EP1729317A1 - Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung - Google Patents

Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung Download PDF

Info

Publication number
EP1729317A1
EP1729317A1 EP05011930A EP05011930A EP1729317A1 EP 1729317 A1 EP1729317 A1 EP 1729317A1 EP 05011930 A EP05011930 A EP 05011930A EP 05011930 A EP05011930 A EP 05011930A EP 1729317 A1 EP1729317 A1 EP 1729317A1
Authority
EP
European Patent Office
Prior art keywords
core
winding
plastic material
plastic
fusible conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05011930A
Other languages
English (en)
French (fr)
Other versions
EP1729317B1 (de
Inventor
Ludger Richter
Manfred Rupalla
Peter Pösnicker
Uwe RÖDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wickmann Werke GmbH
Original Assignee
Wickmann Werke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wickmann Werke GmbH filed Critical Wickmann Werke GmbH
Priority to DE502005001781T priority Critical patent/DE502005001781D1/de
Priority to EP05011930A priority patent/EP1729317B1/de
Priority to JP2006154828A priority patent/JP4733570B2/ja
Priority to US11/421,978 priority patent/US20070132539A1/en
Priority to CNA2006100930129A priority patent/CN1873875A/zh
Publication of EP1729317A1 publication Critical patent/EP1729317A1/de
Application granted granted Critical
Publication of EP1729317B1 publication Critical patent/EP1729317B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • H01H85/42Means for extinguishing or suppressing arc using an arc-extinguishing gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/042General constructions or structure of high voltage fuses, i.e. above 1000 V
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/18Casing fillings, e.g. powder
    • H01H85/185Insulating members for supporting fusible elements inside a casing, e.g. for helically wound fusible elements

Definitions

  • the invention relates to a winding fuse for a fuse element with an electrically insulating or high-resistance core around which at least one fuse wire is wound. Furthermore, the invention relates to methods for producing such a winding winding conductor.
  • Wickelschmelzleiter the type mentioned are used for some time in fuse components.
  • a fusible conductor wire is wound around a core made of a plurality of glass fibers, wherein a predetermined winding density is to be maintained in order to achieve desired properties.
  • Such a prefabricated winding fusible conductor is then cut to a predetermined length and introduced, for example, in a ceramic tube and thereby electrically connected to the electrically conductive end caps, which are placed on the tube and at the same time mechanically fastened.
  • electrical and mechanical attachment of the winding fusible conductor is soldered, for example, to the end caps.
  • the object of the invention is therefore to provide a fuse component with a winding fuse, which shows an improved turn-off.
  • the winding fusible conductor for a fuse element having an electrically insulating or high-resistance core around which at least one fuse wire is wound is characterized in that a temperature-resistant plastic is applied to the core such that at least the surface areas of the core exposed between the fuse wire are covered by the plastic and the gaps formed between the wound fuse wire wire and the surface of the core (ie, gaps) with the plastic substantially (ie, at least to the extent that no capillary action is caused) are filled.
  • the invention is based on the recognition that the breaking capacity is worsened by residues of the flux used in the soldering of the fusible wire, these remnants being due to the fact that the flux during soldering due to the capillary action in gaps and interstices of the core or between the wound fuse wire and the Penetrate the surface of the core.
  • a temperature-resistant plastic according to the invention constitutes a "seal" of the gaps and spaces which prevents penetration of the flux.
  • a winding fusible conductor is produced by first impregnating a core with a non-hardened liquid plastic material, wherein the surface of the core is coated with a layer of the plastic material, then the impregnated core is wrapped with the fusible conductor wire prior to curing of the plastic material and finally the Plastic material is allowed to harden, so that a temperature-resistant plastic is formed.
  • the amount of uncured plastic liquid material in the core can be sized so that, as the core is wound, all interstices and gaps between the fuse wire core and core and within the core are closed but the outwardly facing surfaces of the fuse wire remain free. This has the advantage that the winding melting conductor can be soldered remains without the plastic needs to be removed before.
  • the fuse wire is first wound on the core. Subsequently, the winding fusible conductor is coated with a not yet cured liquid plastic material such that the plastic material can penetrate into intermediate spaces between the fuse wire and the core and in any existing pores or gaps of the core. Then the plastic material hardens, so that a temperature-resistant plastic is formed.
  • This alternative method offers the advantage that a conventional winding fusible conductor can be used as the starting material.
  • the flux can no longer penetrate into the spaces between the fusible conductor wire and the core and into the core, as a result of which the switching capacity is improved.
  • the fuse wire is fixed after curing of the plastic on the core, which allows higher winding densities of, for example, over 60%.
  • the core is comprised of a plurality of glass and / or ceramic fibers, with the interstices between the individual fibers also being substantially filled by the plastic.
  • the cores of a plurality of parallel glass or ceramic fibers are compressed during winding, so that - in the first manufacturing process alternative - after a prior impregnation of the fibers with the plastic material, a part of the plastic material is pressed out during winding from the core and remains between the wire windings. If a relatively large excess of the liquid plastic material remains, then the excess plastic material can be subsequently removed by mechanical stripping of the winding fusible conductor.
  • the plastic material used is a silicone which is applied in the liquid state and cured later.
  • the cured silicone is temperature resistant.
  • one or more arc-quenching materials are added to the silicone, preferably a melamine powder. This additionally supports the arc-quenching effect of the silicone coating.
  • FIG. 1 is a schematic representation of a section of a winding fusible conductor 1 according to the invention.
  • a fusible conductor wire 2 is wound on an insulating or high-resistance core 3.
  • the fuse wire 2 is, for example, a wire made of a tin-plated silver-copper alloy core having a circular cross section and a diameter in the range of 0.05 mm to 0.5 mm.
  • the cross section need not be circular, but it can be wound, for example, a metal strip. Thinner or thicker wires are also conceivable depending on the desired properties.
  • the core 3 could for example consist of a more or less flexible rod of an insulating material (eg glass, glass ceramic, plastic or ceramic) or high-resistance material (eg semiconductor or high-resistance metal conductor).
  • the core is a bundle of glass and / or ceramic fibers.
  • the core consists of glass fiber, ie a bundle of twisted or spun glass fibers. In the raw state lie the glass fibers of the glass silk relatively loose together, so that many spaces are formed. When wrapping the glass silk core 3 with the fuse wire 2, the glass fiber is compressed, that is, the individual glass fibers are pressed together.
  • the core 3 is soaked before wrapping with a (still) liquid silicone plastic, so that fill the spaces between the glass fibers with the plastic material.
  • a (still) liquid silicone plastic so that fill the spaces between the glass fibers with the plastic material.
  • not all gaps need to be filled; it is basically sufficient if the outer layers of the glass silk fill with the plastic, so that the glass silk is sealed so that no more liquids could get into the possibly still existing inner spaces.
  • a part of the plastic material is pushed out of the glass fiber and remains on the core 3 and fills the gaps (gaps) between the fuse wire 2 and the core 3. Remains too much excess plastic material, it can be stripped in still liquid state of the winding fuse 1.
  • FIG. 1 shows the remaining plastic material 4 between the individual turns of the fusible conductor wire 2.
  • the plastic hardens, wherein hardening in the sense of setting is to be understood.
  • the plastic material does not need to be hard.
  • the cured temperature-resistant plastic preferably remains soft or elastic, so that the winding fusible conductor 1 remains flexible.
  • a silicone is preferably used, wherein the silicone material for example consists of two components, which are mixed before application.
  • the silicone arc-quenching materials in particular melamine powder added.
  • ten parts of silicone resin are mixed with four parts of melamine powder.
  • FIG 2 shows a schematic representation of a fuse element 5, in which the winding fuse 1 according to the invention is used.
  • the winding fusible conductor 1 comprises a core 3 onto which the fuse wire 2 is wound and in which the spaces between the turns of the fuse wire 2 are filled with the plastic material 4.
  • the applied plastic material 4 is shown for clarity only on the left half of the winding fusible conductor 1.
  • the fuse 5 comprises an insulating tube 6 made of glass, plastic or ceramic, in the interior 7 of Wikkelschmelzleiter 1 is added.
  • the tube 6 may have a round or rectangular cross-section.
  • the interior 7 may be filled with air, gas filled, empty or filled with another material.
  • Two end caps 8 are placed on the ends of the tube 6 (eg, soldered or glued on).
  • the fusible conductor 1 is soldered onto the bottoms of the end caps 8, the solder being shown schematically in FIG. 2 by the solder regions 9. But the solder joint can also be much smaller than it is shown in Figure 2 with the hatched areas 9.
  • the hatched area 9 may in this case also be a sealing material which is introduced into the end caps.
  • the winding fusible conductor 1 is soldered onto the inner bottoms of the end caps 8, a flux is of course used in addition to the solder.
  • the sealing of the fusible conductor 1 according to the invention by means of the plastic material 4 prevents melted or liquid parts of the flux from migrating along the winding fusible conductor due to the capillary action. Such no longer removable flux residues would form a source of carbon and, in the event of shutdown (severing) of the fusible conductor, form conductive bridges which assist in reigniting the arc in the succeeding halfwaves.
  • FIG. 3 shows an alternative embodiment of a fuse component 10.
  • Two contact pins 12 are led through a base 11.
  • a protective cap 13 is placed on the base 11.
  • the ends of the connecting pins 12 open into terminal lugs 14, to each of which one end of a winding semiconductor conductor 1 is attached.
  • the winding fusible conductor 1 is attached to the terminal lugs 14, each with a solder joint 1.5.
  • a Wikkelschmelzleiter 1 can be used in which are wound around the core 3 parallel to the fuse wire 2, one or more insulating fibers, the adjacent windings of the fuse wire 2 thus hold at a predetermined distance from each other.
  • the combination of such a development with the seal according to the invention improves the breaking capacity and the reproducibility of the properties of the winding conductor.

Landscapes

  • Fuses (AREA)

Abstract

Ein Wickelschmelzleiter (1) für ein Schmelzsicherungsbauelement mit einem elektrisch isolierenden oder hochohmigen Kern (3), um den wenigstens ein Schmelzleiterdraht (2) gewickelt ist, ist dadurch gekennzeichnet, daß ein temperaturbeständiger Kunststoff (4) derart auf den Kern (3) aufgebracht ist, daß zumindest die zwischen dem Schmelzleiterdraht (2) freiliegenden Oberflächenbereiche des Kerns (3) von dem Kunststoff (4) bedeckt und die zwischen dem gewickelten Schmelzleiterdraht (2) und der Oberfläche des Kerns (3) gebildeten Zwischenräume mit dem Kunststoff (4) im wesentlichen ausgefüllt sind. Ein solcher Wickelschmelzleiter (1) wird hergestellt, indem der Kern mit einem nicht ausgehärteten flüssigen Kunststoffmaterial getränkt wird, wobei auch die Oberfläche des Kerns mit einer Schicht des Kunststoffmaterials überzogen wird, dann der getränkte Kern vor dem Aushärten des Kunststoffmaterials mit dem Schmelzleiterdraht umwickelt wird und schließlich das Kunststoffmaterial aushärtet, so daß ein temperaturbeständiger Kunststoff gebildet wird. Alternativ wird der Wickelschmelzleiter dadurch hergestellt, daß zunächst der Schmelzleiterdraht auf den Kern gewickelt wird, der Wickelschmelzleiter anschließend mit einem noch nicht ausgehärteten flüssigen Kunststoffmaterial derart beschichtet wird, daß das Kunststoffmaterial in Zwischenräume zwischen dem Schmelzleiterdraht und dem Kern sowie in ggf. vorhandene Poren oder Spalten des Kerns eindringen kann, und schließlich das Kunststoffmaterial aushärten gelassen wird, so daß ein temperaturbeständiger Kunststoff gebildet wird.

Description

  • Die Erfindung betrifft einen Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit einem elektrisch isolierenden oder hochohmigen Kern, um den wenigstens ein Schmelzleiterdraht gewickelt ist. Ferner bezieht sich die Erfindung auf Verfahren zum Herstellen eines solchen Wickelschmelzleiters.
  • Wickelschmelzleiter der eingangs genannten Art werden seit längerer Zeit in Schmelzsicherungsbauelementen eingesetzt. Beispielsweise wird um einen aus mehreren Glasfasern bestehenden Kern ein Schmelzleiterdraht gewickelt, wobei eine vorgegebene Wickeldichte einzuhalten ist, um gewünschte Eigenschaften zu erzielen. Ein derartiger vorgefertigter Wickelschmelzleiter wird dann auf eine vorgegebene Länge zugeschnitten und beispielsweise in ein Keramikröhrchen eingebracht und dabei mit den elektrisch leitfähigen Endkappen, die auf das Röhrchen aufgesetzt werden, elektrisch verbunden und gleichzeitig mechanisch befestigt. Zur elektrischen und mechanischen Befestigung wird der Wickelschmelzleiter beispielsweise an die Endkappen angelötet.
  • Es hat sich gezeigt, daß die Sicherungsbauelemente, bei denen ein Wickelschmelzleiter verwendet wird, ein schlechteres Schaltvermögen aufweisen als Sicherungsbauelemente, bei denen ein herkömmlicher Drahtschmelzleiter verwendet wird. Dies beruht insbesondere auf einem unzureichenden Erlöschen des beim Abschalten erzeugten Lichtbogens.
  • Aufgabe der Erfindung ist es daher, ein Sicherungsbauelement mit einem Wickelschmelzleiter zu schaffen, das ein verbessertes Abschaltverhalten zeigt.
  • Diese Aufgabe wird durch einen Wickelschmelzleiter mit den Merkmalen des Anspruchs 1 bzw. ein Verfahren zum Herstellen eines solchen Wickelschmelzleiters mit den Merkmalen des Anspruchs 8 oder des Anspruchs 11 gelöst.
  • Der Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit einem elektrisch isolierenden oder hochohmigen Kern, um den wenigstens ein Schmelzleiterdraht gewickelt ist, ist dadurch gekennzeichnet, daß ein temperaturbeständiger Kunststoff derart auf den Kern aufgebracht ist, daß zumindest die zwischen dem Schmelzleiterdraht freiliegenden Oberflächenbereiche des Kerns von dem Kunststoff bedeckt und die zwischen dem gewickelten Schmelzleiterdraht und der Oberfläche des Kerns gebildeten Zwischenräume (das heißt Spalten) mit dem Kunststoff im wesentlichen (d.h. zumindest soweit, daß keine Kapillarwirkung hervorgerufen wird) ausgefüllt sind.
  • Der Erfindung liegt die Erkenntnis zugrunde, daß das Abschaltvermögen durch Reste des beim Löten des Schmelzleiterdrahts verwendeten Flußmittels verschlechtert wird, wobei diese Reste davon herrühren, daß das Flußmittel beim Löten aufgrund der Kapillarwirkung in Spalten und Zwischenräume des Kerns bzw. zwischen dem gewickelten Schmelzleiterdraht und der Oberfläche des Kerns eindringen.
  • Die erfindungsgemäße Einbringung eines temperaturbeständigen Kunststoffs stellt eine "Versiegelung" der Spalten und Zwischenräume dar, die ein Eindringen des Flußmittels verhindert.
  • Erfindungsgemäß wird ein Wickelschmelzleiter hergestellt, indem zunächst ein Kern mit einem nicht ausgehärteten flüssigen Kunststoffmaterial getränkt wird, wobei auch die Oberfläche des Kerns mit einer Schicht des Kunststoffmaterials überzogen wird, dann der getränkte Kern vor dem Aushärten des Kunststoffmaterials mit dem Schmelzleiterdraht umwickelt wird und schließlich das Kunststoffmaterial aushärten gelassen wird, so daß ein temperaturbeständiger Kunststoff gebildet wird. Bei diesem Herstellungsverfahren kann die Menge des noch nicht ausgehärteten flüssigen Kunststoffmaterials im Kern so dimensioniert werden, daß beim Umwickeln des Kerns sämtliche Zwischenräume und Spalten zwischen Schmelzleiterdraht und Kern und innerhalb des Kerns geschlossen werden, aber die nach außen weisenden Flächen des Schmelzleiterdrahts frei bleiben. Dies hat den Vorteil, daß der Wickelschmelzleiter lötbar bleibt, ohne daß zuvor der Kunststoff entfernt zu werden braucht.
  • Bei einem alternativen Herstellungsverfahren wird zunächst der Schmelzleiterdraht auf den Kern gewickelt. Anschließend wird der Wickelschmelzleiter mit einem noch nicht ausgehärteten flüssigen Kunststoffmaterial derart beschichtet, daß das Kunststoffmaterial in Zwischenräume zwischen dem Schmelzleiterdraht und dem Kern sowie in gegebenenfalls vorhandene Poren oder Spalten des Kerns eindringen kann. Dann härtet das Kunststoffmaterial aus, so daß ein temperaturbeständiger Kunststoff gebildet wird. Diese Verfahrensalternative bietet den Vorteil, daß ein herkömmlicher Wickelschmelzleiter als Ausgangsmaterial verwendet werden kann.
  • Bei dem erfindungsgemäßen wickelschmelzleiter kann das Flußmittel nicht mehr in die Zwischenräume zwischen Schmelzleiterdraht und Kern sowie in den Kern eindringen, wodurch das Schaltvermögen verbessert wird. Darüber hinaus wird der Schmelzleiterdraht nach dem Aushärten des Kunststoffs auf dem Kern fixiert, was höhere Wickeldichten von beispielsweise über 60 % ermöglicht.
  • Bei einer typischen Ausführungsform besteht der Kern aus mehreren Glas- und/oder Keramikfasern, wobei auch die Zwischenräume zwischen den einzelnen Fasern von dem Kunststoff im wesentlichen gefüllt werden. Die Kerne aus mehreren parallelen Glas- oder Keramikfasern werden beim Wickeln komprimiert, so daß - bei der ersten Herstellungsverfahrensalternative - nach einem vorherigen Tränken der Fasern mit dem Kunststoffmaterial ein Teil des Kunststoffmaterials beim Wickeln aus dem Kern herausgedrückt wird und zwischen den Drahtwicklungen verbleibt. Wenn ein relativ hoher Überschuß des flüssigen Kunststoffmaterials verbleibt, so kann das überschüssige Kunststoffmaterial anschließend durch mechanisches Abstreifen des Wickelschmelzleiters entfernt werden.
  • Bei einer vorteilhaften Ausführungsform wird als Kunststoffmaterial ein Silikon verwendet, das im flüssigen Zustand aufgebracht wird und später aushärtet. Das ausgehärtete Silikon ist temperaturbeständig. Bei einer vorteilhaften Weiterbildung werden dem Silikon ein oder mehrere lichtbogenlöschende Materialien zugemischt, vorzugsweise ein Melaminpulver. Dies unterstützt zusätzlich die lichtbogenlöschende Wirkung der Silikonbeschichtung.
  • Vorteilhafte und/oder bevorzugte weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Im folgenden wird die Erfindung anhand von in den Zeichnungen dargestellten bevorzugten Ausführungsformen näher erläutert. In den Zeichnungen zeigen:
    • Figur 1 eine schematische Darstellung eines Ausführungsbeispiels des erfindungsgemäßen Wickelschmelzleiters;
    • Figur 2 eine schematische Schnittdarstellung eines Schmelzsicherungsbauelements mit dem erfindungsgemäßen Wickelschmelzleiter; und
    • Figur 3 eine schematische Schnittdarstellung einer alternativen Ausführungsform eines Schmelzsicherungsbauelements mit dem erfindungsgemäßen Wickelschmelzleiter.
  • Figur 1 ist eine schematische Darstellung eines Abschnitts eines erfindungsgemäßes Wickelschmelzleiters 1. Ein Schmelzleiterdraht 2 ist auf einen isolierenden oder hochohmigen Kern 3 gewickelt. Bei dem Schmelzleiterdraht 2 handelt es sich beispielsweise um einen Draht aus einem mit einer Zinnschicht versehenen Silber-Kupfer-Legierungskern mit einem kreisförmigen Querschnitt und einem Durchmesser im Bereich von 0,05 mm bis 0,5 mm. Selbstverständlich sind eine Vielzahl anderer Legierungen und Metalle denkbar. Der Querschnitt braucht auch nicht kreisförmig zu sein, sondern es kann beispielsweise ein Metallband gewickelt werden. Auch sind dünnere oder dickere Drähte in Abhängigkeit von den gewünschten Eigenschaften denkbar. Der Kern 3 könnte beispielsweise aus einem mehr oder weniger flexiblen Stab aus einem isolierenden Material (z. B. Glas, Glaskeramik, Kunststoff oder Keramik) oder hochohmigen Material (z. B. Halbleiter oder hochohmiger Metalleiter) bestehen. Bei bevorzugten Ausführungsformen besteht der Kern jedoch aus einem Bündel von Glas- und/oder Keramikfasern. Vorzugsweise besteht der Kern aus Glasseide, d. h. einem Bündel verdrillter oder versponnener Glasfasern. Im Rohzustand liegen die Glasfasern der Glasseide relativ locker aneinander, so daß viele Zwischenräume gebildet werden. Beim Umwickeln des Glasseidenkerns 3 mit dem Schmelzleiterdraht 2 wird die Glasseide komprimiert, d. h. es werden die einzelnen Glasfasern aneinandergedrückt.
  • Bei der Herstellung des erfindungsgemäßen Wickelschmelzleiters 1, bei dem ein Kern aus Glasseide verwendet wird, wird der Kern 3 vor dem Umwickeln mit einem (noch) flüssigen Silikonkunststoff getränkt, so daß sich die Zwischenräume zwischen den Glasfasern mit dem Kunststoffmaterial füllen. Selbstverständlich brauchen nicht sämtliche Zwischenräume gefüllt zu werden; es genügt im Grunde, wenn sich die äußeren Schichten der Glasseide mit dem Kunststoff füllen, so daß die Glasseide derart versiegelt wird, daß keine Flüssigkeiten mehr in die ggf. noch vorhandenen inneren Zwischenräume gelangen könne. Beim Umwickeln des getränkten Kerns 3 mit dem Schmelzleiterdraht 2 wird ein Teil des Kunststoffmaterials aus der Glasseide herausgedrückt und verbleibt auf dem Kern 3 und füllt die Zwischenräume (Spalten) zwischen dem Schmelzleiterdraht 2 und dem Kern 3 aus. Verbleibt zuviel überschüssiges Kunststoffmaterial, so kann dieses in noch flüssigem Zustand vom wickelschmelzleiter 1 abgestreift werden. Es ist aber auch denkbar und bevorzugt, daß die Aufnahme des flüssigen Kunststoffmaterials in den rohen Kern 3 so dimensioniert wird, daß nach dem Wickeln kein Abstreifen mehr erforderlich ist. Figur 1 zeigt das verbliebene Kunststoffmaterial 4 zwischen den einzelnen Windungen des Schmelzleiterdrahts 2. Anschließend härtet der Kunststoff aus, wobei Aushärten im Sinne von Abbinden zu verstehen ist. Das Kunststoffmaterial braucht dabei nicht hart zu werden. Im Gegenteil, bei Verwendung von Silikon bleibt der ausgehärtete temperaturbeständige Kunststoff vorzugsweise weich bzw. elastisch, so daß der Wickelschmelzleiter 1 flexibel bleibt.
  • Als Kunststoffmaterial wird vorzugsweise ein Silikon verwendet, wobei das Silikonmaterial beispielsweise aus zwei Komponenten besteht, die vor dem Aufbringen gemischt werden. Vorzugsweise werden dem Silikon lichtbogenlöschende Materialien, insbesondere Melaminpulver, zugesetzt. Beispielsweise werden zehn Anteile Silikonharz mit vier Anteilen Melaminpulver gemischt.
  • Figur 2 zeigt eine schematische Darstellung eines Schmelzsicherungsbauelements 5, in dem der erfindungsgemäße Wickelschmelzleiter 1 eingesetzt wird. Der Wickelschmelzleiter 1 umfaßt einen Kern 3, auf den der Schmelzleiterdraht 2 aufgewikkelt und bei dem die Zwischenräume zwischen den Windungen des Schmelzleiterdrahts 2 mit dem Kunststoffmaterial 4 gefüllt sind. Bei der schematischen Darstellung in Figur 2 ist das aufgebrachte Kunststoffmaterial 4 zur Verdeutlichung nur auf der linken Hälfte des Wickelschmelzleiters 1 dargestellt. Die Schmelzsicherung 5 umfaßt ein isolierendes Röhrchen 6 aus Glas, Kunststoff oder Keramik, in dessen Innenraum 7 der Wikkelschmelzleiter 1 aufgenommen ist. Das Röhrchen 6 kann einen runden oder rechteckigen Querschnitt haben. Der Innenraum 7 kann luftgefüllt, gasgefüllt, leer oder mit einem anderen Material gefüllt sein. Auf die Enden des Röhrchens 6 sind zwei Endkappen 8 aufgesetzt (z. B. aufgelötet oder aufgeklebt). Der Schmelzleiter 1 ist auf die Böden der Endkappen 8 aufgelötet, wobei das Lot in Figur 2 schematisch durch die Lotbereiche 9 dargestellt ist. Die Lötstelle kann aber auch deutlich kleiner ausfallen, als es in Figur 2 mit den schraffierten Bereichen 9 dargestellt ist. Der schraffierte Bereich 9 kann in diesem Fall auch ein Dichtungsmaterial, welches in die Endkappen eingebracht ist, darstellen.
  • Wird der Wickelschmelzleiter 1 auf die Innenböden der Endkappen 8 aufgelötet, so wird neben dem Lot selbstverständlich auch ein Flußmittel verwendet. Die erfindungsgemäße Versiegelung des Schmelzleiters 1 mittels des Kunststoffmaterials 4 verhindert, daß geschmolzene bzw. flüssige Teile des Flußmittels aufgrund der Kapillarwirkung den wickelschmelzleiter entlang wandern. Solche nicht mehr entfernbaren Flußmittelreste würden eine Kohlenstoffquelle bilden und im Falle des Abschaltens (Durchtrennens) des Schmelzleiters leitfähige Brücken bilden, welche ein Neuzünden des Lichtbogens in den Folge-Halbwellen unterstützen.
  • Figur 3 zeigt eine alternative Ausführungsform eines Sicherungsbauelements 10. Durch einen Sockel 11 sind zwei Kontaktstifte 12 hindurchgeführt. Auf den Sockel 11 ist eine Schutzkappe 13 aufgesetzt. Im Innenraum zwischen Sockel 11 und Schutzkappe 13 münden die Enden der Anschlußstifte 12 in Anschlußfahnen 14, an denen jeweils ein Ende eines Wickelschmelzleiters 1 befestigt ist. Der Wickelschmelzleiter 1 ist an den Anschlußfahnen 14 mit jeweils einer Lötverbindung 1.5 befestigt.
  • Im Rahmen des Erfindungsgedankens sind zahlreiche alternative Ausführungsformen denkbar. Beispielsweise kann ein Wikkelschmelzleiter 1 verwendet werden, bei dem um den Kern 3 parallel zu dem Schmelzleiterdraht 2 eine oder mehrere isolierende Fasern gewickelt sind, die benachbarte windungen des Schmelzleiterdrahts 2 somit in einem vorgegebenen Abstand zueinander halten. Die Kombination einer derartigen Weiterbildung mit der erfindungsgemäßen Versiegelung verbessert das Abschaltvermögen und die Reproduzierbarkeit der Eigenschaften des Wickelschmelzleiters.

Claims (13)

  1. Wickelschmelzleiter für ein Schmelzsicherungsbauelement (5) mit einem elektrisch isolierenden oder hochohmigen Kern (3), um den wenigstens ein Schmelzleiterdraht (2) gewickelt ist,
    dadurch gekennzeichnet,
    daß ein temperaturbeständiger Kunststoff (4) derart auf den Kern (3) aufgebracht ist, daß zumindest die zwischen dem Schmelzleiterdraht freiliegenden Oberflächenbereiche des Kerns von dem Kunststoff bedeckt und die zwischen dem gewickelten Schmelzleiterdraht und der Oberfläche des Kerns gebildeten Zwischenräume mit dem Kunststoff im wesentlichen ausgefüllt sind.
  2. wickelschmelzleiter nach Anspruch 1, dadurch gekennzeichnet, daß der Kern (3) aus mehreren Glas- und/oder Keramikfasern besteht und die Zwischenräume zwischen den Glas-und/oder Keramikfasern ebenfalls von dem Kunststoff (4) im wesentlichen ausgefüllt sind.
  3. Wickelschmelzleiter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kunststoff (4) den wickelschmelzleiter (1) derart umhüllt, daß auch die äußeren Oberflächen des Schmelzleiterdrahtes (2) mit dem Kunststoff abgedeckt sind.
  4. Wickelschmelzleiter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß um den Kern parallel zu dem Schmelzleiterdraht eine oder mehrere isolierende Fasern gewickelt sind, die benachbarte windungen des Schmelzleiterdrahts in einem vorgegebenen Abstand zueinander halten.
  5. Wickelschmelzleiter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Kunststoff ein Silikon ist.
  6. Wickelschmelzleiter nach Anspruch 5, dadurch gekennzeichnet, daß dem Silikon ein oder mehrere lichtbogenlöschende Materialien zugemischt sind.
  7. wickelschmelzleiter nach Anspruch 6, dadurch gekennzeichnet, daß dem Silikon Melaminpulver zugemischt ist.
  8. Verfahren zum Herstellen eines Wickelschmelzleiters, bei dem ein isolierender oder hochohmiger Kern mit einem Schmelzleiterdraht umwickelt ist, wobei:
    a) der Kern mit einem nicht ausgehärteten flüssigen Kunststoffmaterial getränkt wird, wobei auch die Oberfläche des Kerns mit einer Schicht des Kunststoffmaterials überzogen wird,
    b) der getränkte Kern vor dem Aushärten des Kunststoffmaterials mit dem Schmelzleiterdraht umwickelt wird, und
    c) das Kunststoffmaterial aushärten gelassen wird, so daß ein temperaturbeständiger Kunststoff gebildet wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Kern mit einer Menge des flüssigen Kunststoffmaterials getränkt wird, die bei einem mit dem Umwickeln des Schmelzleiterdrahts einhergehenden Komprimieren des Kerns zu einem Herausdrücken überschüssigen Kunststoffmaterials führt.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß nach dem wickeln des Schmelzleiterdrahts überschüssiges Kunststoffmaterial durch Abstreifen entfernt wird.
  11. Verfahren zum Herstellen eines Wickelschmelzleiters, bei dem ein isolierender oder hochohmiger Kern mit einem Schmelzleiterdraht umwickelt ist, wobei:
    a) der Schmelzleiterdraht auf den Kern gewickelt wird,
    b) der Wickelschmelzleiter anschließend mit einem noch nicht ausgehärteten flüssigen Kunststoffmaterial derart beschichtet wird, daß das Kunststoffmaterial in Zwischenräume zwischen dem Schmelzleiterdraht und dem Kern sowie in ggf. vorhandene Poren oder Spalten des Kerns eindringen kann, und
    c) daß Kunststoffmaterial aushärten gelassen wird, so daß ein temperaturbeständiger Kunststoff gebildet wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß nach dem Beschichten überschüssiges Kunststoffmaterial von dem Wickelschmelzleiter abgestreift wird.
  13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß als flüssiges Kunststoffmaterial ein aushärtbarer Silikonharz verwendet wird.
EP05011930A 2005-06-02 2005-06-02 Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung Expired - Fee Related EP1729317B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE502005001781T DE502005001781D1 (de) 2005-06-02 2005-06-02 Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung
EP05011930A EP1729317B1 (de) 2005-06-02 2005-06-02 Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung
JP2006154828A JP4733570B2 (ja) 2005-06-02 2006-06-02 プラスチックシールを有するヒューズエレメントのための可溶性螺旋状導体
US11/421,978 US20070132539A1 (en) 2005-06-02 2006-06-02 Fusible spiral conductor for a fuse component with a plastic seal
CNA2006100930129A CN1873875A (zh) 2005-06-02 2006-06-02 用于用塑料加封的熔断保险丝构件的卷绕保险丝

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05011930A EP1729317B1 (de) 2005-06-02 2005-06-02 Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung

Publications (2)

Publication Number Publication Date
EP1729317A1 true EP1729317A1 (de) 2006-12-06
EP1729317B1 EP1729317B1 (de) 2007-10-24

Family

ID=35276458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05011930A Expired - Fee Related EP1729317B1 (de) 2005-06-02 2005-06-02 Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung

Country Status (5)

Country Link
US (1) US20070132539A1 (de)
EP (1) EP1729317B1 (de)
JP (1) JP4733570B2 (de)
CN (1) CN1873875A (de)
DE (1) DE502005001781D1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236323A1 (en) * 2004-02-21 2007-10-11 Wickmann-Werke Gmbh Fusible Conductive Coil with an Insulating Intermediate Coil for Fuse Element
US20090108980A1 (en) * 2007-10-09 2009-04-30 Littelfuse, Inc. Fuse providing overcurrent and thermal protection
US8937524B2 (en) * 2009-03-25 2015-01-20 Littelfuse, Inc. Solderless surface mount fuse
US9117615B2 (en) 2010-05-17 2015-08-25 Littlefuse, Inc. Double wound fusible element and associated fuse
TWM479540U (zh) * 2014-02-19 2014-06-01 Ceramate Technical Co Ltd 安全式電源插座及具有該電源插座的電源延長裝置
US10992254B2 (en) 2014-09-09 2021-04-27 Shoals Technologies Group, Llc Lead assembly for connecting solar panel arrays to inverter
KR20160130214A (ko) * 2015-02-14 2016-11-10 난징 사트 사이언스 앤드 테크놀로지 디벨롭먼트 컴퍼니.,리미티드 보호 소자
KR101878031B1 (ko) * 2016-05-03 2018-07-12 홍익대학교 산학협력단 코일 형상의 배선이 구비된 신축성 배선 구조의 제조방법 및 이 제조방법으로 제조된 신축성 배선 구조
US10978267B2 (en) * 2016-06-20 2021-04-13 Eaton Intelligent Power Limited High voltage power fuse including fatigue resistant fuse element and methods of making the same
EP3551132A1 (de) 2016-12-08 2019-10-16 Lintec Of America, Inc. Verbesserungen an künstlichen muskelaktuatoren
DE102019004223A1 (de) * 2019-05-16 2020-11-19 Siba Fuses Gmbh Schmelzleiter und Sicherung
US20220122799A1 (en) * 2020-10-15 2022-04-21 Littelfuse, Inc. Fuse with arc quenching silicone composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039987A1 (de) * 1980-10-23 1982-06-03 Jean Müller KG Elektrotechnische Fabrik, 6228 Eltville Schmelzsicherung mit loeschgas abgebendem festem soff als loeschmittel am schmelzleiter
US5736919A (en) * 1996-02-13 1998-04-07 Cooper Industries, Inc. Spiral wound fuse having resiliently deformable silicone core

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US480802A (en) * 1892-08-16 Electric fuse
US876273A (en) * 1905-12-30 1908-01-07 Frank B Hall Fuse device.
US1502881A (en) * 1918-05-13 1924-07-29 Westinghouse Electric & Mfg Co Fuse
US1377398A (en) * 1918-11-18 1921-05-10 George A Conrad Fuse-cartridge
US1443886A (en) * 1919-04-21 1923-01-30 Cook Frank B Co Fuse
US1542608A (en) * 1919-05-07 1925-06-16 Henry T Bussmann Electric fuse
US1485211A (en) * 1921-06-24 1924-02-26 J P Berger Renewable electric fuse
GB227928A (en) * 1923-10-26 1925-01-26 Reyrolle A & Co Ltd Improvements in or relating to electric fuses
US2168153A (en) * 1938-03-23 1939-08-01 Gen Electric Renewable fuse
US2639350A (en) * 1950-08-11 1953-05-19 Electric fuse
US2672542A (en) * 1952-02-02 1954-03-16 Milwaukee Resistor Company Fusible resistor
US2873327A (en) * 1956-04-19 1959-02-10 Bernstein Elliot Combined fuse and current limiting resistor
US2929900A (en) * 1956-06-29 1960-03-22 Glastic Corp Fuse cartridge
US2876312A (en) * 1956-09-17 1959-03-03 Gen Electric Fuse link for a time-lag fuse and method of constructing the link
US3197593A (en) * 1960-04-25 1965-07-27 Nat Ind As Electrical current-limiting fuse
US3094600A (en) * 1960-12-01 1963-06-18 Chase Shawmut Co Electric fuse having improved cap link connection
US3143615A (en) * 1962-04-06 1964-08-04 Chase Shawmut Co Springless time-lag fuses for motor circuits
US3267240A (en) * 1963-07-22 1966-08-16 Mc Graw Edison Co Protectors for electric circuits
US3333336A (en) * 1965-10-13 1967-08-01 Westinghouse Electric Corp Method of making a fuse by securing the terminals by magnetic forming
US3301979A (en) * 1965-10-22 1967-01-31 Mc Graw Edison Co Fuse protectors for electric circuits having improved terminal means forming a sealed enclosure
US3374330A (en) * 1966-04-19 1968-03-19 Westinghouse Electric Corp Current limiting fuse
US3425019A (en) * 1967-09-05 1969-01-28 Chase Shawmut Co Miniaturized cartridge fuse for small current intensities having large time-lag
US3460086A (en) * 1967-09-25 1969-08-05 Mc Graw Edison Co Protectors for electric circuits
US3601737A (en) * 1969-10-09 1971-08-24 Gen Electrie Co Fuse elements for dc interruption
US3825870A (en) * 1970-11-11 1974-07-23 Takamatsu Electric Works Ltd Fuse element and a high voltage current-limiting fuse
US3721936A (en) * 1972-03-29 1973-03-20 Chase Shawmut Co Cartridge fuse having blown fuse indicator
US3868619A (en) * 1973-10-17 1975-02-25 Westinghouse Electric Corp Core construction for current-limiting fuse
US3946351A (en) * 1975-02-28 1976-03-23 Mcgraw-Edison Company Shielded fuse assembly
US3962668A (en) * 1975-04-22 1976-06-08 The Chase-Shawmut Company Electric low-voltage fuse
US4189696A (en) * 1975-05-22 1980-02-19 Kenneth E. Beswick Limited Electric fuse-links and method of making them
US4032879A (en) * 1975-11-18 1977-06-28 Teledyne, Inc. Circuit-protecting fuse having arc-extinguishing means
US4146861A (en) * 1976-03-29 1979-03-27 San-O Industrial Corp. Quick-acting fuse arrangement
US4035753A (en) * 1976-07-23 1977-07-12 S & C Electric Company Current limiting fuse construction
US4075755A (en) * 1976-11-11 1978-02-28 S&C Electric Company High voltage fuse and method of attaching tubular members therein
US4135175A (en) * 1977-08-04 1979-01-16 Gould Inc. Electric fuse
US4158187A (en) * 1977-08-05 1979-06-12 Gould Inc. Means for affixing ferrules to a fuse casing
US4467308A (en) * 1978-03-08 1984-08-21 San-O Industrial Co., Ltd. Fuse assembly
US4205294A (en) * 1978-09-25 1980-05-27 Gould Inc. Solderless fuse terminal
US4283700A (en) * 1979-01-15 1981-08-11 San-O Industrial Co., Ltd. Double tubular time-lag fuse having improved breaking capacity
US4215331A (en) * 1979-02-07 1980-07-29 Gould Inc. Pressure contact between ferrules and fusible element of electric fuses
US4276531A (en) * 1979-04-20 1981-06-30 Davis Merwyn C Nonresetable thermally actuated switch
IN154727B (de) * 1979-10-10 1984-12-08 English Electric Co Ltd
US4267543A (en) * 1979-11-13 1981-05-12 San-O Industrial Co., Ltd. Miniature electric fuse
US4445106A (en) * 1980-10-07 1984-04-24 Littelfuse, Inc. Spiral wound fuse bodies
US4460887A (en) * 1981-03-19 1984-07-17 Littelfuse, Inc. Electrical fuse
US4373556A (en) * 1981-12-02 1983-02-15 Canadian General Electric Company Limited Cut-out fuse tube
US4386334A (en) * 1982-02-08 1983-05-31 Gould Inc., Electric Fuse Div. Support arrangement for a helically wound fusible element
JPS5921500Y2 (ja) * 1982-03-19 1984-06-25 三王株式会社 リ−ド付き超小型ヒュ−ズ
US4563809A (en) * 1982-12-09 1986-01-14 Littelfuse, Inc. Fuse with centered fuse filament and method of making the same
US4656453A (en) * 1982-12-09 1987-04-07 Littelfuse, Inc. Cartridge fuse with two arc-quenching end plugs
GB8309642D0 (en) * 1983-04-08 1983-05-11 Beswick Kenneth E Ltd Cartridge fuse-links
US4517544A (en) * 1983-10-24 1985-05-14 Mcgraw-Edison Company Time delay electric fuse
DE3342302A1 (de) * 1983-11-23 1985-05-30 Wickmann-Werke GmbH, 5810 Witten Verfahren zur herstellung einer kleinstsicherung sowie kleinstsicherung
US4528536A (en) * 1984-01-09 1985-07-09 Westinghouse Electric Corp. High voltage fuse with controlled arc voltage
US4563666A (en) * 1984-06-04 1986-01-07 Littelfuse, Inc. Miniature fuse
US4533895A (en) * 1984-06-22 1985-08-06 Littelfuse, Inc. Time delay fuse
ATE38256T1 (de) * 1984-08-31 1988-11-15 Steiger Sa Atelier Constr Flachstrickmaschine.
US4608548A (en) * 1985-01-04 1986-08-26 Littelfuse, Inc. Miniature fuse
US4636765A (en) * 1985-03-01 1987-01-13 Littelfuse, Inc. Fuse with corrugated filament
NL8501677A (nl) * 1985-06-11 1987-01-02 Littelfuse Tracor Werkwijze voor het bevestigen van een aansluitdraad aan een metalen eindkap van een smeltveiligheid.
US4684915A (en) * 1985-12-30 1987-08-04 Gould Inc. Thermoplastic insulating barrier for a fillerless electric fuse
US4646053A (en) * 1985-12-30 1987-02-24 Gould Inc. Electric fuse having welded fusible elements
US4680567A (en) * 1986-02-10 1987-07-14 Cooper Industries, Inc. Time delay electric fuse
US4751489A (en) * 1986-08-18 1988-06-14 Cooper Industries, Inc. Subminiature fuses
US4749980A (en) * 1987-01-22 1988-06-07 Morrill Glasstek, Inc. Sub-miniature fuse
CA1264791A (fr) * 1987-03-20 1990-01-23 Vojislav Narancic Fusible ayant un corps extincteur d'arc en ceramique rigide non poreuse et methode de fabrication de ce fusible
US4736180A (en) * 1987-07-01 1988-04-05 Littelfuse, Inc. Fuse wire assembly for electrical fuse
US4918420A (en) * 1987-08-03 1990-04-17 Littelfuse Inc Miniature fuse
JPS6456135U (de) * 1987-10-01 1989-04-07
US4837546A (en) * 1988-03-11 1989-06-06 Bel Fuse Inc. Fuse block
US4894633A (en) * 1988-12-12 1990-01-16 American Telephone And Telegraph Company Fuse Apparatus
JPH0720828Y2 (ja) * 1989-06-14 1995-05-15 エス・オー・シー株式会社 超小型電流ヒューズ
US4996509A (en) * 1989-08-25 1991-02-26 Elliot Bernstein Molded capless fuse
US5109211A (en) * 1991-03-15 1992-04-28 Combined Technologies, Inc. High voltage fuse
US5142262A (en) * 1991-06-24 1992-08-25 Littelfuse, Inc. Slow blowing cartridge fuse and method of making the same
US5187463A (en) * 1992-02-11 1993-02-16 Gould, Inc. Compact time delay fuse
US5229739A (en) * 1992-02-21 1993-07-20 Littelfuse, Inc. Automotive high current fuse
US5214406A (en) * 1992-02-28 1993-05-25 Littelfuse, Inc. Surface mounted cartridge fuse
US5235307A (en) * 1992-08-10 1993-08-10 Littelfuse, Inc. Solderless cartridge fuse
US5446436A (en) * 1992-11-04 1995-08-29 Space Systems/Loral, Inc. High voltage high power arc suppressing fuse
US5298877A (en) * 1993-02-19 1994-03-29 Cooper Industries, Inc. Fuse link and dual element fuse
US5280261A (en) * 1993-03-03 1994-01-18 Cooper Industries, Inc. Current limiting fuse
JPH06342623A (ja) * 1993-06-01 1994-12-13 S O C Kk チップヒューズ
US5406245A (en) * 1993-08-23 1995-04-11 Eaton Corporation Arc-quenching compositions for high voltage current limiting fuses and circuit interrupters
DE29511129U1 (de) * 1994-06-29 1996-10-31 Wickmann-Werke GmbH, 58453 Witten Schmelzsicherung
JP2706625B2 (ja) * 1994-10-03 1998-01-28 エス・オー・シー株式会社 超小型チップヒューズ
US5596306A (en) * 1995-06-07 1997-01-21 Littelfuse, Inc. Form fitting arc barrier for fuse links
JP3447443B2 (ja) * 1995-10-02 2003-09-16 ローム株式会社 安全ヒューズ付き面実装型固体電解コンデンサの構造
JP4046794B2 (ja) * 1997-01-31 2008-02-13 株式会社クラベ コード状温度ヒューズ
US5783985A (en) * 1997-04-25 1998-07-21 Littelfuse, Inc. Compressible body for fuse
US5781095A (en) * 1997-04-25 1998-07-14 Littelfuse, Inc. Blown fuse indicator for electrical fuse
US5898358A (en) * 1997-07-25 1999-04-27 Minnesota Mining & Manufacturing Vermiculite-coated fuse
US5903208A (en) * 1997-08-08 1999-05-11 Cooper Technologies Company Stitched core fuse
US6191678B1 (en) * 1997-09-24 2001-02-20 Cooper Industries, Inc. Time lag fuse
JP3719475B2 (ja) * 1998-01-20 2005-11-24 矢崎総業株式会社 大電流用ヒューズ
US6577222B1 (en) * 1999-04-02 2003-06-10 Littelfuse, Inc. Fuse having improved fuse housing
US6507265B1 (en) * 1999-04-29 2003-01-14 Cooper Technologies Company Fuse with fuse link coating
US6552646B1 (en) * 2000-04-10 2003-04-22 Bel-Fuse, Inc. Capless fuse
WO2002071432A1 (de) * 2001-03-02 2002-09-12 Wickmann-Werke Gmbh Sicherungsbauelement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039987A1 (de) * 1980-10-23 1982-06-03 Jean Müller KG Elektrotechnische Fabrik, 6228 Eltville Schmelzsicherung mit loeschgas abgebendem festem soff als loeschmittel am schmelzleiter
US5736919A (en) * 1996-02-13 1998-04-07 Cooper Industries, Inc. Spiral wound fuse having resiliently deformable silicone core

Also Published As

Publication number Publication date
US20070132539A1 (en) 2007-06-14
EP1729317B1 (de) 2007-10-24
JP4733570B2 (ja) 2011-07-27
DE502005001781D1 (de) 2007-12-06
CN1873875A (zh) 2006-12-06
JP2006339161A (ja) 2006-12-14

Similar Documents

Publication Publication Date Title
EP1729317B1 (de) Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung
AT521301B1 (de) Stator mit Isolationsschicht
DE10023208A1 (de) Isolierung von Statorwicklungen im Spritzgussverfahren
DE2541670A1 (de) Spule mit kunstharzpackung
EP1364381B1 (de) Sicherungsbauelement
WO2000034962A1 (de) Hohlisolator
EP2251877B1 (de) Verfahren zur Herstellung einer Scheibenwicklung
DE570067C (de) Verfahren zur Herstellung von Wickelkondensatoren mit einer den Wickel allseitig umschliessenden Huelle aus Kunstharz
EP1807845B1 (de) Verfahren zur herstellung einer von einer isolierung freizuhaltenden stelle eines isolierten leiters und trennmittel
DE10113258A1 (de) Verfahren zum Herstellen eines Leiterstabes
DE19756604C2 (de) Elektrische Spule, insbesondere für ein Relais, und Verfahren zu deren Herstellung
EP1597745B1 (de) Wickelschmelzleiter mit isolierendem zwischenwickel für ein sicherungsbauelement
DE4004812C2 (de)
EP0389892B1 (de) Transformator
DE4408290C2 (de) Wicklungsanordnung mit einem Supraleiter und Tragkörper hierzu
EP0473629B1 (de) Verfahren zum Herstellen einer Spule für einen Transformator, insbesondere Hochspannungstransformator
DE3438144C2 (de) Lagenwicklung für einen Transformator oder eine Drosselspule und Verfahren zu ihrer Herstellung
DE19919069A1 (de) Verfahren zur Herstellung einer Wicklung und Wicklung
DE102017200606A1 (de) Verfahren zum Aufbau einer Spule
EP0048880B1 (de) Verfahren zum Fixieren der Windungen einer supraleitenden Magnetwicklung
EP0107802A2 (de) Verfahren zur Herstellung einer in eine Vergussmasse eingebetteten Draht- oder Folien-Wicklung und für das Verfahren verwendbares Wicklungsmaterial
DE10323099A1 (de) Verfahren zum Herstellen einer Wicklung
DE102019124232A1 (de) Rohrheizkörper und Verfahren zur Herstellung eines Rohrheizkörpers
DE4029017A1 (de) Verfahren und mittel zum herstellen einer stromschiene
DE1133812B (de) Verfahren zur Isolation von Wicklungen elektrischer Maschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 502005001781

Country of ref document: DE

Date of ref document: 20071206

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090630

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101