EP1704754B1 - Procede pour commander un processus de cuisson sur une table de cuisson et table de cuisson permettant de mettre en oeuvre ce procede - Google Patents

Procede pour commander un processus de cuisson sur une table de cuisson et table de cuisson permettant de mettre en oeuvre ce procede Download PDF

Info

Publication number
EP1704754B1
EP1704754B1 EP05700769A EP05700769A EP1704754B1 EP 1704754 B1 EP1704754 B1 EP 1704754B1 EP 05700769 A EP05700769 A EP 05700769A EP 05700769 A EP05700769 A EP 05700769A EP 1704754 B1 EP1704754 B1 EP 1704754B1
Authority
EP
European Patent Office
Prior art keywords
heat sensor
sensor unit
heat
hob
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05700769A
Other languages
German (de)
English (en)
Other versions
EP1704754A1 (fr
Inventor
Dominic Beier
Roger Brian Minchin Clarke
Hartmut Dittrich
Holger Ernst
Neil Griffin
Michael Holverscheid
Dominic Josef Mikulin
Jörg Vollgraf
Eduard Sailer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miele und Cie KG
Original Assignee
Miele und Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miele und Cie KG filed Critical Miele und Cie KG
Publication of EP1704754A1 publication Critical patent/EP1704754A1/fr
Application granted granted Critical
Publication of EP1704754B1 publication Critical patent/EP1704754B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/746Protection, e.g. overheat cutoff, hot plate indicator

Definitions

  • the invention relates to a hob of the type mentioned in claim 1.
  • Such a hob is for example from the DE 198 56 140 A1 known.
  • the known cooktop has a cooktop panel, in particular made of glass ceramic, perpendicular to its Hauptausdehnungsraumen a limited by a flat top and bottom material thickness s, with at least one cooking zone, which is heatable by means of a arranged in the installed position of the hob below the cooktop panel heater with an electrical control for controlling the heating power of the heater and with a arranged below the cooktop plate first heat sensor unit.
  • a processing unit of the electrical controller designed as a computing unit compares the output signal of the first heat sensor unit with characteristic data of the measuring arrangement stored in a memory of the electrical controller and depending on a comparison value formed therefrom, the heating power of the heating device is controlled.
  • the first heat sensor unit is designed such that it receives substantially exclusively the radiated heat radiation from the bottom of the cooktop panel and that it is then closed to the temperature of the turned off on the cooking zone cookware or this is regulated.
  • the known arrangement has a hob plate whose transmittance is less than 30%, at least in the detection range of the first heat sensor unit and at least in its spectral measuring range.
  • a hob with a cooktop panel in particular of glass ceramic, which has perpendicular to the Hauptausdehnungsraumen a limited by a flat top and bottom material thickness s, with at least one cooking zone known.
  • the cooking zone can be heated by means of a heater arranged in the installation position of the hob below the hob plate.
  • a first heat sensor unit which is designed to measure a substantially in the vicinity of the cooking zone alone from the cooktop plate downgoing heat flow, and a processing unit and a memory having electrical control, in dependence on the output signal of the first heat sensor unit the Heating power of the heater is controllable arranged.
  • a second heat sensor unit which is likewise arranged below the cooktop panel, is designed to measure a heat flow originating essentially in the region of the cooking zone from the cooktop panel and a cookware placed thereon, wherein a comparison value can be generated in the processing unit from the output signals of the first and the second heat sensor unit and in dependence a comparison of the comparison value with predetermined and stored in the memory reference values, the heating power of the heater is controllable, wherein the measuring range of the second heat sensor unit is limited to the measurement of heat radiation in a second wavelength range, which is different from the first wavelength range.
  • the invention thus presents the problem of specifying a hob in which the second heat sensor unit in the region of the cooking zone essentially detects the heat radiation radiated downwards from the hob plate and the cookware placed thereon.
  • the achievable with the present invention consist in addition to improved control of a cooking process in a hob, in particular in the improved accuracy and speed of control of the actually present on the cookware temperature.
  • the measuring range of the second thermal sensor unit is limited to the measurement of heat radiation in a second wavelength range different from the first wavelength range, and the cooktop panel in the vicinity of the cooking zone at least in the detection range of the second heat radiation unit of the second wavelength range, a transmittance of more than 20 % having. In this way, it is ensured that the heat radiation radiated downwardly from the hob plate and the cookware placed thereon is essentially detected by the second heat sensor unit in the region of the cooking zone.
  • the first heat sensor unit only the part of the heat flow that emanates downwards from the cooktop plate by means of heat conduction, for example, by means of a touch temperature sensor is detected.
  • the heat radiation is detected as part of the respective heat flow with the first and the second heat sensor unit.
  • the measuring range of the first heat sensor unit is limited to the measurement of heat radiation in a first wavelength range and the hob plate in the vicinity of the cooking zone at least in the detection range of the first heat sensor unit for thermal radiation of the first wavelength range, a transmittance of less than 20%. This ensures that the heat radiation detected by the first heat sensor unit in the region of the cooking zone is essentially detected only from the cooking field plate downwards.
  • the transmittance of the cooktop panel for heat radiation of the first wavelength range is at least in the detection range of the first heat sensor unit approximately 0%. In this way, it is ensured that the thermal radiation detected by the first heat sensor unit in the region of the cooking zone is essentially detected solely by the heat radiation radiated downwards from the underside of the hob plate.
  • the transmittance of the cooktop panel for heat radiation of the second wavelength range is at least about 50%, at least in the detection range of the second heat sensor unit.
  • a particularly advantageous embodiment of the invention provides that the first and the second heat sensor unit are designed for measuring heat radiation and at least partially have common components, in particular a common heat sensor. In this way, for example, the number of required thermal sensors is reduced.
  • Another advantageous development of the invention provides that the material thickness s of the hob plate is reduced at least in the detection range of the second heat sensor unit. As a result, the influence of the cooking field downwards outgoing heat flow alone is reduced to the outgoing from the cooktop plate and the pots and pans down therefrom heat flow in a simple manner.
  • a particularly advantageous embodiment of the aforementioned embodiment provides that the hob plate is formed at least in the detection range of the second heat sensor unit, starting from the hob plate in the direction of the second heat sensor unit as a converging lens. In this way, the number of components is further reduced.
  • a further advantageous development of the teaching according to the invention provides that at least one deflecting means is arranged in the beam path from the hob plate and / or the cookware bottom to the first and / or second heat sensor unit. This makes it possible in a structurally simple manner to position the first and / or second heat sensor unit independently of the spatial arrangement of the cooking zone, for example, at a cooler location of the hob, in particular in the edge region of the hob.
  • the second heat sensor unit has an optical filter, which is arranged in the beam path from the hob plate and / or the cookware bottom to the second heat sensor unit, of the same material as the hob plate.
  • the suitable materials for cooktop panels, in particular glass-ceramic, are less expensive to procure than, for example, spectrally selective optical filters for limiting the measuring range of the second heat sensor unit.
  • a particularly advantageous embodiment of the teaching according to the invention provides that the emissivity of the cooking utensil floor of a cookware parked on the cooking zone can be determined by means of the second heat sensor unit. In this way, the accuracy of the control of the cooking process is further improved. Furthermore, from the emissivity thus determined, the temperature of the cookware tray can be automatically determined with a likewise improved accuracy. In principle, it is possible to determine the emissivity of the cooking utensil bottom of a cookware placed on the cooking zone by means of another heat sensor unit different from the second heat sensor unit. However, by using the second thermal sensor unit, the number of components is further reduced.
  • An advantageous development of the aforementioned embodiment additionally provides a third heat sensor unit whose measuring range is limited to heat radiation in a third wavelength range which differs from the second wavelength range, wherein the hotplate plate in the region of the cooking zone at least in the detection range of the third thermal radiation unit for heat radiation of the third Wavelength range has a transmittance of more than 20%.
  • the cooktop panel in the detection area of the first heat sensor unit on its upper side has a coating with a transmittance of approximately 0%. In this way it is ensured that by the first heat sensor unit regardless of the Transmittance of the cooktop panel in the detection range of the first heat sensor unit is detected substantially only the radiated down from the cooktop plate heat radiation.
  • the coating has a reflectance of about 100%. As a result, the coating is realized in a simple manner.
  • the coating has an absorbance of about 100%. Again, it is ensured that regardless of the degree of transmission of the cooktop panel in the detection range of the first heat sensor unit is detected by the first heat sensor unit substantially only the radiated from the cooktop plate down heat radiation.
  • the invention presents the problem of specifying a system for carrying out the method according to the invention.
  • Fig. 1 shows a first embodiment of a hob according to the invention.
  • the cooktop has a cooktop panel 2 formed as a glass ceramic plate, with a perpendicular to the Hauptausdehnungsraumen by a flat top and bottom 2.1 and 2.2 limited material thickness s, with at least one cooking zone 4, arranged by means of a in the installed position of the hob below the cooktop plate 2 1, which is heatable in FIG. 1, with a sensor assembly 6 arranged below the cooktop panel 2, which comprises a first and a second heat sensor unit, wherein in FIG. 1 only the first heat sensor unit 6.1 is shown.
  • the second heat sensor unit is arranged behind the image plane.
  • the first heat sensor unit 6.1 is designed to measure the heat flow going down in the region of the cooking zone 4 substantially solely from the cooking field plate 2, while the second heat sensor unit measures the cooking field 2 in the region of the cooking zone 4 and a second one positioned in FIG 1 cookware, not shown, downwardly outgoing heat flow is formed, which will be explained in more detail below.
  • the first and the second heat sensor unit 6.1 are each formed as heat radiation sensor units, wherein the measuring range of the first heat sensor unit 6.1 is limited to the measurement of heat radiation in a first wavelength range and the measuring range of the second heat sensor unit limited to the measurement of heat radiation in a second wavelength range is different from the first wavelength range.
  • the cooktop panel 2 in the present exemplary embodiment is known for Heat radiation of the first wavelength range, a transmittance of less than 20% and for heat radiation of the second wavelength range, a transmittance of more than 20%.
  • the individual wavelength range can be dimensioned very differently, which will be explained in more detail below with reference to FIG.
  • a limitation of the measuring range of the first and second heat sensor unit 6.1 to a first or second wavelength range can on the one hand be achieved in that the respective heat sensor itself has a selective sensitivity.
  • an unillustrated optical filter can be a commercially available spectrally selective filter that transmits only thermal radiation of the first or second wavelength range.
  • this filter can be a commercially available spectrally selective filter that transmits only thermal radiation of the first or second wavelength range.
  • the mentioned embodiments of the filters for limiting the measuring ranges of the respective heat sensor unit are additionally designed as polarization filters.
  • a cooking field plate 2 inhomogeneous with respect to the transmittance is used, it is sufficient that the cooking field plate 2 in the region of the cooking zone 4 at least in the detection range of the first heat sensor unit 6.1 as low as possible and the highest possible degree of transmission in the detection range of the second heat sensor unit for thermal radiation according to the above.
  • This can be done for example by a material exchange in the detection areas of the first and / or the second heat sensor unit 6.1 on the hob plate 2.
  • a material suitable for this purpose is, for example, aluminum oxide.
  • the first heat sensor unit 6.1 instead of a heat sensor, namely a heat radiation sensor, comprises a touch temperature sensor and is arranged for example in the cooking zone 4 on the bottom 2.2 of the hob plate 2.
  • both heat sensor units 6.1 have at least partially common components, for example a common heat sensor.
  • the then only heat sensor would have to be known in the art, for example, between two layers, one of which would correspond to the position of the thermal sensor of the first heat sensor unit 6.1 and the other of the position of the thermal sensor of the second heat sensor unit of the sensor assembly 6 of the above embodiment, back and forth be.
  • the first and the second thermal sensor unit of the sensor module 6 are in signal transmission connection with a likewise not shown electrical control, which has a processing unit and a memory.
  • a processing unit of the output signals of the first and the second heat sensor unit 6.1 is a comparative value can be generated, which is comparable with predetermined and stored in the memory reference values. Depending on this comparison, the heating power of the heater is controllable.
  • the hob according to the invention further comprises for this purpose a chopper 8, the structural design of which is explained in greater detail with reference to FIG. 4, and a light source 10.
  • a chopper 8 the structural design of which is explained in greater detail with reference to FIG. 4, and a light source 10.
  • the determination of the emissivity of the cookware or cooking utensils placed on the cooking zone 4 will also be explained in more detail with reference to the following figures.
  • the first embodiment of the hob according to the invention has an inside reflective heat radiation coating, such as a gold layer, mirrored waveguide 12 on.
  • a gold layer, mirrored waveguide 12 on.
  • the use of a sapphire waveguide is conceivable.
  • Another possibility to reduce or prevent the influence of interference to the output signals of the two heat sensor units is that in the beam path from the hob plate 2 and / or the cookware bottom to the first and / or second heat sensor unit 6.1 at least one deflection such for example, a mirror or the like is arranged. In this way, the sensor assembly 6 can be completely, but at least largely, removed from the influence of the aforementioned interference radiation. See also Fig. 8.
  • Fig. 2 shows the already explained inventive system of cooking hob according to the invention and placed on the cooking zone 4 of the hob plate 2 cookware 14 in a rotated by 90 ° to FIG. 1 representation.
  • the first and the second heat sensor unit 6.1 and 6.2 of the sensor assembly 6 are shown.
  • the heater 16 is shown, in a known per se in an insulating body 20th is arranged.
  • the arrows 18 symbolize the direct and indirect interference radiation already explained above by the heating device 16.
  • the thermal radiation originating in the region of the cooking zone 4 from the cooktop plate 2 or from the cookware base becomes the first or second heat sensor unit in the waveguide 12 in a likewise known manner 6.1, 6.2 forwarded, which is symbolized in Fig. 2 by the arrows 22.
  • FIG. 3 shows a diagram showing the transmittance of a hob according to the invention as a function of the wavelength of the electromagnetic radiation using the example of a glass-ceramic plate.
  • the measuring ranges of the first and the second heat sensor units 6.1, 6.2 are adapted to the transmittance of the hob plate 2 used for the hob according to the invention such that the measuring range of the first heat sensor unit 6.1 is limited to a first wavelength range the hob plate 2 a transmittance of less than 20%, in particular approximately 0% and the measuring range of the second heat sensor unit 6.2 is limited to a second wavelength range for which the cooktop 2 has a transmittance of more than 20%, in particular at least about 50% ,
  • the transmittance profile of which is exemplified as a function of the wavelength in FIG.
  • the first wavelength range is selected to be about 3 ⁇ m and the second wavelength range is selected to be about 4 ⁇ m.
  • the first wavelength range is selected to be about 3 ⁇ m and the second wavelength range is selected to be about 4 ⁇ m.
  • Fig. 4 shows the chopper 8 of FIG. 1 in detail, with a view from below of the hob according to the invention.
  • the chopper 8 has an electric drive 8.1 and one between the two heat sensor units 6.1, 6.2 and the light source 10 and the Waveguide 12 arranged circular plate 8.2. Between the two heat sensor units 6.1, 6.2 and the light source 10 a in Fig. 4 only roughly illustrated barrier 24 is arranged. This prevents that emanating from the light source 10 interfering radiation affects the heat sensor units 6.1, 6.2 in an undesirable manner.
  • the electric drive 8.1 of the chopper 8 is in signal transmission connection with the electrical control of the hob according to the invention and rotates the plate 8.2 in the course of determining the emissivity of the cookware around a perpendicular to the plate 8.2 and through the center extending, not shown axis of rotation.
  • the plate 8.2 has in the area which sweeps over the two heat sensor units 6.1, 6.2 in their rotation, a slot 8.3, with an extension 8.3.1 formed at one end of the slot 8.3, on and in the area which in their rotation substantially the two heat sensor units 6.1, 6.2 and the light source 10 passes over a reflector 8.4, designed as a mirror and arranged on the surface of the plate 8.3 facing these components 6.1, 6.2 and 10.
  • the extension 8.3.1 also covers the light source 10 in addition to the two heat sensor units 6.1, 6.2.
  • the mode of operation of the chopper 8 will be explained in more detail below.
  • the hob according to the invention is switched off and a cookware 14 is placed on the cooking zone 4.
  • the heating device 16 assigned to the cooking zone 4 is switched on by means of an operating element, not shown in the figures, so that the heating device 16 heats up and thus heats the cooking zone 4 and the cookware 14 parked thereon.
  • the measurements of the thermal radiations radiated downwards in the region of the cooking zone 4 are started by means of the first and second heat sensor units 6.1, 6.2 already explained above, which is illustrated by way of example in FIG is explained. 5 is qualitative and applies to the basic time course of the output signal for both the first and the second heat sensor unit 6.1, 6.2.
  • the plate 8.2 of the chopper 8 is located in a rotational position, not shown in FIG. 4, in which the plate covers 8.2 both the two heat sensor units 6.1, 6.2 as well as the light source 10 and thus the two heat sensor units 6.1, 6.2 against from the waveguide 12 in Direction of the two heat sensor units 6.1, 6.2 as well as shielded from the light source 10 in the direction of the two heat sensor units 6.1, 6.2 radiated heat radiation substantially.
  • the plate 8.2 rotates continuously further about the axis of rotation to the rotational position shown in Fig. 4, in which the reflector 8.4 of the plate 8.2, the two heat sensor units 6.1, 6.2 and the light source 10 covers.
  • the radiated heat from the light source 10 at the reflector 8.4 is almost completely deflected in the direction of the two heat sensor units 6.1, 6.2 and received by them in the corresponding first and second wavelength ranges as an input signal, see area b in Fig. 5th ,
  • the plate 8.2 continues to rotate and the two heat sensor units 6.1, 6.2 and the light source 10 are again covered by the plate 8.2, namely in the area arranged between the reflector 8.4 and the slot 8.3 area of the plate 8.2, see Fig. 4 and 5, area c, so that for this rotational position of the plate 8.2, the statements on the region a of FIG. 5 apply analogously.
  • the plate 8.2 continues to rotate until that arranged in the plate 8.2 slot 8.3 the beam path between the hob plate 2 and the hob plate 2 and the cookware bottom of the cookware 14 in the region of the waveguide 12 and the two heat sensor units 6.1, 6.2 releases.
  • the heat radiation radiated downwards in the region of the cooking zone 4 from the hob plate 2 or from the hob plate 2 and the cookware 14 placed thereon reaches the two heat sensor units 6.1, 6.2 and is received by them as input signals corresponding to the first and second wavelength ranges. resulting in an increase of the output of each heat sensor unit 6.1, 6.2 up to the qualitative value indicated by d in FIG.
  • the value of the output signal of the first heat sensor unit 6.1 is slightly lower than the value of the output signal of the second heat sensor unit 6.2, since the first heat sensor unit 6.1 substantially receives the radiated only from the hob plate 2 down heat radiation, while the second heat sensor unit 6.2 substantially receives the radiated down from the hob plate 2 and the cookware 14 placed thereon heat radiation, in each case in the detection range of the respective heat sensor unit 6.1, 6.2.
  • the plate 8.2 continues to rotate until the other end of the slot 8.3 is reached with the extension 8.3.1.
  • the beam path between the light source 10 and the waveguide 12 is additionally released by the plate 8.2, so that the radiated by the light source 10 radiated heat through the waveguide 12 on the cooktop plate 2 and the cooktop plate 2 and the cookware jar and is at least partially reflected by these in the direction of the two heat sensor units 6.1, 6.2, see Fig. 5, area e.
  • the values of the resulting output signals of the two heat sensor units 6.1, 6.2 are therefore slightly larger than in the aforementioned range d.
  • the plate 8.2 continues to rotate in a region of the plate 8.2, the analogous to the previously described areas a and c, the two heat sensor units 6.1, 6.2 against the off the hob plate 2 and the hob plate 2 and the off on the cooking zone 4 cookware 14 after shields radiated below radiant heat, see Fig. 5, area f.
  • the effect of the barrier 24 against emitted from the light source 10 interference has already been explained above.
  • a comparison value is formed from the output signals of the two heat sensor units 6.1, 6.2 continuously or at predetermined time intervals and compared in a known manner with previously defined reference values stored in the memory of the electrical control system.
  • the emissivity of the cookware tray by comparing the output signals of the two heat sensor units 6.1, 6.2 in the area b of FIG.
  • the heating device 16 for the determination of the emissivity of the cooking utensil bottom and thus its actually undesired interference radiation for the measurement, so that the number of components is further reduced.
  • the heater 16 is switched off for a short time.
  • the measuring range of the third heat sensor unit is limited to heat radiation in a third wavelength range, which differs from the second wavelength range, wherein the cooking field plate 2 in the region of the cooking zone 4 at least in the detection range of the third heat sensor unit for heat radiation of the third wavelength range, a transmittance of more than 20 % having.
  • the temperature of the cookware tray and thus the value of radiated from the cookware plate heat depends not only on their wavelength range but also on the emissivity of the cookware, it is possible by a known ratio pyrometer measurement by means of the second and the third heat sensor unit 6.2 , And determine the thus determined slope of the value of the heat radiation over a predetermined wavelength range without the emissivity of the cookware tray whose temperature and thus to regulate the heating power.
  • a particularly simple alternative to the aforementioned possibilities to include the influence of the emissivity of the cookware in the control of heating power is that on the cookware tray at least in the area of the shut off on the cooking zone 4 cookware 14 with the detection range of the second heat sensor unit 6.2 overlaps, a coating with a predetermined and stored in the memory of the electrical control emissivity is applied.
  • a further alternative to the first exemplary embodiment provides that the cooktop panel 2 in the detection area of the first heat sensor unit 6.1 has a coating with a transmittance of approximately 0% on its upper side.
  • a Realization possibility is that the coating has a reflectance of about 100%.
  • the hob plate 2 in the detection range of the first heat sensor unit 6.1 on its upper side has a coating with an absorbance of about 100%.
  • a second embodiment of the hob according to the invention is shown.
  • a converging lens 26 made due to the high temperature resistance, for example, barium fluoride or aluminum, arranged by means of the cooking field of the plate. 2 and focused on the cooking zone 4 placed on the cooking utensil 14 downward radiated heat radiation to the first and / or second heat sensor unit 6.1, 6.2 in a known per se.
  • the cooking field plate 2 is designed as the convergent lens 26, at least in the detection range of the second heat sensor unit 6.2 starting from the hob plate 2 in the direction of the second heat sensor unit 6.2, see FIG ,
  • FIG. 8 shows a fourth exemplary embodiment of the teaching according to the invention, in which the sensor assembly 6 is arranged instead of below the cooking zone 4 in the edge region of the hob according to the invention.
  • the use of a waveguide 12 is dispensed with, since the interference radiation due to the arranged in the beam path between the cooktop plate 2 and the cookware 14 and the two heat sensor units 6.1, 6.2 deflection means 28 for deflecting the downwardly radiated heat radiation at the two heat sensor units 6.1, 6.2 is directed past, which is symbolized in Fig. 8 by a dashed arrow 30.
  • the use of the chopper 8 as part of the measuring device for determining the emissivity of the cookware 14 or of the cookware base has been explained in detail in the aforementioned exemplary embodiments. Alternatively, however, other known to those skilled embodiments of the measuring device are conceivable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Electric Stoves And Ranges (AREA)
  • Cookers (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Claims (16)

  1. Table de cuisson comprenant une plaque de cuisson (2), en particulier en vitrocéramique, qui présente perpendiculairement à ses principaux sens d'extension une épaisseur de matière (s) délimitée par une face surfacique supérieure (2.1) et inférieure (2.2), au moins une zone de cuisson (4) qui peut être chauffée au moyen d'un dispositif de chauffage (16) disposé au-dessous de la plaque de cuisson (2) dans la position de montage de la table de cuisson, une première unité de capteur de chaleur (6.1) disposée au-dessous de la plaque de cuisson (2), ladite unité étant conçue pour mesurer un flux thermique partant, essentiellement dans la région de la zone de cuisson (4), seulement depuis la plaque de cuisson (2) vers le bas, et une commande électrique présentant une unité de traitement et une mémoire, la puissance de chauffe du dispositif de chauffage (16) pouvant être commandée dans ladite commande en fonction du signal de sortie de la première unité de capteur de chaleur (6.1), et sachant qu'au-dessous de la plaque de cuisson (2) est disposée une deuxième unité de capteur de chaleur (6.2) conçue pour mesurer un flux thermique partant, essentiellement dans la région de la zone de cuisson (4), depuis la plaque de cuisson (2) et un récipient de cuisson (14) déposé sur ladite plaque, une valeur comparative pouvant être générée dans l'unité de traitement à partir des signaux de sortie de la première et de la deuxième unité de capteur de chaleur (6.1, 6.2), et la puissance de chauffe du dispositif de chauffage (16) pouvant être commandée en fonction d'une comparaison de la valeur comparative avec des valeurs de référence définies au préalable et enregistrées dans la mémoire, la plage de mesure de la deuxième unité de capteur de chaleur (6.2) étant limitée à la mesure du rayonnement thermique dans une deuxième gamme d'ondes qui se distingue de la première gamme d'ondes,
    caractérisée en ce
    que la plaque de cuisson (2) présente dans la région de la zone de cuisson (4) au moins dans la zone de détection de la deuxième unité de capteur de chaleur (6.2) pour le rayonnement thermique de la deuxième gamme d'ondes un facteur de transmission de plus de 20 %.
  2. Table de cuisson selon la revendication 1,
    caractérisée en ce
    que la première unité de capteur de chaleur (6.1) comporte une sonde de température de contact.
  3. Table de cuisson selon la revendication 1,
    caractérisée en ce
    que la plage de mesure de la première unité de capteur de chaleur (6.1) est limitée à la mesure du rayonnement thermique dans une première gamme d'ondes, et la plaque de cuisson (2) présente dans la région de la zone de cuisson (4) au moins dans la zone de détection de la première unité de capteur de chaleur (6.1) pour le rayonnement thermique de la première gamme d'ondes un facteur de transmission de moins de 20 %.
  4. Table de cuisson selon la revendication 3,
    caractérisée en ce
    que le facteur de transmission de la plaque de cuisson (2) pour le rayonnement thermique de la première gamme d'ondes est à peu près de 0 % au moins dans la zone de détection de la première unité de capteur de chaleur (6.1).
  5. Table de cuisson selon l'une quelconque des revendications 1 à 4,
    caractérisée en ce
    que le facteur de transmission de la plaque de cuisson (2) pour le rayonnement thermique de la deuxième gamme d'ondes est au moins de 50 % environ au moins dans la zone de détection de la deuxième unité de capteur de chaleur (6.2).
  6. Table de cuisson selon au moins l'une quelconque des revendications 1 à 5,
    caractérisée en ce
    que la première et la deuxième unité de capteur de chaleur (6.1, 6.2) sont conçues pour mesurer le rayonnement thermique et en ce qu'elles présentent au moins en partie des composants communs, en particulier un capteur thermique commun.
  7. Table de cuisson selon au moins l'une quelconque des revendications 1 à 6,
    caractérisée en ce
    que l'épaisseur de matière(s) de la plaque de cuisson (2) est réduite au moins dans la zone de détection de la deuxième unité de capteur de chaleur (6.2).
  8. Table de cuisson selon la revendication 7,
    caractérisée en ce
    que la plaque de cuisson (2) est conçue comme lentille convergente (26) au moins dans la zone de détection de la deuxième unité de capteur de chaleur (6.2) à partir de la plaque de cuisson (2) en direction de la deuxième unité de capteur de chaleur (6.2).
  9. Table de cuisson selon au moins l'une quelconque des revendications 1 à 8,
    caractérisée en ce
    qu'au moins un moyen de déviation (28) est disposé dans la trajectoire des rayons depuis la plaque de cuisson (2) et/ou depuis le fond du récipient de cuisson jusqu'à la première et/ou deuxième unité de capteur de chaleur (6.1, 6.2).
  10. Table de cuisson selon au moins l'une quelconque des revendications 1 à 9,
    caractérisée en ce
    que la deuxième unité de capteur de chaleur (6.2) présente un filtre optique constitué du même matériau que la plaque de cuisson (2), disposé dans la trajectoire des rayons depuis la plaque de cuisson (2) et/ou le fond du récipient de cuisson jusqu'à la deuxième unité de capteur de chaleur (6.2).
  11. Table de cuisson selon au moins l'une quelconque des revendications 1 à 10,
    caractérisée en ce
    que le facteur d'émission du fond d'un récipient de cuisson (14) déposé sur la zone de cuisson (4) peut être déterminé au moyen de la deuxième unité de capteur de chaleur (6.2).
  12. Table de cuisson selon au moins l'une quelconque des revendications 1 à 11,
    caractérisée par
    une troisième unité de capteur de chaleur, dont la plage de mesure est limitée au rayonnement thermique dans une troisième gamme d'ondes qui se distingue de la deuxième gamme d'ondes, la plaque de cuisson (2) présentant dans la région de la zone de cuisson (4), au moins dans la zone de détection de la troisième unité de capteur de chaleur pour le rayonnement thermique de la troisième gamme d'ondes un facteur de transmission de plus de 30 %.
  13. Table de cuisson selon au moins l'une quelconque des revendications 1 à 12,
    caractérisée en ce
    que la plaque de cuisson (2) présente dans la zone de détection de la première unité de capteur de chaleur (6.1) sur sa face supérieure (2.1) un revêtement doté d'un facteur de transmission d'à peu près 0 %.
  14. Table de cuisson selon la revendication 13,
    caractérisée en ce
    que le revêtement présente un facteur de réflexion d'environ 100 %.
  15. Table de cuisson selon la revendication 14,
    caractérisée en ce
    que le revêtement présente un facteur d'absorption d'environ 100 %.
  16. Système se composant d'une table de cuisson selon au moins l'une quelconque des revendications 1 à 15 et d'un récipient de cuisson,
    caractérisé en ce
    qu'un revêtement doté d'un facteur d'émission défini au préalable et enregistré dans la mémoire de la commande électrique est appliqué sur le fond du récipient de cuisson au moins dans la zone qui recouvre en partie dans le cas du récipient de cuisson (14) déposé sur la zone de cuisson (4) la zone de détection de la deuxième unité de capteur de chaleur (6.2).
EP05700769A 2004-01-15 2005-01-10 Procede pour commander un processus de cuisson sur une table de cuisson et table de cuisson permettant de mettre en oeuvre ce procede Active EP1704754B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002058A DE102004002058B3 (de) 2004-01-15 2004-01-15 Verfahren zur Steuerung eines Kochprozesses bei einem Kochfeld und Kochfeld zur Durchführung des Verfahrens
PCT/EP2005/000122 WO2005069693A1 (fr) 2004-01-15 2005-01-10 Procede pour commander un processus de cuisson sur une table de cuisson et table de cuisson permettant de mettre en oeuvre ce procede

Publications (2)

Publication Number Publication Date
EP1704754A1 EP1704754A1 (fr) 2006-09-27
EP1704754B1 true EP1704754B1 (fr) 2007-07-11

Family

ID=34778061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700769A Active EP1704754B1 (fr) 2004-01-15 2005-01-10 Procede pour commander un processus de cuisson sur une table de cuisson et table de cuisson permettant de mettre en oeuvre ce procede

Country Status (4)

Country Link
EP (1) EP1704754B1 (fr)
AT (1) ATE367074T1 (fr)
DE (2) DE102004002058B3 (fr)
WO (1) WO2005069693A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045872A1 (de) * 2005-09-22 2007-03-29 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Erzeugen, Verarbeiten und Auswerten eines mit der Temperatur korrelierten Signals und entsprechende Vorrichtung
ES2321261B1 (es) * 2007-03-13 2010-03-04 Bsh Electrodosmeticos España S.A. Campo de coccion con una zona de sensor de temperatura.
DE102007012379A1 (de) * 2007-03-14 2008-09-18 BSH Bosch und Siemens Hausgeräte GmbH Kochfeldvorrichtung
ATE479316T1 (de) 2007-06-05 2010-09-15 Miele & Cie Verfahren zur kochfeldsteuerung und kochfeld zur durchführung des verfahrens
DE102008022387A1 (de) 2008-05-06 2009-11-12 Miele & Cie. Kg Kochfeld mit einer Kochfeldplatte sowie Verfahren zur Steuerung eines Kochprozesses
DE102011081303A1 (de) * 2011-08-22 2013-02-28 BSH Bosch und Siemens Hausgeräte GmbH Überwachungsvorrichtung für Kochfelder
DE102013102118A1 (de) * 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung und Verfahren zum Betreiben
DE102013102109A1 (de) 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung
DE102013102116A1 (de) 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung
DE102013102110A1 (de) 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung
DE102013102112A1 (de) 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung
DE102013102117A1 (de) 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung
DE102013102107A1 (de) 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung und Verfahren zum Betreiben
DE102013102115A1 (de) 2013-03-04 2014-09-18 Miele & Cie. Kg Kocheinrichtung und Verfahren zur Montage
DE202016006242U1 (de) 2016-05-06 2016-12-02 Moser Systeme Gmbh Berührungslose Temperaturmessung an Kochfeldern
DE102016114838B4 (de) 2016-08-10 2019-12-05 Miele & Cie. Kg Induktives Kochsystem

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19653641A1 (de) * 1996-12-20 1998-06-25 Gaggenau Hausgeraete Gmbh Topferkennung unter Zurhilfenahme eines Infrarotsensors
DE19856140A1 (de) * 1998-12-04 2000-06-08 Bsh Bosch Siemens Hausgeraete Sensorgesteuertes Kochfeld mit unterhalb der Kochfeldplatte angeordneter Sensoreinheit
US6169486B1 (en) * 1999-07-19 2001-01-02 General Electric Company Monitoring and control system for monitoring the temperature of a glass ceramic cooktop
US6140617A (en) * 1999-10-22 2000-10-31 General Electric Company Cooktop control and monitoring system including detecting properties of a utensil through a solid-surface cooktop
US6462316B1 (en) * 2000-10-10 2002-10-08 General Electric Company Cooktop control and monitoring system including detecting properties of a utensil and its contents
US6452136B1 (en) * 2000-12-13 2002-09-17 General Electric Company Monitoring and control system and method for sensing of a vessel and other properties of a cooktop
US6864465B2 (en) * 2002-11-27 2005-03-08 General Electric Company Error correction for optical detector in glass-ceramic cooktop appliances
GB0313831D0 (en) * 2003-06-16 2003-07-23 Ceramaspeed Ltd Apparatus and method for detecting abnormal temperature rise associated with a cooking arrangement

Also Published As

Publication number Publication date
DE502005001014D1 (de) 2007-08-23
ATE367074T1 (de) 2007-08-15
EP1704754A1 (fr) 2006-09-27
WO2005069693A1 (fr) 2005-07-28
DE102004002058B3 (de) 2005-09-08

Similar Documents

Publication Publication Date Title
EP1704754B1 (fr) Procede pour commander un processus de cuisson sur une table de cuisson et table de cuisson permettant de mettre en oeuvre ce procede
EP2153698B1 (fr) Procédé de commande d'une table de cuisson et table de cuisson pour mettre en oeuvre ce procédé
EP1006756B2 (fr) Régulateur de plaque chauffante à l'aide d'un détecteur situé en dessous de la plaque
DE3108153C2 (fr)
EP3196555B1 (fr) Plaque de cuisson comprenant une surface chauffante en vitrocéramique
EP2128528B1 (fr) Mouffle de four
EP1747435A1 (fr) Capteur de temperature pour un appareil de cuisson, appareil de cuisson a regulation electronique de la temperature et procede pour detecter une temperature
DE102006026907A1 (de) Induktionskochmulde und Verfahren zur Ermittlung einer Temperatur eines Bodens eines Zubereitungsbehälters
EP0690659B1 (fr) Unité de cuisson à commande par infrarouge
WO2010130567A2 (fr) Plaque de cuisson et procédé de chauffe de récipients de cuisson posés sur la plaque de cuisson
EP2825859B1 (fr) Dispositif pour déterminer la température d'un substrat
EP1217873A2 (fr) Procédé et dispositif de détection de la température d'un ustensile de cuisine
EP0967839A2 (fr) Plaque de cuisson munie d'une unité de commande dans le but de déterminer le niveau de puissance fournie
DE102004015255A1 (de) Kochsensorik
DE60131255T2 (de) Temperatursensor
EP2775792B1 (fr) Appareil de cuisson
EP0772991A1 (fr) Ensemble de cuisson commande par un capteur
EP2775787B1 (fr) Appareil de cuisson
EP2649860B1 (fr) Dispositif de chauffage pour un appareil électroménager et appareil électroménager équipé de ce dispositif de chauffage
EP2925086B1 (fr) Dispositif de plaque de cuisson
EP0406728B1 (fr) Four à micro-ondes avec une fenêtre transparente thermoréfléchissante
EP2775786B1 (fr) Appareil de cuisson
EP2775791B1 (fr) Appareil de cuisson
DE102013102118A1 (de) Kocheinrichtung und Verfahren zum Betreiben
WO2019048972A1 (fr) Dispositif table de cuisson

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005001014

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070905

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071022

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071011

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

26N No opposition filed

Effective date: 20080414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071011

BERE Be: lapsed

Owner name: MIELE & CIE. K.G.

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080112

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230120

Year of fee payment: 19

Ref country code: GB

Payment date: 20230124

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240131

Year of fee payment: 20