EP1711703B1 - Procede pour adapter une valeur de mesure d'un detecteur de masse d'air - Google Patents

Procede pour adapter une valeur de mesure d'un detecteur de masse d'air Download PDF

Info

Publication number
EP1711703B1
EP1711703B1 EP05716613A EP05716613A EP1711703B1 EP 1711703 B1 EP1711703 B1 EP 1711703B1 EP 05716613 A EP05716613 A EP 05716613A EP 05716613 A EP05716613 A EP 05716613A EP 1711703 B1 EP1711703 B1 EP 1711703B1
Authority
EP
European Patent Office
Prior art keywords
value
adaptation
air mass
determined
mass sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05716613A
Other languages
German (de)
English (en)
Other versions
EP1711703A1 (fr
Inventor
Joris Fokkelman
Michael Kaesbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1711703A1 publication Critical patent/EP1711703A1/fr
Application granted granted Critical
Publication of EP1711703B1 publication Critical patent/EP1711703B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention relates to a method for adapting a measured value of an air mass sensor.
  • the air mass sensor may in particular be arranged in an internal combustion engine for detecting an air mass flow in the cylinder of the internal combustion engine.
  • Such air mass sensors detect the air mass flow flowing into a collector.
  • the collector communicates via suction pipes with the cylinders of the internal combustion engine and supplies them with fresh air.
  • Known air mass meters are regularly designed in the form of a Wheatstone measuring bridge, with a high-impedance temperature-dependent resistor for compensating the temperature the intake air in a branch and a low-resistance temperature-dependent resistor in the other branch whose heating power is characteristic of the passing air mass.
  • the heating resistor is usually designed as a so-called hot-film resistor. During operation of the internal combustion engine, dirt particles and also oil drops are deposited on the hot-film resistor. This has the consequence that the behavior of the measuring resistor changes.
  • DE 19950146 A1 discloses a control module including a software routine that performs an on-line calibration of an air mass sensor.
  • the control module begins the on-line calibration process at predetermined intervals based on the actual time or mileage of the engine.
  • An air pressure and an air temperature and an engine speed are detected and an intake air mass flow is calculated on the basis of these measured values.
  • the mass flow is detected by means of the air mass sensor.
  • An error value is determined from the absolute difference between the detected mass flow and the calculated intake air mass flow. If the error value has a value that is outside a predetermined limit value, then an error correction factor is determined, depending on the error value. The error correction factor is applied to the signal generated by the air mass flow sensor.
  • DE 10251875 A1 discloses a fuel supply control method for an internal combustion engine.
  • An intake air flow rate of the engine is detected by an intake air flow rate sensor.
  • An air-fuel ratio correction coefficient is determined depending on an actual and a target air-fuel ratio.
  • a correlation parameter vector is determined which has a correlation between the air-fuel ratio correction coefficient and the intake air flow rate detected by the intake air flow rate sensor, using an algorithm with sequential statistical processing.
  • a learning correction coefficient is calculated regarding a change in characteristics of the intake air flow sensor using the at least one correlation parameter vector.
  • An abnormality in the intake air flow rate sensor is determined in accordance with the at least one correlation parameter or correlation parameter vector.
  • the object of the invention is to provide a method for adapting a measured value of an air mass sensor, which is simple and at the same time ensures precise measurements of the air mass sensor over a long service life of the air mass sensor.
  • the invention is characterized by a method for adapting a measured value of an air mass sensor, in which a correction value, if predetermined operating conditions exist, is determined as a function of the measured value and a comparison value which is determined as a function of at least one further measured value of a further sensor.
  • An adaptation value is adapted depending on the correction value, on the duration since the last determination of the adaptation value and on the change of the adaptation value since the last adjustment of the adaptation value. Subsequently acquired measured values are corrected with the adaptation value.
  • the adaptation value is adapted more strongly in dependence on the correction value.
  • it can be easily taken into account that aging effects of the air mass sensor are more pronounced when the adaptation value is adjusted less frequently and can thus be compensated for again by the greater adaptation as a function of the correction value.
  • an initialization value is assigned to the adaptation value in the event of a change in the adaptation value, which is characteristic of an unauthorized modification to the air mass sensor.
  • an unauthorized modification to the air mass sensor for example, be the replacement of the air mass sensor, without a control device that detects the measurement signals of the air mass sensor and further processed, is informed in this regard.
  • This can be, for example, in a motor vehicle by replacing the air mass sensor outside an authorized workshop.
  • An unauthorized modification can be recognized particularly simply by a negative change of the adaptation value, the amount of which is greater than a predetermined one first threshold, and a duration since the last determination of the correction value is less than a predetermined second threshold.
  • the duration may be particularly simple a period of time, but it may also be dependent on the operating time of the air mass sensor and so for example in an internal combustion engine depending on a certain number of driving cycles or a meantime traveled distance.
  • this faulty reaction is an indication of a fault which occurs in such a way that a driver of a motor vehicle in which the air mass meter can be arranged recognizes that an error has occurred.
  • the error can e.g. be displayed optically or acoustically.
  • first correction value and a second correction value are determined.
  • the first correction value is determined if predetermined first operating conditions exist.
  • the second correction value is determined if predetermined second operating conditions exist.
  • a first adaptation value is adjusted.
  • a second adaptation value is adjusted.
  • Subsequently detected measured values of the air mass sensor are corrected with an adaptation value, which is interpolated depending on the current operating conditions between the first and the second adaptation value.
  • An internal combustion engine ( FIG. 1 ) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the intake tract preferably comprises a throttle valve 11, a collector 12 and a suction pipe 13 which is guided towards a cylinder Z1 via an intake passage in the engine block.
  • an exhaust gas recirculation device 13A can open, which leads exhaust gases from the exhaust gas tract 4 back into the intake tract 1.
  • the amount of recirculated exhaust gas is controllable by means of an exhaust gas recirculation valve 13B.
  • the engine block further comprises a crankshaft 21, which is coupled via a connecting rod 25 with the piston 24 of the cylinder Z1.
  • the cylinder head 3 comprises a valve drive with an inlet valve 30, an outlet valve 31 and valve drives 32, 33.
  • the drive of the gas inlet valve 30 and the gas outlet valve 31 takes place by means of the camshaft.
  • the cylinder head 3 further includes an injection valve 34.
  • a control device 6 which can also be referred to as a device for controlling the internal combustion engine and are assigned to the sensors that detect different measured variables and each determine the measured value of the measured variable.
  • the control device 6 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.
  • the sensors are a pedal position sensor 71 which detects the position of an accelerator pedal 7, an air mass meter 14 which detects an air mass flow upstream of the throttle valve 11, a temperature sensor 15 which detects the intake air temperature T, a pressure sensor 16 which measures the intake manifold pressure detected, a crankshaft angle sensor 22, which detects a crankshaft angle and from which then a rotational speed N is determined, another temperature sensor 23 which detects a coolant temperature and a camshaft angle sensor 36 a, which detects the camshaft angle.
  • any subset of said sensors or additional sensors may be present.
  • the actuators are, for example, the throttle valve 11, the gas inlet and gas outlet valves 30, 31, the injection valve 34, and the exhaust gas recirculation valve 13B.
  • the internal combustion engine may also include additional cylinders Z2-Z4, which are then also associated with corresponding actuators.
  • a program for determining an adaptation value which is stored in the control device 6, is executed during operation of the internal combustion engine.
  • the program is started in a step S1 ( FIG. 2A ), in which variables are initialized if necessary.
  • the start preferably takes place shortly after the start of the engine start.
  • step S2 current operating conditions BB are determined. This is preferably carried out as a function of the rotational speed N, the throttle curve THR, the intake air temperature T and the exhaust gas recirculation rate EGR and optionally also dependent on further variables or only depending on a part of the variables mentioned.
  • a step S3 it is checked whether the current operating conditions BB are equal to predetermined first operating conditions BB1.
  • the predetermined first operating conditions BB1 may be, for example, that the rotational speed N is a value of, for example, 1,000 revolutions and the throttle profile, the temperature T and the exhaust gas recirculation rate assume predetermined, as constant as possible values.
  • step S3 If the condition of step S3 is not satisfied, the processing is continued in a step S4, in which the program remains for a predetermined waiting time T_W, before the processing in step S2 is continued again. If, on the other hand, the condition of step S3 is fulfilled, a first measured value MW1 is determined in a step S5.
  • the first measured value MW1 is preferably the measured value of the air mass sensor 14.
  • a comparison value VW is determined, specifically as a function of at least one second measured value MW2 of a further sensor, such as e.g. of the intake manifold pressure sensor 16.
  • the comparison value is then determined, for example by means of a physical model, that is to say preferably a comparison value of the air mass flow is determined.
  • a first correction value KW1 is determined as a function of the first measured value MW1 and the comparison value VW. This can be done, for example, by forming the difference, the comparison value VW and the first measured value MW1.
  • a first adaptation value AD1 is determined.
  • An [n] denotes the currently calculated value and an [n-1] means a value determined during the previous adaptation.
  • the current first adaptation value AD1 is then determined as a function of the preceding first adaptation value AD1 and the first correction value KW1. This happens preferably by means of a first-order filter. However, it can also be done by means of a higher-order filter or other manner known to those skilled in the art for such adaptations.
  • a step S10 it is checked whether the first adaptation value AD1, which was currently determined, is greater than a predetermined extreme value EXTR with respect to its magnitude.
  • the extreme value is predetermined such that, when the extreme value is exceeded, it can be assumed that such an exceeding is not possible on account of the properties of the air mass sensor and the signal processing, and therefore a limitation to this value must take place.
  • the extreme value EXTR can amount to 10 to 20% of the determined comparison value.
  • the first adaptation value AD1 is limited to a minimum value AD_MIN or a maximum value AD_MAX depending on its sign in a step S11.
  • step S10 determines whether the change of the first adaptation value AD1 which is determined by means of the difference formation from the current and the previous first adaptation value AD1 is characteristic of an unauthorized modification to the air mass sensor.
  • the change of the first adaptation value AD1 is characteristic of the unauthorized modification UM, for example, if it has a sign dependent on the respective air mass sensor and its magnitude exceeds an air mass sensor-dependent value and, at the same time, the duration has fallen below a predefinable value since the previous adaptation.
  • Such an unauthorized modification may, for example, in the case of an air mass meter, consist in that the heating resistor formed as a hot-film resistor has been cleaned, but this information of the control device 6 is not available. If the condition of step S12 is fulfilled, then in a step S13 the first adaptation value AD1 is assigned an initialization value AD1_INI for the first adaptation value AD1. For example, this initialization value AD1_INI may be zero.
  • step S12 If, on the other hand, the condition of step S12 is not fulfilled, the first adaptation value AD1 is determined again in a step S14 depending on the duration D_AD1 since the last valid adaptation of the first adaptation value AD1, the previous first adaptation value AD1, ie not the one in FIG Step S8 determined at the current calculation pass of the program determined first adaptation value AD1, and the correction value KW1.
  • the correction value KW1 enters more strongly into the adaptation of the first adaptation value AD1.
  • step S14 the processing is continued in step S2.
  • FIGS. 3A and 3B A second embodiment of the program for adapting adaptation values is described below with reference to FIGS. 3A and 3B and described there flowcharts. In the following, only the differences from the program according to the FIGS. 2A and 2B described.
  • the program is started in a step S16 in which variables are initialized if necessary.
  • the current operating conditions are determined according to the step S2.
  • the comparison value VW is subsequently determined, specifically as a function of the second measured value MW2 of at least one further sensor.
  • This further sensor is preferably the intake manifold pressure sensor 16 and, accordingly, a measured value of the intake manifold pressure detected by the latter. He may additionally or alternatively, for example, the crankshaft angle sensor, which detects the rotational speed N of the crankshaft and / or a sensor that detects the throttle profile THR of the throttle valve 11.
  • the comparison value VW is then determined from these second measured values MW2.
  • the first correction value KW1 is subsequently determined as a function of the first measured value MW1 and the comparison value.
  • the comparison value VW is preferably considered to be the reference value, ie the correct value.
  • the first correction value KW1 is preferably determined from the difference between the comparison value VW and the first measured value MW1.
  • a current first adaptation value AD1 is then determined, depending on the preceding first adaptation value AD1 and the correction value KW1. This is done according to step S8, preferably by means of a first-order filter. However, it can also be done by means of a higher-order filter.
  • step S30 it is checked whether the absolute value of the first adaptation value, namely the current first adaptation value, is greater than the extreme value EXTR. This is done in accordance with step S10. If the condition of the step S30 is satisfied, the processing is continued in a step S32 corresponding to the step S11.
  • step S32 the processing of the program is continued in step S18.
  • step S38 a value is determined in a step S38 which is characteristic of the unauthorized modification UM at the air mass sensor, preferably the air mass meter 14. This is preferably done as a function of the current first adaptation value AD1, the preceding first Adaptation value AD1, a first threshold value SW1, the duration D_AD1 since the last valid adaptation of the first adaptation value AD1 and a second one Threshold SW2.
  • the unauthorized modification UM at the air mass sensor 14 is given when the difference between the current and the previous first adaptation value AD1, ie the change thereof, is greater than the predetermined first threshold value SW1 and at the same time the duration D_AD1 since the last valid adaptation of the first one Adaption value AD1 is smaller than the predetermined second threshold value SW2.
  • step S40 it is then checked whether an unauthorized modification UM is present at the air mass sensor. If this is the case, then in step S42 the current first adaptation value is set equal to the initialization value AD1_INI of the first adaptation value AD1 by means of the initialization value AD1_INI of the first adaptation value AD1.
  • a current second adaptation value AD2 is also initialized with an initialization value AD2_INI of the second adaptation value AD2. This then ensures that all adaptation values AD1, AD2 can be readjusted in new calculation cycles without being burdened by adaptation values AD1, AD2 determined from the preceding calculation cycles and thus takes into account the fact that the air mass sensor has been modified, e.g. was exchanged.
  • step S44 if the condition of step S40 is not met, the first adaptation value AD1 may again be determined, corresponding to step S14.
  • a step S46 it is then checked whether the difference between the current adaptation value AD1 and the preceding first adaptation value AD1 is greater than a third threshold value and at the same time the duration D_AD1 since the last adaptation of the first adaptation value AD1 is smaller than a predetermined fourth threshold value SW4. If the condition of step S46 is not met, the processing is optionally continued after the predetermined waiting time T_W in step S18.
  • step S48 if the condition of the step S46 is satisfied, there is an error and the processing is continued in a step S48.
  • the error is possibly detected only after repeated fulfillment of the condition of step S46 in successive calculation runs and then there is a false reaction, which may be, for example, that an error indication lamp MIL, which is also referred to as malfunction indication lamp, the driver of a motor vehicle, in which the air mass meter is arranged, signals an error.
  • the processing optionally after the predetermined waiting period TW, is continued again in step S18.
  • step S20 if the condition of step S20 is not satisfied, i. the current operating conditions BB do not correspond to the predetermined first operating conditions BB1, it is checked in a step S50 whether the current operating conditions BB correspond to predetermined second operating conditions BB2.
  • the predetermined second operating conditions BB2 for example, depend significantly on the speed N and are in this regard, for example. fulfilled when the speed has approximately the value 3000 revolutions.
  • step S50 If the condition of step S50 is not satisfied, the processing in step S34 is continued. On the other hand, if the condition of step S50 is met, then it is in one Step S52, the first measured value MW1 of the air mass sensor 14 detected.
  • step S54 the second measured value MW2 of the further sensor, that is to say preferably the intake manifold pressure sensor 16 and, for example, of the crankshaft sensor 22, is subsequently detected and then the comparison value VW is determined as a function of this or these second measured values MW2. This is done in accordance with step S24 and step S6.
  • a second correction value KW2 is subsequently determined as a function of the first measured value MW1 determined in the step S52 and the comparison value VW. This is done in accordance with steps S26 and S7 by subtraction.
  • step S58 the second adaptation value AD2 is adapted, specifically as a function of the second adaptation value AD2 and the second correction value KW2 adapted during a preceding adaptation. This then also takes place in accordance with step S28.
  • a step S59 which corresponds to the steps S32 to S48 adapted for the determination of the second adaptation value AD2, then corresponding, eg the duration D_AD1 since the last valid adaptation of the first adaptation value AD1 by a duration D_AD2 the duration since the last valid adjustment of the second adaptation value AD2, the first correction value KW1 are replaced by the second correction value KW2.
  • the program may also be adapted accordingly for adjusting further adaptation values, in the presence of third, fourth and further predetermined operating conditions.
  • the program according to the FIGS. 3A . 3B however, it can also be adapted accordingly for merely determining the first adaptation value AD1.
  • FIG. 4 a flowchart of a program is shown, by means of which the measured values MW1 of the air mass sensor 14 are corrected.
  • the program is started in a step S60.
  • a step S62 the current operating conditions BB are determined and corresponding to the step S18. If appropriate, the current operating conditions in step S62 can also be determined only as a function of one or more relevant measured variables, e.g. only in dependence on the rotational speed N.
  • the current adaptation value AD is then determined as a function of the operating conditions BB determined in the step S62 and corresponding to interpolation between the determined adaptation values AD1, AD2 and optionally further variables.
  • a corrected first measured value MW_KOR is then determined by summing the first measured value MW1 and the current adaptation value AD. Thereafter, the program pauses for a predetermined waiting period T_W in step S70 before processing is continued again in step S62.
  • the adaptation value (s) are always saved and are thus available again when the program is restarted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Selon l'invention, pour permettre l'adaptation d'une valeur de mesure (MW1) d'un détecteur de masse d'air, une valeur de correction (KW) est déterminée lorsque règnent des conditions de fonctionnement prédéterminées (BB1), à savoir en fonction de la valeur de mesure (MW1) et d'une valeur de comparaison (VW) qui est déterminée en fonction d'au moins une autre valeur de mesure (MW2) d'un autre capteur. Une valeur d'adaptation (AD1) est adaptée en fonction de la valeur de correction (KW), de la durée (D_AD1) faisant suite à la dernière détermination de la valeur d'adaptation (AD1) et de la variation de la valeur d'adaptation (AD1) faisant suite à la dernière adaptation de la valeur d'adaptation (AD1). Les valeurs de mesure déterminées (MW1) sont ensuite corrigées avec la valeur d'adaptation (AD1).

Claims (6)

  1. - Procédé pour adapter une valeur de mesure (MW1) d'un détecteur de masse d'air (14) au cours duquel
    - en présence de conditions de fonctionnement prédéterminées (BB1, BB2), on fournit une valeur de correction (KW1, kW2) en fonction de la valeur de mesure (MW1) et d'une valeur de comparaison (VW), cette valeur de comparaison étant fournie en fonction d'au moins une autre valeur de mesure (MW2) provenant d'un autre détecteur,
    - on vérifie une valeur d'adaptation (AD1, AD2) et on l'adapte en fonction de la valeur de correction (KW1, KW2), de la durée (D_AD1, D AD2) écoulée depuis la dernière adaptation de la valeur d'adaptation (AD1, AD2) et de la modification de la valeur d'adaptation (AD1, AD2) depuis la dernière adaptation de celle-ci, la valeur d'adaptation (AD1, AD2) étant adaptée davantage en fonction de la valeur de correction (KW1, KW2) lorsque la durée (D_AD1, D_AD2) augmente depuis la dernière adaptation de la valeur d'adaptation (AD1, AD2), et
    - ensuite on corrige des valeurs de mesure détectées (MW1) avec la valeur d'adaptation (AD1, AD2).
  2. Procédé selon la revendication 1, au cours duquel on associe à la valeur d'adaptation (AD1, AD2) une valeur d'initialisation (AD1_INI), lors d'une variation de celle-ci caractéristique d'une modification non autorisée (UM) subie par le détecteur de masse d'air (14).
  3. Procédé selon la revendication 2, au cours duquel une modification négative de la valeur d'adaptation (AD1, AD2) qui est supérieure à une première valeur de seuil (SW1) prédéterminée et une durée (D_AD2, D_AD1) écoulée depuis la dernière fois qu'une valeur de correction (KW1, KW2) est fournie, qui est inférieure à une seconde valeur de seuil prédéterminée, sont caractéristiques pour la modification non autorisée subie par le détecteur de masse d'air (14).
  4. Procédé selon l'une des revendications précédentes, au cours duquel une modification positive de la valeur d'adaptation (AD1, AD2) dont l'excursion est supérieure à une troisième valeur de seuil (SW3) prédéterminée et une durée écoulée depuis la dernière fois qu'une valeur de correction (KW, KW1, KW2) a été fournie, qui est inférieure à une quatrième valeur de seuil (SW4) prédéterminée sont caractéristiques d'un encrassement extraordinaire du détecteur de masse d'air (14), et au cours duquel il se produit une réaction de défaut lorsqu'un encrassement extraordinaire est reconnu.
  5. Procédé selon la revendication 4, au cours duquel la réaction de défaut indique un défaut, la réaction de défaut étant mise en oeuvre de telle manière qu'un conducteur d'un véhicule automobile dans lequel le détecteur de masse d'air (14) peut être disposé, reconnaisse qu'un défaut s'est produit.
  6. Procédé selon l'une des revendications précédentes, au cours duquel on fournit au moins une première valeur de correction (KW1) et une seconde valeur de correction (KW2), la première valeur de correction (KW1) étant fournie lorsque on est en présence de premières conditions de fonctionnement (BB1) prédéterminées et la seconde valeur de correction (KW2) étant fournie lorsqu'on est en présence de secondes conditions de fonctionnement (BB2) prédéterminées, au cours duquel une première valeur d'adaptation (AD1) est vérifiée et adaptée en fonction de la première valeur de correction (KW1) et une seconde valeur d'adaptation (AD2) est vérifiée et adaptée en fonction de la seconde valeur de correction (KW2), et au cours duquel ensuite des valeurs de mesure détectées (MW1) du détecteur de masse d'air (14) sont corrigées au moyen d'une valeur d'adaptation (AD) interpolée en fonction des conditions de fonctionnement instantanées (BB) entre au moins les première et seconde valeurs d'adaptation (AD1, AD2).
EP05716613A 2004-02-02 2005-02-01 Procede pour adapter une valeur de mesure d'un detecteur de masse d'air Expired - Fee Related EP1711703B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005134A DE102004005134A1 (de) 2004-02-02 2004-02-02 Verfahren zum Adaptieren eines Messwertes eines Luftmassensensors
PCT/EP2005/050424 WO2005073542A1 (fr) 2004-02-02 2005-02-01 Procede pour adapter une valeur de mesure d'un detecteur de masse d'air

Publications (2)

Publication Number Publication Date
EP1711703A1 EP1711703A1 (fr) 2006-10-18
EP1711703B1 true EP1711703B1 (fr) 2009-08-19

Family

ID=34801451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05716613A Expired - Fee Related EP1711703B1 (fr) 2004-02-02 2005-02-01 Procede pour adapter une valeur de mesure d'un detecteur de masse d'air

Country Status (4)

Country Link
US (1) US7444852B2 (fr)
EP (1) EP1711703B1 (fr)
DE (2) DE102004005134A1 (fr)
WO (1) WO2005073542A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047240A1 (de) * 2005-10-01 2007-04-05 Daimlerchrysler Ag Verfahren zur Korrektur von Messwerten
DE602005021375D1 (de) * 2005-11-30 2010-07-01 Delphi Tech Holding Sarl Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102007053406B3 (de) * 2007-11-09 2009-06-04 Continental Automotive Gmbh Verfahren und Vorrichtung zur Durchführung sowohl einer Adaption wie einer Diagnose bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
SE534364C2 (sv) * 2008-02-15 2011-07-26 Scania Cv Abp Metod och datorprogram för att anpassa en luftflödessensor i en fordonsmotor
DE102008042764B4 (de) * 2008-10-13 2021-02-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Steuergeräts, Vorrichtung, Steuergeräte-Programm und Steuergeräte-Programmprodukt zur Durchführung des Verfahrens
US9140203B2 (en) 2011-11-15 2015-09-22 Cummins Inc. Apparent plumbing volume of air intake and fresh airflow value determination
US9086025B2 (en) 2011-11-21 2015-07-21 Cummins Inc. Systems and methods for correcting mass airflow sensor drift
DE102011089898A1 (de) * 2011-12-23 2013-06-27 Continental Automotive Gmbh Verfahren zum Betreiben eines Luftmassensensors
DE102016202803B3 (de) * 2016-02-24 2017-08-17 Continental Automotive Gmbh Verfahren zum Ermitteln einer Luftmasse in einer Brennkraftmaschine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733106A1 (de) * 1997-07-31 1999-02-04 Siemens Ag Verfahren zum Steuern einer Brennkraftmaschine
EP0976922B1 (fr) 1998-07-29 2006-01-04 DaimlerChrysler AG Méthode d'ajustement de couple moteur
US6370935B1 (en) * 1998-10-16 2002-04-16 Cummins, Inc. On-line self-calibration of mass airflow sensors in reciprocating engines
DE19927674B4 (de) * 1999-06-17 2010-09-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10054199A1 (de) * 2000-11-02 2002-05-16 Siemens Ag Verfahren zum Überprüfen der Funktionsfähigkeit eines Luftmassenmessers
DE10132833A1 (de) * 2001-07-06 2003-01-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Drucksensors
DE10251875B4 (de) 2001-11-09 2005-02-10 Honda Giken Kogyo K.K. Kraftstoffzufuhr-Steuer/Regelsystem für einen Motor mit innerer Verbrennung

Also Published As

Publication number Publication date
EP1711703A1 (fr) 2006-10-18
DE102004005134A1 (de) 2005-08-18
DE502005007931D1 (de) 2009-10-01
US7444852B2 (en) 2008-11-04
US20080141975A1 (en) 2008-06-19
WO2005073542A1 (fr) 2005-08-11

Similar Documents

Publication Publication Date Title
EP1711703B1 (fr) Procede pour adapter une valeur de mesure d'un detecteur de masse d'air
DE19740916B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102005019017B4 (de) Verfahren und Vorrichtung zur Fehlerdiagnose für Verbrennungsmotoren
DE102007023850B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007062794B4 (de) Verfahren und Vorrichtung zur Detektion einer Undichtigkeit in einem Abgasabschnitt eines Verbrennungsmotors
DE102018131198B4 (de) Verfahren und Vorrichtung zur Fehlerdiagnose eines kontinuierlich variablen Ventilzeitdauer-Systems
DE10330106B4 (de) Ausfalldetektionsvorrichtung für einen Verbrennungsmotor
EP2071165B1 (fr) Méthode et dispositif de fonctionnement d'un moteur à combustion interne
DE102006037752B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2008080843A1 (fr) Procédé et dispositif de contrôle d'un moteur à combustion interne
DE102017223639B3 (de) Verfahren und Vorrichtung zum Bestimmen des Verschmutzungsgrades eines Luftfilters einer Verbrennungskraftmaschine
DE102005045857B3 (de) Verfahren zum Bestimmen des Umgebungsdrucks in einer Brennkraftmaschine
EP1481153B1 (fr) Procede de commande d'un moteur a combustion interne
EP3786436A1 (fr) Procédé de diagnostic des ratés de combustion d'un moteur à combustion interne
DE102007044614B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2007012542A1 (fr) Procede et dispositif pour adapter l'acquisition d'un signal de mesure d'une sonde de gaz d'echappement
DE10144674B4 (de) Verfahren zur Erkennung einer Fehlfunktion an einer Abgasklappeneinrichtung und/oder einer Saugrohrumschalteinrichtung
DE102006022383B4 (de) Verfahren zur Signalauswertung eines Partikelsensors
DE102007035168A1 (de) Überwachen eines Nockenprofilumschaltsystems in Verbrennungsmotoren
DE102006031081B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006010710B4 (de) Verfahren zur Luftmassenermittlung bei Brennkraftmaschinen
DE102005020139B4 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers in einem Brennraum eines Zylinders einer Brennkraftmaschine
DE102005046956B3 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers
DE102006043702B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008012459B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070828

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005007931

Country of ref document: DE

Date of ref document: 20091001

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100520

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180228

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007931

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903