EP1705355A1 - Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection - Google Patents

Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection Download PDF

Info

Publication number
EP1705355A1
EP1705355A1 EP05290675A EP05290675A EP1705355A1 EP 1705355 A1 EP1705355 A1 EP 1705355A1 EP 05290675 A EP05290675 A EP 05290675A EP 05290675 A EP05290675 A EP 05290675A EP 1705355 A1 EP1705355 A1 EP 1705355A1
Authority
EP
European Patent Office
Prior art keywords
injector
injection
speed
engine
average speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05290675A
Other languages
German (de)
English (en)
Other versions
EP1705355B1 (fr
Inventor
Thierry Cochet
Guillaume Meissonnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to DE602005004892T priority Critical patent/DE602005004892T2/de
Priority to EP05290675A priority patent/EP1705355B1/fr
Priority to AT05290675T priority patent/ATE386877T1/de
Priority to JP2006053107A priority patent/JP4774516B2/ja
Priority to US11/389,375 priority patent/US7269500B2/en
Publication of EP1705355A1 publication Critical patent/EP1705355A1/fr
Application granted granted Critical
Publication of EP1705355B1 publication Critical patent/EP1705355B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections

Definitions

  • the subject of the present invention is a process for determining operating parameters, also called a learning method, of an injection device for a combustion engine.
  • An injection device conventionally comprises a plurality of injectors, each of the injectors being controlled in opening and closing by an electronic control means, by means of control signals making it possible to control one or more pilot injections and a main injection on each of the injectors. injectors.
  • the injectors used may be of several types, for example of the solenoid type or of the piezoelectric type.
  • the document EP 0 740 068 describes a solenoid injector.
  • the injector comprises an injector body. At its lower end, the injector body defines a seat in which the lower end of a needle is able to engage, the needle being able to slide between an open position in which it allows the ejection fuel nozzle of the injector and a closed position in which it closes the injector tightly.
  • the injector body is supplied with fuel by a fuel source under high pressure, such as a common rail, through a feed passage opening into an annular gallery.
  • the annular gallery surrounds the needle, near its upper end, the shape of the needle being adapted to allow the flow of fuel from the annular gallery between the bore and the needle.
  • the high-pressure supply line also communicates with a control chamber via a "restrictor".
  • the control chamber is closed by a plate.
  • the plate cooperates with a sliding valve member having a hollow shaft, the interior of the hollow shaft being adapted to communicate with the interior of the chamber when the valve member is disengaged from the plate.
  • the interior of the hollow stem also communicates with a low pressure return.
  • An electronic control means makes it possible to control, by means of control signals, a solenoid actuator. When the solenoid is energized, the valve member disengages from the plate. At this time, fuel from the control chamber can escape to inside the hollow stem and then in the low pressure return.
  • the document EP 0 937 891 describes a piezoelectric injector.
  • the injector includes a piston, which defines a control chamber in combination with the upper surface of the needle.
  • the injector comprises piezoelectric actuators.
  • the actuators are electrically connected to a control circuit capable of transmitting control signals.
  • the pressurized fuel present in the control chamber exerts a force on the upper part of the needle and keeps it in the closed position, in combination with a spring.
  • the piezoelectric material is discharged, in order to reduce its size. This causes the piston to move in the opposite direction to the needle and thus to decrease the pressure inside the control chamber. At this moment, the needle is in its open position. When charging the piezoelectric material, this has the effect of pushing the piston down. This movement increases the fuel pressure inside the control chamber thus increasing the force applied to the upper surface of the needle which has the effect of pushing it towards its closed position.
  • each injector has specific parameters.
  • mechanical wear can also affect the accuracy of the amount of fuel injected.
  • Learning processes must therefore be performed to adapt the control signals to the specific characteristics of each of the injectors, in order to balance the maximum engine operation, optimize combustion noise and control gaseous emissions.
  • a first solution is to use an accelerometer.
  • this solution is sensitive to vibrations, and this poses problems of precision, especially with piezoelectric injectors.
  • a second solution is to use a speed sensor to continuously determine the speed of the crankshaft.
  • the document FR 2,720,787 describes a method for determining the specific parameters of each of the injectors of an injection device of a combustion engine, in particular a device with pilot injection and main injection.
  • the curve of the instantaneous speed difference of the motor shaft is established between the moment of passage to the top dead center of combustion of the cylinder in question and a predetermined subsequent time, for example offset by 60 °, preceding the changeover to top dead point of combustion of the next cylinder, depending on the duration of the pilot injection, the other operating parameters being kept constant.
  • This curve has a minimum level.
  • the slope breaking point of this curve makes it possible to determine the opening time of the injector from which said injector starts to flow.
  • This method is intended to be implemented for example during the end of assembly line check for the development of the engine or to perform tests in the event of malfunction of the engine as part of the after-sales service.
  • the present invention aims to provide a method for determining the operating parameters of an injection device of a combustion engine which avoids at least some of the aforementioned drawbacks and which is more precise.
  • Another object of the invention is to provide a learning method that can be operated at different speeds of the engine and / or at different injector supply pressures to determine the relevant parameters over an extended operating range.
  • said injectors are direct actuated. These injectors make it possible to obtain a more precise result due to the absence of hydraulic interaction.
  • said control signal comprises several test pulses, the value of said parameter being the same for each of said test pulse.
  • said parameter is a pulse duration.
  • said injector injection control signals other than said injector to be tested are zero. This corresponds for example to an execution of the method when the accelerator pedal is raised.
  • said electronic control means provides said injectors with injection control signals including a main pulse corresponding to a request from a gas control member. This corresponds for example to a process execution when the accelerator pedal is depressed.
  • a filtered average velocity difference is calculated by applying a convolution by a filter to the curve representing the average velocity difference as a function of said parameter of the test pulse and in step g) , said filtered average speed difference is used.
  • said filter is a sliding average.
  • said method comprises a first step of experiencing a stability condition predetermined to detect a stable operation of said engine, and a step of terminating said method when said stability condition is not satisfied.
  • Verification of the stability condition is not essential for the realization of the learning process, but it makes it possible to simplify data processing.
  • the stability condition is composed of one or more elementary conditions, which can be cumulative or alternative. In particular, it can be provided that the stability condition is verified when several of the elementary conditions are satisfied.
  • the elementary conditions can be tested simultaneously or successively. A nonlimiting list of elementary conditions which can make it possible to detect a so-called stable zone is given below.
  • said stability condition includes a motor speed condition, which condition is verified when said motor speed is between two predetermined thresholds (minimum and maximum).
  • said stability condition includes a torque condition of the engine, which condition is verified when the engine torque is between two predetermined thresholds (minimum and maximum).
  • said stability condition includes a speed ratio condition, which condition is satisfied when said speed ratio is greater than a predetermined threshold.
  • said stability condition includes a vehicle speed condition, which condition is verified when said vehicle speed is greater than a predetermined threshold.
  • said stability condition includes a clutch condition, which condition is verified when the clutch is activated.
  • said method comprises, at each motor cycle, a step of calculating a difference between said average speed calculated in step b) for said engine cycle and the average speed calculated in step b) for a preceding motor cycle, a step of calculating a corrected mean speed difference by correcting said average speed difference calculated in step e).
  • the speed of the combustion engine corresponds to the speed of rotation of a crankshaft of said combustion engine, said measurement time associated with an injector extending each time between a delayed initial instant of an offset angle ⁇ of the crankshaft relative to the top dead center of a piston corresponding to said injector and a delayed final instant of said offset angle ⁇ relative to the top dead center of the piston corresponding to the next injector in the order said injection cycles.
  • the offset angle ⁇ is less than or equal to 45 °.
  • said injection device comprises a common rail provided with a high pressure valve, each of said injectors being connected to said common rail.
  • a high pressure valve on the common rail is preferable but not necessary.
  • said method comprises a step of selecting a common ramp pressure in a range ranging for example from 200 to 2000 bar and performing said method by maintaining this common rail pressure in said common rail.
  • said method comprises the steps of detecting an actuation of a gas control member of said vehicle corresponding to a fuel demand, calculating a common ramp target pressure adapted to said fuel demand, and, when the target pressure is less than said selected common rail pressure, lowering the pressure in said common rail by opening said high pressure valve.
  • said method comprises the steps of detecting an actuation of a gas control member of said vehicle corresponding to a fuel demand, calculating a common ramp target pressure adapted to said fuel demand, and, when the target pressure is less than said selected common rail pressure, providing said injectors with injection control signals including at least one pre-injection pulse and one main pulse.
  • a fuel supply system 1 for an internal combustion engine is disposed in a vehicle (not shown) and cooperates with a motor (not shown), the injectors 7 injecting fuel into cylinders (not shown) of the engine, for example diesel.
  • the supply system 1 comprises a low-pressure pump 2, also known as a booster pump, whose output pressure is for example approximately equal to 6 bars.
  • the pump 2 is arranged so as to take fuel from a fuel tank 3 and supply fuel to an inlet of a high pressure pump 4 via a filter 5.
  • the output pressure of the pump 4 is adjustable in a range of the order of 200-1800 bars or more.
  • the high pressure pump 4 is arranged to charge a common rail 6 with high pressure fuel.
  • Injectors 7 are connected to the common rail 6, each of the injectors 7 being controlled in opening and closing by an electronic control unit 8, commonly called engine control unit, by means of control signals.
  • the control unit 8 also controls the high pressure pump 4 by controlling a filling actuator 9, and the fuel pressure inside the common rail 6 by means of a high pressure valve 10.
  • pressure 11 makes it possible to measure the pressure inside the common rail 6 and to communicate it to the control unit 8.
  • the control unit 8 receives signals concerning engine parameters, such as the speed of the vehicle or the position of the acceleration pedal, by appropriate sensors 12.
  • a crankshaft sensor makes it possible to measure, for example magnetically, the speed of rotation of a crankshaft of the engine. The rotational speed of the crankshaft will subsequently be considered as engine speed.
  • the sensor assembly also includes a top dead center detection (PMH) sensor, which synchronizes the injection with the movement of the pistons, and a sensor for detecting the position of the accelerator pedal.
  • PMH top dead center detection
  • FIG. 2 shows the evolution of the instantaneous speed of the motor ⁇ , axis 26, as a function of time t, axis 27, on a motor cycle of a six-cylinder engine.
  • the origin of the axis 26 does not correspond to 0.
  • a motor cycle corresponds to a crankshaft rotation of 720 °.
  • Each injector 7 is associated with a cylinder comprising a piston (not shown).
  • the engine injectors are activated successively in a predetermined order, which corresponds to the order in which the pistons reach their respective top dead centers, so as to produce a balanced drive of the crankshaft.
  • the activation sequence is generally: first cylinder, third cylinder, fourth cylinder, second cylinder.
  • the arc speed curve is traditional and comes from the fact that each piston tends to slow down by compressing the gases in the cylinder arriving at its top dead center and re-accelerate under the thrust of the gas leaving its top dead center.
  • the engine cycle comprises six arches corresponding to six injection cycles 20, 21, 22, 23, 24 and 25, each cycle 20 to 25 being associated with an injector 7.
  • these figures refer to either the arch itself or the corresponding time interval.
  • Each injection cycle 20 to 25 is between the top dead centers (TDCs) of two pistons.
  • the order of the injectors 7 refers to the order of the injection cycles 20 to 25 associated, which can be distinct from the geometric order of the engine cylinders.
  • a first injector 7 will be considered as preceding a second injector 7 if the injection cycle associated with the first injector is performed before the injection cycle associated with the second injector, for a given engine cycle.
  • the engine computer 8 receives the control signal from the accelerator pedal and calculates fuel flow rates to be injected into each cylinder according to this signal (algorithm known per se).
  • the computer 8 produces control signals of the injectors for injecting the calculated flows, each time in the form of one or more pulses, for example a pilot pulse and a main pulse. These flow rates correspond to the amount of fuel required for engine operation.
  • the calculator 8 calculates and regulates the common ramp pressure as a function of the fuel demand (algorithm known per se).
  • the calculated pressure is called the common ramp target pressure. For example, at 4500 rpm, the pressure inside the ramp 6 is approximately equal to 1800 bar.
  • the calculator 8 also controls the idle, which corresponds to a predetermined minimum speed that the computer 8 maintains when no signal is transmitted by the accelerator pedal.
  • the computer 8 contains a learning program whose execution controls the progress of a process which will now be described.
  • the parameter that one wishes to determine is, in this case, a minimum duration of a control signal pulse (MDP) which causes an effective opening of an injector 7.
  • MDP control signal pulse
  • step 96 the process is initialized.
  • This type of learning is intended to be performed during the use of the vehicle, for example the initialization takes place every fifteen minutes or hour. By performing this process regularly, it is possible to perform statistical processing of the values of minimum durations obtained at each execution, which makes it possible to obtain more precise values.
  • step 97 the ramp pressure is set.
  • step 98 the injector under test, that is to say the injector for which it is desired to determine the minimum control duration, is selected.
  • the injector under test that is to say the injector for which it is desired to determine the minimum control duration.
  • FIG. 2 which will serve to describe an example of the process flow, it is the injector associated with the injection cycle 22.
  • an initial control duration D0 is set.
  • the initial control duration D0 corresponds to the duration of a test pulse that will be sent to the injector selected to perform the injection cycle 22, for example in the vicinity of the top dead center 33 of the engine cycle, in progress during the first pass through the loop 43 of the process.
  • a control duration D is then incremented at each passage in the loop 43, a test pulse of a duration equal to the current control time in the loop 43 being sent to the selected injector to perform the injection cycle 22 , for example at the vicinity of the PMH 33, at each engine cycle during the process.
  • each motor cycle designates the cycles during which the loop 43 is executed. Two successive passages in the loop 43 may be optionally spaced from one another.
  • steps 100 to 106 during a passage in the loop 43.
  • the number of passages in the loop 43 is indexed by an index in the following description. For the illustration, reference is made below to three successive passages of rank n-1, n, n + 1.
  • step 100 a stability condition, which will be described in detail below with reference to Figure 5, is tested.
  • this condition is defined to ensure that the engine operates in a phase where no fuel injection is required and where the control signals of all the injectors are therefore uniformly zero, except the signals generated specifically for the purposes of the learning process. This is why the arches 20, 21, 24 and 25 are not considered to change significantly from one engine cycle to another.
  • the stability condition is verified, it goes to step 101, otherwise the process is interrupted or at least it leaves loop 43 (arrow 44), which corresponds to going to step 106. This second possibility allows to exploit the measurements acquired during the previous passages in the loop 43, if any.
  • Step 101 consists in calculating an average speed ⁇ 21, n-1 (FIG. 2) of the engine on the injection cycle 21, which immediately precedes the cycle 22.
  • the initial moment t1 of the measurement time T is for example offset from the top dead center 31 by a duration 32 which corresponds to an offset angle ⁇ of rotation of the crankshaft.
  • the final moment t2 of the measurement duration T is shifted by the same angle ⁇ relative to the top dead center 33 associated with the next injector.
  • Step 102 consists in calculating an average speed ⁇ 22, n-1 of the engine on the injection cycle 22.
  • the average speed ⁇ 22, n-1 is calculated over a duration T 'which is shifted from the TDC 33 of the angle of offset ⁇ .
  • This offset angle ⁇ makes it possible to wait for the test pulse sent to the selected injector, which takes place in the vicinity of the top dead center 33, to have its effect, namely to cause an effective injection of fuel into the engine. injection cycle 22, if any, and therefore a combustion.
  • This offset angle ⁇ is for example of the order of 30 °.
  • the test pulse of current duration D n-1 which has been generated in the vicinity of the PMH 33, is represented for illustrative purposes on the first line of FIG. 3.
  • FIG. 3 The test pulse of current duration D n-1
  • FIG. 3 represents three successive passages in the loop 43. , the shape of the test pulse (left column) and the corresponding effective displacement of the needle of the injector under test (right column).
  • the displacement signal of the injector 45 n-1 shows that the injector has not opened. This absence of injection is also visible in FIG. 2.
  • the instantaneous speed of the engine on the injection cycle 22, represented by the arch 22 n-1 being identical to the arch 21, that is to say that ⁇ 22, n-1 ⁇ 21, n-1 .
  • step 104 a pulse duration D n greater than the duration D n-1 is selected.
  • the pulse of duration D n is shown for illustrative purposes on the second line of FIG.
  • step 105 the duration D n is compared with a preselected maximum pulse duration D max . If the duration D n is less than the maximum duration, we return to step 100 for a new passage in the loop 43, otherwise we go to step 106. In this case, we consider that the duration D n is less than the duration D max .
  • FIG. 3 shows the displacement signal 45 n of the selected injector in response to the pulse of duration D n .
  • the signal 45 n shows that the injector has opened over an opening time ⁇ n .
  • the average speed ⁇ 22, n corresponding to the arch 22 n is greater than the average speed ⁇ 21 , n corresponding to the arch 21.
  • the arch 23 n is greater than the arch 23 n-1 although no injection occurred during the injection cycle 23 n . This acceleration of the engine during the cycle 23 is due to the inertia of the engine.
  • step 104 a pulse duration D n + 1 greater than the duration D n is selected.
  • the duration D n + 1 is represented on the third line of FIG. 3. Since the duration D n + 1 is less than the duration D max , we return to step 100.
  • FIG. 3 shows the response signal 45 n + 1 of the injector selected at the pulse of duration D n + 1 .
  • the signal 45 n + 1 shows that the injector has opened over an opening time greater than ⁇ n + 1 greater than the opening time ⁇ n , which is also visible in Figure 2, the average speed ⁇ 22, n + 1 of the cycle 22 n + 1 being greater than the average speed ⁇ 22, n of the cycle 22 n .
  • the average speed difference ⁇ n + 1 is calculated and the torque ( ⁇ n + 1 , D n + 1 ) stored.
  • the loop 43 is similarly repeated until the pulse duration reaches the maximum duration D max or the stability condition is no longer verified.
  • the process exits loop 43 it proceeds to step 106.
  • step 106 the stored average speed differences ⁇ n-1 , ⁇ n , ⁇ n + 1 are convolutionally filtered with a low-pass filter W, so as to smooth out the differences due to the noise, in particular to the uncertainties of measures.
  • the filter W is for example a sliding average centered using preceding values and values according to the value to be verified, for example with a sinusoidal or Gaussian arc-shaped weighting.
  • W ( D ' ) d D ' .
  • FIG. 6 shows the evolution of average speeds ⁇ 21 , ⁇ 22 , ⁇ 23 , depending on the duration of the test pulse D.
  • the control duration D is less than the minimum control duration MDP
  • the average speeds ⁇ 21 , ⁇ 22 , ⁇ 23 decrease in a similar way.
  • the injectors 7 inject no flow during several engine cycles, which is for example the case during up-and-down operation, the crankshaft nevertheless continues to rotate by inertia.
  • the average speed of the motor the average being for example performed on each motor cycle, is at this time decreasing, this decrease being relatively slow.
  • the average speed ⁇ 21 continues to decrease in the same way, while the average speed ⁇ 22 begins to increase.
  • the curve of the average speed ⁇ 23 is bent because the acceleration experienced by the crankshaft during the injection cycle 22 is still noticeable during the injection cycle 23, by inertia.
  • FIG. 7 shows a curve 57 representing the filtered mean velocity difference ⁇ f, axis 34, between the average velocity curve ⁇ 22 and the average velocity curve ⁇ 21 of FIG. 6.
  • the curve 57 is close to zero as long as the duration D of the control pulses sent to the injector to be tested do not result in an injection, that is to say as long as the duration D is less than MDP.
  • Step 107 is to determine the CDM control time from which it is considered that there really was an injection. For this, the values of the curve 57 are compared with a predetermined threshold 58.
  • the threshold 58 is chosen so that it is above the noise.
  • the minimum command duration MDP 0 is initially known for each injector 7, with a tolerance range, since it is a specification of the new injector. The existence of a small error on the initial value is not a problem because the process finally makes it possible to correct it.
  • the minimum CDM control time drifts when the injector 7 is aged.
  • one solution therefore consists of scanning the curve 57 in the direction of the duration of increasing commands D over an interval centered on the previously known minimum command duration MDP 0 .
  • the scanned interval can have a range of 100 ⁇ s to a few hundreds of ⁇ s.
  • step 108 the value of MDP is stored.
  • the method waits for an initialization signal to start again.
  • FIG. 5 shows the steps of a routine that runs for example continuously, in parallel with the method described with reference to FIG. 4.
  • This routine makes it possible to test the stability condition, which is verified when the vehicle is in a so-called stable zone, that is to say an area in which the average speed of the motor is substantially constant.
  • step 80 the first test, Test 1, is to verify that the accelerator pedal is fully released.
  • the second test, Test 2 is to verify that the motor speed is within an acceptable range. This range is for example between 750 and 3000 rpm. Beyond that, a test pulse creates very little variation in engine speed ⁇ , even if there is actually injection, because of the inertia of the engine.
  • the crankshaft sensor 12 having a measurement period of the order of one microsecond, increasing the speed of the crankshaft increases the margin of error.
  • the third test, Test 3 is to verify that the gearbox is in the right range. This corresponds for example to a speed ratio between the third and the fifth. Indeed, in the first or second, the acceleration or braking cause sudden changes in the speed of the engine and this leads to measurement accuracy problems. This test is about verifying that the speed of the vehicle is higher than 30km / h, a condition that could also be tested.
  • step 83 the fourth test, Test 4 is to verify that the clutch is activated, that is to say that the motor is coupled to the wheels. At 2500 rpm, when a user disengages, the speed falls very quickly, which poses correction problems, as will be described in detail below.
  • step 84 the fifth test, Test 5 is to verify that the temperature of the water, fuel oil, air and oil is within an acceptable range. At very low temperatures, combustion is unstable. When the engine is hot, friction is minimized. This test is therefore used to wait for the engine to be in steady state.
  • step 85 the sixth test, Test 6, is to verify that the voltage across the battery is correct.
  • step 86 the seventh test, Test 7, consists in verifying that no sensor 12 indispensable to the proper functioning of the process is faulty.
  • the stability condition is verified when all tests are verified.
  • a logic variable S can be used.
  • the stability variable S is set to 1 in step 79. If one of the above tests produces a negative result, the variable S is set to 0 to step 78. The value of this variable is used in step 100 to determine whether loop 43 should be performed.
  • the value of the minimum duration MDP depends on the pressure of the common ramp 6. This value MDP varies when the pressure of the common ramp 6 varies. It is therefore desirable to carry out the learning process for ramp pressures 6 covering the widest possible pressure range.
  • the stability condition defined in FIG. 5 will typically be verified when the acceleration pedal is released after an acceleration phase and the vehicle continues to run under its thrust without requiring torque from the engine. Under these conditions, it is therefore possible to choose a ramp pressure at which it is desired to carry out the process, and maintain this pressure in the ramp 6 instead of letting it fall as would occur during normal operation of the vehicle.
  • the engine computer 8 reacts by interrupting the training and producing the control signals of the injectors necessary for injecting fuel according to the demand signal produced by the pedal, according to an algorithm known per se.
  • the pressure that has been maintained in the common rail during the training is not necessarily adapted to the amount of fuel that must be injected, that is to say that can be burned. This could result in combustion noise if this pressure is too high.
  • Several means may be provided to cancel or at least to reduce the combustion noise generated by improper ramp pressure during the transition between the learning process and a re-acceleration phase of the vehicle.
  • a high pressure valve 10 is opened to reduce the pressure in the common rail 6 when it must be decreased.
  • the high pressure valve 10 allows a very rapid decrease in the pressure in the ramp 6.
  • a high pressure valve allows a reduction of the order of 2000 bar / s. The use of a high pressure valve 10 thus makes it possible to very quickly reduce the ramp pressure after learning at high pressure.
  • the engine computer 8 controls the injectors with at least one pilot pulse in front of the main pulse, so as to produce an additional pilot injection, very close to the main injection, which also reduces the combustion noise.
  • the additional pilot injection is placed so as to reduce the noise as much as possible, for example as close as possible to the main injection.
  • the method described above works well in a wide range of engine operation, for example idle speed at 3000rpm. Since an averaged rate over an injection cycle is used to determine the MDP parameter, the method is not sensitive to the precise shape of the ark corresponding to each injection cycle. Even at high speeds, when the arches begin to be deformed by engine inertia, the process still produces reliable results.
  • the learning method can also be performed during steady-state operation, when the accelerator pedal is supported substantially substantially, and the flow rates of fuel calculated by the engine computer 8 are stable and identical for all injectors.
  • Test 1 is replaced by a Test 1 which tends to test whether these conditions are satisfied. The process is for the remainder the same.
  • all the injectors receive control signals from the engine computer 8, for example in the form of a main pulse preceded by one or more pilot injections. These pulses are calibrated with respect to the high dead points of the pistons according to the known technique.
  • the injector under test additionally receives the test pulse or pulses, which can be placed for example in advance of the main pulse or, if appropriate, the pilot pulse.
  • the need to supply all injectors with power can impose limits on the range in which the ramp pressure can be set during learning. It is necessary to avoid excessive combustion noise. For this, it is preferable to perform the injection into the cylinders in the form of multiple pulses.
  • the presence of one or more pilot injections prepares and warms the diesel and air mixture and tends to reduce the noise by lengthening the duration of the combustion.
  • a second embodiment will now be described in which the process may be carried out in a so-called unstable zone, that is to say in which, in addition to allowing the cylinders to be supplied with fuel, the engine speed is allowed to vary relatively quickly. Correction calculations make it possible to compensate for variations in the speed of the motor due to the influence of parameters outside the learning process, such as acceleration or braking.
  • the steps of the learning method will now be described. The steps similar to the first embodiment are designated by the same reference numeral increased by 100. The same steps as in the first embodiment will not be described again.
  • the stability condition to be tested can be made much less restrictive (step 200).
  • steps 81 to 86 of Figure 5 may be retained.
  • An additional condition of verifying that the engine is within an acceptable load range can be added.
  • Step 201 consists of storing the instantaneous speed ⁇ of the engine over a period T essentially covering the injection cycle 21, which immediately precedes the cycle 22.
  • the acquisition time T is identical to the first embodiment.
  • v 21, n this batch of measures.
  • Step 202 consists in memorizing the instantaneous speed ⁇ of the engine over a period T1 essentially covering the injection cycle 22. This series of measurements is called v 22, n .
  • the set (v 21, n , v 22, n , D n ) is stored.
  • Step 204 is identical to step 104.
  • Step 205 is identical to step 105. In the present case, it is considered that the duration D n + 1 is less than the duration D max .
  • the speeds v 21, n + 1 and v 22, n + 1 are stored in a similar manner.
  • the set (v 21, n + 1 , v 22, n + 1 , D n + 1 ) is stored.
  • the loop 143 includes only stages of acquisition of the instantaneous speeds of the engine on the injection cycles 21 and 22.
  • the process exits the loop 143 it goes to the step 203.
  • step 203 the average speed ⁇ 21, n of the engine on the injection cycle 21 is calculated from the instantaneous speed v 21, n , in a manner which has been described in detail in the first embodiment of FIG. realization, and the average speed ⁇ 22, n of the engine on the injection cycle 22 is calculated from the instantaneous speed v 22, n .
  • the average speed difference ⁇ n ⁇ 22, n - ⁇ 21, n is calculated.
  • Torque ( ⁇ n , D n ) is stored.
  • the average speed ⁇ 21, n + 1 of the engine on the injection cycle 21 is calculated from the instantaneous speed V 21, n + 1
  • the average speed ⁇ 22, n + 1 of the engine on the injection cycle 22 is calculated from the instantaneous speed v 22, n + 1
  • the difference of average speed ⁇ n + 1 ⁇ 22, n + 1 - ⁇ 21, n + 1 is calculated.
  • the torque ( ⁇ n + 1 , D n + 1 ) is stored.
  • step 201A the average speed ⁇ 21, n is compared with the average speed ⁇ 21, n-1 and an offset ⁇ n is calculated from the difference ⁇ 21, n - ⁇ 21, n-1 ⁇ From the same way a shift ⁇ n + 1 is calculated from the difference ⁇ 21, n + 1 - ⁇ 21, n .
  • This corrective factor is used to compensate for engine speed variations due to braking and acceleration.
  • step 206 the stored corrected average speed differences ⁇ c n , ⁇ c n + 1 are convolutionally filtered with the low-pass filter W.
  • the curves 60 and 61 shown in FIG. 8 show, as a function of the duration D, the evolution of the average speed difference ⁇ , curve 61, and the corrected average speed difference ⁇ c, curve 60.
  • the curve 61 such a sudden change in the speed of the motor is measured by the offset ⁇ and compensated by the corrective factor f ( ⁇ ), so that it does not influence the evolution of the curve 60 and in particular its intersection with the threshold 58.
  • step 209 is to measure the influence of this type of imbalance on the average speeds ⁇ 21, n and ⁇ 22, n and to correct the average speed difference ⁇ n to compensate for this influence.
  • the value of the average speed difference ⁇ 21, i - ⁇ 22, i is used in the absence of a test pulse. This value can be determined before the execution of the learning process or during it, for example during a passage i in the loop 143 during which the test pulse is removed.
  • a corrective factor is thus calculated from the average velocity difference ⁇ 21, i - ⁇ 22, i and applied the average velocity difference ⁇ n or ⁇ c n .
  • step 210 the average speed of the motor ⁇ n on the motor cycle corresponding to the loop of rank n at which the process is carried out is taken into account. Due to the inertia of the motor, the average speed difference ⁇ n generated by a given test pulse depends on the speed of the motor. For example, when 1 mg of fuel is injected at 1000 rpm, the average speed difference ⁇ n generated is greater than that produced by a 1 mg injection at 3000 rpm. The average velocity differences ⁇ n obtained are then adjusted by a scale factor dependent on ⁇ n . This scale factor is for example calculated before the execution of the method and stored in the engine computer 8.
  • Step 207 is to determine the minimum duration of CDM command from which it is considered that there really was an injection. For this, the values of the curve 60 are compared with the predetermined threshold 58.
  • Step 208 is identical to step 108.
  • Steps 203A, 209 and 210 are corrective steps that are optional. Each of these steps is designed to compensate for a particular phenomenon and can be used separately or in combination. These corrective steps can also be applied in the first embodiment.
  • FIG. 9 shows the quantity of fuel Q injected into the main injection, axis 70, as a function of the separation time ⁇ between the pilot pulse and the main pulse, axis 71, in the case of a solenoid injector, curve 72, and a piezoelectric injector, curve 73.
  • the pulses are fixed. Only their separation varies. These two types of injectors do not behave identically, this difference being able to modify significantly the results of the learning process.
  • the opening takes place in two stages. At first, the valve member disengages from the plate, and then the needle rises. The opening of the valve member takes place about 150 ⁇ s before opening the needle. This opening in two stages is explained in particular by the fact that the power generated by the solenoid is not sufficient to lift the needle directly. For some durations of the pilot pulse, it may happen that the valve member disengages but the needle does not rise. In this case, a fuel flow is created from the control chamber to the low pressure return. This has the effect of creating pressure waves. In particular, in the case of a multi injection, the main injection is disturbed by the wave created by the pilot injection and this disturbance depends on the separation ⁇ . This phenomenon is illustrated in Figure 9. In this case, even if the pilot injection does not lift the needle, it changes the main injection, which is a hydraulic interaction. In general, the multi injection is more complicated to achieve with a solenoid injector because each pilot injection disrupts the following by the creation of pressure wave.
  • Figure 10 shows an average speed difference curve ⁇ , as a function of time t.
  • a reference curve 75 has also been drawn.
  • the pressure wave generated by the pilot injection changes the average speed 29 of the engine on the cycle of the injector to be tested before the actual opening of the injector. This results in an increase in the average speed difference 34 which can pass above the threshold 58. This therefore risks generating detection errors of the minimum duration 43b.
  • the learning method described in the present invention is therefore particularly suitable for direct-acting injectors, for example piezoelectric injectors 73, although it can also be performed on solenoid injectors 72 taking into account the difference in behavior.
  • control signal may comprise several test pulses of the same duration D.
  • a test pulse is placed so that the crankshaft is before the TDC and a second test pulse is placed so that the crankshaft is close to the PMH. Since the average speed difference ⁇ is proportional to the difference in the quantity of fuel injected by the injectors associated with the two cycles 21, 22, this difference is thus multiplied by the number of pulses, which makes it possible to improve the detection accuracy by increasing the slope of the curve in Figure 7 or 8.
  • Some steps of the learning process may be performed in a different order or simultaneously without changing the result.
  • test pulse can be modified according to another parameter than its duration, for example slope, amplitude or other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection d'un moteur à combustion, ledit dispositif d'injection comportant une pluralité d'injecteurs (7) de combustible, et un moyen de commande électronique (8) apte à commander lesdits injecteurs au moyen de signaux de commande d'injection, ledit moyen de commande électronique étant connecté à un capteur (12) permettant de mesurer en permanence une vitesse dudit moteur à combustion, ledit moteur fonctionnant selon un cycle moteur incluant au moins un cycle d'injection associé à chacun desdits injecteurs, lesdits cycles d'injection se succédant selon un ordre prédéterminé, caractérisé en ce qu'il comprend les étapes consistant à :
h) sélectionner un injecteur à tester parmi lesdits injecteurs ;
i) calculer une vitesse moyenne associée à un injecteur précédent disposé avant ledit injecteur à tester dans l'ordre desdits cycles d'injection, qui est égale à la vitesse dudit moteur moyennée sur une durée de mesure recouvrant essentiellement un cycle d'injection associé audit injecteur précédent ;
j) pour ledit cycle d'injection associé audit injecteur à tester, appliquer audit injecteur à tester un signal de commande d'injection incluant au moins une impulsion de test ayant un paramètre réglable ;
k) calculer une vitesse moyenne associée audit injecteur à tester, qui est égale à la vitesse dudit moteur moyennée sur une durée de mesure recouvrant essentiellement ledit cycle d'injection associé audit injecteur à tester ;
l) calculer une différence entre la vitesse moyenne calculée à l'étape d) et ladite vitesse moyenne calculée à l'étape b) ;
m) répéter les étapes b) à d) pour au moins un autre cycle moteur en faisant varier à chaque fois ledit paramètre de l'impulsion de test ;
n) déterminer une valeur dudit paramètre de l'impulsion de test pour laquelle ladite différence de vitesse moyenne franchit un seuil prédéterminé et mémoriser ladite valeur de paramètre.

Description

  • La présente invention a pour objet un procédé de détermination des paramètres de fonctionnement, aussi appelé procédé d'apprentissage, d'un dispositif d'injection d'un moteur à combustion.
  • Un dispositif d'injection comporte de manière classique plusieurs injecteurs, chacun des injecteurs étant commandé en ouverture et en fermeture par un moyen de commande électronique, au moyen de signaux de commande permettant de commander une ou plusieurs injections pilotes et une injection principale sur chacun des injecteurs. Les injecteurs utilisés peuvent être de plusieurs types, par exemple de type solénoïde ou de type piézoélectrique.
  • Le document EP 0 740 068 décrit un injecteur à solénoïde. L'injecteur comporte un corps d'injecteur. A son extrémité inférieure, le corps d'injecteur définit un siège dans lequel l'extrémité inférieure d'une aiguille est apte à s'engager, l'aiguille étant apte à coulisser entre une position d'ouverture dans laquelle elle permet l'éjection de carburant de l'injecteur et une position de fermeture dans laquelle elle ferme l'injecteur de manière étanche. Le corps d'injecteur est alimenté en carburant par une source de carburant sous haute pression, telle qu'une rampe commune, par le biais d'un passage d'alimentation débouchant dans une galerie annulaire. La galerie annulaire entoure l'aiguille, à proximité de son extrémité supérieure, la forme de l'aiguille étant adaptée pour permettre la circulation de carburant provenant de la galerie annulaire entre l'alésage et l'aiguille. La ligne d'alimentation haute pression communique en outre avec une chambre de commande par le biais d'un « restricteur ». A son extrémité supérieure, la chambre de commande est fermée par une plaque. La plaque coopère avec un membre de soupape coulissant comportant une tige creuse, l'intérieur de la tige creuse étant apte à communiquer avec l'intérieur de la chambre lorsque le membre de soupape est désengagé de la plaque. L'intérieur de la tige creuse communique également avec un retour basse pression. Un moyen de commande électronique permet de commander, par le biais de signaux de commande, un actionneur à solénoïde. Lorsque le solénoïde est alimenté, le membre de soupape se désengage de la plaque. A ce moment, du carburant de la chambre de commande peut s'échapper vers l'intérieur de la tige creuse puis dans le retour basse pression. Lorsque la pression à l'intérieur de la chambre de commande diminue jusqu'à un certain point, la force appliquée sur l'aiguille due à la pression à l'intérieur de la chambre de commande n'est plus suffisante pour maintenir l'aiguille dans sa position de fermeture. A ce moment, l'aiguille prend sa position d'ouverture et du carburant est éjecté de l'injecteur. Lorsque le solénoïde n'est plus alimenté, le membre de soupape se réengage dans la plaque sous l'action d'un ressort. Cela a pour effet de bloquer la communication entre l'intérieur de la tige creuse et la chambre de commande. A ce moment, la pression dans la chambre de commande augmente et repousse l'aiguille vers sa position de fermeture.
  • Le document EP 0 937 891 décrit un injecteur piézoélectrique. L'injecteur comporte un piston, qui définit une chambre de commande en combinaison avec la surface supérieure de l'aiguille. L'injecteur comporte des actionneurs piézoélectriques. Les actionneurs sont connectés électriquement à un circuit de commande apte à émettre des signaux de commande. Le carburant sous pression présent dans la chambre de commande exerce une force sur la partie supérieure de l'aiguille et permet de la maintenir en position de fermeture, en combinaison avec un ressort. Pour commencer l'injection, le matériau piézoélectrique est déchargé, afin de réduire sa taille. Cela a pour effet un mouvement du piston dans le sens opposé à l'aiguille et donc une diminution de la pression à l'intérieur de la chambre de commande. A ce moment, l'aiguille se trouve dans sa position d'ouverture. Lorsqu'on charge le matériau piézoélectrique, cela a pour effet de repousser le piston vers le bas. Ce mouvement augmente la pression de carburant à l'intérieur de la chambre de commande augmentant ainsi la force appliquée sur la surface supérieure de l'aiguille ce qui a pour effet de la repousser vers sa position de fermeture.
  • Même si les injecteurs utilisés dans le dispositif d'injection sont du même type, chaque injecteur comporte des paramètres spécifiques. En outre, l'usure mécanique peut aussi affecter la précision de la quantité de carburant injectée. Des procédés d'apprentissage doivent donc être réalisés pour adapter les signaux de commande aux caractéristiques spécifiques de chacun des injecteurs, afin d'équilibrer au maximum le fonctionnement du moteur, d'optimiser le bruit de combustion et de contrôler les émissions gazeuses. Ces procédés permettent notamment de déterminer pour chaque injecteur la durée de commande minimale (MDP) entraînant l'ouverture de l'injecteur.
  • Une première solution consiste à utiliser un accéléromètre. Cependant, cette solution est sensible aux vibrations, et cela pose des problèmes de précision, notamment avec les injecteurs piézoélectriques.
  • Une deuxième solution consiste à utiliser un capteur de vitesse permettant de déterminer en permanence la vitesse du vilebrequin.
  • Le document FR 2 720 787 décrit un procédé de détermination des paramètres spécifiques de chacun des injecteurs d'un dispositif d'injection d'un moteur à combustion, notamment d'un dispositif avec injection pilote et injection principale. Pour cela, on établit la courbe de la différence de vitesse instantanée de l'arbre moteur entre l'instant de passage au point mort haut de combustion du cylindre considéré et un instant ultérieur prédéterminé, par exemple décalé de 60°, précédant le passage au point mort haut de combustion du cylindre suivant, en fonction de la durée de l'injection pilote, les autres paramètres de fonctionnement étant maintenus constants. Cette courbe présente un palier minimum. Le point de rupture de pente de cette courbe permet de déterminer le temps d'ouverture de l'injecteur à partir duquel ledit injecteur commence à débiter. Ce procédé est destiné à être mis en oeuvre par exemple lors du contrôle de fin de chaîne de montage pour la mise au point du moteur ou pour réaliser des tests en cas de mauvais fonctionnement du moteur dans le cadre du service après-vente.
  • Le procédé décrit dans ce document n'est pas réalisable lorsque le moteur est en dehors de la zone de ralenti, c'est-à-dire lorsque les injecteurs sont commandés par des signaux de commande correspondant à une demande d'un organe de commande des gaz. Ce procédé qui a été conçu pour une exploitation au régime de ralenti du moteur exploite une différence de vitesse instantanée qui est très sensible à la forme de la courbe de vitesse instantanée du moteur à chaque cycle d'injection. Les présents inventeurs ont constaté que cette forme perdait de sa régularité à haut régime de fonctionnement, de sorte que la différence considérée dépendait tout autant de la vitesse de rotation du moteur que de la quantité injectée. Il en résultait une impossibilité d'exploiter ce procédé de manière quantitative hors du régime de ralenti. De plus, la différence de vitesse instantanée qui est utilisée dans ce procédé étant très dépendante de la vitesse du moteur, et il en résulte une marge d'erreur importante si la vitesse du moteur n'est pas constante sur toute la durée de l'apprentissage.
  • La présente invention a pour but de proposer un procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection d'un moteur à combustion qui évite au moins certains des inconvénients précités et qui soit plus précis. Un autre but de l'invention est de proposer un procédé d'apprentissage pouvant être exploité à différentes vitesses du moteur et/ou à différentes pressions d'alimentation des injecteurs afin de déterminer les paramètres pertinents sur une plage de fonctionnement étendue.
  • A cet effet, l'invention a pour objet un procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection d'un moteur à combustion, ledit dispositif d'injection comportant une pluralité d'injecteurs de combustible, et un moyen de commande électronique apte à commander lesdits injecteurs au moyen de signaux de commande d'injection, ledit moyen de commande électronique étant connecté à un capteur permettant de mesurer en permanence une vitesse dudit moteur à combustion, ledit moteur fonctionnant selon un cycle moteur incluant au moins un cycle d'injection associé à chacun desdits injecteurs, lesdits cycles d'injection se succédant selon un ordre prédéterminé, caractérisé en ce qu'il comprend les étapes consistant à :
    • a) sélectionner un injecteur à tester parmi lesdits injecteurs ;
    • b) calculer une vitesse moyenne associée à un injecteur précédent disposé avant ledit injecteur à tester dans l'ordre desdits cycles d'injection, qui est égale à la vitesse dudit moteur moyennée sur une durée de mesure recouvrant essentiellement un cycle d'injection associé audit injecteur précédent ;
    • c) pour ledit cycle d'injection associé audit injecteur à tester, appliquer audit injecteur à tester un signal de commande d'injection incluant au moins une impulsion de test ayant un paramètre réglable ;
    • d) calculer une vitesse moyenne associée audit injecteur à tester, qui est égale à la vitesse dudit moteur moyennée sur une durée de mesure recouvrant essentiellement ledit cycle d'injection associé audit injecteur à tester ;
    • e) calculer une différence entre la vitesse moyenne calculée à l'étape d) et ladite vitesse moyenne calculée à l'étape b)
    • f) répéter les étapes b) à d) pour au moins un autre cycle moteur en faisant varier à chaque fois ledit paramètre de l'impulsion de test ;
    • g) déterminer une valeur dudit paramètre de l'impulsion de test pour laquelle ladite différence de vitesse moyenne franchit un seuil prédéterminé et mémoriser ladite valeur de paramètre.
  • Selon un mode de réalisation de l'invention, lesdits injecteurs sont à actionnement direct. Ces injecteurs permettent d'obtenir un résultat plus précis du fait de l'absence d'interaction hydraulique.
  • Avantageusement, à l'étape c), ledit signal de commande comporte plusieurs impulsions de test, la valeur dudit paramètre étant la même pour chacune desdites impulsion de test.
  • Selon une caractéristique de l'invention, ledit paramètre est une durée d'impulsion.
  • Selon un mode de réalisation particulier, pendant que ledit procédé est effectué, lesdits signaux de commande d'injection des injecteurs autres que ledit injecteur à tester sont nuls. Ceci correspond par exemple à une exécution du procédé quand la pédale d'accélération est levée.
  • Selon un autre mode de réalisation, pendant que le procédé est effectué, ledit moyen de commande électronique fournit auxdits injecteurs des signaux de commande d'injection incluant une impulsion principale correspondant à une demande provenant d'un organe de commande des gaz. Ceci correspond par exemple à une exécution du procédé quand la pédale d'accélération est enfoncée.
  • Avantageusement, avant l'étape g), on calcule une différence de vitesse moyenne filtrée en appliquant une convolution par un filtre à la courbe représentant la différence de vitesse moyenne en fonction dudit paramètre de l'impulsion de test et à l'étape g), on utilise ladite différence de vitesse moyenne filtrée. De préférence, ledit filtre est une moyenne glissante.
  • Selon une caractéristique de l'invention, ledit procédé comprend une première étape consistant à éprouver une condition de stabilité prédéterminée pour détecter un fonctionnement stable dudit moteur, et une étape consistant à terminer ledit procédé lorsque ladite condition de stabilité n'est pas satisfaite. La vérification de la condition de stabilité n'est pas indispensable à la réalisation du procédé d'apprentissage, mais elle permet de simplifier un traitement des données. La condition de stabilité est composée d'une ou de plusieurs conditions élémentaires, qui peuvent être cumulatives ou alternatives. En particulier, on peut prévoir que la condition de stabilité est vérifiée lorsque plusieurs des conditions élémentaires sont vérifiées. Les conditions élémentaires peuvent être éprouvées simultanément ou successivement. On donne ci-dessous une liste non limitative de conditions élémentaires qui peuvent permettre de détecter une zone dite stable.
  • Avantageusement, ladite condition de stabilité inclut une condition de vitesse du moteur, condition qui est vérifiée lorsque ladite vitesse du moteur est comprise entre deux seuils prédéterminés (minimum et maximum).
  • Avantageusement, ladite condition de stabilité inclut une condition de couple du moteur, condition qui est vérifiée lorsque le couple du moteur est compris entre deux seuils prédéterminés (minimum et maximum).
  • Avantageusement, ladite condition de stabilité inclut une condition de rapport de vitesse, condition qui est vérifiée lorsque ledit rapport de vitesse est supérieur à un seuil prédéterminé.
  • Avantageusement, ladite condition de stabilité inclut une condition de vitesse du véhicule, condition qui est vérifiée lorsque ladite vitesse du véhicule est supérieure à un seuil prédéterminé.
  • Avantageusement, ladite condition de stabilité inclut une condition d'embrayage, condition qui est vérifiée lorsque l'embrayage est activé.
  • Selon une caractéristique de l'invention, ledit procédé comprend, à chaque cycle moteur, une étape consistant à calculer une différence entre ladite vitesse moyenne calculée à l'étape b) pour ledit cycle moteur et la vitesse moyenne calculée à l'étape b) pour un cycle moteur précédent, une étape consistant à calculer une différence de vitesse moyenne corrigée en corrigeant ladite différence de vitesse moyenne calculée à l'étape e).
  • Selon une caractéristique de l'invention, la vitesse du moteur à combustion correspond à la vitesse de rotation d'un vilebrequin dudit moteur à combustion, ladite durée de mesure associée à un injecteur s'étendant à chaque fois entre un instant initial retardé d'un angle de décalage α du vilebrequin par rapport au point mort haut de combustion d'un piston correspondant audit injecteur et un instant final retardé dudit angle de décalage α par rapport au point mort haut du piston correspondant à l'injecteur suivant dans l'ordre desdits cycles d'injection. Avantageusement, l'angle de décalage α est inférieur ou égal à 45°.
  • De préférence, ledit dispositif d'injection comporte une rampe commune munie d'une valve haute pression, chacun desdits injecteurs étant relié à ladite rampe commune. La présence d'une valve haute pression sur la rampe commune est préférable mais non nécessaire.
  • Selon une caractéristique de l'invention, ledit procédé comprend une étape consistant à sélectionner une pression de rampe commune dans une plage allant par exemple de 200 à 2000 bars et à effectuer ledit procédé en maintenant cette pression de rampe commune dans ladite rampe commune.
  • Avantageusement, ledit procédé comprend les étapes consistant à détecter un actionnement d'un organe de commande des gaz dudit véhicule correspondant à une demande de combustible, calculer une pression cible de rampe commune adaptée à ladite demande de combustible, et, lorsque la pression cible est inférieure à ladite pression de rampe commune sélectionnée, faire diminuer la pression dans ladite rampe commune en ouvrant ladite valve haute pression.
  • De préférence, ledit procédé comprend les étapes consistant à détecter un actionnement d'un organe de commande des gaz dudit véhicule correspondant à une demande de combustible, calculer une pression cible de rampe commune adaptée à ladite demande de combustible, et, lorsque la pression cible est inférieure à ladite pression de rampe commune sélectionnée, fournir auxdits injecteurs des signaux de commande d'injection incluant au moins une impulsion de pré-injection et une impulsion principale.
  • L'invention sera mieux comprise, et d'autre buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, de plusieurs modes de réalisation de l'invention donnés à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés.
  • Sur ces dessins :
    • la figure 1 est une vue schématique montrant un système d'alimentation en carburant comportant le dispositif d'injection selon un mode de réalisation de l'invention ;
    • la figure 2 est une courbe montrant l'évolution de la vitesse instantanée du moteur en fonction du temps pendant un cycle moteur ;
    • la figure 3 est une vue schématique montrant des courbes de signaux de commande et la réponse d'un injecteur à ces signaux ;
    • la figure 4 est un schéma fonctionnel représentant les étapes du procédé d'apprentissage, selon un premier mode de réalisation de l'invention ;
    • la figure 5 est un schéma fonctionnel représentant les étapes de détermination d'une zone stable ;
    • la figure 6 est un graphique représentant une série de courbes montrant l'évolution de la vitesse moyenne du moteur à chaque fois sur les cycles d'injection d'un injecteur particulier, en fonction du temps ;
    • la figure 7 est un graphique représentant une courbe montrant l'évolution de la différence entre deux courbes de la figure 6 ;
    • la figure 8 est un graphique similaire à la figure 7 montrant les résultats du procédé d'apprentissage selon un deuxième mode de réalisation de l'invention ;
    • la figure 9 est une courbe montrant la quantité de carburant injectée lors d'une injection principale en fonction de la durée de séparation entre l'injection principale et une injection pilote, pour un injecteur piézoélectrique et un injecteur à solénoïde ;
    • la figure 10 est un graphique montrant l'évolution de la différence de vitesse moyenne du moteur sur des cycles d'injection associés à deux injecteurs pour des injecteurs à solénoïde, en fonction du temps ; et
    • la figure 11 est un schéma fonctionnel représentant les étapes du procédé d'apprentissage, selon le deuxième mode de réalisation de l'invention.
  • En se référant à la figure 1, on voit un système d'alimentation en carburant 1 pour un moteur à combustion interne. Le système d'alimentation 1 est disposé dans un véhicule (non représenté) et coopère avec un moteur (non représenté), les injecteurs 7 injectant du carburant dans des cylindres (non représentés) du moteur, par exemple du diesel. Le système d'alimentation 1 comporte une pompe à basse pression 2, également appelée pompe de gavage, dont la pression de sortie est par exemple environ égale à 6 bars. La pompe 2 est disposée de manière à pouvoir prélever du carburant depuis un réservoir de carburant 3 et alimenter en carburant une entrée d'une pompe haute pression 4 via un filtre 5. La pression de sortie de la pompe 4 est réglable dans une plage de l'ordre de 200-1800 bars ou plus. La pompe haute pression 4 est disposée pour charger une rampe commune 6 en carburant sous haute pression. Des injecteurs 7 sont connectés à la rampe commune 6, chacun des injecteurs 7 étant commandé en ouverture et en fermeture par une unité de commande électronique 8, couramment appelée calculateur moteur, par le biais de signaux de commande. L'unité de commande 8 commande aussi la pompe haute pression 4 en commandant un actuateur de remplissage 9, et la pression du carburant à l'intérieur de la rampe commune 6 à l'aide d'une valve haute pression 10. Un capteur de pression 11 permet de mesurer la pression à l'intérieur de la rampe commune 6 et de la communiquer à l'unité de commande 8. L'unité de commande 8 reçoit des signaux concernant des paramètres du moteur, tels que la vitesse du véhicule ou la position de la pédale d'accélération, par des capteurs 12 appropriés. Parmi les capteurs 12, un capteur de vilebrequin permet de mesurer, par exemple de manière magnétique, la vitesse de rotation d'un vilebrequin du moteur. La vitesse de rotation du vilebrequin sera par la suite considérée comme vitesse du moteur. L'ensemble de capteurs comprend également un capteur de détection de point mort haut (PMH), qui permet de synchroniser l'injection avec le mouvement des pistons, et un capteur de détection de la position de la pédale d'accélération.
  • La figure 2 montre l'évolution de la vitesse instantanée du moteur ω, axe 26, en fonction du temps t, axe 27, sur un cycle moteur d'un moteur à six cylindres. L'origine de l'axe 26 ne correspond pas à 0. Pour un moteur à quatre temps, un cycle moteur correspond à une rotation du vilebrequin de 720°. Chaque injecteur 7 est associé à un cylindre comportant un piston (non représenté). Lors d'un cycle moteur, les injecteurs du moteur sont activés successivement selon un ordre prédéterminé, qui correspond à l'ordre dans lequel les pistons atteignent leur point mort haut respectif, de manière à produire un entraînement équilibré du vilebrequin. Par exemple, pour un moteur à quatre cylindres, la séquence d'activation est généralement : premier cylindre, troisième cylindre, quatrième cylindre, deuxième cylindre. La courbe de vitesse en arches est classique et provient du fait que chaque piston tend à ralentir en comprimant les gaz dans le cylindre en arrivant à son point mort haut et à réaccélérer sous la poussée des gaz en quittant son point mort haut. Ainsi, sur la figure 2, le cycle moteur comporte six arches correspondant à six cycles d'injection 20, 21, 22, 23, 24 et 25, chaque cycle 20 à 25 étant associé à un injecteur 7. Dans la suite, ces chiffres de référence désignent soit l'arche elle-même, soit l'intervalle de temps correspondant. Chaque cycle d'injection 20 à 25 est compris entre les points morts haut (PMH) de deux pistons. Dans la suite, l'ordre des injecteurs 7 fait référence à l'ordre des cycles d'injection 20 à 25 associés, qui peut donc être distinct de l'ordre géométrique des cylindres du moteur. Par exemple, un premier injecteur 7 sera considéré comme précédant un deuxième injecteur 7 si le cycle d'injection associé au premier injecteur est effectué avant le cycle d'injection associé au deuxième injecteur, pour un cycle moteur donné.
  • En fonctionnement normal, le calculateur moteur 8 reçoit le signal de commande de la pédale d'accélération et calcule des débits de combustible devant être injectés dans chaque cylindre en fonction de ce signal (algorithme connu en soi). Le calculateur 8 produit des signaux de commande des injecteurs pour injecter les débits calculés, à chaque fois sous la forme d'une ou plusieurs impulsions, par exemple une impulsion pilote et une impulsion principale. Ces débits correspondent à la quantité de carburant nécessaire pour le fonctionnement du moteur. Le calculateur 8 calcule et régule la pression de rampe commune en fonction de la demande de combustible (algorithme connu en soi). La pression calculée est appelée pression cible de rampe commune. Par exemple, à 4500tr/min, la pression à l'intérieur de la rampe 6 est environ égale à 1800 bars. Le calculateur 8 contrôle également le régime de ralenti, qui correspond à une vitesse minimale prédéterminée que le calculateur 8 maintient lorsque aucun signal n'est transmis par la pédale d'accélération. Ces fonctionnalités obtenues par programmation du calculateur moteur 8 sont classiques et ne seront pas décrites en détail.
  • Le calculateur 8 contient un programme d'apprentissage dont l'exécution commande le déroulement d'un procédé qui va être maintenant décrit.
  • Réalisation du procédé
  • En se référant aux figures 2 à 4, on va maintenant décrire le déroulement du procédé d'apprentissage pour déterminer la valeur d'un paramètre du signal de commande associée à un injecteur 7. Ce procédé est réalisé pendant que le moteur tourne. Le paramètre que l'on souhaite déterminer est, dans le cas présent, une durée minimale d'une impulsion du signal de commande (MDP) qui entraîne une ouverture effective d'un injecteur 7.
  • A l'étape 96 le procédé est initialisé. Ce type d'apprentissage est destiné à être effectué pendant l'utilisation du véhicule, par exemple l'initialisation a lieu tous les quarts d'heure ou toute les heures. En effectuant régulièrement ce procédé, on peut effectuer un traitement statistique des valeurs de durées minimales obtenues à chaque exécution, ce qui permet d'obtenir des valeurs plus précises.
  • A l'étape 97 la pression de rampe est fixée.
  • A l'étape 98 l'injecteur sous test, c'est-à-dire l'injecteur pour lequel on souhaite déterminer la durée de commande minimale, est sélectionné. Sur la figure 2, qui va servir à décrire un exemple de déroulement du procédé, il s'agit de l'injecteur associé au cycle d'injection 22.
  • A l'étape 99 une durée de commande initiale D0 est fixée. La durée de commande initiale D0 correspond à la durée d'une impulsion de test qui va être envoyée à l'injecteur sélectionné pour effectuer le cycle d'injection 22, par exemple au voisinage du point mort haut 33 du cycle moteur, en cours lors du premier passage dans la boucle 43 du procédé. Une durée de commande D est ensuite incrémentée à chaque passage dans la boucle 43, une impulsion de test d'une durée égale à la durée de commande courante dans la boucle 43 étant envoyée à l'injecteur sélectionné pour effectuer le cycle d'injection 22, par exemple au voisinage du PMH 33, à chaque cycle moteur pendant le procédé. L'expression chaque cycle moteur désigne en fait les cycles au cours desquels la boucle 43 est exécutée. Deux passages successifs dans la boucle 43 peuvent être éventuellement espacés l'un de l'autre.
  • On va maintenant décrire les étapes 100 à 106, lors d'un passage dans la boucle 43. Le nombre de passages dans la boucle 43 est indexé par un indice dans la description qui suit. Pour l'illustration, on se réfère ci-dessous à trois passages successifs de rang n-1, n, n+1.
  • A l'étape 100 une condition de stabilité, qui sera décrite en détail plus loin en référence à la figure 5, est éprouvée. Dans le premier mode de réalisation décrit ci-dessous, cette condition est définie de manière à assurer que le moteur fonctionne dans une phase où aucune injection de carburant n'est requise et où les signaux de commande de tous les injecteurs sont donc uniformément nuls, hormis les signaux générés spécifiquement pour les besoins du procédé d'apprentissage. C'est pourquoi les arches 20, 21, 24 et 25 ne sont pas considérées comme évoluer significativement d'un cycle moteur à l'autre. Si la condition de stabilité est vérifiée on passe à l'étape 101, sinon on interrompt le procédé ou, du moins, on sort de la boucle 43 (flèche 44), ce qui correspond à passer à l'étape 106. Cette deuxième possibilité permet d'exploiter les mesures acquises lors des passages précédents dans la boucle 43, le cas échéant.
  • L'étape 101 consiste à calculer une vitesse moyenne ω21,n-1 (figure 2) du moteur sur le cycle d'injection 21, qui précède de manière immédiate le cycle 22. La vitesse moyenne ω21,n-1 est calculée sur une durée de mesure T qui recouvre essentiellement le cycle d'injection 21, par une intégrale calculée entre des instants t1 et t2 : ω 21 , n - 1 = 1 / T . ω .
    Figure imgb0001
  • L'instant initial t1 de la durée de mesure T est par exemple décalé par rapport au point mort haut 31 d'une durée 32 qui correspond à un angle de décalage α de rotation du vilebrequin. Dans ce cas, l'instant final t2 de la durée de mesure T est décalé du même angle α par rapport au point mort haut 33 associé à l'injecteur suivant.
  • L'étape 102 consiste à calculer une vitesse moyenne ω22,n-1 du moteur sur le cycle d'injection 22. La vitesse moyenne ω22,n-1 est calculée sur une durée T' qui est décalée du PMH 33 de l'angle de décalage α. Cet angle de décalage α permet d'attendre que l'impulsion de test envoyée à l'injecteur sélectionné, qui a lieu au voisinage du point mort haut 33, ait produit son effet, à savoir d'entraîner une injection effective de carburant dans le cycle d'injection 22, le cas échéant, et donc une combustion. Cet angle de décalage α est par exemple de l'ordre de 30°. L'impulsion de test de durée courante Dn-1, qui a été générée au voisinage du PMH 33, est représentée à titre illustratif sur la première ligne de la figure 3. La figure 3 représente, à trois passages successifs dans la boucle 43, la forme de l'impulsion de test (colonne de gauche) et le déplacement effectif correspondant de l'aiguille de l'injecteur sous test (colonne de droite). Le signal de déplacement de l'injecteur 45n-1 montre que l'injecteur ne s'est pas ouvert. Cette absence d'injection est également visible sur la figure 2. La vitesse instantanée du moteur sur le cycle d'injection 22, représentée par l'arche 22n-1 étant identique à l'arche 21, c'est-à-dire que ω22,n-1 = ω21,n-1.
  • Lorsque la vitesse moyenne ω22,n-1 a été calculée, on passe à l'étape 103, qui consiste à calculer la différence de vitesse moyenne ΔΩn- = ω 22 , n - 1 - ω 21 , n - 1 . 1
    Figure imgb0002
  • On notera que le calcul de la différence de vitesse moyenne sur deux cycles d'injection consécutifs 21, 22 permet de limiter l'influence de paramètres extérieurs sur la différence de vitesse moyenne. En particulier, la variation de vitesse moyenne due au ralentissement naturel du moteur est négligeable sur une durée aussi courte. Le couple (ΔΩn-1,Dn-1) est mémorisé. L'étape 103 peut aussi être effectuée hors de la boucle 43.
  • A l'étape 104, une durée d'impulsion Dn supérieure à la durée Dn-1 est sélectionnée. L'impulsion de durée Dn est représentée à titre illustratif sur la deuxième ligne de la figure 3.
  • A l'étape 105, la durée Dn est comparée avec une durée d'impulsion maximale Dmax présélectionnée. Si la durée Dn est inférieure à la durée maximale, on retourne à l'étape 100 pour un nouveau passage dans la boucle 43, sinon on passe à l'étape 106. Dans le cas présent, on considère que la durée Dn est inférieure à la durée Dmax.
  • Lors du passage suivant dans la boucle 43, les vitesses moyennes ω21,n et ω22,n sont calculées de manière similaire. La figure 3 montre le signal de déplacement 45n de l'injecteur sélectionné en réponse à l'impulsion de durée Dn. Le signal 45n montre que l'injecteur s'est ouvert sur une durée d'ouverture τn. Il se produit donc une injection effective de carburant sur le cycle d'injection 22, dont le résultat est également visible sur la figure 2 : la vitesse moyenne ω22,n correspondant à l'arche 22n est supérieure à la vitesse moyenne ω21,n correspondant à l'arche 21. On notera que l'arche 23n est supérieure à l'arche 23n-1 bien qu'aucune injection n'ait eu lieu pendant le cycle d'injection 23n. Cette accélération du moteur pendant le cycle 23 est due à l'inertie du moteur. La différence de vitesse moyenne ΔΩn est calculée et le couple (ΔΩn, Dn) mémorisé. A l'étape 104, une durée d'impulsion Dn+1 supérieure à la durée Dn est sélectionnée. La durée Dn+1 est représentée sur la troisième ligne de la figure 3. La durée Dn+1 étant inférieure à la durée Dmax, on retourne à l'étape 100.
  • Lors du passage suivant dans la boucle 43, les vitesses moyennes ω21,n+1 et ω22,n+1 sont calculées de manière similaire. La figure 3 montre le signal de réponse 45n+1 de l'injecteur sélectionné à l'impulsion de durée Dn+1. Le signal 45n+1 montre que l'injecteur s'est ouvert sur une durée d'ouverture supérieure τn+1 supérieure à la durée d'ouverture τn, ce qui est également visible sur la figure 2, la vitesse moyenne ω22,n+1 du cycle 22n+1 étant supérieure à la vitesse moyenne ω22,n du cycle 22n. La différence de vitesse moyenne ΔΩn+1 est calculée et le couple (ΔΩn+1, Dn+1) mémorisé.
  • La boucle 43 est répétée de manière similaire, jusqu'à ce que la durée d'impulsion atteigne la durée maximale Dmax ou que la condition de stabilité ne soit plus vérifiée. Lorsque le procédé sort de la boucle 43, il passe à l'étape 106.
  • A l'étape 106, les différences de vitesses moyenne mémorisées ΔΩn-1, ΔΩn, ΔΩn+1 sont filtrées par convolution avec un filtre passe-bas W, de manière à lisser les écarts dus au bruit, notamment aux incertitudes de mesures. Le filtre W est par exemple une moyenne glissante centrée utilisant des valeurs précédant et des valeurs suivant la valeur à vérifier, par exemple avec une pondération en forme d'arc de sinusoïde ou de gaussienne. ΔΩf = ΔΩ ( D ) * W = ΔΩ ( D - D ) . W ( D ) d D .
    Figure imgb0003
  • En pratique, la convolution est calculée de manière discrète. Dans un souci de clarté, on a représenté sur la figure 6 l'évolution des vitesses moyennes ω21, ω22, ω23, en fonction de la durée de l'impulsion de test D. Lorsque la durée de commande D est inférieure à la durée de commande minimale MDP, les vitesses moyennes ω21, ω22, ω23 décroissent de manière similaire. On notera que, lorsque les injecteurs 7 n'injectent aucun débit pendant plusieurs cycles moteur, ce qui est par exemple le cas lors d'un fonctionnement en pied levé, le vilebrequin continu néanmoins de tourner par inertie. La vitesse moyenne du moteur, la moyenne étant par exemple effectuée sur chaque cycle moteur, est à ce moment décroissante, cette décroissance étant relativement lente. Lorsque la durée de commande D est supérieure à la durée MDP, la vitesse moyenne ω21 continue à diminuer de la même manière, tandis que la vitesse moyenne ω22 commence à croître. A ce moment, la courbe de la vitesse moyenne ω23 s'infléchit parce que l'accélération subie par le vilebrequin lors du cycle d'injection 22 est encore perceptible lors du cycle d'injection 23, par inertie.
  • La figure 7 montre une courbe 57 représentant la différence de vitesse moyenne filtrée ΔΩf, axe 34, entre la courbe de vitesse moyenne ω22 et la courbe de vitesse moyenne ω21 de la figure 6. La courbe 57 est proche de zéro tant que la durée D des impulsions de commande émises à destination de l'injecteur à tester n'entraînent pas une injection, c'est-à-dire tant que la durée D est inférieure à MDP.
  • L'étape 107 consiste à déterminer la durée de commande MDP à partir de laquelle on considère qu'il y a réellement eu une injection. Pour cela, les valeurs de la courbe 57 sont comparées avec un seuil pré déterminé 58. Le seuil 58 est choisi de manière qu'il se trouve au dessus du bruit.
  • On notera que la durée de commande minimale MDP0 est connue initialement pour chaque injecteur 7, moyennant une plage de tolérance, car il s'agit d'une spécification de l'injecteur neuf. L'existence d'une petite erreur sur la valeur initiale n'est pas gênante car le procédé permet finalement de la corriger. La durée de commande minimale MDP dérive quand l'injecteur 7 vieilli. Pour trouver la durée de commande minimale MDP, une solution consiste donc à balayer la courbe 57 dans le sens des durée de commandes D croissantes sur un intervalle centré sur la durée de commande minimale MDP0 précédemment connue. Par exemple, l'intervalle balayé peut avoir une étendue de 100µs à quelques centaines de µs. D0 et Dmax sont par exemple fixés tels que D0=MDP0-50 µs et Dmax=MDP0+50 µs, la durée de commande minimale MDP0 étant de l'ordre de 100 µs. Une autre solution consiste à procéder par dichotomie pour balayer cet intervalle.
  • A l'étape 108, la valeur de MDP est mémorisée. Lorsque la valeur de MDP a été mémorisée, on peut retourner à l'étape 98, si la durée de commande minimale d'un autre injecteur doit être déterminée, à l'étape 97 si la durée de commande minimale d'un injecteur doit être déterminée pour une pression de rampe différente, ou à l'étape 96 si le procédé d'apprentissage est terminé. Dans ce cas, le procédé attend un signal d'initialisation pour recommencer.
  • Détermination d'une zone stable
  • La figure 5 montre les étapes d'une routine qui tourne par exemple en permanence, en parallèle du procédé décrit en référence à la figure 4. Cette routine permet d'éprouver la condition de stabilité, qui est vérifiée lorsque le véhicule se trouve dans une zone dite stable, c'est-à-dire une zone dans laquelle la vitesse moyenne du moteur est sensiblement constante.
  • A l'étape 80, le premier test, Test 1, consiste à vérifier que la pédale d'accélération est complètement relâchée.
  • A l'étape 81, le deuxième test, Test 2, consiste à vérifier que la vitesse du moteur se trouve dans une gamme acceptable. Cette gamme est par exemple comprise entre 750 et 3000 tr/min. Au-delà, une impulsion de test crée très peu de variation de vitesse du moteur ω, même s'il y a réellement injection, à cause de l'inertie du moteur. De plus, le capteur de vilebrequin 12 ayant une période de mesure de l'ordre de la microseconde, l'augmentation de la vitesse du vilebrequin augmente la marge d'erreur.
  • A l'étape 82, le troisième test, Test 3, consiste à vérifier que la boîte de vitesse est dans la bonne gamme. Cela correspond par exemple à un rapport de vitesse compris entre la troisième et la cinquième. En effet, en première ou en deuxième, l'accélération ou le freinage entraînent des variations brutales de la vitesse du moteur et cela entraîne des problèmes de précision de mesure. Ce test revient à peu près à vérifier que la vitesse du véhicule est supérieure à 30km/h, condition qui pourrait aussi faire l'objet d'un test.
  • A l'étape 83, le quatrième test, Test 4, consiste à vérifier que l'embrayage est activé, c'est-à-dire que le moteur est accouplé aux roues. A 2500tr/min, lorsqu'un utilisateur débraye, la vitesse tombe très rapidement, ce qui pose des problèmes de correction, comme cela sera décrit en détail plus loin.
  • A l'étape 84, le cinquième test, Test 5, consiste à vérifier que la température de l'eau, du fuel, de l'air et de l'huile est dans une gamme acceptable. A très basse température, la combustion est instable. Lorsque le moteur est chaud, les frottements sont minimisés. Ce test sert donc à attendre que le moteur soit en régime permanent.
  • On peut ajouter à ces tests d'autres tests qui visent à vérifier le fonctionnement correct de l'équipement nécessité par le procédé.
  • Ici, à l'étape 85, le sixième test, Test 6, consiste à vérifier que la tension aux bornes de la batterie est correcte.
  • A l'étape 86, le septième test, Test 7, consiste à vérifier qu'aucun capteur 12 indispensable au bon fonctionnement du procédé n'est défaillant.
  • La condition de stabilité est vérifiée lorsque tous les tests sont vérifiés. Par exemple, on peut utiliser une variable logique S. Dans ce cas, la variable de stabilité S est fixée à 1 à l'étape 79. Si l'un des tests précités produit un résultat négatif, la variable S est fixée à 0 à l'étape 78. La valeur de cette variable est utilisée à l'étape 100 pour déterminer si la boucle 43 doit être effectuée.
  • Arrêt du procédé
  • La valeur de la durée minimale MDP dépend de la pression de la rampe commune 6. Cette valeur MDP varie lorsque la pression de la rampe commune 6 varie. Il est donc souhaitable d'effectuer le procédé d'apprentissage pour des pressions de rampe 6 couvrant une gamme de pression la plus large possible. La condition de stabilité définit à la figure 5 sera typiquement vérifiée lorsque la pédale d'accélération est relâchée après une phase d'accélération et que le véhicule poursuit sa course sous son élan sans requérir de couple de la part du moteur. Dans ces conditions, on peut donc choisir une pression de rampe à laquelle on souhaite effectuer le procédé, et maintenir cette pression dans la rampe 6 au lieu de la laisser chuter tel que cela se passerait lors d'un fonctionnement normal du véhicule. Lorsqu'un utilisateur appui de nouveau sur la pédale d'accélération pendant le déroulement du procédé d'apprentissage, le calculateur moteur 8 réagit en interrompant l'apprentissage et en produisant les signaux de commande des injecteurs nécessaires pour injecter du carburant conformément au signal de demande produit par la pédale, selon un algorithme connu en soi. Toutefois, la pression qui a été maintenue dans la rampe commune pendant l'apprentissage n'est pas nécessairement adaptée à la quantité de carburant qui doit être injectée, c'est à dire qui peut être brûlée. Cela pourrait entraîner un bruit de combustion si cette pression est trop élevée. Plusieurs moyens peuvent être prévus pour annuler ou au moins pour réduire le bruit de combustion généré par une pression de rampe inadaptée pendant la transition entre le procédé d'apprentissage et une phase de réaccélération du véhicule.
  • Pour cela, une valve haute pression 10 est ouverte pour faire chuter la pression dans la rampe commune 6 lorsque celle-ci doit être diminuée. La valve haute pression 10 permet une diminution très rapide de la pression dans la rampe 6. Par exemple, une valve haute pression permet une diminution de l'ordre de 2000 bars/s. L'utilisation d'une valve haute pression 10 permet donc de réduire très rapidement la pression de rampe après des apprentissages à haute pression.
  • En outre, il est avantageux que le calculateur moteur 8 commande les injecteurs avec au moins une impulsion pilote devant l'impulsion principale, de manière à produire une injection pilote supplémentaire, très proche de l'injection principale, ce qui permet également de diminuer le bruit de combustion. L'injection pilote supplémentaire est placée de manière à réduire le bruit au maximum, par exemple le plus proche possible de l'injection principale.
  • Comme indiqué, le procédé décrit ci-dessus fonctionne correctement dans une large plage de fonctionnement du moteur, par exemple du régime de ralenti à 3000tr/min. Comme on utilise une vitesse moyennée sur un cycle d'injection pour déterminer le paramètre MDP, le procédé n'est pas sensible à la forme précise de l'arche correspondant à chaque cycle d'injection. Même à haut régime, lorsque les arches commencent à être déformées par l'inertie du moteur, le procédé produit toujours des résultats fiables.
  • Le procédé d'apprentissage, décrit précédemment dans le cas d'un fonctionnement en pied levé, peut également être effectué lors d'un fonctionnement en régime stabilisé, lorsque la pédale d'accélération est appuyée de manière sensiblement constante, et que les débits de carburant calculés par le calculateur moteur 8 sont donc stables et identiques pour tous les injecteurs. Dans cette variante de réalisation, le Test 1 est remplacé par un Test l' qui tend à éprouver si ces conditions sont vérifiées. Le procédé est pour le reste identique. Dans ce cas, tous les injecteurs reçoivent des signaux de commande du calculateur moteur 8, par exemple sous la forme d'une impulsion principale précédée d'une ou plusieurs injections pilotes. Ces impulsions sont calées par rapport aux points morts hauts des pistons selon la technique connue. L'injecteur sous test reçoit en addition la ou les impulsions de test, qui peut être placée par exemple en avance de l'impulsion principale ou, le cas échéant, de l'impulsion pilote.
  • La nécessité de pourvoir à l'alimentation de tous les injecteurs peut imposer des limites à la plage dans laquelle la pression de rampe peut être fixée pendant l'apprentissage. Il faut en effet éviter un bruit de combustion excessif. Pour cela, il est préférable de réaliser l'injection dans les cylindres sous la forme d'impulsions multiples. La présence d'une ou plusieurs injections pilote(s) prépare et réchauffe le mélange de gazole et d'air et tend à réduire le bruit en allongeant la durée de la combustion.
  • On va maintenant décrire un deuxième mode de réalisation dans lequel le procédé peut-être effectué dans une zone dite instable, c'est-à-dire dans laquelle, outre le fait que l'on autorise les cylindres à être alimentés en carburant, la vitesse du moteur est autorisée à varier de manière relativement rapide. Des calculs de correction permettent de compenser les variations de la vitesse du moteur dues à l'influence de paramètres extérieurs au procédé d'apprentissage, tel qu'une accélération ou un freinage. En ce référant à la figure 11, on va maintenant décrire les étapes du procédé d'apprentissage. Les étapes similaires au premier mode de réalisation sont désignées par le même chiffre de référence augmenté de 100. Les étapes identiques au premier mode de réalisation ne seront pas décrites à nouveau.
  • Dans ce mode de réalisation, la condition de stabilité à éprouver peut être rendue beaucoup moins restrictive (étape 200). Bien sur, les étapes 81 à 86 de la figure 5 peuvent être conservées. Une condition supplémentaire consistant à vérifier que le moteur se trouve dans une gamme de charge acceptable peut être ajoutée.
  • La description de deux passages dans la boucle 143 sera suffisante pour en comprendre le principe.
  • L'étape 201 consiste à mémoriser la vitesse instantanée ω du moteur sur une durée T recouvrant essentiellement le cycle d'injection 21, qui précède de manière immédiate le cycle 22. La durée d'acquisition T est identique au premier mode de réalisation. On appelle v21,n ce lot de mesures.
  • L'étape 202 consiste à mémoriser la vitesse instantanée ω du moteur sur une durée T1 recouvrant essentiellement le cycle d'injection 22. On appelle v22,n ce lot de mesures. L'ensemble (v21,n, v22,n, Dn) est mémorisé.
  • L'étape 204 est identique à l'étape 104.
  • L'étape 205 est identique à l'étape 105. Dans le cas présent, on considère que la durée Dn+1 est inférieure à la durée Dmax.
  • Lors du passage suivant dans la boucle 143, les vitesses v21,n+1 et v22,n+1 sont mémorisées de manière similaire. L'ensemble (v21,n+1, v22,n+1, Dn+1) est mémorisé.
  • Dans ce mode de réalisation, la boucle 143 ne comprend que des étapes d'acquisition des vitesses instantanées du moteur sur les cycles d'injections 21 et 22. Lorsque le procédé sort de la boucle 143, il passe à l'étape 203.
  • A l'étape 203, la vitesse moyenne ω21,n du moteur sur le cycle d'injection 21 est calculée à partir de la vitesse instantanée v21,n, d'une manière qui a été décrite en détail dans le premier mode de réalisation, et la vitesse moyenne ω22,n du moteur sur le cycle d'injection 22 est calculée à partir de la vitesse instantanée v22,n. La différence de vitesse moyenne ΔΩn = ω22,n - ω21,n est calculée. Le couple (ΔΩn, Dn) est mémorisé. De la même manière, la vitesse moyenne ω21,n+1 du moteur sur le cycle d'injection 21 est calculée à partir de la vitesse instantanée V21,n+1, la vitesse moyenne ω22,n+1 du moteur sur le cycle d'injection 22 est calculée à partir de la vitesse instantanée v22,n+1, puis la différence de vitesse moyenne ΔΩn+1 = ω22,n+1 - ω21,n+1 est calculée. Le couple (ΔΩn+1, Dn+1) est mémorisé.
  • A l'étape 201A, la vitesse moyenne ω21,n est comparée avec la vitesse moyenne ω21,n-1 et un décalage κn est calculé à partir de la différence ω21,n- ω21,n-1· De la même manière un décalage κn+1 est calculé à partir de la différence ω21,n+1- ω21,n.
  • A l'étape 203A, le décalage κn (respectivement κn+1) est utilisé pour calculer un facteur correctif f(κn) (respectivement f(κn+1)) que l'on soustrait de la différence de vitesse ΔΩn (respectivement ΔΩn+1), de manière à mémoriser une différence de vitesse moyenne corrigée ΔΩcn= ΔΩn - f(κn) (respectivement ΔΩcn+1= ΔΩn+1 - f(κn+1)). Ce facteur correctif sert à compenser les variations de vitesse du moteur dues aux freinages et aux accélérations.
  • A l'étape 206, les différences de vitesses moyennes corrigées mémorisées ΔΩcn, ΔΩcn+1 sont filtrées par convolution avec le filtre passe-bas W.
  • Un exemple de résultat obtenu avec ce procédé est représenté sur la figure 8, pour laquelle un freinage a été effectué au cours de l'acquisition des vitesses moyennes.
  • Les courbes 60 et 61 représentées sur la figure 8 montrent, en fonction de la durée D, l'évolution de la différence de vitesse moyenne ΔΩ, courbe 61, et de la différence de vitesse moyenne corrigée ΔΩc, courbe 60. Lorsque la courbe 61 chute, par exemple du fait d'un freinage, cette modification brusque de la vitesse du moteur est mesurée par le décalage κ et compensée par le facteur correctif f(κ), de manière qu'elle n'influence pas l'évolution de la courbe 60 et en particulier son intersection avec le seuil 58.
  • Lorsque le moteur vieillit, les taux de compression des différents cylindres peuvent être modifiés, ce qui peut entraîner une vitesse du moteur différente sur les différents cycles d'injection. Cela a pour conséquence un déséquilibre du moteur. L'étape 209 a pour objet de mesurer l'influence de ce type de déséquilibre sur les vitesses moyennes ω21,n et ω22,n et de corriger la différence de vitesse moyenne ΔΩn pour compenser cette influence. Pour cela on utilise la valeur de la différence de vitesses moyennes ω21,i - ω22,i en l'absence d'impulsion de test. Cette valeur peut être déterminée avant l'exécution du procédé d'apprentissage ou au cours de celui-ci, par exemple au cours d'un passage i dans la boucle 143 au cours duquel l'impulsion de test est supprimée. Un facteur correctif est donc calculé à partir de la différence de vitesses moyennes ω21,i - ω22,i et appliqué la différence de vitesse moyenne ΔΩn ou ΔΩcn.
  • A l'étape 210, la vitesse moyenne du moteur Ωn sur le cycle moteur correspondant à la boucle de rang n à laquelle on effectue le procédé est prise en compte. Du fait de l'inertie du moteur, la différence de vitesse moyenne ΔΩn générée par une impulsion de test donnée dépend de la vitesse du moteur. Par exemple, lorsqu'on injecte 1 mg de carburant à 1000 tr/min, l'écart de vitesse moyenne ΔΩn générée est supérieur à ce que produit une injection de 1 mg à 3000 tr/min. Les différences de vitesses moyennes ΔΩn obtenues sont alors ajustées par un facteur d'échelle dépendant de Ωn. Ce facteur d'échelle est par exemple calculé préalablement à l'exécution du procédé et mémorisé dans le calculateur moteur 8. Pour cela, on peut tracer une courbe ΔΩ en fonction de Ω sur une large plage de vitesses Ω pour une impulsion de test correspondant à une quantité injectée prédéterminée et utiliser la pente de cette courbe comme facteur d'échelle. Cette étape d'ajustement permet d'obtenir des résultats précis sans avoir à modifier la valeur du seuil de détection 58. Une autre solution serait d'adapter le seuil 58 de manière similaire.
  • L'étape 207 consiste à déterminer la durée minimale de commande MDP à partir de laquelle on considère qu'il y a réellement eu une injection. Pour cela, les valeurs de la courbe 60 sont comparées avec le seuil pré déterminé 58.
  • L'étape 208 est identique à l'étape 108.
  • Les étapes 203A, 209 et 210 sont des étapes correctives qui sont optionnelles. Chacune de ces étapes vise à compenser un phénomène particulier et peut donc être employée séparément des autres ou en combinaison. Ces étapes correctives peuvent aussi être appliquées dans le premier mode de réalisation.
  • Les procédés décrits ci-dessus peuvent être effectués avec tous les types d'injecteurs. Toutefois, les injecteurs à actionnement direct permettent d'obtenir une meilleure précision, notamment lorsque des injections multiples doivent être effectuées.
  • La figure 9 montre la quantité de carburant Q injectée dans l'injection principale, axe 70, en fonction de la durée de séparation δ entre l'impulsion pilote et l'impulsion principale, axe 71, dans le cas d'un injecteur solénoïde, courbe 72, et d'un injecteur piézoélectrique, courbe 73. Les impulsions sont fixées. Seule varie leur séparation. Ces deux types d'injecteurs ne se comportent pas de manière identique, cette différence pouvant modifier de manière significative les résultats du procédé d'apprentissage.
  • Dans le cas de l'utilisation d'un injecteur à solénoïde, l'ouverture s'effectue en deux temps. Dans un premier temps, le membre de soupape se désengage de la plaque, puis dans un deuxième temps l'aiguille se lève. L'ouverture du membre de soupape s'effectue environ 150 µs avant l'ouverture de l'aiguille. Cette ouverture en deux temps s'explique notamment par le fait que la puissance générée par le solénoïde n'est pas suffisante pour lever l'aiguille directement. Pour certaines durées de l'impulsion pilote, il peut donc arriver que le membre de soupape se désengage mais que l'aiguille ne se lève pas. Dans ce cas, un flux de carburant est créé de la chambre de commande vers le retour basse pression. Cela a pour effet la création d'ondes de pression. En particulier, dans le cas d'une multi injection, l'injection principale est perturbée par l'onde créée par l'injection pilote et cette perturbation dépend de la séparation δ. Ce phénomène est illustré par la figure 9. Dans ce cas, même si l'injection pilote ne lève pas l'aiguille, elle modifie l'injection principale, ce qui constitue une interaction hydraulique. De manière générale, la multi injection est plus compliquée à réaliser avec un injecteur à solénoïde car chaque injection pilote perturbe les suivantes par la création d'onde de pression.
  • La figure 10 montre une courbe de différence de vitesse moyenne ΔΩ, en fonction du temps t. Une courbe de référence 75 a également été tracée. L'onde de pression générée par l'injection pilote modifie la vitesse moyenne 29 du moteur sur le cycle de l'injecteur à tester avant l'ouverture réelle de l'injecteur. Cela se traduit par une augmentation de la différence de vitesse moyenne 34 qui peut passer au dessus du seuil 58. Cela risque donc de générer des erreurs de détection de la durée minimale 43b.
  • Ce problème ne se pose pas avec les injecteurs à actionnement direct, tels que les injecteurs piézoélectriques 73. Le procédé d'apprentissage décrit dans la présente invention est donc particulièrement adapté aux injecteurs à actionnement direct, par exemple aux injecteurs piézoélectriques 73, bien qu'il puisse également être réalisé sur des injecteurs à solénoïde 72 en tenant compte de la différence de comportement.
  • D'autres variantes sont également possibles. Par exemple, dans chaque mode de réalisation, le signal de commande peut comporter plusieurs impulsions de test de même durée D. Par exemple, une impulsion de test est placée de manière que le vilebrequin se trouve avant le PMH et une deuxième impulsion de test est placée de manière que le vilebrequin se trouve proche du PMH. La différence de vitesse moyenne ΔΩ étant proportionnelle à la différence de quantité de carburant injectée par les injecteurs associés aux deux cycles 21,22, cette différence est ainsi multipliée par le nombre d'impulsions, ce qui permet d'améliorer la précision de détection en accroissant la pente de la courbe sur la figure 7 ou 8.
  • On notera qu'il est également possible de calculer la vitesse moyenne sur un autre cycle d'injection précédant le cycle 22, par exemple sur le cycle 20.
  • On notera que plus on est à haut régime et plus les injections sont fréquentes. A 2000tr/min, on injecte toutes les 60ms et il faut environ 2s pour effectuer l'apprentissage. Lorsque le nombre de tours par minute augmente le temps d'apprentissage diminue.
  • Certaines étapes du procédé d'apprentissage peuvent être effectuées dans un ordre différent ou simultanément sans changer le résultat.
  • En outre, les procédés d'apprentissage décrits peuvent être immédiatement adaptés à la détermination de n'importe quel autre paramètre du signal de commande. Pour cela, l'impulsion de test peut être modifiée selon un autre paramètre que sa durée, par exemple pente, amplitude ou autre.
  • Bien que l'invention ait été décrite en relation avec plusieurs modes de réalisations particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims (21)

  1. Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection d'un moteur à combustion, ledit dispositif d'injection comportant une pluralité d'injecteurs (7) de combustible, et un moyen de commande électronique (8) apte à commander lesdits injecteurs au moyen de signaux de commande d'injection, ledit moyen de commande électronique étant connecté à un capteur (12) permettant de mesurer en permanence une vitesse dudit moteur à combustion, ledit moteur fonctionnant selon un cycle moteur incluant au moins un cycle d'injection (21, 22, 23) associé à chacun desdits injecteurs, lesdits cycles d'injection se succédant selon un ordre prédéterminé, caractérisé en ce qu'il comprend les étapes consistant à :
    a) sélectionner (98, 198) un injecteur à tester parmi lesdits injecteurs ;
    b) calculer (101, 201) une vitesse moyenne associée à un injecteur précédent (ω21,n-1, ω21,n, ω21,n+1) disposé avant ledit injecteur à tester dans l'ordre desdits cycles d'injection, qui est égale à la vitesse dudit moteur moyennée sur une durée de mesure (T) recouvrant essentiellement un cycle d'injection associé audit injecteur précédent ;
    c) pour ledit cycle d'injection associé audit injecteur à tester, appliquer audit injecteur à tester un signal de commande d'injection incluant au moins une impulsion de test ayant un paramètre réglable (Dn-1, Dn, Dn+1) ;
    d) calculer (102, 202) une vitesse moyenne associée audit injecteur à tester (ω22,n-1, ω22,n, ω22,n+1), qui est égale à la vitesse dudit moteur moyennée sur une durée de mesure (T1) recouvrant essentiellement ledit cycle d'injection associé audit injecteur à tester ;
    e) calculer (103, 203) une différence entre la vitesse moyenne calculée à l'étape d) et ladite vitesse moyenne calculée à l'étape b) ;
    f) répéter les étapes b) à d) pour au moins un autre cycle moteur en faisant varier à chaque fois ledit paramètre de l'impulsion de test ;
    g) déterminer une valeur dudit paramètre de l'impulsion de test pour laquelle ladite différence de vitesse moyenne franchit un seuil prédéterminé (58) et mémoriser ladite valeur de paramètre.
  2. Procédé selon la revendication 1, caractérisé en ce que lesdits injecteurs sont à actionnement direct.
  3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que, à l'étape c), ledit signal de commande comporte plusieurs impulsions de test, la valeur dudit paramètre étant la même pour chacune desdites impulsion de test.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit paramètre est une durée d'impulsion (Dn-1, Dn, Dn+1).
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce pendant qu'il est effectué, lesdits signaux de commande d'injection des injecteurs autres que ledit injecteur à tester sont nuls.
  6. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que pendant qu'il est effectué, ledit moyen de commande électronique fournit auxdits injecteurs des signaux de commande d'injection incluant une impulsion principale correspondant à une demande provenant d'un organe de commande des gaz.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, avant l'étape g), on calcule une différence de vitesse moyenne filtrée (ΔΩf) en appliquant une convolution par un filtre (W) à la courbe représentant la différence de vitesse moyenne en fonction dudit paramètre de l'impulsion de test et qu'à l'étape g) on utilise ladite différence de vitesse moyenne filtrée.
  8. Procédé selon la revendication 7, caractérisé en ce que ledit filtre (W) est une moyenne glissante.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend une première étape consistant à éprouver (100, 200) une condition de stabilité prédéterminée pour détecter un fonctionnement stable dudit moteur, et une étape consistant à terminer ledit procédé lorsque ladite condition de stabilité n'est pas satisfaite.
  10. Procédé selon la revendication 9, caractérisé en ce que ladite condition de stabilité inclut une condition de vitesse du moteur, condition qui est vérifiée lorsque ladite vitesse du moteur est comprise entre deux seuils prédéterminés.
  11. Procédé selon la revendication 9 ou 10, caractérisé en ce que ladite condition de stabilité inclut une condition de couple du moteur, condition qui est vérifiée lorsque le couple du moteur est compris entre deux seuils prédéterminés.
  12. Procédé selon l'une quelconque des revendications 9 à 11, caractérisé en ce que ladite condition de stabilité inclut une condition de rapport de vitesse, condition qui est vérifiée lorsque ledit rapport de vitesse est supérieur à un seuil prédéterminé.
  13. Procédé selon l'une quelconque des revendications 9 à 12, caractérisé en ce que ladite condition de stabilité inclut une condition de vitesse du véhicule, condition qui est vérifiée lorsque ladite vitesse du véhicule est supérieure à un seuil prédéterminé.
  14. Procédé selon l'une quelconque des revendications 9 à 13, caractérisé en ce que ladite condition de stabilité inclut une condition d'embrayage, condition qui est vérifiée lorsque l'embrayage est activé.
  15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comprend, à chaque cycle moteur, une étape consistant à calculer (201A) une différence entre ladite vitesse moyenne calculée à l'étape b) pour ledit cycle moteur (ω21,n) et ladite vitesse moyenne calculée à l'étape b) pour un cycle moteur précédent (ω21,n-1), une étape consistant à calculer (203A) une différence de vitesse moyenne corrigée (ΔΩcn) en corrigeant ladite différence de vitesse moyenne calculée (203) à l'étape e).
  16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que ladite vitesse dudit moteur à combustion correspond à la vitesse de rotation d'un vilebrequin dudit moteur à combustion, ladite durée de mesure (T, T1) associée à un injecteur s'étendant à chaque fois entre un instant initial (t1) retardé d'un angle de décalage α du vilebrequin par rapport au point mort haut (31) de combustion d'un piston correspondant audit injecteur et un instant final (t2) retardé dudit angle de décalage α par rapport au point mort haut (33) du piston correspondant à l'injecteur suivant dans l'ordre desdits cycles d'injection.
  17. Procédé selon la revendication 16, caractérisé en ce que l'angle de décalage α est inférieur ou égal à 45°.
  18. Procédé selon l'une quelconque des revendications 1 à 17, caractérisé en ce que ledit dispositif d'injection comporte une rampe commune (6) munie d'une valve haute pression (10), chacun desdits injecteurs étant relié à ladite rampe commune.
  19. Procédé selon la revendication 18, caractérisé en ce qu'il comprend une étape consistant à sélectionner (97, 197) une pression de rampe commune dans une plage allant de 200 à 2000 bars et à effectuer ledit procédé en maintenant cette pression de rampe dans ladite rampe commune.
  20. Procédé selon la revendication 19, caractérisé en ce qu'il comprend les étapes consistant à détecter un actionnement d'un organe de commande des gaz dudit véhicule correspondant à une demande de combustible, calculer une pression cible de rampe commune adaptée à ladite demande de combustible, et, lorsque la pression cible est inférieure à ladite pression de rampe commune sélectionnée, faire diminuer la pression dans ladite rampe commune en ouvrant ladite valve haute pression.
  21. Procédé selon la revendication 19, caractérisé en ce qu'il comprend les étapes consistant à détecter un actionnement d'un organe de commande des gaz dudit véhicule correspondant à une demande de combustible, calculer une pression cible de rampe commune adaptée à ladite demande de combustible, et, lorsque la pression cible est inférieure à ladite pression de rampe commune sélectionnée, fournir auxdits injecteurs des signaux de commande d'injection incluant au moins une impulsion de pré-injection et une impulsion principale.
EP05290675A 2005-03-25 2005-03-25 Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection Active EP1705355B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE602005004892T DE602005004892T2 (de) 2005-03-25 2005-03-25 Verfahren zur Bestimmung von Parametern eines Einspritzsystems
EP05290675A EP1705355B1 (fr) 2005-03-25 2005-03-25 Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection
AT05290675T ATE386877T1 (de) 2005-03-25 2005-03-25 Verfahren zur bestimmung von parametern eines einspritzsystems
JP2006053107A JP4774516B2 (ja) 2005-03-25 2006-02-28 噴射装置の作動パラメータを決定するためのプロセス
US11/389,375 US7269500B2 (en) 2005-03-25 2006-03-24 Process for determining the operating parameters of an injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05290675A EP1705355B1 (fr) 2005-03-25 2005-03-25 Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection

Publications (2)

Publication Number Publication Date
EP1705355A1 true EP1705355A1 (fr) 2006-09-27
EP1705355B1 EP1705355B1 (fr) 2008-02-20

Family

ID=34942039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05290675A Active EP1705355B1 (fr) 2005-03-25 2005-03-25 Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection

Country Status (5)

Country Link
US (1) US7269500B2 (fr)
EP (1) EP1705355B1 (fr)
JP (1) JP4774516B2 (fr)
AT (1) ATE386877T1 (fr)
DE (1) DE602005004892T2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917462A1 (fr) * 2007-06-12 2008-12-19 Renault Sas Procede de correction des derives des injecteurs d'un moteur
WO2009092474A1 (fr) * 2008-01-22 2009-07-30 Continental Automotive Gmbh Procédé et dispositif pour adapter une courbe caractéristique d’injection
CN103967677A (zh) * 2014-05-09 2014-08-06 无锡职业技术学院 柴油机燃油系统循环喷油量电控式测试装置及测试方法
FR3055665A1 (fr) * 2016-09-02 2018-03-09 Peugeot Citroen Automobiles Sa Procede d’execution d’un recalage d’injecteur de carburant dans un moteur a combustion interne
CN112943500A (zh) * 2021-03-11 2021-06-11 西华大学 模拟高原环境对航空活塞发动机喷雾特性影响的装置和方法
CN114544180A (zh) * 2021-12-29 2022-05-27 中国航空工业集团公司沈阳飞机设计研究所 一种发动机大油门评估方法及装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005001498B4 (de) * 2005-01-12 2007-02-08 Siemens Ag Verfahren und Vorrichtung zum Steuern eines Injektors
JP4743030B2 (ja) * 2006-07-07 2011-08-10 株式会社デンソー ディーゼル機関用燃料噴射制御装置
US7552717B2 (en) * 2007-08-07 2009-06-30 Delphi Technologies, Inc. Fuel injector and method for controlling fuel injectors
DE102007050026B4 (de) * 2007-10-17 2021-09-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Überwachen von Steuer- und Regelkreisen in einem Motorsystem
KR101033323B1 (ko) * 2008-11-27 2011-05-09 현대자동차주식회사 커먼레일 디젤 엔진의 연료량 제어 장치 및 방법
DE102009051137A1 (de) * 2009-06-26 2011-01-05 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Verbrennungsmotors
DE102009045307A1 (de) * 2009-10-02 2011-04-07 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines Ventils
DE102010043989B4 (de) * 2010-11-16 2020-06-25 Continental Automotive Gmbh Adaptionsverfahren eines Injektors einer Brennkraftmaschine
JP5829954B2 (ja) * 2012-03-09 2015-12-09 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
FI124888B (fi) * 2013-06-04 2015-03-13 Ponsse Oyj Menetelmä ja järjestely punnitusjärjestelmässä sekä vastaava ohjelmistotuote ja materiaalinkäsittelykone
CN103670862B (zh) * 2013-12-25 2015-12-09 天津理工大学 一种基于at89c52单片机的柴油机喷油定时检测方法
DE102015214589B4 (de) * 2015-07-31 2017-02-09 Continental Automotive Gmbh Verfahren zur Plausibilisierung der Funktion eines Drucksensors
IT201800005765A1 (it) 2018-05-28 2019-11-28 Metodo per determinare un tempo di apertura di un iniettore elettromagnetico di carburante
CN109469572B (zh) * 2018-11-07 2020-10-23 河南柴油机重工有限责任公司 一种发动机动态喷油提前角不解体检测方法
JP7155947B2 (ja) * 2018-11-28 2022-10-19 マツダ株式会社 エンジンの制御方法
JP7111064B2 (ja) * 2019-06-11 2022-08-02 トヨタ自動車株式会社 Co2回収システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720787A1 (fr) 1994-06-06 1995-12-08 Renault Vehicules Ind Procédé et dispositif de détermination des paramètres spécifiques des injecteurs d'un moteur à combustion, notamment d'un moteur diesel à pré-injection.
EP0740068A2 (fr) 1995-04-28 1996-10-30 Lucas Industries public limited company Buse d'injection de combustible
EP0937891A2 (fr) 1998-02-19 1999-08-25 LUCAS INDUSTRIES public limited company Injecteur de combustible
EP1350941A1 (fr) * 2002-03-29 2003-10-08 Toyota Jidosha Kabushiki Kaisha Système et méthode de commande d'injection de carburant
EP1388661A2 (fr) * 2002-08-06 2004-02-11 C.R.F. Società Consortile per Azioni Procédé et dispositif de commande de la quantité de carburant injectée dans un moteur à combustion interne, en particulier dans un moteur Diesel à système d'injection à rampe commune

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665703A (en) * 1984-03-06 1987-05-19 David Constant V External combustion engine with air-supported free piston
IT1260957B (it) * 1993-08-04 1996-04-29 Fiat Ricerche Procedimento e sistema per la rilevazione di mancate combustioni in motori a combustione interna.
DE4339957A1 (de) * 1993-11-24 1995-06-01 Bosch Gmbh Robert Verfahren zur Kalibrierung einer Einrichtung zur Steuerung einer Brennkraftmaschine
JP3855447B2 (ja) * 1998-03-31 2006-12-13 いすゞ自動車株式会社 エンジンの燃料噴射制御装置
US6874480B1 (en) * 2000-07-03 2005-04-05 Combustion Dynamics Corp. Flow meter
JP3782399B2 (ja) * 2002-07-25 2006-06-07 株式会社デンソー 内燃機関の燃料噴射制御装置
JP4030334B2 (ja) * 2002-03-29 2008-01-09 トヨタ自動車株式会社 内燃機関の燃料噴射装置
DE10256239A1 (de) * 2002-12-02 2004-06-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720787A1 (fr) 1994-06-06 1995-12-08 Renault Vehicules Ind Procédé et dispositif de détermination des paramètres spécifiques des injecteurs d'un moteur à combustion, notamment d'un moteur diesel à pré-injection.
EP0740068A2 (fr) 1995-04-28 1996-10-30 Lucas Industries public limited company Buse d'injection de combustible
EP0937891A2 (fr) 1998-02-19 1999-08-25 LUCAS INDUSTRIES public limited company Injecteur de combustible
EP1350941A1 (fr) * 2002-03-29 2003-10-08 Toyota Jidosha Kabushiki Kaisha Système et méthode de commande d'injection de carburant
EP1388661A2 (fr) * 2002-08-06 2004-02-11 C.R.F. Società Consortile per Azioni Procédé et dispositif de commande de la quantité de carburant injectée dans un moteur à combustion interne, en particulier dans un moteur Diesel à système d'injection à rampe commune

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917462A1 (fr) * 2007-06-12 2008-12-19 Renault Sas Procede de correction des derives des injecteurs d'un moteur
WO2009092474A1 (fr) * 2008-01-22 2009-07-30 Continental Automotive Gmbh Procédé et dispositif pour adapter une courbe caractéristique d’injection
US8374770B2 (en) 2008-01-22 2013-02-12 Continental Automotive Gmbh Method and device for adapting an injection characteristic curve
CN103967677A (zh) * 2014-05-09 2014-08-06 无锡职业技术学院 柴油机燃油系统循环喷油量电控式测试装置及测试方法
CN103967677B (zh) * 2014-05-09 2016-04-20 无锡职业技术学院 柴油机燃油系统循环喷油量电控式测试装置及测试方法
FR3055665A1 (fr) * 2016-09-02 2018-03-09 Peugeot Citroen Automobiles Sa Procede d’execution d’un recalage d’injecteur de carburant dans un moteur a combustion interne
CN112943500A (zh) * 2021-03-11 2021-06-11 西华大学 模拟高原环境对航空活塞发动机喷雾特性影响的装置和方法
CN114544180A (zh) * 2021-12-29 2022-05-27 中国航空工业集团公司沈阳飞机设计研究所 一种发动机大油门评估方法及装置

Also Published As

Publication number Publication date
US7269500B2 (en) 2007-09-11
ATE386877T1 (de) 2008-03-15
JP4774516B2 (ja) 2011-09-14
US20060224299A1 (en) 2006-10-05
EP1705355B1 (fr) 2008-02-20
DE602005004892D1 (de) 2008-04-03
JP2006275046A (ja) 2006-10-12
DE602005004892T2 (de) 2009-03-05

Similar Documents

Publication Publication Date Title
EP1705355B1 (fr) Procédé de détermination des paramètres de fonctionnement d'un dispositif d'injection
FR2811016A1 (fr) Procede pour determiner la tension de commande d'un injecteur avec un actionneur piezo-electrique
FR2890114A1 (fr) Procede de gestion d'un moteur a combustion interne
FR2658244A1 (fr) Dispositif de commande numerique de carburant pour un petit moteur thermique et procede de commande de carburant pour un moteur thermique.
FR2861806A1 (fr) Systeme de commande d'injection d'un moteur a combustion interne
FR2803877A1 (fr) Procede et dispositif de surveillance de fonctionnement d'un clapet pour ecoulement des gaz, notamment d'un moteur a combustion interne
WO2014131508A1 (fr) Procede de pilotage d'un injecteur piezoelectrique de carburant d'un moteur a combustion interne de vehicule, comportant une etape de polarisation de l'actionneur piezoelectrique
FR2764942A1 (fr) Systeme de mise en oeuvre d'un moteur a combustion interne notamment d'un moteur equipant un vehicule automobile
EP0686762A1 (fr) Procédé et dispositif de détermination des paramètres spécifiques des injecteurs d'un moteur à combustion, notamment Diesel à pré-injection
EP2318689B1 (fr) Procede permettant d'analyser le debit d'injection coup par coup fourni par un systeme d'injection de carburant utilise dans un moteur thermique de forte puissance
WO2003087562A1 (fr) Moteur diesel comportant un dispositif de controle du debit d'injection de carburant
FR2859763A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
FR3072124B1 (fr) Procede et systeme de detection du sens de rotation d'un moteur de vehicule
FR2901848A1 (fr) Procede et dispositif de correction du debit de l'injection de carburant dit pilote dans un moteur diesel a injection directe du type a rampe commune, et moteur comprenant un tel dispositif
FR2935758A1 (fr) Dispositif permettant d'analyser le debit d'injection coup par coup fourni par un systeme d'injection de carburant utilise dans un moteur thermique de forte puissance
FR2851013A1 (fr) Procede et dispositif de correction adaptative de l'onde de choc dans un systeme d'injection a haute pression d'un vehicule automobile pendant son fonctionnement
FR2785644A1 (fr) Dispositif de controle pour injecteur de carburant
WO2017071797A1 (fr) Procede de verification de la fonctionnalite d'un systeme d'alimentation en carburant haute pression d'un moteur a combustion interne
FR3094417A1 (fr) Determination d’une derive du debit statique de carburant d’un injecteur piezo-electrique d’un moteur thermique de vehicule automobile
FR3035684B1 (fr) Procede de determination du calage angulaire relatif entre un moteur a combustion et une pompe d'alimentation de carburant
FR3072125A1 (fr) Procede et systeme de validation de la phase d'un moteur de vehicule
FR2844307A1 (fr) Procede et dispositif pour determiner la masse de carburant d'un film de paroi lors de l'injection dans la conduite d'aspiration d'un moteur a combustion interne
EP0636778B1 (fr) Procédé et dispositif de correction de la durée d'injection en fonction du débit de purge d'un circuit de purge à canister, pour moteur à injection
FR2852630A1 (fr) Procede de gestion d'un moteur a combustion interne
WO2022017759A1 (fr) Procede, produit programme et calculateur pour estimer le debit statique d'un injecteur piezo electrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005004892

Country of ref document: DE

Date of ref document: 20080403

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080531

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

BERE Be: lapsed

Owner name: DELPHI TECHNOLOGIES, INC.

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080520

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080721

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080325

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A, LU

Effective date: 20140516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005004892

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005004892

Country of ref document: DE

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A, LU

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES HOLDING S.A.R.L., BASCHARAGE, LU

Effective date: 20140702

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005004892

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

Effective date: 20140702

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005004892

Country of ref document: DE

Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE

Effective date: 20140702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005004892

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005004892

Country of ref document: DE

Owner name: DELPHI TECHNOLOGIES IP LIMITED, BB

Free format text: FORMER OWNER: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A R.L., BASCHARAGE, LU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200323

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230209

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005004892

Country of ref document: DE

Owner name: PHINIA DELPHI LUXEMBOURG SARL, LU

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES IP LIMITED, ST. MICHAEL, BB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240209

Year of fee payment: 20