beispiel 5
Die in Tabelle 5 aufgeführten Katalysatorträger bzw. Katalysatorträger mit Aktivkomponente Gold bewirken eine hohe selektive Reduktion für Carbonyle (Ketone, Aldehyde) . Die Messungen wurde wieder analog zum Beispiel 1 ausgeführt.
Die Werte für Aldehyde und Ketone in der Tabelle wurden ermittelt, indem die Mittelwerte der prozentualen Absenkung der folgenden Substanzen gebildet wurden:
Für Aldehyde: Acrolein, Acetaldehyd, Propionaldehyd und i- Butyraldehyd;
Für Ketone: Aceton, 2-Butanon, 3-Buten-2-on und Diacetyl.
Al-MMS' 100 ist ein Aluminium-substituiertes mesoporöses silikatisches Molekularsieb mit einem Porendurchmesser von 10 nm.
Tabelle 5 Prozentuale Änderung des Gehalts von Aldehyden und Ketonen im Cigaretten-Hauptstromrauch (Reaktormodell) für verschiedene Katalysatorträgermaterialien (ohne zusätzliche Aktivkomponente oder mit Gold (Au) als Aktivkomponente) , mit (+) oder ohne (-) Cambridgefilter (CF)
Beispiel 6
Aktivkomponenten eines Katalysators werden durch Auffällen auf Trägermaterialien (Katalysatorträger) aufgebracht, wie anhand des folgenden Beispiels zur Präparation eines Gold/"Siral 5"- Trägerkatalysators erläutert.
Eine wässrige Trägersuspension von 30 g "Siral 5" (amorphes Alumosilikat, siehe Beispiel 1) in 500 ml Wasser wurde unter Rühren auf 70 °C erwärmt und auf einen pH=7 eingestellt. Hierzu wurde unter Rühren ein Gemisch bestehend aus 900 mg Tetrachlo- rogoldsäure, 450 ml destilliertem Wasser und 6 g Harnstoff gegeben. Die Reaktionsmischung wurde auf 70 °C erhitzt und 5h bei 70 °C gerührt. Nach Zugabe von weiteren 2 g Harnstoff und Rühren (14h/70°C) wurde die Mischung abgekühlt und mit einer Ma- gnesiumcitratlösung (4,17 g MgHC6H507- 5H20 in 90 ml Wasser) versetzt, deren pH-Wert zuvor mit 0,ln NaOH auf 7 eingestellt wurde. Nach einer Rührzeit von 1 bis 7 Tagen wurde der Feststoff durch Zentrifugieren abgetrennt, dreimal mit 500 ml Wasser gewaschen und im Vakuumtrockenschrank bei einem Druck von < 50 hPa für 17h bei Raumtemperatur und 4h bei 50 °C getrocknet und anschließend leicht gemörsert. Der erhaltene Katalysator wurde in Luft mit einer Aufheizrate von 1 K/min auf 250 °C erhitzt und 3h bei dieser Temperatur gehalten. Die Ausbeute betrug 28,8 g. Beispiel 7
Lyocellfasern mit 25% Kohle wurden nach einem Extrusionsver- fahren hergestellt, wie z.B. in DE 100 53 359 AI beschrieben, wobei die Korngröße der Aktivkohle unter 12 μm lag.
Die Fasern wurden wie in Beispiel 1 untersucht. Die Werte für die Gasphasenabsenkung sind in Tabelle 6 aufgeführt. Dabei wurde die Einwaage der Fasern so gewählt, dass die Messung mit den Werten aus den Beispielen 1 bis 5 vergleichbar ist und einer Nettoeinwaage von etwa 1000 mg Aktivkohle entspricht.
Tabelle 6 Prozentuale Änderung des Gehalts ausgewählter Gasphasenkomponenten im Cigaretten-Hauptstromrauch (Reaktormodell) für Lyocellfasern mit 25% Aktivkohle (ohne zusätzliche Aktivkomponente) , ohne Cambridgefilter

Claims

Patentansprüche
1. Tabakrauchfilter, in dem zur Reduzierung von Tabakrauchkomponenten ein Katalysatorträger angeordnet ist.
2. Tabakrauchfilter nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysatorträger mit einer Aktivkomponente versehen ist.
3. Tabakrauchfilter nach Anspruch 2, dadurch gekennzeichnet, dass die Aktivkomponente metallische Aktivzentren aufweist.
4. Tabakrauchfilter nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aktivkomponente mindestens ein katalytisch aktives Metall aufweist, das als Metall oder Metallverbindung vorliegt, vorzugsweise in Form von Partikeln mit einer Größe im Bereich von 1 nm bis 100 nm.
5. Tabakrauchfilter nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aktivkomponente mindestens ein katalytisch aktives Metall aufweist, das als Metall oder Metallverbindung vorliegt, und zwar in Form von Partikeln mit einer Größe im Bereich von 1 nm bis 20 nm.
6. Tabakrauchfilter nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Aktivkomponente mindestens ein aus der folgenden Gruppe ausgewähltes Metall aufweist: Gold, Kupfer, Palladium, Platin, Ruthenium, Silber.
7. Tabakrauchfilter nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Aktivkomponente Gold aufweist.
8. Tabakrauchfilter nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass das Massenverhältnis von Aktivkompo- nente zu Katalysatorträger im Bereich von 0,002 bis 0,04 liegt .
9. Tabakrauchfilter nach einem der Anspüche 2 bis 8, dadurch gekennzeichnet, dass die Aktivkomponente mit einem Auffällungsverfahren aufgebracht ist.
10. Tabakrauchfilter nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Katalysatorträger saure oder alkalische Eigenschaften hat.
11. Tabakrauchfilter nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Katalysatorträger saure Eigenschaften hat.
12. Tabakrauchfilter nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Katalysatorträger mindestens eines der aus der folgenden- Gruppe ausgewählten Materialien aufweist: Ti02, α-Fe203, A1203, Si02, ZnO, Zeoli- the, Ionenaustauscher, karbonisierte Ionenaustauscher, Aktivkohlen.
13. Tabakrauchfilter nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Katalysatorträger mindestens eines der aus der folgenden Gruppe ausgewählten Materialien aufweist: Aluminiumhydroxid, Siliciumhydroxid.
14. Tabakrauchfilter nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Katalysatorträger mindestens eines der aus der folgenden Gruppe ausgewählten Materialien aufweist: MgO, Hydrotalcit.
15. Tabakrauchfilter nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Katalysatorträger mindestens eines der aus der folgenden Gruppe ausgewählten Ma- terialien aufweist: Zeolithe vom Typ HY, Zeolithe vom Typ H-Beta, Zeolithe vom Typ H-ZSM5, Zeolithe vom Typ HY(D).
16. Tabakrauchfilter nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Katalysatorträger A1203 und Si02 aufweist, wobei vorzugsweise das Gewichtsverhältnis von A1203 zu Si02 im Bereich von 0,5 bis 100, vorzugsweise 1,5 bis 40, liegt und wobei vorzugsweise weitere Bestandteile des Katalysatorträgers außer Wasser zusammen weniger als 0,4 Gew.-% ausmachen.
17. Tabakrauchfilter nach Anspruch 16, dadurch gekennzeichnet, dass das Gewichtsverhältnis von A1203 zu Si02 einen der aus der folgenden Liste ausgewählten Werte annimmt: 19, 4, 1,5.
18. Tabakrauchfilter nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass Katalysatorträger als feste Säure in Salzform zugegeben worden ist, vorzugsweise Zeo- lith als Ammoniumsalz, und durch Erhitzen und/oder Ansäuern in H-Form überführt worden ist.
19. Tabakrauchfilter nach einem der Ansprüche -1 bis 18, dadurch gekennzeichnet, dass der Katalysatorträger eine Porengröße von mindestens 0,3 nm und vorzugsweise von höchstens 100 nm hat.
20. Tabakrauchfilter nach Anspruch 19, dadurch gekennzeichnet, dass der Katalysatorträger eine Porengröße von mindestens 3 nm und optional von mindestens 10 nm hat.
21. Tabakrauchfilter nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der Katalysatorträger in mindestens einer der aus der folgenden Gruppe ausgewählten Formen vorliegt: mikrofeiner Staub mit Partikelgrößen im Be- reich von 1 μm bis 15 μm, Pulver oder Granulat mit Partikelgrößen im Bereich von 10 μm bis 2,5 mm, Fasern mit Durchmessern im Bereich von 1 μm bis 100 μm, extrudierter Filterkörper.
22. Tabakrauchfilter nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass der Katalysatorträger eine körnige Struktur hat, wobei vorzugsweise mehr als 98 Gew.-% des Katalysatorträgers eine Korngröße von unter 150 μm haben.
23. Tabakrauchfilter nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass der Tabakrauchfilter eine der aus der folgenden Gruppe ausgewählten Formen hat: Monofil- ter, Doppelfilter, Dreifachfilter, Vierfachfilter, Fünffachfilter, Mehrfachfilter, Corefilter, Recessfilter, Kammerfilter, Kammerfilter mit Katalysatorträger in Kammer.
24. Tabakrauchfilter nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass der Tabakrauchfilter zur selektiven Reduzierung vorgegebener Tabakrauchkomponenten eingerichtet ist.
25. Tabakrauchfilter nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass der Tabakrauchfilter zur Reduzierung mindestens einer der aus der folgenden Gruppe ausgewählten Substanzen eingerichtet ist: HCN; Alkohole, vorzugsweise Methanol; Carbonyle, vorzugsweise Acrolein, Di- acetyl, 2-Butanon, i-Butyraldehyd, Acetaldehyd, Propional- dehyd, Aceton, 3-Buten-2-on.
26. Tabakrauchfilter nach Anspruch 25, dadurch gekennzeichnet, dass der Tabakrauchfilter zur selektiven Reduzierung von HCN eingerichtet ist, wobei der Tabakrauchfilter vorzugsweise einen mit Gold als Aktivkomponente versehenen Kata- lysatorträger gemäß Anspruch 16 und/oder einen mit Gold als Aktivkomponente versehenen Katalysatorträger mit ZnO und/oder Hydrotalcit als Katalysatorträger mit oder ohne Aktivkomponente aufweist.
27. Tabakrauchfilter nach Anspruch 25 oder 26, dadurch gekennzeichnet, dass der Tabakrauchfilter zur selektiven Reduzierung von Carbonylen eingerichtet ist, wobei der Tabakrauchfilter vorzugsweise einen Katalysatorträger gemäß Anspruch 16 mit einem Gewichtsverhältnis von Al203 zu Si02 von 1,5 mit oder ohne Aktivkomponente und/oder einen Ka-- talysatorträger mit Zeolithen, vorzugsweise vom Typ HY, mit oder ohne Aktivkomponente aufweist.
28. Tabakrauchfilter nach einem der Ansprüche 1 bis 27, gekennzeichnet durch Filtermaterial, in dem zur Reduzierung von Tabakrauchkomponenten Katalysatorträger ohne Aktivkomponente oder Katalysatorträger mit Aktivkomponente- angeordnet ist.
29. Tabakrauchfilter nach Anspruch 28, dadurch gekennzeichnet, dass das Filtermaterial in mindestens einer der aus der folgenden Gruppe ausgewählten Formen vorliegt: Fasern, Endlosfasern, Stapelfasern; Papier, gekrimptes Papier; Folie, gekrimpte Folie; Vlies; extrudierter Schaum.
30. Tabakrauchfilter nach Anspruch 28 oder 29, dadurch gekennzeichnet, dass das Filtermaterial mindestens eines der aus der folgenden Gruppe ausgewählten Materialien aufweist: Celluloseacetat; Cellulose; Polymere, Polymerderivate, vorzugsweise als Polyolefine, Stärke, Stärkederivate; Naturfasern, vorzugsweise als Hanf, Flachs, Tabak.
31. Rauchprodukt mit einem Tabakrauchfilter nach einem der Ansprüche 1 bis 30, wobei das Rauchprodukt vorzugsweise eine Cigarette, ein Cigarillo oder eine Filterhülse ist.
32. Verfahren zum Herstellen eines Tabakrauchfilters nach einem der Ansprüche 28 bis 30, wobei der Katalysatorträger, der optional mit einer Aktivkomponente versehen ist, auf eine der aus der folgenden Gruppe ausgewählten Weisen in das Filtermaterial eingebracht wird: Einrieseln des Katalysatorträgers von einem Förderband auf das Filtermaterial; Mischen des Katalysatorträgers mit dem Filtermaterial in einer Trommel; Aufstäuben des Katalysatorträgers auf das Filtermaterial, vorzugsweise in einer Pulverkammer; gepulstes Einbringen des Katalysatorträgers in einen Strang aus Filtermaterial mittels einer Luftdüse, die koaxial in den Strang aus Filtermaterial mündet; Aufbringen einer Suspension des Katalysatorträgers auf das Filtermaterial und anschließendes Trocknen; Einbringen des Katalysatorträgers in die Papierpulpe bei der Herstellung eines aus Papier gefertigten Filtermaterials; Zusetzen des Katalysatorträgers im Spinnprozess bei der Herstellung eines aus Fasern gefertigten Filtermaterials; Zusetzen des Katalysatorträgers im Extrudierprozess bei der Herstellung eines aus einem Schaum gefertigten Filtermaterials; Einbringen des Katalysatorträgers in die Poren offenporiger Fasern eines offenporige Fasern enthaltenden Filtermaterials, vorzugsweise mittels eines elektrostatischen Feldes; Aufstreichen des Katalysatorträgers zwischen zwei Vlies- oder Papierbahnen, Kalandrieren und Trocknen.
33. Verfahren zum Herstellen eines Tabakrauchfilters nach einem der Ansprüche 28 bis 30, wobei der Katalysatorträger, der optional mit einer Aktivkomponente versehen ist, bei der Extrusion eines aus regenerierter Cellulose gefertigten Filtermaterials dem Filtermaterial zugesetzt wird.
EP05716527A 2004-04-02 2005-04-04 Tabakrauchfilter Withdrawn EP1729603A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004016432 2004-04-02
PCT/EP2005/003533 WO2005094619A1 (de) 2004-04-02 2005-04-04 Tabakrauchfilter

Publications (1)

Publication Number Publication Date
EP1729603A1 true EP1729603A1 (de) 2006-12-13

Family

ID=34962901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05716527A Withdrawn EP1729603A1 (de) 2004-04-02 2005-04-04 Tabakrauchfilter

Country Status (2)

Country Link
EP (1) EP1729603A1 (de)
WO (1) WO2005094619A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102551206A (zh) * 2012-01-04 2012-07-11 安徽中烟工业有限责任公司 一种可降低卷烟主流烟气有害成分释放量的含层状双氢氧化物的卷烟滤嘴

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0411988D0 (en) 2004-05-28 2004-06-30 British American Tobacco Co Smoking articles and smoking materials
ES2293835B1 (es) * 2006-07-21 2008-12-16 Juan Guerrero Moles Catalizador mineralogico para el filtrado de humos y su proceso de fabricacion.
CN102396780B (zh) * 2011-07-12 2014-02-12 广西中烟工业有限责任公司 一种选择性减害卷烟及其制备方法
GB201112539D0 (en) 2011-07-21 2011-08-31 British American Tobacco Co Porous carbon and methods of production thereof
GB201412752D0 (en) 2014-07-17 2014-09-03 Nicoventures Holdings Ltd Electronic vapour provision system
CN107551831B (zh) * 2017-08-30 2021-02-23 山东大学 一种用于过滤烟草烟雾颗粒物的金属-有机骨架纤维膜及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2740011A1 (de) * 1977-09-06 1979-03-08 Bat Cigarettenfab Gmbh Verfahren zur entfernung von stickstoffmonoxid und kohlenmonoxid aus tabaksrauch sowie tabakmaterial, rauchfilter und cigarettenpapier zu seiner durchfuehrung
GB1604081A (en) * 1978-01-20 1981-12-02 Gallaher Ltd Production of catalysts from activated supports
IT1128455B (it) * 1979-01-12 1986-05-28 Gallaher Ltd Catalizzatore redox particolarmente per prodotti da fumo e procedimento per la sua preparazione
BE881118A (fr) * 1979-01-12 1980-07-11 Gallaher Ltd Catalyseurs redox a deux composants et leur preparation
US5446003A (en) * 1993-01-12 1995-08-29 Philip Morris Incorporated Production of supported particulate catalyst suitable for use in a vapor phase reactor
GB9325536D0 (en) * 1993-12-14 1994-02-16 Rothmans International Ltd Smoking article and filter therefor
DK0740907T3 (da) * 1995-05-03 2002-05-21 British American Tobacco Co Rygeartikel
WO2002043514A1 (en) * 2000-11-28 2002-06-06 Lorillard Licensing Company, Llc A smoking article including a selective carbon monoxide pump
US9107452B2 (en) * 2003-06-13 2015-08-18 Philip Morris Usa Inc. Catalyst to reduce carbon monoxide in the mainstream smoke of a cigarette
US7165553B2 (en) * 2003-06-13 2007-01-23 Philip Morris Usa Inc. Nanoscale catalyst particles/aluminosilicate to reduce carbon monoxide in the mainstream smoke of a cigarette

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005094619A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102551206A (zh) * 2012-01-04 2012-07-11 安徽中烟工业有限责任公司 一种可降低卷烟主流烟气有害成分释放量的含层状双氢氧化物的卷烟滤嘴

Also Published As

Publication number Publication date
WO2005094619A1 (de) 2005-10-13

Similar Documents

Publication Publication Date Title
WO2005094619A1 (de) Tabakrauchfilter
EP1843670B1 (de) Filtercigarette
DE69919425T2 (de) Silberkatalysator zur Herstellung von Ethylenoxid , Verfahren zu seiner Herstellung und Verfahren zur Herstellung von Ethylenoxid
DE2806559A1 (de) Filter fuer raucherwaren, insbesondere zigaretten
DE60304737T2 (de) Verbesserungen bei rauchartikeln
DE2801239B2 (de) Tabakrauchfilter
DE2902119A1 (de) Verfahren zur herstellung von katalysatoren, die dabei erhaltenen katalysatoren und ihre verwendung
DE19743100A1 (de) Verfahren zur Herstellung eines Schalenkatalysators
LV12123B (lv) Cigarete ar filtru
DE19531179B4 (de) Ozonfilter und Verfahren zu seiner Herstellung
DE102006020993B4 (de) Photokatalysator und seine Verwendung
CH642569A5 (de) Chemisorptive verbindung und deren verwendung.
DE10163180A1 (de) Trägerkatalysator
WO2014008962A1 (de) Zigarettenpapier mit verbesserter luftdurchlässigkeit
CH640112A5 (de) Rauchbare produkte.
DE3021407A1 (de) Rauchtabakmischung und verfahren zu deren herstellung
EP1255458A1 (de) Filterzigarette
DE2947971A1 (de) Filtermaterial
DE2919556A1 (de) Tabakmischung, aus dieser hergestellte zigaretten, zigarren und pfeifentabake und verfahren zum behandeln von tabak
DE2460650C3 (de) Tabakrauchfiltermaterial
DE2830049A1 (de) Rauchfiltermaterial
DE19957486C2 (de) Aromatisierte rauchbare Artikel
DE10059835A1 (de) Gasfiltermaterialien mit Donor- und/oder Akzeptorfunktion
DE2527234A1 (de) Zigarettenfilter
DE1767024B2 (de) Verwendung eines porösen Magnesiumsilikathydrates als Filtermittel für Tabakrauch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100429

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101110