EP1721081B1 - Ventilansteuerung von hydraulischen aktoren auf basis elektrorheologischer flüssigkeiten - Google Patents

Ventilansteuerung von hydraulischen aktoren auf basis elektrorheologischer flüssigkeiten Download PDF

Info

Publication number
EP1721081B1
EP1721081B1 EP05715527A EP05715527A EP1721081B1 EP 1721081 B1 EP1721081 B1 EP 1721081B1 EP 05715527 A EP05715527 A EP 05715527A EP 05715527 A EP05715527 A EP 05715527A EP 1721081 B1 EP1721081 B1 EP 1721081B1
Authority
EP
European Patent Office
Prior art keywords
valves
flow rate
controlling
control
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05715527A
Other languages
English (en)
French (fr)
Other versions
EP1721081A1 (de
Inventor
Ralf Adenstedt
Andreas Kugi
Wolfgang KEMMETMÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fludicon GmbH
Original Assignee
Fludicon GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fludicon GmbH filed Critical Fludicon GmbH
Publication of EP1721081A1 publication Critical patent/EP1721081A1/de
Application granted granted Critical
Publication of EP1721081B1 publication Critical patent/EP1721081B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/06Use of special fluids, e.g. liquid metal; Special adaptations of fluid-pressure systems, or control of elements therefor, to the use of such fluids
    • F15B21/065Use of electro- or magnetosensitive fluids, e.g. electrorheological fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/006Hydraulic "Wheatstone bridge" circuits, i.e. with four nodes, P-A-T-B, and on-off or proportional valves in each link

Definitions

  • the invention relates to a method for valve control of hydraulic actuators based on electrorheological fluids according to the preamble of claims 1 and 3, and to an apparatus for carrying out the method according to the preamble of claims 7 and 8.
  • Continuous valves are valves in which the output (e.g., valve spool travel, pressure, etc.) is proportional to the input signal (e.g., drive voltage). The operation can be done hand / mechanical / pressure / electric and electronic. Continuous valves are also commonly referred to as proportional, control and servo valves, due to differences in the accuracy and use of the valves.
  • valves based on electrorheological / magnetorheological fluids that can be assigned due to their properties to the class of continuous valves.
  • the control of a double-acting cylinder is generally carried out via a 4/3 servo valve, whereby the change in the volume flow in the 4/3 servo valve is effected by an electromechanical converter.
  • the electromechanical transducer (as well as the subsequent hydraulic intermediate stages) generally represents the component limiting the dynamics of the valve.
  • the system consisting of servo valve and cylinder, can be described here as a single-feed system with the input variable i v (current through the servo valve) or with negligible dynamics of the servo valve x v (position 4/3 servo valve) and the output variable s (position of the cylinder) become.
  • the volume flows into the cylinder chambers q 1 and q 2 can not be used independently of each other as manipulated variables. Therefore The mathematical model of the cylinder loses properties that prevent the applicability of certain controller design methods.
  • Control theory discloses a variety of controller design methods for non-linear systems.
  • the flatness-based controller design Joachim Rudolph: Contributions to the flatness-based follow-up control of linear and nonlinear systems of finite and infinite dimension, Shaker Verlag, 2003
  • the exact input state linearization Alberto Isidori: Nonlinear Control Systems, 3rd edition, Springer Verlag 2001
  • the passivity-based controller design Romeo Ortega et al .: Passivity Based Control of Euler-Lagrange Systems, Springer Verlag London 1998 ) called.
  • the chamber pressures p 1 and p 2 in the cylinder are adjusted so that in the steady state the force on the piston caused by the chamber pressures is equal to the load force.
  • the absolute values of the pressures p 1 and p 2 themselves can not be specifically influenced.
  • Electrorheological valves are usually constructed of coaxial cylinder electrodes or of arrangements of parallel plates, between which the electrorheological fluid flows. By applied to the electrodes electrical voltage or by the electric field generated thereby, the effective viscosity of the electro-rheological fluid located between the electrodes and thus the flow resistance through the valve gap is controllable. In this case, with the pressure difference applied, the flow rate through the valve can be varied from complete opening (normal viscous flow) to complete blocking (solid state).
  • the operating principle is based on the fact that the particles of the electrorheological fluid form chains during application of an electric field, which impede the flow and thus change the flow resistance.
  • the control of these valves takes place in such a way that the four valves with a common average electrical voltage u and a differential voltage .DELTA.u are driven, ie at the valve a and d is the electrical voltage u + ⁇ u , while at the valves b and c, the electrical voltage u - ⁇ u is applied.
  • the mean voltage u is chosen so that the valve works in a middle operating point.
  • the voltage ⁇ u now corresponds approximately to the position x v of the 4/3 servovalve compared to conventional 4/3 servovalves.
  • the electrorheological full bridge thus simulates the behavior of a 4/3-servo valve with an overlap, which with the help of u Both negative and positive can be set.
  • the object of the present invention is to prevent the disadvantages mentioned above and to provide a valve control for actuators based on electrorheological fluids, which allows control and regulation operations with extremely high dynamics.
  • the 4 electrical voltages for the control of the 4 valves are calculated.
  • the new manipulated variables q 1 and q 2 it is very easy to control the chamber pressures.
  • q q, 1 and q q, 2 serve as manipulated variables for the supply pressure control and prevent a complete locking of the valves, as they ensure a minimum flow rate.
  • q ⁇ and q ⁇ are used as manipulated variables for the decoupled control of the total pressure and the position or speed of the piston. Due to the independent specifications of the aforementioned manipulated variables, all linear and / or non-linear and / or adaptive single and multi-variable control methods with or without cascade structure can be used.
  • Fig. 1 shows a schematic diagram of an actuator 1 based on electrorheological fluids consisting of a cylinder 2, in the transverse branch 3 one of four valves a, b, c, d based on electrorheological / magnetorheological Liquids existing full bridge is connected.
  • the cylinder 2 is shown in the embodiment as a synchronous cylinder, but it could be used from any other cylinder design.
  • the cylinder 2 has a cylinder housing 4 with an axially displaceably mounted piston 5.
  • the piston 5 divides the cylinder housing 4 into a first and a second variable-volume working chamber 6, 6 '.
  • each end an inlet / outlet opening for the pressure medium is introduced.
  • the inlet / outlet opening of the first and second working chamber 6, 6 ' is in each case coupled to a fluid line 7, 7' arranged in the transverse branch 3 of the valve full-bridge circuit.
  • Each working chamber 6,6 'of the cylinder 2 is thus a half-bridge circuit consisting of two valves a, b / c, d assigned based on electrorheological / magnetorheological fluids.
  • the first working chamber 6 associated valves a, b are, as can be seen from the illustrations, arranged in a first longitudinal branch 8 of the full bridge circuit.
  • the second working chamber 6 'associated valves c, d are arranged in a second longitudinal branch 8' of the full bridge circuit.
  • the full bridge circuit of the valves a, b, c, d is linked between the fluid connection of the valves a, c with a supply pressure line 9.
  • the supply pressure is provided via a pump / storage arrangement not described in detail here. Since, in principle, only one volume flow in the direction of the pressure difference can flow in the case of valves based on electrorheological / magnetorheological fluids, the above-described interconnection to a full bridge is necessary.
  • the flow direction of the volume flows is in the Fig. 1 represented by the arrows.
  • the valves b, d are coupled to a tank 10.
  • Valves based on electrorheological / magnetorheological fluids are known in a variety of embodiments.
  • the valve based on electrorheological fluids consists in principle of a valve gap formed in a housing, which is bounded by electrically controllable electrode arrangements, so that an electrorheological fluid flowing through the valve gap can be changed by changing the electric field generated between the electrode arrangements with regard to the rheological properties. With the help of an impressed by a high voltage amplifier voltage to the electrode assemblies, an electric field can be generated and thus, with applied pressure difference, the volume flow through the valve can be varied.
  • the valve thus represents an electrically adjustable throttle, which is shown schematically in the drawing of Fig. 1 is shown.
  • An essential feature of the invention is that the four degrees of freedom of the valves a, b, c, d based on electrorheological / magnetorheological fluids are optimally utilized in the full bridge.
  • the pressures in the two working chambers can be regulated.
  • This can also be used in a cascade controller structure as a lower-level control loop, while in a higher-level control loop actual controlled variable (eg the position of the cylinder s or the pressure force) is regulated.
  • valves a, b, c, d are always operated with a minimum volume flow. It is essential that the minimum volume flow through the valves a and b (q q, 1 ) and c and d (q q, 2 ) are the same size, because then the volume flows q 1 and q 2 are not affected.
  • the minimum volume flow through the first longitudinal branch 8 is referred to below as q q, 1 , the minimum volume flow through the second longitudinal branch 8 'as q q, 2 .
  • V 01 + A 1 s and V 02 - A 2 s are used to describe the compensate for non-linearity due to the position of the piston due to the different volumes in the two chambers.
  • the above-mentioned manipulated variable transformation now has the advantage that with the sum volume flow q ⁇ directly the total pressure and with the differential volume flow q ⁇ directly the position or speed of the piston or the force on the piston can be decoupled influenced.
  • Fig. 2 is shown in a schematic representation of the entire control concept.
  • the controller 11 designed by means of known controller throwing method
  • the manipulated variables q q, 1 , q q, 2 as well as the manipulated variables q 1 , q 2 or q ⁇ and q ⁇ are formed , as further defined above in the text.
  • the valve flow rates q a, q b, q c, q d through the above-mentioned equations in response to the manipulated variables used q 1 and q 2 or q ⁇ , and calculates q ⁇ are calculated from the predetermined control values.
  • valves a, b, c, d are calculated from the valve volume flows. These values (the real manipulated variables) are supplied to the high-voltage amplifier 14.
  • the valves (shown here by block 15) are now controlled according to the calculated voltages, so that the previously calculated valve volume flows q a , q b , q c , q d set and the first working chamber 6 with the volume flow q 1 and the second working chamber 6 'are charged with the flow q 2 .
  • the pressures p 1 and p 2 in the working chambers 6, 6 ' which are referred to below as state variables as a function of the volume flows q 1 and q 2 , are recorded in or on the cylinder 2, ie measured or monitored by means of corresponding sensors ,
  • the captured State variables 16 such as pressures, travel of the piston and / or speed or forces are supplied to the controller 11 as actual values and compared with the predetermined desired values. A corresponding control deviation is corrected accordingly.
  • the pressure supply is shown as block 17.
  • the valve full-bridge circuit 15 is supplied with the predetermined supply volume flow 18 via the supply pressure line.
  • valve control according to the invention of hydraulic actuators which has been described above with reference to a full-bridge circuit can also be used for a half-bridge circuit.
  • q 1 for a working chamber / pressure medium chamber and q q, 1 can be used as manipulated variables as the minimum volume flow of the longitudinal branch of the half bridge. From these manipulated variables, the distribution of the volume flows for the valves a and b in q a and q b takes place analogously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Ventilansteuerung von hydraulischen Aktoren auf Basis elektrorheologischer Flüssigkeiten nach dem Oberbegriff der Patentansprüche 1 und 3, sowie eine Vorrichtung zur Durchführung des Verfahrens nach dem Oberbegriff der Patentansprüche 7 und 8.
  • In der Pneumatik und Hydraulik werden Ventile in Schalt- und Stetigventile unterteilt. Unter Stetigventilen versteht man Ventile, bei denen die Ausgangsgröße (z.B. Ventilschieberweg, Druck usw.) proportional zum Eingangsignal (z.B. Ansteuerspannung) ist. Die Betätigung kann dabei hand/mechanisch/druck/elektrisch und elektronisch erfolgen. Stetigventile werden auch häufig als Proportional-, Regel- und Servoventile bezeichnet, wobei sich die Unterschiede in der Genauigkeit und dem Einsatz der Ventile begründen.
  • Weiterhin existieren Ventile auf Basis elektrorheologischer /magnetorheologischer Flüssigkeiten die aufgrund ihrer Eigenschaften zur Klasse der Stetigventile zugeordnet werden können.
  • In der konventionellen Hydraulik erfolgt die Ansteuerung eines doppelt wirkenden Zylinders im Allgemeinen über ein 4/3-Servoventil, wobei die Änderung des Volumenstroms im 4/3-Servoventil durch einen elektromechanischen Wandler erfolgt. Der elektromechanische Wandler (sowie die nachfolgenden hydraulischen Zwischenstufen) stellt im Allgemeinen das die Dynamik des Ventils beschränkende Bauteil dar.
  • Das System, bestehend aus Servoventil und Zylinder kann hierbei als Eingrößensystem mit der Eingangsgröße iv (Strom durch das Servoventil) bzw. bei vernachlässigbarer Dynamik des Servoventils xv (Position 4/3-Servoventils) und der Ausgangsgröße s (Position des Zylinders) beschrieben werden. Die Volumenströme in die Zylinderkammern q1 und q2 sind dabei nicht unabhängig voneinander als Stellgrößen verwendbar. Daher verliert das mathematische Modell des Zylinders Eigenschaften, die die Anwendbarkeit gewisser Reglerentwurfsverfahren verhindert.
  • Aus der Regelungstheorie sind eine Vielzahl von Reglerentwurfsverfahren für nichtlineare Systeme, bekannt. Beispielsweise seien an dieser Stelle der flachheitsbasierte Reglerentwurf (Joachim Rudolph: Beiträge zur flachheitsbasierten Folgeregelung linearer und nichtlinearer Systeme endlicher und unendlicher Dimension, Shaker Verlag, 2003), die exakte Eingangs-Zustandslinearisierung (Alberto Isidori: Nonlinear Control Systems, 3rd edition, Springer Verlag 2001) und der passivitätsbasierte Reglerentwurf (Romeo Ortega et al.: Passivity Based Control of Euler-Lagrange Systems, Springer Verlag London 1998) genannt.
  • Bei der Ansteuerung über ein 4/3-Servoventil stellen sich die Kammerdrücke p1 und p2 im Zylinder so ein, dass im stationären Zustand die durch die Kammerdrücke bedingte Kraft auf den Kolben gleich der Lastkraft ist. Die Absolutwerte der Drücke p1 und p2 selbst können hingegen nicht gezielt beeinflusst werden.
  • Weiterhin sind Ventile auf Basis von elektrorheologischen und/oder magnetorheologischen Flüssigkeiten bekannt. Elektrorheologische Ventile sind in der Regel aus koaxialen Zylinderelektroden oder aus Anordnungen paralleler Platten aufgebaut, zwischen denen die elektrorheologische Flüssigkeit hindurchströmt. Durch an die Elektroden gelegte elektrische Spannung bzw. durch das dadurch erzeugte elektrische Feld ist die effektive Viskosität der zwischen den Elektroden befindlichen elektrorheologischen Flüssigkeit und somit der Durchflusswiderstand durch den Ventilspalt steuerbar. Hierbei kann, bei anliegender Druckdifferenz, der Volumenstrom durch das Ventil vom vollständigen Öffnen (normalviskose Strömung) bis zum vollständigen Sperren (Festkörper) variiert werden.
  • Das Wirkprinzip beruht auf der Tatsache, dass die Partikel der elektrorheologischen Flüssigkeit bei Anlegen eines elektrischen Feldes Ketten ausbilden, die die Strömung behindern und somit den Durchflusswiderstand ändern.
  • Im Vergleich zu konventionell steuerbaren Ventilen sind Ventile auf Basis elektrorheologischer/magnetorheologischer Flüssigkeiten einfacher aufgebaut, weil sie keine bewegten mechanischen Teile wie Absperrkörper besitzen. Ein weiterer Vorteil besteht darin, dass elektrische Signale direkt umgesetzt werden können, so dass mit elektrorheologischen Flüssigkeitsventilen sehr schnelle Schaltzeiten realisiert werden können und somit eine wesentlich höhere Dynamik des Gesamtsystems, beispielsweise bestehend aus Zylinder mit elektrorheologischem Ventil, erzielt wird. Erschwerend für einen nachfolgenden Reglerentwurf ist hierbei allerdings, dass es sich bei dem elektrorheologischen Effekt um ein inhärent nichtlineares Phänomen handelt. Zusätzlich tritt in bestimmten Betriebsbereichen Hysterese auf. Der elektrorheologische Effekt ist beispielsweise in der nachstehend aufgeführten Literatur näher beschrieben:
    1. 1. Gavin, HP: Annular Poiseuille flow of ER and MR materials, Journal of Rheology, 45,4: 983-994, 2001;
    2. 2. Parthasarathy M, Klingenberg DJ: Electrorheology: Machanisms and Models, Journal of Materials, Science and Engineering R, reports; 17,2: 57-103, 1995;
    3. 3. Rajagopal KR, Wineman AS: Flow of electro-rheological materials, Acta Mechanica 91, 57-75, 1992;
    4. 4. Whittle M, Atkin RJ, Bullough WA: Dynamics of an electrorheological valve, International Journal of modern Physics B, 10,23:2933-2950, 1996;
    5. 5. Ru̇
      Figure imgb0001
      i
      Figure imgb0002
      ka M: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, SpringerVerlag, Berlin, 2000.
  • Bei einer aus dem Aufsatz von G. Fees, "Statische und dynamische Eigenschaften eines hochdynamischen ER-Servoantriebes" O+P Olhydraulik und Pneumatik, Vereinigte Fachverlage Krausskop, Mainz, DE, Bd. 45, Nr. 1, Januar 2001 (2001-01), Seiten 45-48, XP000977828 ISSN: 0341-2660, bekannten Zylinderansteuerung eines Zylinders wird jeder Zylinderkammer jeweils eine Halbbrückenschaltung bestehend aus zwei Ventilen auf Basis elektrorheologischer und/oder magnetorheologischer Flüssigkeiten zugeordnet. Die vier Ventile sind zu einer Vollbrücke verschaltet, in deren Querzweig der hydraulische Aktor (Zylinder) liegt. Die Ansteuerung dieser Ventile erfolgt hierbei derart, dass die vier Ventile mit einer gemeinsamen mittleren elektrischen Spannung u und einer Differenzspannung Δu angesteuert werden, d.h. am Ventil a und d liegt die elektrische Spannung u u an, während an den Ventilen b und c die elektrische Spannung u u anliegt. Die mittlere Spannung u wird dabei so gewählt, dass das Ventil in einem mittleren Arbeitspunkt arbeitet. Die Spannung Δu entspricht nun, verglichen mit konventionellen 4/3-Servoventilen, in etwa der Position xv des 4/3-Servoventils. Die elektrorheologische Vollbrücke simuliert damit das Verhalten eines 4/3-Servoventils mit einer Überdeckung, die mit Hilfe von u sowohl negativ als auch positiv eingestellt werden kann.
  • Der Nachteil dieser Ansteuerung und Aufteilung liegt allerdings darin, dass nicht alle Freiheitsgrade der Vollbrücke verwendet werden, mit der Konsequenz, dass damit beispielsweise eine Kompensation der durch den elektrorheologischen Effekt inhärent auftretenden Nichtlinearitäten der Ventile unmöglich ist. Bei der vorstehend beschriebenen Ansteuerung der Ventile auf Basis elektrorheologischer / magnetorheologischer Flüssigkeiten werden die Volumenströme in die Zylinderkammern q1/ q2 ebenfalls nicht unabhängig voneinander als Stellgröße verwendet. Aus diesem Grund verliert das mathematische Modell des Zylinder und der Vollbrücke (bestehend aus elektrorheologischen Ventilen) Eigenschaften, die die Anwendbarkeit gewisser Regelentwurfsverfahren verhindert. Es kann z.B. gezeigt werden, dass damit der flachheitsbasierte Reglerentwurf und die exakte Eingangs-Zustandslinearisierung nicht mehr anwendbar sind.
  • Die genannten Nachteile haben zur Folge, dass die mit elektrorheologischen Aktoren erzielbare Regelgüte und -dynamik keinen sichtbaren Vorteil gegenüber klassischen Hydraulikaktoren mit 4/3-Servoventil aufweisen.
  • Die Aufgabe der vorliegenden Erfindung ist es, die eingangs genannten Nachteile zu verhindern und eine Ventilansteuerung für Aktoren auf Basis elektrorheologischer Flüssigkeiten zu schaffen, die Steuerungs- und Regelungsvorgänge mit extrem hoher Dynamik ermöglicht.
  • Diese Aufgabe wird durch die in den Patentansprüchen 1, 3, 7 und 8 angegebene Erfindung gelöst. Weiterbildungen und vorteilhafte Ausführungsbeispiele der Erfindung sind in den Unteransprüchen angegeben.
  • Auf Basis der vorstehend genannten Stellgrößen, welche für den Reglerentwurf wesentlich besser geeignet sind, werden die 4 elektrischen Spannungen für die Ansteuerung der 4 Ventile berechnet. Mit Hilfe der neuen Stellgrößen q1 und q2 lassen sich sehr einfach die Kammerdrücke regeln. qq,1 und qq,2 dienen als Stellgrößen für die Versorgungsdruckregelung und verhindern ein vollständiges Sperren der Ventile, da sie einen Mindestvolumenstrom sicherstellen. qΣ und qΔ werden als Stellgrößen zur entkoppelten Regelung des Summendrucks und der Position bzw. Geschwindigkeit des Kolbens verwendet. Aufgrund der unabhängigen Vorgaben von den zuvor genannten Stellgrößen sind sämtliche lineare und/oder nichtlineare und/oder adaptive Ein- und Mehrgrößenregelungsverfahren mit oder ohne Kaskadenstruktur anwendbar.
  • Da alle dem Aktor zugeordneten Ventile immer mit einem Mindestvolumenstrom (qq,1 bzw. qq,2) durchströmt werden, treten keine unerwünschten Hystereseeffekte auf und die Vorteile der eingesetzten Technologie auf Basis elektrorheologischer/magnetorheologischer Flüssigkeiten, d.h. die Vorteile der schnellen Reaktionszeit und somit der höheren Dynamik sind sinnvoll nutzbar.
  • Weiterhin vorteilhaft ist die Möglichkeit der Regelung des Versorgungsdruckes mittels der Stellgrößen des Mindestvolumenstromes qq,1 / qq,2. Hierdurch kann auf die Anordnung des sonst notwendigen Druckregelventils in der Druckversorgung verzichtet werden.
  • Zusätzlich besteht nunmehr die Möglichkeit den Versorgungsdruck sehr einfach zeitlich variabel einzustellen.
  • Die Erfindung wird anhand eines Ausführungsbeispiels, das in der Zeichnung dargestellt ist, näher erläutert. Es zeigen:
    • Fig.1: eine Prinzipskizze eines Aktors auf Basis elektrorheologischer Flüssigkeiten, und
    • Fig.2: eines schematische Darstellung eines Regelungskonzepts.
  • Fig. 1 zeigt in einer Prinzipskizze einen Aktor 1 auf Basis elektrorheologischer Flüssigkeiten bestehend aus einem Zylinder 2, der im Querzweig 3 einer aus vier Ventilen a, b, c, d auf Basis elektrorheologischer/magnetorheologischer Flüssigkeiten bestehenden Vollbrücke verschaltet ist. Der Zylinder 2 ist in dem Ausführungsbeispiel als Gleichgangzylinder dargestellt, es könnte jedoch aus jede andere beliebige Zylinderbauform verwendet werden.
  • Der Zylinder 2 weist ein Zylindergehäuse 4 mit einem axial verschiebbar gelagerten Kolben 5 auf. Der Kolben 5 unterteilt das Zylindergehäuse 4 in eine erste und eine zweite volumenveränderliche Arbeitskammer 6,6'. In das Zylindergehäuse 4 ist jeweils endseitig eine Ein/Auslassöffnung für das Druckmittel eingebracht. Die Ein/Auslassöffnung der ersten bzw. zweiten Arbeitskammer 6,6' ist jeweils mit einer im Querzweig 3 der Ventilvollbrückenschaltung angeordneten Fluidleitung 7,7' gekoppelt. Jeder Arbeitskammer 6,6' des Zylinders 2 ist somit eine Halbbrückenschaltung bestehend aus zwei Ventilen a,b /c,d auf Basis elektrorheologischer / magnetorheologischer Flüssigkeiten zugeordnet. Die der ersten Arbeitskammer 6 zugeordneten Ventile a, b sind, wie es aus den Darstellungen zu entnehmen ist, in einem ersten Längszweig 8 der Vollbrückenschaltung angeordnet. Die der zweiten Arbeitskammer 6' zugeordneten Ventile c, d sind in einem zweiten Längszweig 8' der Vollbrückenschaltung angeordnet. Die Vollbrückenschaltung der Ventile a, b, c, d ist zwischen der Fluidverbindung der Ventile a, c mit einer Versorgungsdruckleitung 9 verknüpft. Der Versorgungsdruck wird über eine hier nicht näher beschriebene Pumpen-/Speicheranordnung bereitgestellt. Da bei Ventilen auf Basis elektrorheologischer / magnetorheologischer Flüssigkeiten prinzipbedingt stationär nur ein Volumenstrom in Richtung der Druckdifferenz fließen kann, ist die oben beschriebene Verschaltung zu einer Vollbrücke notwendig. Die Durchflussrichtung der Volumenströme ist in der Fig. 1 durch die Pfeile dargestellt. Die Ventile b, d sind mit einem Tank 10 gekoppelt.
  • Ventile auf Basis elektrorheologischer / magnetorheologischer Flüssigkeiten sind in einer Vielzahl von Ausführungsformen bekannt.
  • Das Ventil auf Basis elektrorheologischer Flüssigkeiten besteht prinzipiell aus einem in einem Gehäuse gebildeten Ventilspalt, der von elektrisch ansteuerbaren Elektrodenanordnungen begrenzt wird, so dass eine durch den Ventilspalt strömende elektrorheologische Flüssigkeit durch Veränderung des zwischen den Elektrodenanordnungen erzeugten elektrischen Feldes hinsichtlich der rheologischen Eigenschaften verändert werden kann. Mit Hilfe einer von einem Hochspannungsverstärker eingeprägten Spannung an den Elektrodenanordnungen kann ein elektrisches Feld erzeugt werden und damit, bei anliegender Druckdifferenz, der Volumenstrom durch das Ventil variiert werden. Das Ventil stellt somit eine elektrisch einstellbare Drossel dar, was schematisch in der Zeichnung der Fig. 1 abgebildet ist.
  • Es ist an dieser Stelle selbstverständlich, dass bei der Verwendung von magnetorheologischen Flüssigkeiten anstelle von Elektrodenanordnungen Spulenanordnungen zur Erzeugung eines magnetischen Feldes vorgesehen sein müssen.
  • Ein wesentlicher Kernpunkt der Erfindung besteht darin, dass die vier Stellfreiheitsgrade der Ventile a, b, c, d auf Basis elektrorheologischer / magnetorheologischer Flüssigkeiten in der Vollbrücke optimal genutzt werden. Durch die Verwendung der Volumenströme in die erste bzw. zweite Arbeitskammer q1, q2 als unabhängige Stellgrößen können die Drücke in den beiden Arbeitskammern geregelt werden. Dies kann auch in einer Kaskadenreglerstruktur als unterlagerter Regelkreis verwendet werden, während in einem überlagerten Regelkreis die eigentliche Regelgröße (zB. die Position des Zylinders s oder die Druckkraft) geregelt wird.
  • Aus der schematischen Darstellung der Fig. 1 ist zu ersehen, dass sich die Volumenströme q1, q2 zu den bzw. von den Arbeitskammern jeweils aus der Differenz der Ventilvolumenströme des ersten und zweiten Längszweiges 8,8' der Vollbrücke bilden: q 1 = q a - q b
    Figure imgb0003
    q 2 = q c - q d
    Figure imgb0004

    qa = Volumenstrom durch das Ventil a
    qb = Volumenstrom durch das Ventil b
    qc = Volumenstrom durch das Ventil c
    qd = Volumenstrom durch das Ventil d
  • Wie bereits vorstehend näher erläutert, treten im Übergangsbereich zum vollständigen Sperren des Ventils auf Basis elektrorheologischer Flüssigkeiten Hystereseeffekte auf. Um dies zu verhindern, werden die Ventile a, b, c, d immer mit einem Mindestvolumenstrom betrieben. Wesentlich dabei ist, dass der Mindestvolumenstrom durch die Ventile a und b (qq,1) bzw. c und d (qq,2) gleichgroß sind, weil dann die Volumenströme q1 und q2 dadurch nicht beeinflusst werden. Der Mindestvolumenstrom durch den ersten Längszweig 8 wird nachfolgend mit qq,1, der Mindestvolumenstrom durch den zweiten Längszweig 8' mit qq,2 bezeichnet.
  • Werden nun die Völumenströme q1 / q2 als Stellgrößen verwendet, dann erfolgt die Aufteilung der Volumenströme auf die vier Ventile a, b, c, d der Vollbrücke wie folgt: q a = sg q 1 + q q , 1 q b = sg - q 1 + q q , 1 q c = sg q 2 + q q , 2 mit sg q = { q f u ¨ r q 0 0 sonst q d = sg - q 2 + q q , 2
    Figure imgb0005
  • Dabei entspricht der Wert der Funktion sg(q) für positive q dem Argument q, während der Wert für negative q identisch 0 ist.
  • Bei einer symmetrischen Brücke ist es sinnvoll qq,1 und qq,2 gleichgroß zu wählen. Aus der obigen Ansteuerstrategie folgt unmittelbar, dass qa ≥ qq,1, qb ≥ qq,1, qc ≥ qq,2 und qd ≥ qq,2 sind, und die Ventile somit nie vollständig gesperrt sind.
  • Auf der Grundlage der vier Ventilvolumenströme (und der zugehörigen Druckabfälle) können nun die elektrischen Spannungen der Ventile eindeutig festgelegt werden. Die vier elektrischen Spannungen an den Ventilen sind die eigentlichen Stellgrößen des Aktors.
  • Will man nun beispielsweise die Position des Kolbens 5 des Zylinders 2 und den Summendruck oder die Kraft auf den Kolben 5 und den Summendruck oder andere äquivalente Größen regeln, so ist es sinnvoll, die Volumenströme q1 und q2 wie folgt: q Σ = 1 V 01 + A 1 s q 1 + 1 V 02 - A 2 s q 2
    Figure imgb0006
    q Δ = 1 V 01 + A 1 s q 1 - 1 V 02 - A 2 s q 2
    Figure imgb0007

    mit dem Summenvolumenstrom qΣ, dem Differenzvolumenstrom qΔ sowie den Arbeitskammervolumina (für s=0) v01 und V02 und den effektiven Kolbenflächen A1 und A2 des Kolbens zu parametrieren. Die Terme V01 + A1s und V02 - A2s dienen dazu, die durch die Stellung des Kolbens s bedingte Nichtlinearität durch die unterschiedlichen Volumina in den beiden Kammern zu kompensieren. Mit dieser Gleichung werden sämtliche Bauformen, wie Gleichgangzylinder (A1 = A2), Zweistangenzylinder mit unterschiedlicher Kolbenfläche oder Differenzialzylinder erfasst. Falls die durch diese Terme bedingten Nichtlinearitäten keinen besonders großen Einfluss auf das dynamische Verhalten haben, beispielsweise wenn der Weg des Kolbens s sehr klein ist, können diese in der Gleichung auch entfallen.
  • Die oben aufgeführte Stellgrößentransformation hat nun den Vorteil, dass mit dem Summenvolumenstrom qΣ direkt der Summendruck und mit dem Differenzvolumenstrom qΔ direkt die Position bzw. Geschwindigkeit des Kolbens bzw. die Kraft am Kolben entkoppelt beeinflusst werden können.
  • Für die neuen virtuell gebildeten Stellgrößen qΣ, qΔ erfolgt die Aufteilung der Volumenströme auf die vier Ventile a, b, c,d der Vollbrücke wie folgt: q a = ( sg q Δ 2 + sg q Σ 2 ) V 02 + A 1 S + q q , 1 q b = ( sg - q Δ 2 + sg - q Σ 2 ) V 01 + A 1 S + q q , 1 q c = ( sg - q Δ 2 + sg q Σ 2 ) V 02 - A 2 S + q q , 2 q d = ( sg q Δ 2 + sg - q Σ 2 ) V 02 - A 2 S + q q , 2 mit sg q = { q f u ¨ r q 0 0 sonst
    Figure imgb0008
  • Auf Basis der vier Ventilvolumenströme qa, qb, qc, qd können nun die elektrischen Spannungen für die Ansteuerung der vier Ventile a, b, c, d eindeutig festgelegt werden.
  • In Fig. 2 ist in schematischer Darstellung das gesamte Regelungskonzept abgebildet. Im (mittels bekannter Reglerenwurfsverfahren entworfenem) Regler 11 werden die Stellgrößen qq,1, qq,2 sowie die Stellgrößen q1, q2 bzw. qΣ und qΔ, wie weiter vorstehend im Text näher definiert, gebildet. Im Block Ventilansteuerung 12 werden aus den vorgegebenen Stellgrößen die Ventilvolumenströme qa, qb, qc, qd mittels der vorstehend aufgeführten Gleichungen in Abhängigkeit der verwendeten Stellgrößen q1 und q2 bzw. qΣ und qΔ berechnet .
  • In einer nachfolgenden Spannungsberechnung 13 werden aus den Ventilvolumenströmen die entsprechenden Spannungen der Ventile a, b, c, d berechnet. Diese Werte (die realen Stellgrößen) werden dem Hochspannungsverstärker 14 zugeführt. Die Ventile (hier dargestellt durch Block 15) werden nun entsprechend der berechneten Spannungen angesteuert, so dass sich die zuvor berechneten Ventilvolumenströme qa, qb, qc, qd einstellen und die erste Arbeitskammer 6 mit dem Volumenstrom q1 und die zweite Arbeitskammer 6' mit dem Volumenstrom q2 beaufschlagt werden.
  • Zur Implementierung eines Stellgesetzes ist im Allgemeinen eine Messung oder Beobachtung (im Sinne der Regelungstechnik) gewisser Systemgrößen notwendig. Welche Systemgrößen für die Regelung notwendig sind, ist im Allgemeinen wesentlich vom gewählten Reglerkonzept abhängig. Für die vorgeschlagene Ansteuerung der elektrorheologischen Ventile ist in jedem Fall die Kenntnis des Druckabfalls entlang der einzelnen Ventile notwendig.
  • Die sich in Abhängigkeit der Volumenströme q1 und q2 einstellenden Drücke p1 bzw. p2 in den Arbeitskammern 6, 6', die nachfolgend als Zustandsgrößen bezeichnet werden, werden im bzw. am Zylinder 2 erfasst, d.h. mittels entsprechender Sensoren gemessen oder beobachtet. Die erfassten Zustandsgrößen 16 wie Drücke, Weg des Kolbens und/oder Geschwindigkeit oder Kräfte werden als Istgrößen dem Regler 11 zugeführt und mit den vorgegebenen Sollgrößen verglichen. Eine entsprechende Regelabweichung wird entsprechend ausgeregelt.
  • In der schematischen Darstellung ist als Block 17 die Druckversorgung dargestellt. Die Ventilvollbrückenschaltung 15 wird mit dem vorgegebenen Versorgungsvolumenstrom 18 über die Versorgungsdruckleitung versorgt.
  • Es ist selbstverständlich, dass die erfindungsgemäße Ventilansteuerung von hydraulischen Aktoren die vorstehend anhand einer Vollbrückenschaltung beschrieben wurde, auch für eine Halbbrückenschaltung anwendbar ist. Hierbei sind als Stellgrößen dann nur q1 für eine Arbeitskammer /Druckmittelkammer und qq,1 als Mindestvolumenstrom des Längszweiges der Halbbrücke verwendbar. Aus diesen Stellgrößen erfolgt dann die Aufteilung der Volumenströme für die Ventile a und b in qa und qb analog.
  • Prinzipiell können als Aktor an Stelle des zuvor beschriebenen Zylinder-Kolben-Anordnung auch Anordnungen vorgesehen sein, die mittels einer Membran begrenzende Druckmittelräume aufweisen.

Claims (8)

  1. Verfahren zur Ventilansteuerung von hydraulischen Aktoren (2), wobei der Aktor (2) mindestens zwei über ein elastisches oder bewegliches Element (5) getrennte Arbeitskammern (6,6') aufweist und wobei die Arbeitskammern (6,6') mit vier zu einer Vollbrücke verschalteten ventilen a, b, c, d (15) auf Basis elektrorheologischen / magnetorheologischen Flüssigkeiten verknüpft sind, dadurch gekennzeichnet, dass die Ventile (15) unabhängig voneinander ansteuerbar sind, wobei die Ventile a und b mit einem gleichgroßen Mindestvolumenstrom qq,1 und die Ventile c und d mit einem gleichgroßen Mindestvolumenstrom qq,2 betrieben werden, wobei als Stellgröße für die entsprechende Regelung der Volumenstrom q1 in eine erste Arbeitskammer (6) und der Volumenstrom q2 in eine zweite Arbeitskammer (6') sowie der Mindestvolumenstrom qq,1 und der Mindestvolumenstrom qq,2 herangezogen werden und aus diesen Stellgrößen q1, q2, qq,1, qq,2 die Aufteilung der Ventilvolumenströme qa, qb, qc, qd durch die Ventile (15) und somit die Berechnung der Spannungssignale für die Ansteuerung der Ventile a, b, c, d berechnet werden.
  2. Verfahren zur Ventilansteuerung von hydraulischen Aktoren (2) nach Anspruch 1, dadurch gekennzeichnet, dass die Aufteilung der Ventilvolumenströme qa, qb, qc, qd durch die Ventile (15) nach den Formeln: q a = sg q 1 + q q , 1 q b = sg - q 1 + q q , 1 q c = sg q 2 + q q , 2 mit sg q = { q f u ¨ r q 0 0 sonst q d = sg - q 2 + q q , 2
    Figure imgb0009

    und damit die Spannungssignale für die Ansteuerung der Ventile a, b, c, d berechnet werden.
  3. Verfahren zur Ventilansteuerung von hydraulischen Aktoren (2), wobei der Aktor (2) mindestens zwei über ein elastisches oder bewegliches Element (5) getrennte Arbeitskammern (6, 6') aufweist und wobei die Arbeitskammern (6, 6') mit vier zu einer Vollbrücke verschalteten Ventilen a, b, c, d (15) auf Basis elektrorheologischen / magnetorheologischen Flüssigkeiten verknüpft sind, dadurch gekennzeichnet, dass die Ventile (15) unabhängig voneinander ansteuerbar sind, wobei die Ventile a und b mit einem gleichgroßen Mindestvolumenstrom qq,1 und die Ventile c und d mit einem gleichgroßen Mindestvolumenstrom qq,2 betrieben werden, wobei als Stellgröße der Differenzvolumenstrom qΔ in die zwei Arbeitskammern (6, 6') , der Summenvolumenstrom qΣ in die zwei Arbeitskammern (6, 6') und der Mindestvolumenstrom qq,1 und der Mindestvolumenstrom qq,2 herangezogen werden und aus diesen Stellgrößen qΔ, qΣ, qq,1, qq,2 die Aufteilung der Ventilvolumenströme qa, qb, qc, qd durch die Ventile (15) und somit die Spannungssignale für die Ansteuerung der Ventile a, b, c, d (15) berechnet werden.
  4. Verfahren zur Ventilansteuerung von hydraulischen Aktoren nach Anspruch 3, dadurch gekennzeichnet, dass die Aufteilung der Ventilvolumenströme qa, qb, qc, qd durch die Ventile (15) nach den Formeln: q a = ( sg q Δ 2 + sg q Σ 2 ) V 02 - A 1 S + q q , 1 q b = ( sg - q Δ 2 + sg - q Σ 2 ) V 01 + A 1 S + q q , 1 q c = ( sg - q Δ 2 + sg q Σ 2 ) V 02 - A 2 S + q q , 2 q d = ( sg q Δ 2 + sg - q Σ 2 ) V 02 - A 2 S + q q , 2 mit sg q = { q f u ¨ r q 0 0 sonst
    Figure imgb0010

    A1 = effektive Kolbenfläche der ersten Arbeitskammer 6;
    A2 = effektive Kolbenfläche der zweiten Arbeitskammer 6' ;
    V01 = Volumen der ersten Arbeitskammer 6;
    V02 = Volumen der zweiten Arbeitskammer 6' und
    S = Weg des Kolbens 5
    entspricht
    und damit die Spannungssignale für die Ansteuerung der Ventile a, b, c, d berechnet werden.
  5. Verfahren zur Ventilansteuerung von hydraulischen Aktoren (2) wobei der Aktor (2) mindestens einen über ein elastisches oder bewegliches Element (5) getrennten Arbeitskammer (6) aufweist, und wobei die Arbeitskammer (6) mit zwei zu einer Halbbrücke verschalteten Ventilen a, b auf Basis elektrorheologischer /magnetorheologischer Flüssigkeiten verknüpft ist, dadurch gekennzeichnet, dass die Ventile a, b unabhängig voneinander ansteuerbar sind, wobei die Ventile a und b mit einem gleichgroßen Mindestvolumenstrom qq,1 betrieben werden, wobei als Stellgröße für die entsprechende Regelung der Volumenstrom q1 in einer ersten Arbeitskammer (6) und der Mindestvolumenstrom qq,1 herangezogen werden und aus diesen Stellgrößen q1, qq,1 die Aufteilung der Ventilvolumenströme qa, qb durch die Ventile (15) und damit die Spannungssignale für die Ansteuerung der ventile a, b berechnet werden.
  6. Verfahren zur Ventilansteuerung von hydraulischen Aktoren nach Anspruch 5, dadurch gekennzeichnet, dass die Aufteilung der Ventilvolumenströme qa, qb durch die Ventile a, b nach den Formeln: q a = sg q 1 + q q , 1 q b = sg - q 1 + q q , 1 mit sg q = { q for q 0 0 otherwise
    Figure imgb0011

    und damit die Spannungssignale für die Ansteuerung der Ventile a, b berechnet werden.
  7. Vorrichtung zur Ventilansteuerung mit hydraulischen Aktoren (2), wobei der Aktor (2) mindestens zwei über ein elastisches oder bewegliches Element (5) getrennte Druckmittelräume (6, 6') aufweist und wobei die Druckmittelräume (6, 6') mit vier zu einer Vollbrücke verschalteten Ventilen a, b, c, d (15) auf Basis elektrorheologischen / magnetorheologischen Flüssigkeiten verknüpft sind und wobei die Ventile (15) nach einem der Verfahren nach Anspruch 1, bis 4 unabhängig voneinander ansteuerbar sind, dadurch gekennzeichnet, dass zur Ansteuerung ein Regler 11 vorgesehen ist, wobei als Stellgröße für die entsprechende Regelung q1, q2 bzw. qΔ, qΣ sowie qq,1 und qq,2 herangezogen werden und aus diesen Stellgrößen durch eine Ventilansteuerung (12) die Aufteilung der Ventilvolumenströme qa, qb, qc, qd durch die Ventile (15) ermittelt wird und durch eine nachfolgende Spannungsberechnung (13) die Spannungssignale für die Ansteuerung der Ventile a, b, c, d (15) berechnet werden.
  8. Vorrichtung zur Ventilansteuerung mit hydraulischen Aktoren (2), wobei der Aktor (2) mindestens einen über ein elastisches oder bewegliches Element (5) getrennten Druckmittelraum (6) aufweist, und wobei der Druckmittelraum (6) mit zwei zu einer Halbbrücke verschalteten Ventilen a, b (15) auf Basis elektrorheologischer / magnetorheologischer Flüssigkeiten verknüpft ist, und wobei die Ventile a, b (15) nach einem der Verfahren nach Anspruch 5 oder 6 unabhängig voneinander ansteuerbar sind, dadurch gekennzeichnet, dass zur Ventilansteuerung ein Regler (11) vorgesehen ist, wobei als Stellgröße für die entsprechende Regelung q1 und qq,1 herangezogen werden und aus diesen Stellgrößen q1, qq,1 durch eine Ventilansteuerung (12) die Aufteilung der Ventilvolumenströme qa, qb durch die Ventile (15) ermittelt wird und durch eine nachfolgende Spannungsberechnung (13) die Spannungssignale für die Ansteuerung der Ventile a, b (15) berechnet werden.
EP05715527A 2004-03-04 2005-02-25 Ventilansteuerung von hydraulischen aktoren auf basis elektrorheologischer flüssigkeiten Expired - Fee Related EP1721081B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410010532 DE102004010532A1 (de) 2004-03-04 2004-03-04 Ventilansteuerung von hydraulischen Aktoren auf Basis elektrorheologischer Flüssigkeiten
PCT/EP2005/001975 WO2005085654A1 (de) 2004-03-04 2005-02-25 Ventilansteuerung von hydraulischen aktoren auf basis elektrorheologischer flüssigkeiten

Publications (2)

Publication Number Publication Date
EP1721081A1 EP1721081A1 (de) 2006-11-15
EP1721081B1 true EP1721081B1 (de) 2008-12-03

Family

ID=34917068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05715527A Expired - Fee Related EP1721081B1 (de) 2004-03-04 2005-02-25 Ventilansteuerung von hydraulischen aktoren auf basis elektrorheologischer flüssigkeiten

Country Status (3)

Country Link
EP (1) EP1721081B1 (de)
DE (2) DE102004010532A1 (de)
WO (1) WO2005085654A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014011541A1 (de) 2014-08-08 2016-02-11 Fludicon Gmbh Elektrorheologischer Aktor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009952A1 (de) * 2005-03-04 2006-09-07 Bayerische Motoren Werke Ag Fahrzeug-Servolenksystem der Closed-Center-Bauart
DE202015102095U1 (de) * 2015-04-27 2016-08-01 Bürkert Werke GmbH Ventilaktor, Aktorsystem und Ventil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3614484A1 (de) * 1986-04-29 1987-11-05 Bosch Gmbh Robert Elektrohydraulischer wandler
GB9613239D0 (en) * 1996-06-25 1996-08-28 Er Fluid Dev Improvements in or relating to high speed actuators and vibrators based on electro-rheological fluids
DE19735466B4 (de) * 1997-08-16 2007-06-28 Fludicon Gmbh Druckmittelmotor für elektrorheologische Flüssigkeiten
DE19810921C2 (de) * 1998-03-13 2000-02-24 Karlsruhe Forschzent Elektrorheologischer hydraulischer Mikroaktor
DE19904530A1 (de) * 1999-02-04 2000-08-10 Bayerische Motoren Werke Ag Variabler Stoßabsorber mit Sicherheitsfunktion
DE19955959A1 (de) * 1999-11-19 2001-05-23 Schenck Pegasus Gmbh Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten
DE10030079A1 (de) * 2000-06-19 2002-01-24 Schenck Ag Carl Zylinder-Kolben-Anordnung auf Basis elektrorheologischer/magnetorheologischer Flüssigkeiten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014011541A1 (de) 2014-08-08 2016-02-11 Fludicon Gmbh Elektrorheologischer Aktor
DE102014011541B4 (de) * 2014-08-08 2016-04-07 Fludicon Gmbh Elektrorheologischer Aktor

Also Published As

Publication number Publication date
DE102004010532A1 (de) 2005-12-15
DE502005006134D1 (de) 2009-01-15
WO2005085654A1 (de) 2005-09-15
EP1721081A1 (de) 2006-11-15

Similar Documents

Publication Publication Date Title
EP0091018B1 (de) Positionsregelung für einen doppelt wirkenden hydraulischen Motor
DE2658928C2 (de)
DE3207392C2 (de) Vorrichtung zur selbstanpassenden Stellungsregelung eines Stellgliedes
DE2653038A1 (de) Hydraulischer servomechanismus
DE102015204258A1 (de) Verfahren zum Ermitteln einer Schaltfunktion für einen Sliding Mode Regler und Sliding Mode Regler
EP1315060B1 (de) Verfahren zur kontinuierlichen Regelung einer Stellung eines Stellventils
DE102008053844A1 (de) Elektro-pneumatisches System zum Steuern eines doppelt wirkenden pneumatischen Stellantriebs
DE102017213650A1 (de) Verfahren zum Regeln eines hydraulischen Systems, Regeleinheit für ein hydraulisches System und hydraulisches System
EP1721081B1 (de) Ventilansteuerung von hydraulischen aktoren auf basis elektrorheologischer flüssigkeiten
EP0141061A1 (de) Verfahren und Einrichtung zur Regelung einer Grösse
DE3034326T1 (de) A signal converting unit intended to be incorporated in a pneumatic control system
EP2304515B1 (de) Steueranordnung mit einem druckbegrenzungsventil
DE102019204497B3 (de) System und Verfahren
DE2713802C2 (de) Vorrichtung zum Regeln der kontinuierlichen Zufuhr eines hydraulischen oder pneumatischen Antriebsmittels
DE102014003084A1 (de) Digitalhydraulisches Antriebssystem
DE2823960A1 (de) Elektrohydraulischer stellantrieb, insbesondere fuer steuerorgane an luftfahrzeugen
DE1948928C3 (de) Fluidikschaltung für eine Servoeinrichtung mit einem doppelt wirkenden druckmittelbetätigten Arbeitskolben
DE102018219365A1 (de) Hydromaschine, Steuerungsanordnung, Hydraulisches System und Verfahren
DE3040521C2 (de)
DE4417153C1 (de) Schaltungsanordnung und Verfahren zum Regeln der Lage eines ventilgesteuerten hydraulischen Stellglieds
DE102020213262A1 (de) Verfahren zum Betreiben eines hydraulischen Antriebs
DE4135822C2 (de) Vorrichtung zur Erzeugung eines hydraulischen Signals entsprechend einem elektrischen Signal
DE102014220743A1 (de) Pneumatischer Positionierantrieb, Verfahren zum Betrieb
DE102009051514A1 (de) Vorrichtung und Verfahren zur Druckregelung eines Volumens
DE3741425C3 (de) Linearantrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUGI, ANDREAS

Inventor name: KEMMETMUELLER, WOLFGANG

Inventor name: ADENSTEDT, RALF

17Q First examination report despatched

Effective date: 20070129

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005006134

Country of ref document: DE

Date of ref document: 20090115

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090904

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170227

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006134

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWAELTE VOELGER & BEHRENS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005006134

Country of ref document: DE

Owner name: HITACHI AUTOMOTIVE SYSTEMS EUROPE GESELLSCHAFT, DE

Free format text: FORMER OWNER: FLUDICON GMBH, 64293 DARMSTADT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005006134

Country of ref document: DE

Owner name: HITACHI AUTOMOTIVE SYSTEMS EUROPE GMBH, DE

Free format text: FORMER OWNER: FLUDICON GMBH, 64293 DARMSTADT, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170228

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170622 AND 20170628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170426

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: HITACHI AUTOMOTIVE SYSTEMS EUROPE GMBH, DE

Effective date: 20170920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006134

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180225

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180225

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180225