EP1720608B1 - Appareil pour une curietherapie intra-oculaire - Google Patents

Appareil pour une curietherapie intra-oculaire Download PDF

Info

Publication number
EP1720608B1
EP1720608B1 EP05722965A EP05722965A EP1720608B1 EP 1720608 B1 EP1720608 B1 EP 1720608B1 EP 05722965 A EP05722965 A EP 05722965A EP 05722965 A EP05722965 A EP 05722965A EP 1720608 B1 EP1720608 B1 EP 1720608B1
Authority
EP
European Patent Office
Prior art keywords
radiation
distal end
cannula
delivery device
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05722965A
Other languages
German (de)
English (en)
Other versions
EP1720608A2 (fr
EP1720608A4 (fr
Inventor
Richard Hillstead
Charles Larsen
Roelof Trip
Rainer c/o STEP GmbH PINTASKE
Sabine Behrmann
Eberhard c/o AEA Technology QSA GmbH FRITZ
Eugene De Juan
Mark Humayun
Gerd T. Phillipps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEOVISTA Inc
Original Assignee
NEOVISTA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEOVISTA Inc filed Critical NEOVISTA Inc
Priority to EP10075513A priority Critical patent/EP2298412A1/fr
Publication of EP1720608A2 publication Critical patent/EP1720608A2/fr
Publication of EP1720608A4 publication Critical patent/EP1720608A4/fr
Application granted granted Critical
Publication of EP1720608B1 publication Critical patent/EP1720608B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1014Intracavitary radiation therapy
    • A61N5/1017Treatment of the eye, e.g. for "macular degeneration"

Definitions

  • the present invention relates to apparatus and systems for performing intraocular brachytherapy.
  • the invention may be employed in the treatment of a variety of eye disorders, but is particularly suited for treatment of macular degeneration in which neovascularized ocular tissue is treated by means of a local, directional delivery of a radiation dose emitted by a radioactive source to target tissues.
  • the slow, progressive loss of central vision is known as macular degeneration.
  • Macular degeneration affects the macula, a small portion of the retina.
  • the retina is a fine layer of light-sensing nerve cells that covers the inside back portion of the eye.
  • the macula is the central, posterior part of the retina and contains the largest concentration of photoreceptors.
  • the macula is typically 5 to 6 mm in diameter, and its central portion is known as the fovea. While all parts of the retina contribute to sight, the macula provides the sharp, central vision that is requited to see objects clearly and for daily activities including reading and driving.
  • Macular degeneration is generally caused by age (termed Age Related Macular Degeneration or "AMD") or poor circulation in the eyes. Smokers and individuals with circulatory problems have an increased risk for developing the condition. AMD is the leading cause of blindness in people older than 50 years in developed countries. Between the ages of 52-64, approximately 2% of the population are effected. This rises to an astonishing 28% of the population over the age of 75.
  • AMD Age Related Macular Degeneration
  • macular degeneration There are two forms of macular degeneration, which are known as “wet” and “dry” macular degeneration. Dry macular degeneration blurs the central vision slowly over time. Individuals with this form of macular degeneration may experience a dimming or distortion of vision that is particularly noticeable when trying to read.
  • yellowish deposits called drusen develop beneath the macula. Drusen are accumulations of fatty deposits, and most individuals older than 50 years have at least one small druse. These fatty deposits are usually carried away by blood vessels that transport nutrients to the retina. However, this process is diminished in macular degeneration and the deposits build up. Dry macular degeneration may also result when the layer of light-sensitive cells in the macula become thinner as cells break down over time. Generally, a person with the dry form of macular degeneration in one eye eventually develops visual problems in both eyes. However, dry macular degeneration rarely causes total loss of reading vision.
  • Wet macular degeneration (which is the neovascular form of the disease) is more severe than dry macular degeneration.
  • the loss of vision due to wet macular degeneration also comes much more quickly than dry macular degeneration.
  • unwanted new blood vessels grow beneath the macula (Choroidal Neo-Vascularization (CNV) endothelial cells).
  • CNV Cho-Vascularization
  • These choroidal blood vessels are fragile and leak fluid and blood, which causes separation of tissues and damages light sensitive cells in the retina.
  • Individuals with this form of macular degeneration typically experience noticeable distortion of vision such as, for example, seeing straight lines as wavy, and seeing blank spots in their field of vision.
  • a localized retinal detachment (called a "bleb") is created by performing a retinotomy and injecting saline therethrough using a subretinal infusion needle, thus creasing a space between the partially-detached retina and the area of chloridal neo-Vascularization.
  • a radiation-emitting source is introduced into the bleb and the CNV is directly irradiated.
  • US 2002 10115902 A1 discloses an intraocular irradiation device for the treatment of age related macular degeneration.
  • US-6,443,881 discloses an ophthalmic brachytherapy device having a radiation applicator that is designed to contact the eye ball.
  • the present application relates to advances in apparatus, systems and methods for performing intraocular brachytherapy, in general, and for the treatment of macular degeneration with radiation, in particular.
  • Fig. 1 is a partial longitudinal cross-sectional view of an apparatus for performing intraocular brachytherapy comprising a handpiece, a cannula secured to the handpiece, and a radiation source wire ("RSW") interior of the handpiece and cannula in a retracted position.
  • RSW radiation source wire
  • Fig. 2 is a cross-sectional view of the apparatus of Fig. 1 with the radiation-emitting element advanced to the treatment position.
  • Fig. 3 is a top view (as compared to Figs. 1 and 2 ) of a portion of the housing comprising part of handpiece shown in Fig. 1 .
  • Fig. 4 is an enlarged view of the cannula associated with the system of Fig. 1 , in partial cross-section.
  • Fig. 5 is a fragmentary, cross-sectional view of the radioactive source wire forming a portion of the system shown in Fig. 1 .
  • Fig. 6 is a perspective view of the distal end of the cannula and a dose flattening filter comprising a portion of the tip or distal end of the cannula.
  • Fig. 7 is an exploded perspective view of a first embodiment of a positioning system for use with the system of Fig. 1 .
  • Figs. 8 and 9 illustrate the use of the positioning system of Fig. 7 in connection with the system of Fig. 1 .
  • Fig. 10 is an enlarged view showing the treatment of CNV with the device of Fig. 1 .
  • Fig. 11 shows the dose rate profile at the treatment side of the delivery device.
  • Fig. 12 is a schematic view of a further version of the cannula for use in the present invention having an inflatable balloon at its distal end.
  • Fig. 13 is a schematic view of an alternate embodiment of the cannula of Fig. 1 including retractable wires for properly spacing the treatment end of the cannula and the radioactive source from the target tissue.
  • Fig. 14 is a schematic view of an alternate version of the cannula in which a retractable wire basket is provided for maintaining the proper spacing of the radiation source with respect to the target tissue.
  • Fig. 15 is a schematic view of a further embodiment of the cannula for use with the present invention in which the cannula includes a lumen for injecting and withdrawing various fluids at the location of the distal end of the cannula.
  • Fig. 16 is a cross-sectional view of the cannula of Fig. 15 .
  • Fig. 17 is a schematic view of a further embodiment of the cannula for use in connection with the present invention in which the non-treatment side of the distal end of the catheter is relieved to minimize contact with the retina.
  • vitreoretinal surgical techniques are used to facilitate placement of a radioactive source that preferably, but not exclusively, emits beta or other ionizing radiation temporarily in a subretinal space by means of an intraocular cannula, sheath or probe.
  • a radioactive source that preferably, but not exclusively, emits beta or other ionizing radiation temporarily in a subretinal space by means of an intraocular cannula, sheath or probe.
  • Other non-ionizing radiation sources such as light or heat sources, as circumstances require, may also be used.
  • an apparatus employing the radioactive source and a delivery device that permits movement of the source between a stored position and treating position.
  • the radiation source When in the stored (retracted) position, the radiation source is surrounded by a suitable material, such as a stainless steel and lead lining, that effectively protects the surgeon and patient during handling and initial positioning.
  • the source is preferably located within a specially designed tip of platinum iridium (Pt/Ir), or other suitable material, that provides for directional administration of the radiation with controlled intensity, while shielding and protecting the retina and other surrounding non-target tissues.
  • the system includes two main components: a radiation source, which may be located at the distal end of a source wire (RSW) 12 and a delivery device 14 that comprises, in the illustrated embodiment, a handle 16 and a delivery cannula 18 (also called a sheath or probe).
  • a positioning system 20, shown in Fig. 7 , and method, illustrated in Figs. 8 and 9 are provided to assist in the precise positioning of the device within the eye.
  • Radiation source is broadly defined herein, and is not limited to ionizing radiation, light radiation, or heat radiation.
  • the radiation source is intended to include a treatment source of any of a variety of treatment regimens, including ionizing radiation.
  • the radiation source for the RSW 12 comprises any suitable radiation source, including radioactive materials such as gamma and beta emitters, x-ray (e.g., miniaturized x-ray generators), and non-ionizing radiation sources, such as laser or other light sources.
  • radioactive materials such as gamma and beta emitters
  • x-ray e.g., miniaturized x-ray generators
  • non-ionizing radiation sources such as laser or other light sources.
  • ultrasound, heat, cryo-ablation, or microwave sources may also be utilized.
  • an essentially beta emitting material such as a Strontium/Yttrium 90 (Sr-90/Y-90) beta emitting isotope is used.
  • a source activity of approximately 11 mCi and a location of about 1-3 mm from the target tissue (preferably about 1-1.5 mm)
  • the treatment duration is relatively short, approximately 2-4 minutes.
  • the system and method provide for sub-retinal delivery of radiation at the site of the choroidal neovascularization that occurs in macular degeneration, or other treatment site.
  • the system When employing ionizing radiation, the system preferably provides radiation to a target site at a dose rate of from approximately 4 to 20 GY/min; with a preferred target dose of between approximately 10 and 40 GY, with the target dose more preferably being approximately 26 GY for neovascularized tissue.
  • the preferred embodiment of the radiation source includes a cylindrical aluminum insert 22 that is doped with the Sr-90/Y-90 isotope in accordance with conventional techniques and preferably resides inside a sealed stainless steel canister.
  • the canister comprises a seed tubing 24 sealed on its distal end with a lid 26 and on its proximal end with a lid 28.
  • the stainless steel canister may be mounted to a solid or braided wire made of stainless steel (or other material) to form the RSW 12 that is used to advance the source to and retract the source from the treatment location.
  • the radioactive source wire 12 preferably includes a relatively flexible distal or leading strand 30 and a relatively stiffer proximal or handle strand 32.
  • the flexibility of the leading strand 30 is such as to allow unimpeded mechanical transport through the cannula 18 around a radius of curvature of from 4 to 8 mm.
  • the RSW 12 has an overall length on the order of 190 mm, which provides a 10mm-15mm protrusion of the wire from the rear of the handle 16 (as seen in Figs. 1 and 2 ) when the RSW 12 is advanced to the treatment position, thus providing, for removal or repositioning of the RSW, if necessary.
  • the distal end of the leading strand 30 includes a connection tubing 34 closed by a lid 36 for facilitating attachment of the canister housing the radioactive insert 22.
  • a further connection tubing 38 is used to join the proximal and of the leading strand 30 to the distal end of the handle strand 32.
  • the leading strand 30 has a smaller outside diameter than the handle strand.
  • the proximal end of the leading strand 30 carries an additional length of tubing 40 to build up the outside diameter of the leading strand 30 to match that of the handle strand.
  • the proximal end of the handle strand 32 also includes a length of tubing 41 for reinforcement.
  • the various components of the RSW 12 are preferably made of stainless steel and are joined together by laser wielding.
  • Other means for delivering and/or retrieving the radioactive source, as disclosed in the prior art, may also be used.
  • the radioactive source may not be secured to a wire, and movement of the source between treatment and storage positions can be accomplished pneumatically or hydraulically. See, e.g., U.S. Patent No. 5,683,345 .
  • the delivery device 14 is preferably, but not necessarily, handheld to facilitate control and positioning of the delivery cannula 18 during use.
  • the radiation source e.g., a beta radiation source
  • the handle 16 includes a slider mechanism to which a proximal portion of the RSW 12 is secured, the slide mechanism being moveable between treatment position ( Fig. 2 ), in which the radioactive source 22 is positioned at the distal end of the cannula 18, and a retracted position ( Fig. 1 ) for storage of the radioactive source 22 within the handle 16,
  • the radiation source is preferably shielded by a combination of stainless steel (inner shield) and lead (outer shield).
  • the stainless steel shield blocks the beta radiation, while the lead shield reduces the secondary radiation (known as brehmsstrahlung).
  • Other suitable materials may also be used for shielding.
  • the handle 16 comprises a multi-part housing with an elongated cylindrical case 42 closed at its proximal end by end cap 44 and at its distal end by a central hub 46, to which the cannula 18 is secured.
  • the hub 46 is preferably made of stainless steel and serves as the inner radiation shield for the radioactive source when in the storage position.
  • the wall thickness of the shielding portion of the hub is approximately 1.9 mm.
  • the hub 46 also carries the lead outer shield, designated 48, which has a wall thickness of approximately 4.6 mm.
  • the hub 46 and outer shield 48 are carried by a cup-like member 50 that is secured to the distal end of the case 42.
  • the handle 16 includes an advancement or positioning mechanism (also referred to as a slider mechanism), generally designated 52, for moving the radioactive source 22 between the storage and treatment positions.
  • the slider mechanism 52 includes a carrier member 54 that is slidingly received on the interior of the cylindrical case 42 of the handle 16.
  • the carrier 54 includes a central aperture, through which the handle strand 32 of the RSW 12 extends, with the RSW 12 being secured to the carrier 54 by means of a set screw 56.
  • an actuator pin 58 that extends through an elongated slot 60 in the case 42 is secured to the carrier 54.
  • the slot 60 lies in a plane defined by the curved cannula 18, thus having the same orientation as the cannula curve.
  • the slot 60 permits approximately 60 mm, or less, of travel for the carrier 54 and includes offsets 62, 64 at its distal and proximal ends, respectively, for receiving the actuator pin 58, thus providing positive visual and tactile indications of the radioactive source 22 being located in the treatment and storage positions.
  • the proximal side of the carrier 54 also includes a coil spring 66 secured thereto by screw 68 for biasing the actuator pin into a locked condition within proximal offset 64 when in the retracted position.
  • the intraocular probe 18 is preferably an integral part of the delivery device, and is fabricated of a rigid material, such as stainless steel.
  • the probe, or cannula, in the illustrated embodiment, comprises a single lumen and is sealed at the distal end to prevent contact between the radiation source and the patient or the patient's bodily fluids.
  • the distal end of the probe includes an inner sleeve 70 (best seen in Fig. 6 ) in which the radiation source is located when in the treatment position.
  • the inner sleeve 70 is configured to provide a desired dose profile, which is discussed in greater detail below.
  • the inner sleeve 70 is received in a cover sleeve 72 that serves to seal the inner sleeve 70 and also provides some radiation attenuation.
  • the distal end of the cannula 18 is curved or bent at an angle to facilitate proper alignment of the radiation source and the treatment area.
  • the tip 74 of the probe 18 also preferably has a rounded wedge shape to facilitate positioning of the distal end under the retina, when the retina is partially detached and raised to form a "bleb" (as by injection of saline or other liquid under the retina) during the performance of the method.
  • the treatment side of the tip includes a molded, machined or otherwise formed window 76 (sealed by the cover sleeve 72) that allows for directional administration of radiation.
  • the window 76 is subdivided into four smaller windows by longitudinal and transverse splines 77 that intersect at centrally located solid area 79 that acts as a flattening filter to reduce the peak radiation from the source 22 received by tissue closest to the radiation source. As a result, the tissue to be irradiated at the treatment site receives a more uniform dosage.
  • This flattening effect is shown in Fig. 11 , which plots the dose rate (in GY/min) as a function of radial and axial distance from the radiation source center. As can be seen in Fig.
  • the peak dose rate is generally flat at the center of the source, and decreases essentially linearly as the distance from the center increases.
  • the flattening filter preferably comprises a shield of selected thickness and/or material suspended in the window at the point closest the treatment site that attenuates or blocks a portion of the radiation from escaping the probe.
  • FIG. 7 A first embodiment of a system 20 for precise positioning of the probe 16 is shown in Fig. 7 .
  • the positioning system 20 comprises a base 80 and contact extension 82 which serve as a reference member and are adapted to be mounted to the extra-ocular portion of the sheath or probe 18.
  • a spring 84 is located on the probe 18 to provide a positive engagement of the contact extension 82 (when carried on the base 80) against the sclera during initial placement. See Figs. 8 and 9 .
  • the base. 80 has a slot 86 sized to fit over the probe 18 so that it can be placed thereon.
  • the contact extension 82 also has a slot 88 thereon to facilitate placement on the probe 18 distally of the base 80.
  • the contact extension 82 is designed to seat on the base 80 and is maintained in position thereon by frictional engagement.
  • a handle 90 is provided that has a threaded end 92 that is received in a complimentarily-threaded aperture 94 in the base 80.
  • the threaded end 92 of the handle 90 serves as a set screw to secure the base 80 in position on the probe 18 after initial placement, as will be discussed in greater detail bellow.
  • the positioning system 78 may be made of any suitable material, but is preferably made of acetal.
  • the probe is initially positioned, with the tip 74 of the probe in light contact with the target area to be irradiated, touching either the retina or the CNV tissue under the retina.
  • the spring 84 pushes the contact extension 82 mounted on the base 80 into contact with the sclera.
  • the handle 90 is then turned to engage against the probe 18, thus locking the base 80 into position on the probe 18.
  • the probe 18 is then withdrawn from the eye.
  • a spacer 96 which also has a slot 98 that permits it to be placed on the probe 18, is then placed between the base 80 and the contact extension 82, as seen in Fig. 9 , to accurately set the distance between the treatment area and the probe tip 74.
  • the spacer 96 has a thickness of from about 0.5 to 3 mm, and preferably 1-1.5 mm (more preferably 1 mm), so as to create a space of the same distance between the tip 74 of the probe 18 and the target area.
  • the particular spacing may vary with the eye disorder treated, the radiation source being used, and the size of the treatment area.
  • a spacing of 1-2 mm (and preferably 1.5 mm) is the anticipated spacing for treating the neovascularized tissue associated with macular degeneration with a beta radiation source as described earlier.
  • the contact extension rests against the sclera, resisting or preventing further axial movement of the delivery device into the eye.
  • positioning of the probe tip can be facilitated by the use of intra-ocular ultrasound or doppler measurement of the distances between the distal end of the cannula and the target tissue.
  • the distal end of the cannula may include an ultrasound or doppler transducer (communicating with a read-out device) to both transmit and receive ultrasound or doppler waves.
  • the data generated thereby is analyzed in real time, and a calculated measurement of the distance is presented on an optical readout or indicator.
  • optical interferometry devices and techniques can be employed for measuring the distance between the cannula tip and the target tissue.
  • the tip of the probe 18 may include one or more balloons 100 that are inflatable upon locating the probe tip under the retina (R) in the bleb to insure for spacing of the probe tip between the retina and treatment zone.
  • the distal end 101 of the probe 18 can be at an angle with respect to the axis of the probe where the radioactive source is located when in the treatment position (again shown in Fig. 12 - see also Fig. 15 and 17 ). The angled distal end 101 insures that a predetermined minimum distance is maintained between the radioactive source and the target tissue.
  • a preformed wire, or series of wires 102 are extendable from a lumen 104 in the probe to properly space or bump-off the probe tip from the treatment zone when advanced out of the lumen.
  • a further alternative, shown in Fig. 14 is to use a retractable wire basket 106 that is advanced through a lumen 104 in the probe when the probe is placed at the treatment site.
  • a still further alternative is to secure a optic fiber to the probe that extends beyond the distal end an amount corresponding to the desired spacing. When the optic fiber contacts the target tissue, the fiber darkens, thus alerting the surgeon to the desired spacing.
  • the basic procedure for sub-retinal intraocular brachytherapy is accomplished through standard vitrectomy and retinal detachment techniques, with the basic steps as follows.
  • the surgeon confirms the location of the target tissue using retinal vascular landmarks and identifies the preferred location of the sclerotomy entry point (i.e., temporal, nasal, etc.) in order to limit exposure of the fovea during treatment.
  • the surgeon will also want to confirm that the radiation source is properly positioned in the probe, when advanced to the treatment position.
  • the subject is prepared pursuant to standard vitrectomy procedures. Specifically, the pupil of the subject is dilated and the patient is positioned ventrally on the operating table. After appropriate cardiac and respiratory monitoring is established, and appropriate anesthesia is induced, the eye is anesthetized, such as with a retrobulbar or peribulbar anesthesia.
  • a speculum is placed to secure the eye lid, and surgery begins with a conjunctival incision into the superotemporal, superonasal and inferotemporal quadrants of the eye to be treated.
  • a scleral incision is made approximately 3 to 4 mm away from the surgical limbus in the inferotemporal quadrant, and an infusion cannula is inserted into the vitreous cavity.
  • the infusion line is opened and a second and third scleratomy are created 3 to 4 mm away from the surgical limbus in locations determined prior to commencement of the surgery in the superonasal quadrant.
  • An appropriate lens for vitreoretinal surgery is positioned and a vitrectomy performed, a standard endoilluminator being used to illuminate the vitreous cavity.
  • the treatment probe is positioned.
  • the spring 84 of the positioning system 20 is carefully slid over the probe 18 up to the device handle 16, and the positioning system is placed on to the probe shaft without the spacer element 96. See Fig. 8 , The sclerotomy is extended to a length of approximately 1.3 mm, and the delivery probe is inserted through the sclerotomy incision into the vitreous cavity.
  • the surgeon places the tip of the probe directly above the macula. Specifically, the probe is positioned by gently touching the retinal tissue, while directly holding the probe center marker (a mark on the probe tip designating the center of the radiation source) above the center of the CNV complex. While the surgeon holds the probe steady at this position, the positioning system (base 80 and contact extension 82) without the spacer 96 is secured onto the external portion of the delivery probe while in contact with the sclera to identify the precise location of the probe as it contacts the retina by tightening the handle, and the cannula is removed from the vitreous cavity. The spacer 96 is then placed between the positioning system base 80 and the contact extension 82, as shown in Fig. 9 .
  • a localized retinal detachment (the "bleb") is created by using a sub-retinal infusion needle in the macular region, the bleb including the area of choroidal neovascularization.
  • a new retinotomy is created on the temporal edge of the bleb, with the new incision created less than 4 mm away from the fovea to reduce the risk of a peripheral retinal tear.
  • the retinotomy is approximately 1.3 mm in diameter in order to accommodate the probe.
  • the delivery device probe 18 is then reinserted into the vitreous cavity and into the sub-retinal space through the second retinotomy, as seen in Fig. 10 .
  • the distal end of the probe is positioned directly above the center of the CNV complex with the positioning system touching the sclera, thus insuring the distance of the probe tip is about 1.5 mm above the target area.
  • the radiation dose is delivered to the target tissue.
  • the radiation source is advanced by pushing the slider mechanism towards the tip of the probe. Once advanced, the source wire is locked into position by locating the pin in the detent 62. After the appropriate treatment time, the slider mechanism is retracted to bring the radioactive source back to the storage and locked position. After insuring that the radioactive source has been fully retracted into its storage position, the delivery probe is removed from the bleb and withdrawn from the eye.
  • the retina After removal of the probe, the retina is then reattached intraoperatively, and a compete fluid-air exchange is performed, resulting in an air or gas tamponade in the vitreous cavity.
  • the retinotomy is closed by, e.g., laser photocoagulation, if necessary, while the superior sclerotomy is closed with ophthalmic sutures.
  • the inferotemporal sclerotomy is closed, and the conjunctiva is sutured with appropriate ophthalmic sutures.
  • a mixture of antibiotics and steroids may then be administered in the sub-conjuetival space.
  • the retina and other non-target tissue during treatment may be shielded and protected by introducing a radiation-attenuating fluid into the bleb that is created by lifting the retina away from the CNV.
  • the fluid can consist of saline, or a fluid with higher attenuation coefficient, such as contrast media.
  • the use of a radiation-attenuating fluid to protect non-target tissue may also be advantageous during epi-retinal and epi-scleral applications of radiation. In such cases, the radiation-attenuating fluid is merely introduced into the interior of the eye, rather than into the sub-retinal space.
  • the bleb shape may be maintained in several different ways.
  • the bleb shape may be maintained by injecting a high viscosity material into the sub-retinal space created by the bleb. Because of the material's high viscosity, its ability to flow through the retinotomy is reduced. The high viscosity material is removed, after treatment, using a standard vitrectomy device.
  • a high density material is a podium hyaluronate preparation for ophthalmic use sold by Pharmacia Company, under the trademark HEALON®.
  • a substance with variable viscosity having a high initial viscosity during the treatment time, with a lower viscosity thereafter, would further facilitate the removal of the material form the sub-retinal space upon completion of the procedure.
  • a sealing substance such as HEALON ®
  • An inflation agent such as saline
  • saline can also be continuously introduced into the sub-retinal space with a small positive pressure by means of an open lumen 108 associated with the cannula 18 ( Figs. 15, 16 ).
  • the distal end of the cannula can be provided with a balloon ( Fig. 12 ) that is inflated after the distal end of the cannula is introduced into the bleb in order to support the bleb and prevent the bleb from deflating or collapsing.
  • the potential for damage to the photoreceptors by the probe may also be minimized if the cannula has a low-friction surface.
  • This can be provided by coating the probe with a lubricant or other coating, such as Teflon or electrolytic carbon, or providing the cannula with a highly-polished surface, as by electro-polishing.
  • the backside 110 of the probe i.e., the non-treatment side
  • can be relieved, as shown in Fig. 17 to lessen the degree of contact of the probe with the photoreceptors.
  • the area of the incision resulting from the vitrectomy performed to create the bleb may be cauterized to prevent or limit retinal bleeding.
  • Such cauterization may be achieved by diathermy, cryopexy, or the application of laser or RF energy using instrumentation and methods known for re-attaching the retina to the retinal pigment epithelium in the case of retinal detachment.
  • blood coagulants such as antihemophilic Factor VIII (recombinant) (available from Bayer Healthcare as Kogenate), aminocaproic acid (available form Immunex as Amicar), and desmopressin acetate (available from Rhone Poulanc Rorer as Octostim), may also be injected into the sub-retinal space to limit bleeding by means of the separate lumen associated with the treatment device, as shown in Figs. 15, 16 .
  • the coagulant may also be removed through the same lumen.
  • Injection of an iron-binding substance (such as apotransferrin) into the blood may also be used in facilitating the removal of blood from the sub-retinal space and preventing its oxidation.
  • an anti-proliferating drug (anti-Vascular Endothelial Growth Factor or anti-VEGF agent, such as pegaptanib sodium) may be injected into the sub-retinal space to prevent and/or limit further growth of the CNV.
  • anti-proliferating drug anti-Vascular Endothelial Growth Factor or anti-VEGF agent, such as pegaptanib sodium
  • the tip of the probe include an inflatable balloon that causes pressure on the retina when inflated to reduce the blood flow thereto, the radiation treatment being performed through the balloon.
  • a deployable mask made of a radiation-blocking material that will be deployed and located over the non-target tissue, while leaving the target tissue exposed.
  • a material could be carried by the tip of probe 18 or by a separate device and deployed after formation of the bleb. The material could be biodegradable if desired.
  • the delivery device of the present invention may also be used in methods for intraocular, epi-retinal application of radiation, in which no bleb is created.
  • Performance of the epi-retinal method is substantially easier then the sub-retinal approach.
  • Intraocular access made simply through a sclerotomy, and the distal end of the probe is located over the macula. No detachment of the retina or the creation of a bleb is required.
  • Accurate placement of the probe may be accomplished by any of the positioning systems described. Ultrasound or Doppler techniques known in the art may also be used. Other mechanical methods may also be used, such as putting a stand-off fiber or "whisker" on the tip of the probe that touches the retina when the probe is properly positioned.
  • an inflatable balloon that, when inflated, spaces the probe the desired distance from the target tissue can also be used.
  • a miniature radiation sensor that can be remotely interrogated may be placed on the retinal surface, and the distance between the probe tip and the surface of the retina can be determined based upon the level of radiation measured by the sensor. If multiple (i.e. 3) sensors are used, triangulation of the measured radiation intensity would provide an accurate measurement of position. If at least three miniature event counters or sensors are positioned in an array on the periphery of the retina equidistant from the target tissue, the intensity/frequency of events measured by each point can be analyzed and then compared. The position of source then can be determined through well-known three-dimensional triangulation calculations at the beginning of the radiation administration.
  • the event counters/sensors can be placed either in the eye; behind the eye, or even on the front surface of the eye, if the radiation source produced a sufficient emission to be measured externally.
  • the radiation source can carry a small transducer on its tip that would emit a "ping" that can be picked up by receivers positioned as described above.
  • Other signaling/receiving systems such as light or RF can also be used.
  • a permanent magnet disposed on the tip of the device could produce a sufficient Galvanic effect in appropriate sensors to be measurable, especially in an epi-retinal application where the size constraints of the device are less critical. A digitally-enclosed signal would provide improved speed and accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Claims (17)

  1. Dispositif (10, 14) pour l'administration directionnelle locale d'un rayonnement vers un tissu intraoculaire cible comprenant :
    une source de rayonnement (22) ;
    une canule rigide (18) dimensionnée pour une insertion intraoculaire dans un oeil et comportant une extrémité proximale et une extrémité distale pour recevoir la source de rayonnement, la canule étant étanche aux fluides de façon à empêcher le contact de fluides corporels avec la source de rayonnement et comportant une fenêtre de rayonnement (76) à son extrémité distale pour fournir un profil de dose de rayonnement souhaité lorsque la source de rayonnement est reçue à l'intérieur ; et
    un logement (16) auquel l'extrémité proximale de la canule est fixée pour déplacer la source de rayonnement entre une position proximale rétractée et une position de traitement à l'extrémité distale de la canule, le logement comprenant un mécanisme d'avancement (52, 54, 58) fonctionnellement couplé à la source de rayonnement, le mécanisme d'avancement étant mobile pour déplacer la source de rayonnement entre la position rétractée et la position de traitement.
  2. Dispositif d'administration de rayonnement selon la revendication 1, dans lequel le logement (16) comprend une zone de blindage (46, 48) pour blinder la source de rayonnement en position rétractée.
  3. Dispositif d'administration de rayonnement selon la revendication 1 ou 2, dans lequel le logement (16) fournit une indication visuelle positive des positions rétractée et de traitement de la source de rayonnement (22).
  4. Dispositif d'administration de rayonnement selon l'une quelconque des revendications 1 à 3, dans lequel le mécanisme d'avancement (52, 54, 58) peut être verrouillé en position rétractée.
  5. Dispositif d'administration de rayonnement selon l'une quelconque des revendications précédentes, dans lequel le logement (16) inclut une fente allongée (60) comportant des première et seconde extrémités à travers une surface de celle-ci et le mécanisme d'avancement (52, 54, 58) peut être manipulé à travers la fente de sorte que la source de rayonnement (22) peut être déplacée entre les positions rétractée et de traitement.
  6. Dispositif d'administration de rayonnement selon l'une quelconque des revendications précédentes, dans lequel la source de rayonnement (22) émet un rayonnement ionisant.
  7. Dispositif d'administration de rayonnement selon la revendication 6, dans lequel la source de rayonnement (22) émet un rayonnement bêta.
  8. Dispositif d'administration de rayonnement selon l'une quelconque des revendications précédentes, dans lequel la source de rayonnement (22) est située à l'extrémité distale d'un fil de source radioactive (12, 30, 32), l'extrémité distale (30) du fil de source radioactive étant suffisamment flexible pour permettre un transport mécanique non entravé à travers la canule (18) autour d'un rayon de courbure de 4 à 8 mm.
  9. Dispositif d'administration de rayonnement selon l'une quelconque des revendications 1 à 7, comprenant en outre un fil de source radioactive (12, 30, 32) ayant une extrémité distale, une extrémité proximale, une portion proximale relativement rigide (32) et une portion distale relativement flexible (30) jointe à la portion proximale, et dans lequel la source de rayonnement (22) est fixée sur l'extrémité distale du fil de source.
  10. Dispositif d'administration de rayonnement selon la revendication 9, dans lequel la portion distale (30) du fil de source radioactive (12, 30, 32) est suffisamment flexible pour permettre un transport mécanique non entravé à travers la canule (18) autour d'un rayon de courbure de 4 à 8 mm.
  11. Dispositif d'administration de rayonnement selon la revendication 9 ou 10, dans lequel les portions proximale et distale du fil de source radioactive (12, 30, 32) comprennent un fil tressé en acier avec un raccord (38) entre elles et un manchon pour renforcer le raccordement de la portion proximale à la portion distale.
  12. Dispositif d'administration de rayonnement selon la revendication 9 ou 10, dans lequel la source de rayonnement (22) comprend un bidon (24, 26, 28) contenant un germe radioactif fixé sur l'extrémité distale du fil de source radioactive, ledit dispositif comprenant en outre :
    un manchon tubulaire (38) pour fixer la portion distale (30) à la portion proximale (32) qui est fixé aux deux portions par soudage ;
    un manchon de renforcement (34) à la jonction du bidon et de la portion distale pour fixer le bidon à la portion distale du fil de source radioactive ; et
    une tubulure de renforcement (41) à l'extrémité proximale du fil de source.
  13. Dispositif d'administration de rayonnement selon l'une quelconque des revendications précédentes, dans lequel la canule (18) comprend un organe tubulaire avec au moins une lumière qui est raccordé au logement (16), l'extrémité distale de la canule ayant un couvercle (72) couvrant la fenêtre de rayonnement (76) avec un joint étanche aux fluides.
  14. Dispositif d'administration de rayonnement selon l'une quelconque des revendications précédentes, dans lequel la pointe de la fenêtre (76) comprend un matériau de platine-iridium.
  15. Dispositif d'administration de rayonnement selon l'une quelconque des revendications précédentes, comprenant en outre une lumière séparée associée à la canule (18) ayant une ouverture adjacente à l'extrémité distale de la canule, un fil ayant une extrémité distale qui est reçu par glissement dans la lumière, et une structure extensible (100) à l'extrémité distale du fil, la structure pouvant fonctionner pour s'étendre à mesure que l'extrémité distale du fil sort de l'ouverture de la lumière.
  16. Dispositif d'administration de rayonnement selon l'une quelconque des revendications précédentes, dans lequel la canule (18) comprend en outre au moins un ballon gonflable (100) situé à son extrémité distale, et une lumière séparée pour gonfler et dégonfler sélectivement le ballon.
  17. Dispositif d'administration de rayonnement selon l'une quelconque des revendications précédentes, dans lequel la canule (18) comprend en outre une lumière séparée ayant une ouverture à l'extrémité distale de la canule par laquelle un fluide peut être sélectivement administré ou retiré.
EP05722965A 2004-02-12 2005-02-11 Appareil pour une curietherapie intra-oculaire Not-in-force EP1720608B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10075513A EP2298412A1 (fr) 2004-02-12 2005-02-11 Appareil pour curiethérapie intraoculaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54400104P 2004-02-12 2004-02-12
PCT/US2005/004391 WO2005079294A2 (fr) 2004-02-12 2005-02-11 Methodes et appareil pour une curietherapie intra-oculaire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10075513.1 Division-Into 2010-09-27

Publications (3)

Publication Number Publication Date
EP1720608A2 EP1720608A2 (fr) 2006-11-15
EP1720608A4 EP1720608A4 (fr) 2008-03-26
EP1720608B1 true EP1720608B1 (fr) 2010-11-17

Family

ID=34885993

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10075513A Withdrawn EP2298412A1 (fr) 2004-02-12 2005-02-11 Appareil pour curiethérapie intraoculaire
EP05722965A Not-in-force EP1720608B1 (fr) 2004-02-12 2005-02-11 Appareil pour une curietherapie intra-oculaire

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10075513A Withdrawn EP2298412A1 (fr) 2004-02-12 2005-02-11 Appareil pour curiethérapie intraoculaire

Country Status (10)

Country Link
US (4) US7744520B2 (fr)
EP (2) EP2298412A1 (fr)
JP (1) JP4602356B2 (fr)
CN (1) CN101005873B (fr)
AT (1) ATE488269T1 (fr)
AU (1) AU2005214040B2 (fr)
BR (1) BRPI0507690A (fr)
CA (1) CA2554961C (fr)
DE (1) DE602005024771D1 (fr)
WO (2) WO2005079294A2 (fr)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875165B2 (en) 2001-02-22 2005-04-05 Retinalabs, Inc. Method of radiation delivery to the eye
US20060173232A1 (en) * 2003-06-18 2006-08-03 Lovoi Paul A HDR adapter for electronic radiation source applicator
WO2005079294A2 (fr) 2004-02-12 2005-09-01 Neo Vista, Inc. Methodes et appareil pour une curietherapie intra-oculaire
US7563222B2 (en) * 2004-02-12 2009-07-21 Neovista, Inc. Methods and apparatus for intraocular brachytherapy
JP2009515655A (ja) * 2005-11-15 2009-04-16 ネオビスタ、インコーポレイテッド 眼内近接照射療法のための方法および装置
US7620147B2 (en) 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US7535991B2 (en) 2006-10-16 2009-05-19 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US7831309B1 (en) 2006-12-06 2010-11-09 University Of Southern California Implants based on bipolar metal oxide semiconductor (MOS) electronics
US8363783B2 (en) 2007-06-04 2013-01-29 Oraya Therapeutics, Inc. Method and device for ocular alignment and coupling of ocular structures
US8506558B2 (en) 2008-01-11 2013-08-13 Oraya Therapeutics, Inc. System and method for performing an ocular irradiation procedure
EP2231277B1 (fr) 2007-12-23 2017-08-30 Carl Zeiss Meditec, Inc. Dispositifs permettant de détecter, contrôler et prévoir l'administration d'un rayonnement
US7801271B2 (en) 2007-12-23 2010-09-21 Oraya Therapeutics, Inc. Methods and devices for orthovoltage ocular radiotherapy and treatment planning
US9056201B1 (en) 2008-01-07 2015-06-16 Salutaris Medical Devices, Inc. Methods and devices for minimally-invasive delivery of radiation to the eye
US10022558B1 (en) 2008-01-07 2018-07-17 Salutaris Medical Devices, Inc. Methods and devices for minimally-invasive delivery of radiation to the eye
US8608632B1 (en) 2009-07-03 2013-12-17 Salutaris Medical Devices, Inc. Methods and devices for minimally-invasive extraocular delivery of radiation and/or pharmaceutics to the posterior portion of the eye
US8602959B1 (en) 2010-05-21 2013-12-10 Robert Park Methods and devices for delivery of radiation to the posterior portion of the eye
US9873001B2 (en) 2008-01-07 2018-01-23 Salutaris Medical Devices, Inc. Methods and devices for minimally-invasive delivery of radiation to the eye
EP3108933B1 (fr) * 2008-01-07 2019-09-18 Salutaris Medical Devices, Inc. Dispositifs d'administration extraoculaire a invasion minimale de rayonnement sur la partie posterieure de l' oeil
US20100152646A1 (en) * 2008-02-29 2010-06-17 Reshma Girijavallabhan Intravitreal injection device and method
CA2724327A1 (fr) 2008-06-04 2009-12-10 Neovista, Inc. Systeme de distribution de rayonnement tenu a la main permettant d'avancer un cable de source de rayonnement
US20100036190A1 (en) * 2008-06-24 2010-02-11 Murphy Brent D Internal radiation shield for brachytherapy treatment
WO2010022153A1 (fr) * 2008-08-20 2010-02-25 Neovista, Inc. Dispositif d'administration pour une curiethérapie intraoculaire
USD691270S1 (en) 2009-01-07 2013-10-08 Salutaris Medical Devices, Inc. Fixed-shape cannula for posterior delivery of radiation to an eye
USD691268S1 (en) 2009-01-07 2013-10-08 Salutaris Medical Devices, Inc. Fixed-shape cannula for posterior delivery of radiation to eye
USD691269S1 (en) 2009-01-07 2013-10-08 Salutaris Medical Devices, Inc. Fixed-shape cannula for posterior delivery of radiation to an eye
USD691267S1 (en) 2009-01-07 2013-10-08 Salutaris Medical Devices, Inc. Fixed-shape cannula for posterior delivery of radiation to eye
US8623395B2 (en) 2010-01-29 2014-01-07 Forsight Vision4, Inc. Implantable therapeutic device
CN104887389B (zh) 2009-01-29 2017-06-23 弗赛特影像4股份有限公司 后段给药
US8663210B2 (en) 2009-05-13 2014-03-04 Novian Health, Inc. Methods and apparatus for performing interstitial laser therapy and interstitial brachytherapy
WO2011053908A1 (fr) * 2009-11-02 2011-05-05 Salutaris Medical Devices, Inc. Procédés et dispositifs d'application d'un rayonnement extraoculaire approprié avec effraction minimale
MX2012006598A (es) 2009-12-23 2012-06-19 Alcon Res Ltd Canula trocar de valvula oftalmica.
US8343106B2 (en) * 2009-12-23 2013-01-01 Alcon Research, Ltd. Ophthalmic valved trocar vent
US10166142B2 (en) 2010-01-29 2019-01-01 Forsight Vision4, Inc. Small molecule delivery with implantable therapeutic device
WO2011137162A1 (fr) 2010-04-27 2011-11-03 Neovista, Inc. Canule d'administration de radiothérapie comportant une fenêtre de confirmation visuelle
AU2011285548B2 (en) 2010-08-05 2014-02-06 Forsight Vision4, Inc. Combined drug delivery methods and apparatus
HUE057267T2 (hu) 2010-08-05 2022-05-28 Forsight Vision4 Inc Berendezés szem kezelésére
SI2600930T1 (sl) 2010-08-05 2021-08-31 Forsight Vision4, Inc. Injekcijska naprava za dajanje zdravila
US20120116381A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging station and wireless communication
US9526921B2 (en) 2010-11-05 2016-12-27 Ethicon Endo-Surgery, Llc User feedback through end effector of surgical instrument
US10959769B2 (en) 2010-11-05 2021-03-30 Ethicon Llc Surgical instrument with slip ring assembly to power ultrasonic transducer
US9421062B2 (en) 2010-11-05 2016-08-23 Ethicon Endo-Surgery, Llc Surgical instrument shaft with resiliently biased coupling to handpiece
US9782215B2 (en) 2010-11-05 2017-10-10 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
US9247986B2 (en) 2010-11-05 2016-02-02 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US9017851B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Sterile housing for non-sterile medical device component
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9161803B2 (en) * 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US9089338B2 (en) 2010-11-05 2015-07-28 Ethicon Endo-Surgery, Inc. Medical device packaging with window for insertion of reusable component
US10660695B2 (en) 2010-11-05 2020-05-26 Ethicon Llc Sterile medical instrument charging device
US9039720B2 (en) 2010-11-05 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical instrument with ratcheting rotatable shaft
US9000720B2 (en) 2010-11-05 2015-04-07 Ethicon Endo-Surgery, Inc. Medical device packaging with charging interface
US10085792B2 (en) 2010-11-05 2018-10-02 Ethicon Llc Surgical instrument with motorized attachment feature
US9017849B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Power source management for medical device
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US10881448B2 (en) 2010-11-05 2021-01-05 Ethicon Llc Cam driven coupling between ultrasonic transducer and waveguide in surgical instrument
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US9649150B2 (en) 2010-11-05 2017-05-16 Ethicon Endo-Surgery, Llc Selective activation of electronic components in medical device
US9375255B2 (en) 2010-11-05 2016-06-28 Ethicon Endo-Surgery, Llc Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
CN101999980A (zh) * 2010-11-17 2011-04-06 钱志春 一种眼疾治疗棒和它的使用方法
WO2012068549A2 (fr) 2010-11-19 2012-05-24 Forsight Vision4, Inc. Formulations d'agents thérapeutiques pour des dispositifs implantés
JP4806731B1 (ja) * 2011-02-26 2011-11-02 宏治 柴 排液器
JP2014523263A (ja) * 2011-05-20 2014-09-11 ドヘニー アイ インスティテュート 眼球用超音波プローブ
EP2726016B1 (fr) 2011-06-28 2023-07-19 ForSight Vision4, Inc. Un appareil pour collecter un échantillon de fluide à partir d'une chambre réservoir d'un dispositif thérapeutique pour l'oeil
EP2734261B1 (fr) 2011-07-18 2018-02-21 Mor-Research Applications Ltd. Dispositif pour l'ajustement de la tension intraoculaire
US9883968B2 (en) 2011-09-16 2018-02-06 Forsight Vision4, Inc. Fluid exchange apparatus and methods
WO2013116061A1 (fr) 2012-02-03 2013-08-08 Forsight Vision4, Inc. Procédés et instrument pour l'insertion et le retrait de dispositifs thérapeutiques
KR101348727B1 (ko) 2012-04-30 2014-01-16 (주)파티클라 근접 상피세포암 치료를 위한 초소형 전리 방사선 튜브
EP4186557A1 (fr) 2012-07-03 2023-05-31 Tc1 Llc Ensemble motour pour pompe à cathéter
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
WO2014152959A1 (fr) 2013-03-14 2014-09-25 Forsight Vision4, Inc. Systèmes pour l'administration intra-oculaire entretenue de composés à faible solubilité provenant d'un implant de système de pose d'orifice
EP4302736A3 (fr) 2013-03-28 2024-04-03 ForSight Vision4, Inc. Implant ophtalmique pour l'administration de substances thérapeutiques
US20150105605A1 (en) * 2013-10-15 2015-04-16 Ip Liberty Vision Corporation Radioactive glass source in ophthalmic brachytherapy
WO2015126694A1 (fr) * 2014-02-12 2015-08-27 Ethicon Endo-Surgery, Inc. Procédé et appareil pour administration suprochoroïdienne d'un agent thérapeutique
CN104000624B (zh) * 2014-04-24 2016-04-13 温州医科大学 一种贴于眼表用于眼轴测量的超声探头
KR102416726B1 (ko) 2014-07-15 2022-07-05 포사이트 비젼4, 인크. 안구 이식물 전달 디바이스 및 방법
WO2016022750A1 (fr) 2014-08-08 2016-02-11 Forsight Vision4, Inc. Formulations stables et solubles d'inhibiteurs de la tyrosine kinase de récepteurs, et procédés de préparation de ces dernières
US10136938B2 (en) 2014-10-29 2018-11-27 Ethicon Llc Electrosurgical instrument with sensor
US10500091B2 (en) 2014-11-10 2019-12-10 Forsight Vision4, Inc. Expandable drug delivery devices and methods of use
CN105167909A (zh) * 2015-10-20 2015-12-23 成都美创医疗科技股份有限公司 低温等离子眼科手术刀头
AU2016355345A1 (en) 2015-11-20 2018-05-31 Forsight Vision4, Inc. Porous structures for extended release drug delivery devices
USD841164S1 (en) * 2015-12-16 2019-02-19 Novartis Ag Intraocular lens delivery device
KR101837593B1 (ko) * 2015-12-30 2018-03-14 한국과학기술원 탄소나노튜브 기반의 x-선 튜브를 이용한 켈로이드 및 피부암 치료용 x-선 근접 치료 시스템
CN109195556B (zh) 2016-04-05 2021-03-26 弗赛特影像4股份有限公司 可植入眼睛药物递送装置
USD814637S1 (en) 2016-05-11 2018-04-03 Salutaris Medical Devices, Inc. Brachytherapy device
USD815285S1 (en) 2016-05-11 2018-04-10 Salutaris Medical Devices, Inc. Brachytherapy device
USD814638S1 (en) 2016-05-11 2018-04-03 Salutaris Medical Devices, Inc. Brachytherapy device
KR101794128B1 (ko) 2016-07-01 2017-11-30 국립암센터 방사선 조사방향 조절이 가능한 체내 삽입기구
US10376328B2 (en) * 2016-08-25 2019-08-13 Novartis Ag Surgical probe with an integrated motion sensor
USD808528S1 (en) 2016-08-31 2018-01-23 Salutaris Medical Devices, Inc. Holder for a brachytherapy device
USD808529S1 (en) 2016-08-31 2018-01-23 Salutaris Medical Devices, Inc. Holder for a brachytherapy device
WO2021142298A1 (fr) * 2020-01-08 2021-07-15 Radiance Therapeutics, Inc. Méthodes, systèmes et compositions pour maintenir des "blebs" fonctionnels
GB201714392D0 (en) * 2017-09-07 2017-10-25 Marsteller Laurence Methods and devices for treating glaucoma
WO2019103906A1 (fr) 2017-11-21 2019-05-31 Forsight Vision4, Inc. Appareil d'échange de fluide pour système d'administration à port extensible et méthodes d'utilisation
WO2020069217A1 (fr) 2018-09-28 2020-04-02 Radiance Therapeutics, Inc. Méthodes, systèmes et compositions permettant de maintenir le fonctionnement de bulles filtrantes de drainage associées à une micro-sclérostomie minimalement invasive
USD933226S1 (en) 2018-11-29 2021-10-12 Radiance Therapeutics, Inc. Ophthalmic brachytherapy set
USD933225S1 (en) 2018-11-29 2021-10-12 Radiance Therapeutics, Inc. Ophthalmic brachytherapy device
WO2020113091A1 (fr) * 2018-11-29 2020-06-04 Marsteller Laurence J Systèmes et dispositifs de curiethérapie ophtalmique servant à l'application de rayonnement bêta
US20230010712A1 (en) * 2019-12-06 2023-01-12 Radiance Therapeutics, Inc. Methods, systems, and compositions for achieving a healthy intraocular pressure following combined glaucoma filtration surgery and cataract extraction
CN116801847A (zh) * 2021-01-25 2023-09-22 爱尔康公司 用于视网膜下注射的方法和设备
JP2024509768A (ja) 2021-03-11 2024-03-05 アルファ タウ メディカル リミテッド 放射線治療アプリケータ
CA3222415A1 (fr) 2021-06-30 2023-01-05 Alpha Tau Medical Ltd. Applicateur de radiotherapie a distribution radiale perpendiculaire ou inclinee
USD1033637S1 (en) 2022-01-24 2024-07-02 Forsight Vision4, Inc. Fluid exchange device

Family Cites Families (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US839061A (en) 1905-02-23 1906-12-18 Henri Farjas Apparatus for application of salts of radium.
US2517566A (en) 1946-07-29 1950-08-08 John E High Hose clamp
US2517568A (en) 1948-09-04 1950-08-08 Radium Chemical Company Inc Eye applicator
US2559793A (en) 1949-01-27 1951-07-10 Canadian Radium And Uranium Co Beta irradiation method and means
FR1585443A (fr) 1968-07-23 1970-01-23
US6603988B2 (en) 2001-04-13 2003-08-05 Kelsey, Inc. Apparatus and method for delivering ablative laser energy and determining the volume of tumor mass destroyed
CA1102018A (fr) 1978-01-09 1981-05-26 Philip Mchugh Source de photons utilisee en radiotherapie
US4584991A (en) 1983-12-15 1986-04-29 Tokita Kenneth M Medical device for applying therapeutic radiation
US4662869A (en) 1984-11-19 1987-05-05 Wright Kenneth W Precision intraocular apparatus
ATE81254T1 (de) 1985-02-26 1992-10-15 Univ Johns Hopkins Neovaskularisierungsinhibitoren und deren herstellung.
US5141487A (en) 1985-09-20 1992-08-25 Liprie Sam F Attachment of radioactive source and guidewire in a branchy therapy source wire
US5322499A (en) 1985-09-20 1994-06-21 Liprie Sam F Continuous sheated low dose radioactive core adapted for cutting into short sealed segments
NL8601808A (nl) 1986-07-10 1988-02-01 Hooft Eric T Werkwijze voor het behandelen van een lichaamsdeel met radioactief materiaal en wagen ten gebruike daarbij.
US4846172A (en) 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US4891165A (en) 1988-07-28 1990-01-02 Best Industries, Inc. Device and method for encapsulating radioactive materials
US5084002A (en) 1988-08-04 1992-01-28 Omnitron International, Inc. Ultra-thin high dose iridium source for remote afterloader
DE3831141A1 (de) 1988-09-13 1990-03-22 Zeiss Carl Fa Verfahren und vorrichtung zur mikrochirurgie am auge mittels laserstrahlung
US5183455A (en) 1988-10-07 1993-02-02 Omnitron International, Inc. Apparatus for in situ radiotherapy
US4861520A (en) 1988-10-28 1989-08-29 Eric van't Hooft Capsule for radioactive source
US4957476A (en) 1989-01-09 1990-09-18 University Of Pittsburgh Afterloading radioactive spiral implanter
US5147282A (en) 1989-05-04 1992-09-15 William Kan Irradiation loading apparatus
US4921327A (en) 1989-05-24 1990-05-01 Zito Richard R Method of transmitting an ionizing radiation
SG49267A1 (en) 1989-08-14 1998-05-18 Photogenesis Inc Surgical instrument and cell isolation and transplantation
US5203353A (en) 1989-10-24 1993-04-20 Surgical Technologies, Inc. Method of penetrating and working in the vitreous humor of the eye
US5199939B1 (en) 1990-02-23 1998-08-18 Michael D Dake Radioactive catheter
US5267960A (en) 1990-03-19 1993-12-07 Omnitron International Inc. Tissue engaging catheter for a radioactive source wire
US5129895A (en) 1990-05-16 1992-07-14 Sunrise Technologies, Inc. Laser sclerostomy procedure
CA2087007A1 (fr) 1990-07-13 1992-01-14 Wim Borneman Appareil servant a introduire une source radioactive dans l'organisme
US5342283A (en) 1990-08-13 1994-08-30 Good Roger R Endocurietherapy
US6099457A (en) 1990-08-13 2000-08-08 Endotech, Inc. Endocurietherapy
US5442678A (en) 1990-09-05 1995-08-15 Photoelectron Corporation X-ray source with improved beam steering
US5282781A (en) 1990-10-25 1994-02-01 Omnitron International Inc. Source wire for localized radiation treatment of tumors
US5160790A (en) 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
US5354257A (en) 1991-01-29 1994-10-11 Med Institute, Inc. Minimally invasive medical device for providing a radiation treatment
US20010021382A1 (en) 1991-03-29 2001-09-13 Genentech, Inc. Vascular endothelial cell growth factor antagonists
US5257988A (en) 1991-07-19 1993-11-02 L'esperance Medical Technologies, Inc. Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment
JPH08501224A (ja) 1992-04-10 1996-02-13 プレミア・ラザー・システムズ・インコーポレイテツド 眼球手術の装置と方法
CN1098186A (zh) * 1993-03-29 1995-02-01 三洋电机株式会社 空调机的控制装置
CA2161242A1 (fr) 1993-05-04 1994-11-10 Anthony J. Bradshaw Cable de source radioactive; appareil et methodes de traitement
DK0633041T3 (da) 1993-07-01 2000-04-03 Schneider Europ Gmbh Medicinske apparater til behandling af blodkar ved hjælp af ioniserende stråling
EP0706345B1 (fr) 1993-07-01 2003-02-19 Boston Scientific Limited Catheters de visualisation, detection de potentiels electriques, et ablation des tissus
US5540659A (en) 1993-07-15 1996-07-30 Teirstein; Paul S. Irradiation catheter and method of use
US5445637A (en) 1993-12-06 1995-08-29 American Cyanamid Company Method and apparatus for preventing posterior capsular opacification
US5503613A (en) 1994-01-21 1996-04-02 The Trustees Of Columbia University In The City Of New York Apparatus and method to reduce restenosis after arterial intervention
US5707332A (en) 1994-01-21 1998-01-13 The Trustees Of Columbia University In The City Of New York Apparatus and method to reduce restenosis after arterial intervention
US5425730A (en) 1994-02-16 1995-06-20 Luloh; K. P. Illumination cannula system for vitreous surgery
US5618266A (en) 1994-03-31 1997-04-08 Liprie; Samuel F. Catheter for maneuvering radioactive source wire to site of treatment
US5556389A (en) 1994-03-31 1996-09-17 Liprie; Samuel F. Method and apparatus for treating stenosis or other constriction in a bodily conduit
US5426662A (en) 1994-04-28 1995-06-20 Coherent, Inc. Laser system selectively operable at two competing wavelengths
US5487725A (en) 1994-05-12 1996-01-30 Syntec, Inc. Pneumatic vitrectomy for retinal attachment
US5857956A (en) 1994-06-08 1999-01-12 United States Surgical Corporation Flexible source wire for localized internal irradiation of tissue
US5503614A (en) 1994-06-08 1996-04-02 Liprie; Samuel F. Flexible source wire for radiation treatment of diseases
US5528651A (en) 1994-06-09 1996-06-18 Elekta Instrument Ab Positioning device and method for radiation treatment
ATE170708T1 (de) 1994-06-10 1998-09-15 Schneider Europ Gmbh Arzneigerät für die behandlung eines teiles von körpergefäss mittels ionisierungsbestrahlung
DE69426071T2 (de) 1994-06-24 2001-05-10 Schneider (Europe) Gmbh, Buelach Arzneigerät für die Behandlung eines Teiles eines Körpergefässes mittels Ionisierungsbestrahlung
US5431907A (en) 1994-08-03 1995-07-11 Abelson; Mark B. Treatment of vascular disorders of the posterior segment of the eye by topical administration of calcium channel blocking agents
DE19535114B4 (de) 1994-09-21 2013-09-05 Hoya Corp. Endoskopsystem mit Fluoreszenzdiagnose
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US5899882A (en) 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5683345A (en) 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US6059752A (en) 1994-12-09 2000-05-09 Segal; Jerome Mechanical apparatus and method for dilating and irradiating a site of treatment
US5725493A (en) 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5570408A (en) 1995-02-28 1996-10-29 X-Ray Optical Systems, Inc. High intensity, small diameter x-ray beam, capillary optic system
US5624437A (en) 1995-03-28 1997-04-29 Freeman; Jerre M. High resolution, high speed, programmable laser beam modulating apparatus for microsurgery
US5596011A (en) 1995-04-06 1997-01-21 Repine; Karen M. Method for the treatment of macular degeneration
US6041252A (en) 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
DE69516679T2 (de) 1995-06-22 2000-11-23 Schneider (Europe) Gmbh, Buelach Arzneigerät für die Behandlung eines Teiles eines Körpergefässes mittels Ionisierungsbestrahlung
US7338487B2 (en) 1995-08-24 2008-03-04 Medtronic Vascular, Inc. Device for delivering localized x-ray radiation and method of manufacture
US6377846B1 (en) 1997-02-21 2002-04-23 Medtronic Ave, Inc. Device for delivering localized x-ray radiation and method of manufacture
EP0847249A4 (fr) 1995-08-24 2004-09-29 Medtronic Ave Inc Catheter a rayons x
US5637073A (en) * 1995-08-28 1997-06-10 Freire; Jorge E. Radiation therapy for treating macular degeneration and applicator
US5947958A (en) 1995-09-14 1999-09-07 Conceptus, Inc. Radiation-transmitting sheath and methods for its use
US5729583A (en) 1995-09-29 1998-03-17 The United States Of America As Represented By The Secretary Of Commerce Miniature x-ray source
US5833593A (en) 1995-11-09 1998-11-10 United States Surgical Corporation Flexible source wire for localized internal irradiation of tissue
US5840008A (en) 1995-11-13 1998-11-24 Localmed, Inc. Radiation emitting sleeve catheter and methods
US5713828A (en) 1995-11-27 1998-02-03 International Brachytherapy S.A Hollow-tube brachytherapy device
EP0778051B1 (fr) 1995-12-05 2003-04-09 Schneider (Europe) GmbH Filament pour l'irradiation d'un corps vivant et procédé pour produire un filament pour l'irradiation d'un corps vivant
AU1331497A (en) 1995-12-18 1997-07-14 Kerisma Medical Products, L.L.C. Fiberoptic-guided interstitial seed manual applicator and seed cartridge
US5651783A (en) 1995-12-20 1997-07-29 Reynard; Michael Fiber optic sleeve for surgical instruments
NL1002044C2 (nl) 1996-01-08 1997-07-09 Optische Ind De Oude Delft Nv Langgerekt radioactief element te bevestigen aan een uiteinde van een langgerekt draadvormig element.
US6004279A (en) * 1996-01-16 1999-12-21 Boston Scientific Corporation Medical guidewire
US6203524B1 (en) 1997-02-10 2001-03-20 Emx, Inc. Surgical and pharmaceutical site access guide and methods
US6234951B1 (en) 1996-02-29 2001-05-22 Scimed Life Systems, Inc. Intravascular radiation delivery system
US5855546A (en) 1996-02-29 1999-01-05 Sci-Med Life Systems Perfusion balloon and radioactive wire delivery system
US6059828A (en) 1996-03-18 2000-05-09 Peyman; Gholam A. Macular indentor for use in the treatment of subretinal neovascular membranes
US5904144A (en) 1996-03-22 1999-05-18 Cytotherapeutics, Inc. Method for treating ophthalmic diseases
US20020160970A1 (en) 1996-04-10 2002-10-31 Gyula Hadlaczky Artificial chromosomes, uses thereof and methods for preparing artificial chromosomes
AU736333B2 (en) 1996-05-01 2001-07-26 Eli Lilly And Company Therapeutic treatment for VEGF related diseases
US5797889A (en) 1996-06-19 1998-08-25 Becton Dickinson And Company Medical device having a connector portion with an improved surface finish
NL1003543C2 (nl) 1996-07-08 1998-01-12 Optische Ind Oede Oude Delftoe Capsule voor brachytherapie en samenstel van een capsule voor brachytherapie en een leidraad.
US5782740A (en) 1996-08-29 1998-07-21 Advanced Cardiovascular Systems, Inc. Radiation dose delivery catheter with reinforcing mandrel
US6120460A (en) 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US5882291A (en) 1996-12-10 1999-03-16 Neocardia, Llc Device and method for controlling dose rate during intravascular radiotherapy
US6491619B1 (en) 1997-01-31 2002-12-10 Endologix, Inc Radiation delivery catheters and dosimetry methods
US6458069B1 (en) 1998-02-19 2002-10-01 Endology, Inc. Multi layer radiation delivery balloon
US6134294A (en) 1998-02-13 2000-10-17 University Of Utah Research Foundation Device and method for precision macular X-irradiation
US5772642A (en) 1997-02-19 1998-06-30 Medtronic, Inc. Closed end catheter
DE69823406T2 (de) 1997-02-21 2005-01-13 Medtronic AVE, Inc., Santa Rosa Röntgenvorrichtung versehen mit einer Dehnungsstruktur zur lokalen Bestrahlung des Inneren eines Körpers
US5984853A (en) 1997-02-25 1999-11-16 Radi Medical Systems Ab Miniaturized source of ionizing radiation and method of delivering same
US20020172829A1 (en) 1997-02-28 2002-11-21 Yuichi Mori Coating composition, coating product and coating method
US6676590B1 (en) * 1997-03-06 2004-01-13 Scimed Life Systems, Inc. Catheter system having tubular radiation source
US6312374B1 (en) 1997-03-06 2001-11-06 Progenix, Llc Radioactive wire placement catheter
US6059713A (en) 1997-03-06 2000-05-09 Scimed Life Systems, Inc. Catheter system having tubular radiation source with movable guide wire
US5865720A (en) 1997-03-06 1999-02-02 Scimed Life Systems, Inc. Expandable and retrievable radiation delivery system
US6635008B1 (en) 1997-03-11 2003-10-21 Interventional Therapies Llc System and method for delivering a medical treatment to a treatment site
US5836882A (en) 1997-03-17 1998-11-17 Frazin; Leon J. Method and apparatus of localizing an insertion end of a probe within a biotic structure
WO1998041992A1 (fr) 1997-03-18 1998-09-24 Focused X-Rays Llc Utilisations medicales de rayons x focalises et d'imagerie par rayons x
US6033357A (en) 1997-03-28 2000-03-07 Navius Corporation Intravascular radiation delivery device
US6309339B1 (en) 1997-03-28 2001-10-30 Endosonics Corporation Intravascular radiation delivery device
US6135118A (en) * 1997-05-12 2000-10-24 Dailey; James P. Treatment with magnetic fluids
US6210312B1 (en) 1997-05-20 2001-04-03 Advanced Cardiovascular Systems, Inc. Catheter and guide wire assembly for delivery of a radiation source
US6019718A (en) 1997-05-30 2000-02-01 Scimed Life Systems, Inc. Apparatus for intravascular radioactive treatment
US6106454A (en) 1997-06-17 2000-08-22 Medtronic, Inc. Medical device for delivering localized radiation
US6024690A (en) 1997-07-01 2000-02-15 Endosonics Corporation Radiation source with delivery wire
US5913813A (en) 1997-07-24 1999-06-22 Proxima Therapeutics, Inc. Double-wall balloon catheter for treatment of proliferative tissue
US6482142B1 (en) 1997-07-24 2002-11-19 Proxima Therapeutics, Inc. Asymmetric radiation dosing apparatus and method
US5854822A (en) 1997-07-25 1998-12-29 Xrt Corp. Miniature x-ray device having cold cathode
US6508754B1 (en) 1997-09-23 2003-01-21 Interventional Therapies Source wire for radiation treatment
EP0904798B1 (fr) 1997-09-26 2002-11-06 Schneider ( Europe) GmbH Cathéter à ballonnet pour effectuer une thérapie radiologique gonflé avec du dioxide de carbone
DE19744367C1 (de) 1997-10-08 1998-11-05 Schott Glas Verfahren und Vorrichtung zur Beschichtung medizinischer Kanülen
US6419621B1 (en) 1997-10-24 2002-07-16 Radiomed Corporation Coiled brachytherapy device
US6471630B1 (en) 1998-03-24 2002-10-29 Radiomed Corporation Transmutable radiotherapy device
US6030333A (en) 1997-10-24 2000-02-29 Radiomed Corporation Implantable radiotherapy device
JP2001520979A (ja) 1997-10-27 2001-11-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 網膜傷の閉鎖のための方法及び医薬組成物
US6273850B1 (en) 1997-10-29 2001-08-14 Medtronic Ave, Inc. Device for positioning a radiation source at a stenosis treatment site
IL122094A (en) 1997-11-03 2003-07-06 Israel Atomic Energy Comm In situ-generated solid radiation source based on tungsten<188>/rhenium<188> and the use thereof
WO1999024117A1 (fr) 1997-11-07 1999-05-20 Global Vascular Concepts, Inc. Dispositif pour l'administration intravasculaire d'isotopes emetteurs beta
AU737378B2 (en) 1997-12-05 2001-08-16 Cook Incorporated Medical radiation treatment device
US6213932B1 (en) 1997-12-12 2001-04-10 Bruno Schmidt Interstitial brachytherapy device and method
US6561967B2 (en) 1997-12-12 2003-05-13 Bruno Schmidt Interstitial brachytherapy device and method
US5957829A (en) 1997-12-17 1999-09-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for radiotherapy using a radioactive source wire having a magnetic insert
US6149574A (en) 1997-12-19 2000-11-21 Radiance Medical Systems, Inc. Dual catheter radiation delivery system
US6108402A (en) 1998-01-16 2000-08-22 Medtronic Ave, Inc. Diamond vacuum housing for miniature x-ray device
US6159140A (en) 1998-02-17 2000-12-12 Advanced Cardiovascular Systems Radiation shielded catheter for delivering a radioactive source and method of use
US6338709B1 (en) 1998-02-19 2002-01-15 Medtronic Percusurge, Inc. Intravascular radiation therapy device and method of use
AU2687299A (en) 1998-02-19 1999-09-06 Radiance Medical Systems, Inc. Thin film radiation source
WO1999045563A1 (fr) 1998-03-06 1999-09-10 Xrt Corp. Procede et dispositif a rayons x, dans lesquels une source d'alimentation adaptable est utilisee
US6496561B1 (en) 1998-03-06 2002-12-17 Medtronic Ave, Inc. Devices, methods and systems for delivery of X-ray
US6069938A (en) 1998-03-06 2000-05-30 Chornenky; Victor Ivan Method and x-ray device using pulse high voltage source
US6036631A (en) 1998-03-09 2000-03-14 Urologix, Inc. Device and method for intracavitary cancer treatment
US5928130A (en) 1998-03-16 1999-07-27 Schmidt; Bruno Apparatus and method for implanting radioactive seeds in tissue
US6293899B1 (en) 1998-03-24 2001-09-25 Radiomed Corporation Transmutable radiotherapy device
US6433012B1 (en) 1998-03-25 2002-08-13 Large Scale Biology Corp. Method for inhibiting inflammatory disease
US6099499A (en) 1998-04-28 2000-08-08 Medtronic, Inc. Device for in vivo radiation delivery and method for delivery
US6093142A (en) 1998-04-30 2000-07-25 Medtronic Inc. Device for in vivo radiation delivery and method for delivery
US6050930A (en) 1998-06-02 2000-04-18 Teirstein; Paul S. Irradiation catheter with expandable source
US6053858A (en) 1998-06-04 2000-04-25 Advanced Cardiovascular Systems, Inc. Radiation source
AU5087799A (en) 1998-07-06 2000-01-24 Beth Israel Deaconess Medical Center Methods of inhibiting proliferative diseases by inhibiting tgf-beta mediated angiogenesis
WO2000004953A2 (fr) 1998-07-20 2000-02-03 Cook Urological Inc. Dispositif de curietherapie
US6164281A (en) 1998-07-20 2000-12-26 Zhao; Iris Ginron Method of making and/or treating diseases characterized by neovascularization
US6378526B1 (en) 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
AU5347899A (en) 1998-08-21 2000-03-14 Xrt Corp. Cathode structure with getter material and diamond film, and methods of manufacture thereof
US6391026B1 (en) 1998-09-18 2002-05-21 Pro Duct Health, Inc. Methods and systems for treating breast tissue
IL126341A0 (en) 1998-09-24 1999-05-09 Medirad I R T Ltd Radiation delivery devices and methods of making same
JP2000116802A (ja) * 1998-10-14 2000-04-25 Terumo Corp 放射線治療用カテーテルおよび放射線治療用カテーテル組立体
DE69931006T2 (de) 1998-10-14 2007-01-04 Terumo K.K. Drahtförmige Strahlenquelle und Katheteranordnung zur Strahlentherapie
DE19850203C1 (de) 1998-10-23 2000-05-31 Eurotope Entwicklungsgesellsch Radioaktive Jod-125-Seeds basierend auf Keramikträgern und Verfahren zur Herstellung dieser Seeds
US7312050B2 (en) 1998-10-29 2007-12-25 University Of Iowa Research Foundation Nucleic acids encoding interphotoreceptor matrix proteins
US6689043B1 (en) 1998-11-06 2004-02-10 Amersham Plc Products and methods for brachytherapy
ES2259480T3 (es) 1998-11-06 2006-10-01 Ge Healthcare Limited Productos y metodos de braquiterapia.
AU1740900A (en) 1998-11-20 2000-06-13 Genentech Inc. Method of inhibiting angiogenesis
US6245047B1 (en) 1998-12-10 2001-06-12 Photoelectron Corporation X-Ray probe sheath apparatus
US6181770B1 (en) 1998-12-11 2001-01-30 Photoelectron Corporation X-ray source interlock apparatus
US6111932A (en) 1998-12-14 2000-08-29 Photoelectron Corporation Electron beam multistage accelerator
US6402676B2 (en) 1999-01-20 2002-06-11 Advanced Cardiovascular Systems, Inc. Tip configuration for radiation source wires
US6224536B1 (en) 1999-02-08 2001-05-01 Advanced Cardiovascular Systems Method for delivering radiation therapy to an intravascular site in a body
EP1156849B1 (fr) * 1999-02-16 2005-04-20 Cordis Corporation Systeme manuel de distribution d'un ruban a des fins de therapie intravasculaire par les rayons
US6196963B1 (en) 1999-03-02 2001-03-06 Medtronic Ave, Inc. Brachytherapy device assembly and method of use
US6289079B1 (en) 1999-03-23 2001-09-11 Medtronic Ave, Inc. X-ray device and deposition process for manufacture
DE19914914B4 (de) 1999-04-01 2016-10-06 Carl Zeiss Meditec Ag Verfahren und Anordnung zur zielgerichteten Applikation eines Therapiestrahls, insbesondere zur Behandlung kranker Bereiche im Auge
US6183410B1 (en) 1999-05-06 2001-02-06 Precision Vascular Systems, Inc. Radiation exposure device for blood vessels, body cavities and the like
US6195411B1 (en) 1999-05-13 2001-02-27 Photoelectron Corporation Miniature x-ray source with flexible probe
JP3685956B2 (ja) 1999-06-11 2005-08-24 住友重機械工業株式会社 眼球照射線の制御装置
DE69922932T2 (de) 1999-06-18 2005-12-08 Aea Technology Qsa Gmbh Strahlungsquelle zur endovaskulären Bestrahlung
ATE321586T1 (de) 1999-06-18 2006-04-15 Aea Tech Qsa Gmbh Strahlungsquelle zur endovaskulären bestrahlung
DE19933284A1 (de) 1999-07-15 2001-01-18 Friedrich Schiller Uni Jena Bu Festkörperphantom zur Dosimetrie von Brachytherapiestrahlenquellen im Nahfeldbereich
US6551291B1 (en) 1999-08-04 2003-04-22 Johns Hopkins University Non-traumatic infusion cannula and treatment methods using same
US6264599B1 (en) 1999-08-10 2001-07-24 Syntheon, Llc Radioactive therapeutic seeds having fixation structure
DE69915287T2 (de) 1999-09-20 2004-07-22 Aea Technology Qsa Gmbh Drahtförmige Strahlungsquelle zur endovaskulären Bestrahlung
US6582417B1 (en) 1999-09-22 2003-06-24 Advanced Cardiovascular Systems, Inc. Methods and apparatuses for radiation treatment
US6352501B1 (en) 1999-09-23 2002-03-05 Scimed Life Systems, Inc. Adjustable radiation source
US6436026B1 (en) 1999-10-22 2002-08-20 Radiomed Corporation Flexible, continuous, axially elastic interstitial brachytherapy source
EP1235598A2 (fr) 1999-11-12 2002-09-04 Angiotech Pharmaceuticals, Inc. Compositions et methodes destinees au traitement de maladies utilisant une therapie radioactive et des inhibiteurs du cycle cellulaire combines
US20030144570A1 (en) 1999-11-12 2003-07-31 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating disease utilizing a combination of radioactive therapy and cell-cycle inhibitors
US6443976B1 (en) 1999-11-30 2002-09-03 Akorn, Inc. Methods for treating conditions and illnesses associated with abnormal vasculature
JP2001161838A (ja) 1999-12-07 2001-06-19 Radiomed Corp ワイヤ状癌治療用放射線源部材及びその送給装置
US6450937B1 (en) 1999-12-17 2002-09-17 C. R. Bard, Inc. Needle for implanting brachytherapy seeds
US6969384B2 (en) 2000-01-03 2005-11-29 The Johns Hopkins University Surgical devices and methods of use thereof for enhanced tactile perception
JP2003519670A (ja) 2000-01-12 2003-06-24 ライト サイエンシーズ コーポレイション 眼疾患の新規処置
US6395294B1 (en) 2000-01-13 2002-05-28 Gholam A. Peyman Method of visualization of the vitreous during vitrectomy
US6575888B2 (en) 2000-01-25 2003-06-10 Biosurface Engineering Technologies, Inc. Bioabsorbable brachytherapy device
US7361643B2 (en) 2000-02-09 2008-04-22 University Of Puerto Rico Methods for inhibiting angiogenesis
CA2398901C (fr) 2000-02-10 2010-11-16 Massachusetts Eye And Ear Infirmary Methodes et compositions destinees au traitement d'affections oculaires
US6301328B1 (en) 2000-02-11 2001-10-09 Photoelectron Corporation Apparatus for local radiation therapy
US6421416B1 (en) 2000-02-11 2002-07-16 Photoelectron Corporation Apparatus for local radiation therapy
US6285735B1 (en) 2000-02-11 2001-09-04 Photoelectron Corporation Apparatus for local radiation therapy
US6302581B1 (en) 2000-02-11 2001-10-16 Photoelectron Corporation Support system for a radiation treatment apparatus
US6320935B1 (en) 2000-02-28 2001-11-20 X-Technologies, Ltd. Dosimeter for a miniature energy transducer for emitting X-ray radiation
US6416457B1 (en) 2000-03-09 2002-07-09 Scimed Life Systems, Inc. System and method for intravascular ionizing tandem radiation therapy
US6755776B1 (en) 2000-03-20 2004-06-29 Louis Rogelio Granados Angioplasty radiation therapy to prevent restenosis
US6450938B1 (en) 2000-03-21 2002-09-17 Promex, Llc Brachytherapy device
US6984230B2 (en) 2000-04-07 2006-01-10 Synergetics, Inc. Directional laser probe
US6659780B2 (en) * 2000-04-14 2003-12-09 Tronic Limited Underwater connector with electrical stress reduction
DE60136272D1 (de) 2000-04-29 2008-12-04 Univ Iowa Res Found Diagnostika und therapeutika für makula degeneration erkrankungen
DE60115226T2 (de) 2000-05-09 2006-08-10 Radi Medical Technologies Ab Strahlentherapievorrichtung mit miniatursierter strahlentherapie
GB0011568D0 (en) 2000-05-15 2000-06-28 Nycomed Amersham Plc Grooved medical devices
GB0011581D0 (en) 2000-05-15 2000-07-05 Nycomed Amersham Plc Grooved brachytherapy
US6749553B2 (en) 2000-05-18 2004-06-15 Theragenics Corporation Radiation delivery devices and methods for their manufacture
US6443881B1 (en) * 2000-06-06 2002-09-03 Paul T. Finger Ophthalmic brachytherapy device
US6692759B1 (en) 2000-06-28 2004-02-17 The Regents Of The University Of California Methods for preparing and using implantable substance delivery devices
US6458068B1 (en) 2000-07-21 2002-10-01 Real World Design And Development Company Apparatus for determining the position of radioactive seeds in needles used for radioactive seed therapy for prostate cancer
ATE547080T1 (de) 2000-08-30 2012-03-15 Univ Johns Hopkins Vorrichtungen zur intraokularen arzneimittelabgabe
US7179912B2 (en) 2000-09-01 2007-02-20 Icos Corporation Materials and methods to potentiate cancer treatment
JP2004508048A (ja) 2000-09-05 2004-03-18 カロリンスカ イノベーションズ アクティーエボラーグ 内皮細胞増殖阻害物質に関する材料と方法
AU2001294604A1 (en) 2000-09-22 2002-04-02 Numerix Llc Improved radiation therapy treatment method
US6438206B1 (en) 2000-10-20 2002-08-20 X-Technologies, Ltd. Continuously pumped miniature X-ray emitting device and system for in-situ radiation treatment
US6530875B1 (en) 2000-10-20 2003-03-11 Imagyn Medical Technologies, Inc. Brachytherapy seed deployment system
WO2002038199A2 (fr) 2000-11-08 2002-05-16 Theragenics Corporation Fil de source radioactive et systeme de catheter a deux lumieres pour curietherapie
EP1205217A3 (fr) 2000-11-09 2004-01-02 Radi Medical Technologies AB Structure d'une source miniaturisée de rayons X
EP1205216A3 (fr) 2000-11-09 2004-01-02 Radi Medical Technologies AB Structure d'isolation d'une source de rayons X miniaturisée
US6746661B2 (en) 2000-11-16 2004-06-08 Microspherix Llc Brachytherapy seed
US6638205B1 (en) 2000-11-17 2003-10-28 Mds (Canada) Inc. Radioactive medical device for radiation therapy
DE10058163C2 (de) 2000-11-22 2003-07-10 Bebig Isotopen Und Medizintech Verfahren und Applikator zum Positionieren und/oder Auswerfen von Strahlenquellen über Hohlnadeln in biologisches Gewebe
US20020110220A1 (en) 2000-11-22 2002-08-15 Zilan Shen Method and apparatus for delivering localized X-ray radiation to the interior of a body
US6866624B2 (en) 2000-12-08 2005-03-15 Medtronic Ave,Inc. Apparatus and method for treatment of malignant tumors
US6415016B1 (en) 2001-01-09 2002-07-02 Medtronic Ave, Inc. Crystal quartz insulating shell for X-ray catheter
US6546077B2 (en) 2001-01-17 2003-04-08 Medtronic Ave, Inc. Miniature X-ray device and method of its manufacture
US7060695B2 (en) 2001-02-06 2006-06-13 Qlt, Inc. Method to prevent vision loss
DE60100027T2 (de) 2001-02-09 2003-04-30 Radi Medical Technologies Ab, Uppsala Medizinisches System mit einer miniaturisierten Röntgenröhre
US6875165B2 (en) 2001-02-22 2005-04-05 Retinalabs, Inc. Method of radiation delivery to the eye
AU2002240463A1 (en) 2001-02-22 2002-09-12 Novartis Ag Use of endostatin in the treatment of ocular neovascularization
US6497646B1 (en) 2001-03-14 2002-12-24 Cordis Corporation Intravascular radiotherapy source ribbon having variable radiopacity
US7244576B2 (en) 2001-04-18 2007-07-17 Rigel Pharmaceuticals, Inc. Modulators of angiogenesis
US7018371B2 (en) 2001-05-07 2006-03-28 Xoft, Inc. Combination ionizing radiation and radiosensitizer delivery devices and methods for inhibiting hyperplasia
US20020169354A1 (en) 2001-05-10 2002-11-14 Munro John J. Brachytherapy systems and methods
EP1406693A4 (fr) 2001-05-15 2007-06-06 Univ Stellenbosch Procede et dispositif pour appliquer des rayonnements
AU2002320088A1 (en) 2001-06-13 2002-12-23 Marc G. Apple Brachytherapy device and method
US6771737B2 (en) 2001-07-12 2004-08-03 Medtronic Ave, Inc. X-ray catheter with miniature emitter and focusing cup
US6810109B2 (en) 2001-07-13 2004-10-26 Medtronic Ave, Inc. X-ray emitting system and method
US6497647B1 (en) 2001-07-18 2002-12-24 Ati Medical, Inc. Radiation and thermal energy source
US20060025800A1 (en) 2001-09-05 2006-02-02 Mitta Suresh Method and device for surgical ventricular repair
US20030086903A1 (en) 2001-11-02 2003-05-08 Genvec, Inc. Therapeutic regimen for treating cancer
US6692481B2 (en) 2001-12-13 2004-02-17 John M. Guerrero Method and apparatus for treatment of amblyopia
JP3993438B2 (ja) * 2002-01-25 2007-10-17 株式会社ルネサステクノロジ 半導体装置
JP2003265631A (ja) * 2002-03-14 2003-09-24 Matsushita Electric Ind Co Ltd 導通管、それを用いたバルーンカテーテル、動脈硬化治療装置、及び、治療システム
US6985557B2 (en) * 2002-03-20 2006-01-10 Minnesota Medical Physics Llc X-ray apparatus with field emission current stabilization and method of providing x-ray radiation therapy
US6652442B2 (en) 2002-04-23 2003-11-25 Acueity, Inc. Micro-endoscope assembly for intraductal brachytherapy of a mammary duct and method of using same
NL1020740C2 (nl) 2002-06-03 2003-12-08 Nucletron Bv Werkwijze en inrichting voor het tijdelijk inbrengen en plaatsen van tenminste een energie uitstralende bron in een dierlijk lichaam.
US7601113B2 (en) 2002-09-10 2009-10-13 Cianna Medical, Inc. Brachytherapy apparatus and methods of using same
US7041047B2 (en) 2002-10-04 2006-05-09 Boston Scientific Scimed, Inc. Method and apparatus for the delivery of brachytherapy
US8123698B2 (en) 2002-10-07 2012-02-28 Suros Surgical Systems, Inc. System and method for minimally invasive disease therapy
US7070554B2 (en) 2003-01-15 2006-07-04 Theragenics Corporation Brachytherapy devices and methods of using them
US6953426B2 (en) 2003-01-29 2005-10-11 Mentor Corporation Seed magazine
US20040199130A1 (en) 2003-04-03 2004-10-07 Chornenky Victor I. Apparatus and method for treatment of macular degeneration
US20040218721A1 (en) 2003-04-30 2004-11-04 Chornenky Victor I. Miniature x-ray apparatus
US6914960B2 (en) 2003-04-30 2005-07-05 Medtronic Vascular, Inc. Miniature x-ray emitter having independent current and voltage control
US20040218724A1 (en) 2003-04-30 2004-11-04 Chornenky Victor I. Miniature x-ray emitter
US7273445B2 (en) 2003-04-30 2007-09-25 Board Of Trustees Of The University Of Illinois Intraocular brachytherapy device and method
ES2279058T3 (es) 2003-06-30 2007-08-16 Nucletron B.V. Dispositivo de fuente de rayos x en miniatura.
US20050049508A1 (en) 2003-08-06 2005-03-03 Michael Forman Treatment of age-related macular degeneration
US8172770B2 (en) 2005-09-28 2012-05-08 Suros Surgical Systems, Inc. System and method for minimally invasive disease therapy
US7783006B2 (en) 2003-10-10 2010-08-24 Xoft, Inc. Radiation treatment using x-ray source
ATE334717T1 (de) 2003-11-05 2006-08-15 Neovista Inc Radioaktive strahlungsquelle zur ophtalmischen brachytherapie
US7494457B2 (en) 2003-11-07 2009-02-24 Cytyc Corporation Brachytherapy apparatus and method for treating a target tissue through an external surface of the tissue
US7370284B2 (en) 2003-11-18 2008-05-06 Laszlo Systems, Inc. User interface for displaying multiple applications
WO2005079294A2 (fr) 2004-02-12 2005-09-01 Neo Vista, Inc. Methodes et appareil pour une curietherapie intra-oculaire
US7563222B2 (en) 2004-02-12 2009-07-21 Neovista, Inc. Methods and apparatus for intraocular brachytherapy
US7208748B2 (en) 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation
US7425195B2 (en) 2004-08-13 2008-09-16 Core Oncology, Inc. Radiation shielding device
US20060084952A1 (en) 2004-09-03 2006-04-20 Pallikaris Ioannis G Device for the irradiation of the ciliary body of the eye
US7662082B2 (en) 2004-11-05 2010-02-16 Theragenics Corporation Expandable brachytherapy device
US7223226B2 (en) 2004-11-05 2007-05-29 Nuclear Consultants Group, Inc. Brachytherapy needle and methods for assembling same
US8070767B2 (en) 2005-01-28 2011-12-06 Tyco Healthcare Group Lp Optical penetrating adapter for surgical portal
US7194063B2 (en) 2005-02-10 2007-03-20 Brookhaven Science Associates, Llc Methods for implementing microbeam radiation therapy
US20060204535A1 (en) 2005-02-25 2006-09-14 Johnson Johnnie M Cell-friendly cannula and needle
US7618362B2 (en) 2005-03-28 2009-11-17 Boston Scientific Scimed, Inc. Spacer apparatus for radiation and ablation therapy
WO2007053823A2 (fr) 2005-10-31 2007-05-10 Biolucent, Inc. Appareil de brachythérapie et ses méthodes d'utilisation
WO2007059397A1 (fr) 2005-11-10 2007-05-24 Biolucent, Inc. Appareil helicoidal pour brachytherapie et procedes pour son utilisation
US7862496B2 (en) 2005-11-10 2011-01-04 Cianna Medical, Inc. Brachytherapy apparatus and methods for using them
JP2009515655A (ja) 2005-11-15 2009-04-16 ネオビスタ、インコーポレイテッド 眼内近接照射療法のための方法および装置
DE102005056080B4 (de) 2005-11-24 2010-04-08 Siemens Ag Einrichtung für die Röntgen-Brachytherapie mit einer in das Innere eines Körpers zur Röntgen-Brachytherapie einführbaren Sonde
US8137256B2 (en) 2005-12-16 2012-03-20 Portola Medical, Inc. Brachytherapy apparatus

Also Published As

Publication number Publication date
US20050277802A1 (en) 2005-12-15
CA2554961C (fr) 2013-04-23
AU2005214040B2 (en) 2011-03-31
JP4602356B2 (ja) 2010-12-22
CN101005873A (zh) 2007-07-25
EP1720608A2 (fr) 2006-11-15
US7951060B2 (en) 2011-05-31
US7803102B2 (en) 2010-09-28
JP2007526034A (ja) 2007-09-13
BRPI0507690A (pt) 2007-07-24
CA2554961A1 (fr) 2005-09-01
US20100268013A1 (en) 2010-10-21
US7744520B2 (en) 2010-06-29
EP1720608A4 (fr) 2008-03-26
US20110004045A1 (en) 2011-01-06
ATE488269T1 (de) 2010-12-15
DE602005024771D1 (de) 2010-12-30
WO2005079915A1 (fr) 2005-09-01
AU2005214040A1 (en) 2005-09-01
CN101005873B (zh) 2010-07-21
WO2005079294A2 (fr) 2005-09-01
US8365721B2 (en) 2013-02-05
EP2298412A1 (fr) 2011-03-23
WO2005079294A3 (fr) 2007-02-15
US20070055089A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
EP1720608B1 (fr) Appareil pour une curietherapie intra-oculaire
US7563222B2 (en) Methods and apparatus for intraocular brachytherapy
KR101634983B1 (ko) 눈의 후부에 대한 방사선의 전달을 위한 외안의 최소한의 수술 방법 및 장치
CA2629648A1 (fr) Procedes et appareils pour une curietherapie intraoculaire
AU2015204094A1 (en) Methods and devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060912

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20080226

17Q First examination report despatched

Effective date: 20080716

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: APPARATUS FOR INTRAOCULAR BRACHYTHERAPY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: NEOVISTA, INC.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005024771

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101117

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111102

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005024771

Country of ref document: DE

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120223

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130227

Year of fee payment: 9

Ref country code: DE

Payment date: 20130227

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005024771

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005024771

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140211

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140211