EP1699973B1 - Cable metallique a trois couches pour armature de carcasse de pneumatique - Google Patents

Cable metallique a trois couches pour armature de carcasse de pneumatique Download PDF

Info

Publication number
EP1699973B1
EP1699973B1 EP04804256A EP04804256A EP1699973B1 EP 1699973 B1 EP1699973 B1 EP 1699973B1 EP 04804256 A EP04804256 A EP 04804256A EP 04804256 A EP04804256 A EP 04804256A EP 1699973 B1 EP1699973 B1 EP 1699973B1
Authority
EP
European Patent Office
Prior art keywords
cable according
rubber
layer
cables
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04804256A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1699973A1 (fr
Inventor
Henri Barguet
Alain Domingo
Arnaud Letocart
Thibaud Pottier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Original Assignee
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Michelin Recherche et Technique SA France, Societe de Technologie Michelin SAS filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP1699973A1 publication Critical patent/EP1699973A1/fr
Application granted granted Critical
Publication of EP1699973B1 publication Critical patent/EP1699973B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • D07B1/0653Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires in the core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1028Rope or cable structures characterised by the number of strands
    • D07B2201/1036Rope or cable structures characterised by the number of strands nine or more strands respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2023Strands with core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • D07B2201/2028Compact winding having the same lay direction and lay pitch
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • D07B2201/2031Different twist pitch
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/204Strands characterised by the number of wires or filaments nine or more wires or filaments respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2041Strands characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2042Strands characterised by a coating
    • D07B2201/2043Strands characterised by a coating comprising metals
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2042Strands characterised by a coating
    • D07B2201/2044Strands characterised by a coating comprising polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2042Strands characterised by a coating
    • D07B2201/2045Strands characterised by a coating comprising multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/206Cores characterised by their structure comprising wires arranged parallel to the axis
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2065Cores characterised by their structure comprising a coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • D07B2201/2079Fillers characterised by the kind or amount of filling
    • D07B2201/2081Fillers characterised by the kind or amount of filling having maximum filling
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2095Auxiliary components, e.g. electric conductors or light guides
    • D07B2201/2097Binding wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/10Natural organic materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/201Polyolefins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2075Rubbers, i.e. elastomers
    • D07B2205/2078Rubbers, i.e. elastomers being of natural origin
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2075Rubbers, i.e. elastomers
    • D07B2205/2082Rubbers, i.e. elastomers being of synthetic nature, e.g. chloroprene
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/208Enabling filler penetration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2076Power transmissions

Definitions

  • the present invention relates to three-layered metal cables for use as reinforcement elements for rubber and / or plastic articles.
  • It relates in particular to the reinforcement of the tires, more particularly to the reinforcement of carcass reinforcement of industrial vehicle tires such as HGV.
  • Steel tires are generally made of carbon perlitic (or ferrito-pearlitic) steel, hereinafter referred to as "carbon steel", whose carbon content (% steel weight) is generally between 0.1% and 1.2%, the diameter of these son is most often between 0.10 and 0.40 mm (mm).
  • carbon steel carbon perlitic (or ferrito-pearlitic) steel
  • These yarns are required to have a very high tensile strength, generally greater than 2000 MPa, preferably greater than 2500 MPa, obtained by virtue of the structural hardening occurring during the phase of strain hardening of the yarns.
  • These wires are then assembled in the form of cables or strands, which requires steels used that they also have sufficient torsional ductility to support the various wiring operations.
  • layered cords or “multilayer” steel cables consisting of a central layer and one or more layers of substantially concentric threads disposed around this central layer.
  • These layered cables which favor longer contact lengths between the wires, are preferred over the older "strand-cords” , due in part to greater compactness, from a lower sensitivity to fretting wear.
  • the layered cables one distinguishes, in known manner, compact structure cables and cables with tubular or cylindrical layers.
  • L + M or L + M + N formula cables are generally for larger tires.
  • These cables are formed in known manner of an inner layer of L wire (s) surrounded by a layer of M son itself surrounded by an outer layer of N son, with in general L varying from 1 to 4, M varying from 3 to 12, N ranging from 8 to 20, the assembly being optionally hooped by an outer hoop wire wound helically around the last layer.
  • the layered cables must first have good flexibility and a high endurance in flexion, which implies in particular that their son have a relatively small diameter, preferably less than 0, 28 mm, more preferably less than 0.25 mm, generally smaller than that of the son used in conventional cables for tire crown reinforcement.
  • 3 + 9 + construction layer cables consisting of an inner layer of 3 wires surrounded by an intermediate layer of 9 wires and an outer layer of 15 wires have been proposed, the diameter of the wires of the central or internal layer being or not greater than that of the son of the other layers.
  • These cables are not penetrable to the core because of the presence of a channel or capillary in the center of the three wires of the inner layer, which remains empty after impregnation with the rubber, and therefore conducive to the propagation of corrosive media such as that water.
  • Publication RD (Research Disclosure) No. 34370 describes 1 + 6 + 12 structure cables, of compact or concentric tubular layer type, consisting of an inner layer formed of a single wire, surrounded by an intermediate layer of 6 wires itself surrounded by an outer layer of 12 wires. Penetrability by rubber can be improved by using different wire diameters from one layer to another, or even within the same layer.
  • 1 + 6 + 12 construction cables the penetrability of which is improved by the appropriate choice of wire diameters, in particular the use of a larger diameter core wire, have also been described, for example in the documents EP-A-648 891 or WO-A-98/41682 .
  • the cables When used for the reinforcement of tire carcasses, the cables must not only resist corrosion but also satisfy a large number of criteria, sometimes contradictory, in particular of tenacity, fretting resistance, high adhesion to rubber, uniformity, flexibility, endurance in bending or repeated traction, stability under strong bending, etc.
  • This cable of the invention has, thanks to a specific architecture, not only an excellent penetrability by the rubber, limiting the problems of corrosion, but also fatigue-fretting endurance properties that are significantly improved over prior art cables. The longevity of heavy-duty tires and that of their carcass reinforcement are thus very significantly improved.
  • a first object of the invention is a cable with three layers of L + M + N construction usable as reinforcement element of a tire carcass reinforcement, having an inner layer (C1) of diameter d 1 with L ranging from 1 to 4, surrounded by at least one intermediate layer (C2) to M son of diameter d 2 wound together in a helix in a pitch p 2 with M ranging from 3 to 12, said intermediate layer C2 being surrounded by a external layer C3 of N wires of diameter d 3 wound together in a helix in a pitch p 3 with N ranging from 8 to 20, this cable being characterized in that a sheath consisting of a crosslinkable or crosslinked rubber composition based on at least one diene elastomer covers at least said layer C2.
  • the invention also relates to the use of a cable according to the invention for reinforcing articles or semi-finished products made of plastic and / or rubber, for example webs, pipes, belts, conveyor belts, tires, more particularly tires for industrial vehicles usually using a metal carcass reinforcement.
  • the cable of the invention is particularly intended to be used as a reinforcing element of a tire carcass reinforcement intended for industrial vehicles chosen from light trucks, "heavy vehicles” - ie, subway, bus, road transport units (trucks, tractors, trailers), off-the-road vehicles -, agricultural or engineering machinery, aircraft, other transport or handling vehicles.
  • industrial vehicles chosen from light trucks, "heavy vehicles” - ie, subway, bus, road transport units (trucks, tractors, trailers), off-the-road vehicles -, agricultural or engineering machinery, aircraft, other transport or handling vehicles.
  • this cable of the invention could also be used, according to other particular embodiments of the invention, to reinforce other parts of the tires, in particular belts or crown reinforcement of such tires, in particular tires. such as heavy goods vehicles or civil engineering.
  • the invention also relates to these articles or semi-finished products of plastic and / or rubber themselves when reinforced by a cable according to the invention, in particular the tires intended for the industrial vehicles mentioned above. , more particularly heavy-duty tires, as well as composite fabrics comprising a matrix of reinforced rubber composition of a cable according to the invention, usable as a carcass reinforcement ply or crown of such tires.
  • the air permeability test is a simple means of indirect measurement of the penetration rate of the cable by a rubber composition. It is made on cables extracted directly, by shelling, vulcanized rubber sheets that they reinforce, thus penetrated by the cooked rubber.
  • the test is performed over a given length of cable (for example 2 cm) in the following manner: air is sent to the cable inlet, at a given pressure (for example 1 bar), and the volume is measured. of air at the outlet, using a flowmeter; during the measurement, the cable sample is locked in a seal in such a way that only the amount of air passing through the cable from one end to the other along its longitudinal axis is taken into account by the measurement.
  • the measured flow rate is even lower as the penetration rate of the cable by the rubber is higher.
  • heavy-duty tires are manufactured whose carcass reinforcement consists of a single rubberized web reinforced by the cables to be tested. These tires are mounted on suitable known rims and inflated to the same pressure (with an overpressure relative to the nominal pressure) with air saturated with moisture. These tires are then rolled on an automatic rolling machine, under a load very high (overload with respect to the nominal load) and at the same speed, for a determined number of kilometers. At the end of rolling, the cables are extracted from the carcass of the tire, by shelling, and the residual breaking force is measured both on the yarns and on the cables thus fatigued.
  • the force-failure decay after fatigue (denoted ⁇ Fm and expressed in%) is calculated by comparing the residual breaking force with the initial breaking force.
  • This decay ⁇ Fm is due to the fatigue and the wear (reduction of section) of the wires caused by the joint action of the various mechanical stresses, in particular of the intense work of the contact forces between the wires, and of the water from the ambient air, in other words the fatigue-fretting-corrosion experienced by the cable inside the tire, when driving.
  • the three-layer cable according to the invention of construction L + M + N, comprises an inner layer C1 of diameter d 1 consisting of L wires, surrounded by an intermediate layer C2 of diameter d 2 consisting of M son, which is surrounded by an outer layer C3 of diameter d 3 consisting of N son.
  • a sheath made of a crosslinkable or crosslinked rubber composition based on at least one diene elastomer covers at least said layer C2. It should be understood that the layer C1 could itself be covered with this rubber sheath.
  • composition based on at least one diene elastomer is understood to mean in a known manner that the composition comprises in majority (i.e. in a mass fraction greater than 50%) this or these diene elastomers.
  • the sheath according to the invention extends in a continuous manner around said layer C2 which it covers (that is to say that this sheath is continuous in the "orthoradial" direction of the cable which is perpendicular to its radius), so as to form a continuous sleeve of cross section which is preferably substantially circular.
  • the rubber composition of this sheath is crosslinkable or crosslinked, that is to say that it comprises by definition a crosslinking system adapted to allow the crosslinking of the composition during its cooking (ie, its hardening and not its fusion); thus, this rubber composition can be described as infusible, since it can not be melted by heating at any temperature.
  • elastomer or "diene” rubber is meant in known manner an elastomer derived at least in part (i.e. a homopolymer or a copolymer) of monomers dienes (monomers bearing two carbon-carbon double bonds, conjugated or not).
  • diene elastomers can be classified in known manner into two categories: those known as “essentially unsaturated” and those known as “essentially saturated”.
  • the term "diene elastomer” is used herein to mean a diene elastomer derived at least in part from conjugated diene monomers having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (%). in moles).
  • conjugated diene monomers having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (%). in moles).
  • diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not fall within the above definition and may in particular be described as "essentially saturated” diene elastomers.
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • the present invention is first of all carried out with essentially unsaturated diene elastomers, in particular of the type (a) or (b) above.
  • the diene elastomer is preferably chosen from the group consisting of polybutadienes (BR), natural rubber (NR), synthetic polyisoprenes (IR), the various butadiene copolymers, the various isoprene copolymers, and mixtures of these elastomers.
  • Such copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR) and isoprene-copolymers.
  • SBIR butadiene-styrene
  • the diene elastomer chosen is predominantly (i.e. say for more than 50 phr) consisting of an isoprene elastomer.
  • isoprene elastomer is meant in known manner a homopolymer or copolymer of isoprene, in other words a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), different isoprene copolymers and mixtures of these elastomers.
  • the diene elastomer chosen is exclusively (that is to say, 100 phr) consisting of natural rubber, synthetic polyisoprene or a mixture of these elastomers, synthetic polyisoprene having a content (mol%) of cis-1,4 bonds preferably greater than 90%, more preferably still greater than 98%.
  • blends mixtures of this natural rubber and / or these synthetic polyisoprenes with other highly unsaturated diene elastomers, in particular with SBR or BR elastomers such as supra.
  • the rubber sheath of the cable of the invention may contain one or more diene elastomer (s), this last one (s) can be used in combination with any type of synthetic elastomer other than diene, or even with polymers other than elastomers, for example thermoplastic polymers, these polymers other than elastomers then being present as a minority polymer.
  • the rubber composition of said sheath is preferably free of any plastomer and comprises only one elastomer (or mixture of elastomers) diene (s) as polymer base, said composition could also comprise at least one plastomer according to a mass fraction x p less than the mass fraction x e of the elastomer (s).
  • the following relationship is preferably: 0 ⁇ x p ⁇ 0.5. x e .
  • the system for crosslinking the rubber sheath is a so-called vulcanization system, that is to say based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • a vulcanization system may be added various known secondary accelerators or vulcanization activators.
  • the sulfur is used at a preferential rate of between 0.5 and 10 phr, more preferably between 1 and 8 phr
  • the primary vulcanization accelerator for example a sulfenamide, is used at a preferential rate of between 0.5 and 10 phr, more preferably between 0.5 and 5.0 phr.
  • the rubber composition of the sheath according to the invention comprises, in addition to said crosslinking system, all the usual ingredients which can be used in tire rubber compositions, such as reinforcing fillers based on carbon black and / or a filler.
  • inorganic reinforcing agent such as silica, anti-aging agents, for example antioxidants, extender oils, plasticizers or agents facilitating the use of the compositions in the green state, methylene acceptors and donors, resins , bismaleimides, known adhesion promoter systems of the "RFS" type (resorcinol-formaldehyde-silica) or metal salts, especially cobalt salts.
  • the composition of the rubber sheath has, in the crosslinked state, a secant modulus in extension M10, measured according to the ASTM D 412 standard of 1998, less than 20 MPa and more preferably less than 12 MPa, in particular between 4 and 11 MPa.
  • the composition of this sheath is chosen to be identical to the composition used for the rubber matrix that the cables according to the invention are intended to to reinforce.
  • the composition of this sheath is chosen to be identical to the composition used for the rubber matrix that the cables according to the invention are intended to to reinforce.
  • said composition is based on natural rubber and comprises carbon black as a reinforcing filler, for example a grade (ASTM) carbon black 300, 600 or 700 (for example N326, N330, N347, N375 , N683, N772).
  • ASTM grade carbon black 300, 600 or 700
  • the pitch represents the length, measured parallel to the axis O of the cable, at the end of which a wire having this pitch performs a complete revolution around the axis O of the cable; thus, if the axis O is divided by two planes perpendicular to the axis O and separated by a length equal to the pitch of a wire of one of the two layers C2 or C3, the axis of this wire has in these two planes the same position on the two circles corresponding to the layer C2 or C3 of the considered wire.
  • all the wires of the layers C2 and C3 are wound in the same direction of torsion, that is to say either in the direction S (disposition "S / S"), or in the direction Z ("Z / Z" arrangement).
  • the winding in the same direction of the layers C2 and C3 advantageously makes it possible, in the cable according to the invention, to minimize the friction between these two layers C2 and C3 and therefore the wear of the wires constituting them (since there is more cross-contact between the wires).
  • the layer C3 has a substantially circular cross section through the incorporation of said sheath, as illustrated in FIG. 2. It can indeed easily be verified in this FIG. 2 that the coefficient of variation CV, defined by the ratio (standard deviation / arithmetic mean) of the respective radii of the N son of the layer C3 measured from the longitudinal axis of symmetry of the cable, is very small.
  • the compactness is such that the cross section of such cables has a contour that is substantially polygonal, as illustrated for example in FIG. 1 where the coefficient of variation CV above is substantially higher.
  • the cable of the invention is a layered construction cable denoted 1 + M + N, that is to say that its inner layer C1 consists of a single wire, as shown in FIG. 2.
  • a too low value of the ratio can be detrimental to the wear between the inner layer and the wires of the layer C2.
  • a value that is too high can in turn affect the compactness of the cable, for a level of resistance that is ultimately little modified, as well as its flexibility; the increased rigidity of the inner layer C1 due to a diameter d 1 too high could also be detrimental to the feasibility itself of the cable, during wiring operations.
  • the maximum number N max of roll-up yarns in a saturated single layer C3 around the layer C2 is of course a function of numerous parameters (diameter d 1 of the inner layer, number M and diameter d 2 of the strands of the layer C2, diameter d 3 of the strands of the layer C3).
  • the invention is preferably implemented with a cable chosen from the cables of structure 1 + 6 + 10, 1 + 6 + 11, 1 + 6 + 12, 1 + 7 + 11, 1 + 7 + 12 or 1+ 7 + 13.
  • the invention is more preferably implemented, in particular in the carcasses of heavy-duty tires, with cables of structure 1 + 6 + 12.
  • the diameters of the son of the layers C2 and C3, identical or not, are included between 0.14 mm and 0.22 mm.
  • the diameters d 2 and d 3 are preferably chosen between 0.16 and 0.19 mm: a diameter of less than 0.19 mm makes it possible to reduce the level of the stresses undergone by the son during significant variations in curvature of the cables, while one chooses preferably diameters greater than 0.16 mm for reasons including wire strength and industrial cost.
  • An advantageous embodiment consists, for example, in choosing p 2 and p 3 of between 8 and 12 mm, advantageously with cables of structure 1 + 6 + 12.
  • the rubber sheath has an average thickness of 0.010 mm to 0.040 mm.
  • the invention can be implemented with any type of metal son, especially steel, for example carbon steel son and / or stainless steel son.
  • steel for example carbon steel son and / or stainless steel son.
  • Carbon steel is preferably used, but it is of course possible to use other steels or other alloys.
  • carbon steel When a carbon steel is used, its carbon content (% by weight of steel) is preferably between 0.1% and 1.2%, more preferably from 0.4% to 1.0%; these grades represent a good compromise between the mechanical properties required for the tire and the feasibility of the wire. It should be noted that a carbon content of between 0.5% and 0.6% makes such steels ultimately less expensive because easier to draw.
  • Another advantageous embodiment of the invention may also consist, depending on the applications concerned, of using steels with a low carbon content, for example between 0.2% and 0.5%, in particular because of a cost lower and easier to draw.
  • the cables of the invention When the cables of the invention are used to reinforce tire carcasses for industrial vehicles, their yarns preferably have a tensile strength greater than 2000 MPa, more preferably greater than 3000 MPa. In the case of tires of very large dimensions, it will be especially son son whose tensile strength is between 3000 MPa and 4000 MPa. Those skilled in the art know how to manufacture carbon steel son having such a resistance, in particular by adjusting the carbon content of the steel and the final hardening rates ( ⁇ ) of these son.
  • the cable of the invention could be provided with an outer hoop, constituted for example by a single wire, metallic or not, helically wound around the cable in a shorter pitch than that of the outer layer, and a sense of winding opposite or identical to that of this outer layer.
  • the cable of the invention already self-shrunk, generally does not require the use of an external hoop, which advantageously solves the wear problems between the hoop and son the outermost layer of the cable.
  • a hoop wire in the general case where the son of the layer C3 are carbon steel, then it will be advantageous to choose a stainless steel hoop wire to reduce the fretting wear of these wires.
  • carbon steel in contact with the stainless steel hoop as taught by the patent document WO-A-98/41682 , the stainless steel wire possibly being replaced, in an equivalent manner, by a composite wire of which only the skin is made of stainless steel and the carbon steel core, as described for example in the patent document EP-A-976 541 .
  • a hoop consisting of a polyester or a thermotropic aromatic polyester amide, as described in the patent document. WO-A-03/048447 .
  • the cable according to the invention may be obtained according to various techniques known to those skilled in the art, for example in two steps, firstly by sheathing via an extrusion head of the core or intermediate structure L + M (layers C1 + C2), followed in a second step by a final wiring operation or twisting of the remaining N wires (layer C3) around the layer C2 thus sheathed.
  • the problem of stickiness in the green state posed by the rubber sheath, during any intermediate operations of winding and uncoiling can be solved in a manner known to those skilled in the art, for example by the use of a spacer film. plastic material.
  • FIG. 3 schematically represents a radial section of a heavy-weight tire 1 with a radial carcass reinforcement which may or may not be in conformity with the invention, in this general representation.
  • This tire 1 comprises a crown 2, two sides 3 and two beads 4 in which is anchored a carcass reinforcement 7.
  • the crown 2 surmounted by a tread (for simplicity, not shown in FIG. joined to said beads 4 by the two sides 3, is in a manner known per se reinforced by a crown reinforcement 6 consisting for example of at least two superimposed crossed plies, reinforced by known metal ropes.
  • the carcass reinforcement 7 is here anchored in each bead 4 by winding around two rods 5, the upturn 8 of this armature 7 being for example disposed towards the outside of the tire 1 which is shown here mounted on its rim 9.
  • L carcass reinforcement 7 consists of at least one ply reinforced by so-called "radial" ropes, that is to say that these ropes are arranged substantially parallel to each other and extend from a bead to the rim. other so as to form an angle of between 80 ° and 90 ° to the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is situated halfway between the two beads 4 and passes through the middle of the crown frame 6).
  • this tire 1 also comprises, in a known manner, an inner rubber or elastomer layer (commonly called “inner rubber”) which defines the radially inner face of the tire and which is intended to protect the carcass ply from the diffusion of the tire. air from the interior space to the tire.
  • an inner rubber or elastomer layer commonly called “inner rubber”
  • it further comprises an intermediate elastomeric reinforcing layer which is situated between the carcass ply and the inner layer, intended to reinforce the inner layer and, consequently, the carcass ply, and also intended to partially relocate the stresses undergone. by the carcass reinforcement.
  • the tire according to the invention is characterized in that its carcass reinforcement 7 comprises at least one carcass ply whose radial cables are three-layer steel cables according to the invention.
  • the density of the cables in accordance with the invention is preferably between 40 and 100 cables per dm (decimetre) of radial ply, more preferably between 50 and 80 cables per dm, the distance between two adjacent radial cables, axis to axis, thus preferably being between 1.0 and 2.5 mm, more preferably between 1.25 and 2.0 mm.
  • the cables according to the invention are preferably arranged in such a way that the width (denoted "Lc") of the rubber bridge between two adjacent cables is between 0.35 and 1 mm. This width "Lc" represents in a known manner the difference between the calendering pitch (no laying of the cable in the rubber fabric) and the diameter of the cable.
  • the rubber bridge which is too narrow, risks being degraded mechanically during the working of the sheet, in particular during the deformations undergone in its own plane by extension or shearing. Beyond the maximum indicated, one is exposed to the risk of appearance of appearance defects on the sidewalls of the tires or penetration of objects, by perforation, between the cables. More preferably, for these same reasons, the width "Lc" is chosen between 0.5 and 0.8 mm.
  • the rubber composition used for the fabric of the carcass ply has, in the vulcanized state (ie, after curing), an M10 extension secant modulus which is less than 20 MPa, more preferably less than 12 MPa, in particular between 5 and 11 MPa. It is in such a field of modules that the best compromise of endurance has been recorded between the cables of the invention on the one hand, and the reinforced fabrics of these cables on the other hand.
  • carbon steel fine wires prepared using known methods are used, starting from commercial wires whose initial diameter is about 1 mm.
  • the steel used is for example a known carbon steel (US AISI 1069 standard) whose carbon content is 0.70%.
  • the starting commercial yarns first undergo a known degreasing and / or pickling treatment before their subsequent use. At this stage, their breaking strength is about 1150 MPa, their elongation at break is about 10%.
  • a copper deposit is then deposited on each wire, followed by a zinc deposit, electrolytically at room temperature, and then thermally heated by a Joule effect at 540 ° C. to obtain brass by diffusion of copper and zinc.
  • weight ratio ( ⁇ phase) / (phase ⁇ + ⁇ phase) being equal to about 0.85. No heat treatment is performed on the wire after obtaining the brass coating.
  • a so-called “final” work-hardening (i.e. after the last heat treatment) is then carried out on each wire, by cold drawing in a humid medium with a drawing lubricant which is in the form of an emulsion in water.
  • This wet drawing is carried out in a known manner in order to obtain the final work hardening rate (denoted ⁇ ) calculated from the initial diameter indicated above for the starting commercial threads.
  • the brass coating that surrounds the son has a very small thickness, significantly less than one micrometer, for example of the order of 0.15 to 0.30 microns, which is negligible compared to the diameter of the steel son.
  • the composition of the wire steel in its various elements is the same as that of the steel of the starting wire.
  • the brass coating facilitates the drawing of the wire, as well as the bonding of the wire with the rubber.
  • the son could be covered with a thin metal layer other than brass, for example having the function of improving the corrosion resistance of these son and / or their adhesion to rubber, for example a thin layer of Co , Ni, Zn, Al, an alloy of two or more compounds Cu, Zn, Al, Ni, Co, Sn.
  • the preceding wires are then assembled in the form of layered cables of structure 1 + 6 + 12 for the control cable of the prior art (FIG 1) and for the cable according to the invention (FIG 2); the son F 1 are used to form the layer C1, the son F 2 and F 3 to form the layers C2 and C3 of these different cables.
  • the wires F2 and F3 of the layers C2 and C3 are wound in the same direction of twist (direction Z).
  • the two types of cable control cable denoted CI and cable of the invention denoted C-II
  • C-II cable of the invention
  • the cable C-II according to the invention was obtained in several steps, firstly by making an intermediate cable 1 + 6, then by sheathing via an extrusion head of this intermediate cable, followed finally by an operation Final wiring of the remaining 12 wires around the layer C2 sheathed.
  • a plastic interlayer film PET was used during intermediate operations of winding and unwinding.
  • the layer C3 is removed from the layer C2 by the sheathing of the latter; the inner layer C1 is also sheathed (since it is visibly far from the layer C2), simply because of the penetration of the rubber between the wires of the layer C2.
  • the elastomer composition constituting the rubber sheath has the same formulation, based on natural rubber and carbon black, as that of the carcass reinforcement ply that the cables are intended to reinforce.
  • the preceding three-layer cables are then incorporated by calendering into composite fabrics formed of a known composition based on natural rubber and black carbon as reinforcing filler, conventionally used for the manufacture of carcass plies of radial heavy-duty tires.
  • This composition essentially comprises, in addition to the elastomer and the reinforcing filler, an antioxidant, stearic acid, an extension oil, cobalt naphthenate as adhesion promoter, and finally a vulcanization system ( sulfur, accelerator, ZnO).
  • the composite fabrics reinforced by these cables comprise a rubber matrix formed of two thin layers of rubber which are superimposed on either side of the cables and which each have a thickness of 0.75 mm.
  • the calender pitch (no laying of the cables in the rubber fabric) is 1.5 mm for both types of cables.
  • the carcass reinforcement of these tires consists of a single radial ply formed of the rubberized fabrics described above.
  • the P-I tires are reinforced by the C-I cables and constitute the control tires of the prior art, while the P-II tires are the tires according to the invention reinforced with the C-II cables. These tires are therefore identical except for the layered cables which reinforce their carcass reinforcement 7.
  • Their crown reinforcement 6 in particular, is in known manner constituted by two triangulation half-plies reinforced with metal cables inclined by 65 degrees, surmounted by two crossed superimposed working plies, reinforced with inextensible metal cables inclined by 26 degrees. (Radiant inner ply) and 18 degrees (radially outer ply), these two working plies being covered by a reinforced crown ply reinforced with elastic metal cables (high elongation) inclined by 18 degrees.
  • the metal cords used are known conventional cables, arranged substantially parallel to one another, and all the inclination angles indicated are measured relative to the median circumferential plane.
  • PI tires are tires marketed by the Applicant for heavy vehicles and constitute, because of their recognized performance, a witness of choice for this test.
  • the P-II tires according to the invention show a significantly higher endurance, with an average distance traveled close to 400 000 km, an endurance gain of about 70%.
  • the average decay ⁇ Fm is given in% in Table 1 below; it is calculated both for the wires of the inner layer C1 and for the wires of the layers C2 and C3. Global ⁇ Fm decays are also measured on the cables themselves. ⁇ b> Table 1 ⁇ / b> tires cables ⁇ Fm (%) on individual layers and cable C1 C2 C3 Cable PI THIS 38 30 12 19 P-II C-II 9 6 2 3.5
  • the cable according to the invention C-II which has nevertheless endured a much higher rolling distance, reveals a global wear ( ⁇ Fm) which is five to six times lower than that of the control cable (3.5% instead of 19%).
  • the use of the C-II cable according to the invention makes it possible to increase the longevity of the carcass, which is already excellent elsewhere on the control tire.
  • the non-fatigued CI and C-II cables (after extraction out of the new tires) were subjected to the air permeability test described in paragraph I-1, measuring the air volume (in cm 3 ) passing through the cables. in 1 minute (average of 10 measurements).
  • Table 2 shows the results obtained, in terms of average air flow (average over 10 measurements - in relative units based on 100 control cables) and number of measurements corresponding to a zero air flow.
  • Table 2 shows the results obtained, in terms of average air flow (average over 10 measurements - in relative units based on 100 control cables) and number of measurements corresponding to a zero air flow.
  • Table 2 shows the results obtained, in terms of average air flow (average over 10 measurements - in relative units based on 100 control cables) and number of measurements corresponding to a zero air flow.
  • Table 2 shows the results obtained, in terms of average air flow (average over 10 measurements - in relative units based on 100 control cables) and number of measurements corresponding to a zero air flow.
  • the C-II cables of the invention are those which, from a distance, have the lowest air permeability (zero or virtually zero average air flow) and, consequently, the penetration rate. by the highest rubber.
  • the cables according to the invention rendered impervious by the rubber sheath which covers their intermediate layer C2 (and the inner layer C1), are thus protected from the oxygen and moisture flows which pass for example from the flanks or the tread of the tires towards the regions of the carcass reinforcement, where the cables in known manner are subjected to the most intense mechanical work.
  • control tires (noted P-III), under these extreme driving conditions, traveled an average distance of 250 000 km, with finally a deformation of their bead zone due to a beginning of breakage of the control cables (denoted C-III ) in said area.
  • the tires according to the invention revealed a significantly improved endurance, with an average distance traveled of 430 000 km, an endurance gain of about 70%.
  • the destruction of the tires of the invention did not occur at the reinforcement reinforcement of the carcass (which continued to resist), but in the reinforcing reinforcement of the crown, which illustrates and confirms the excellent performance of the cables according to the invention.
  • the cables of the invention make it possible to significantly reduce the phenomena of fatigue-fretting-corrosion of cables in the carcass reinforcement of the tires, in particular heavy-duty tires, and thus to improve the longevity of these tires.
  • these cables according to the invention offer the carcass reinforcements of tires a considerably improved endurance. by a factor of two to three, in rolling under reduced pressure.
  • the inner layer C1 of the cables of the invention could consist of a non-circular section wire, for example plastically deformed, in particular a wire of substantially oval or polygonal section, for example triangular, square or still rectangular; the layer C1 could also consist of a preformed wire, of circular section or not, for example a corrugated wire, twisted, twisted helical or zig-zag.
  • the diameter d 1 of the layer C1 represents the diameter of the cylinder of imaginary revolution which surrounds the central wire (encumbrance diameter), and no longer the diameter (or any other transverse size) , if its section is not circular) of the central wire itself.
  • the layer C1 was formed not of a single wire as in the previous examples, but of several son assembled together, for example two son arranged parallel to each other or twisted together , in a direction of torsion identical or not to that of the intermediate layer C2.
  • the central wire is less stressed during the wiring operation than the other son, given its position in the cable, it is not necessary for this wire to use for example compositions of steel with high torsional ductility; advantageously any type of steel may be used, for example a stainless steel.
  • a (at least one) linear wire of one of the two layers C2 and / or C3 could also be replaced by a preformed or deformed wire, or more generally by a wire of different section from that of other diameter wires.
  • d 2 and / or d 3 for example to further improve the penetrability of the cable by rubber or any other material, the overall size of this replacement wire may be smaller, equal to or greater than the diameter (d 2 and or d 3 ) other constituent son of the layer (C2 and / or C3) concerned.
  • son constituting the cable according to the invention could consist of son other than son steel, metal or not, including son of mineral or organic material to high mechanical strength, for example monofilaments organic polymers liquid crystal.
  • the invention also relates to any multi-strand steel cable ( "multi-strand rope") whose structure incorporates at least, as the elementary strand, a cable with three layers according to the invention.

Landscapes

  • Ropes Or Cables (AREA)
  • Tires In General (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
EP04804256A 2003-12-24 2004-12-23 Cable metallique a trois couches pour armature de carcasse de pneumatique Active EP1699973B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315371A FR2864556B1 (fr) 2003-12-24 2003-12-24 Cable a couches pour armature de carcasse de pneumatique
PCT/EP2004/014662 WO2005071157A1 (fr) 2003-12-24 2004-12-23 Cable metallique a trois couches pour armature de carcasse de pneumatique

Publications (2)

Publication Number Publication Date
EP1699973A1 EP1699973A1 (fr) 2006-09-13
EP1699973B1 true EP1699973B1 (fr) 2007-09-19

Family

ID=34639588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804256A Active EP1699973B1 (fr) 2003-12-24 2004-12-23 Cable metallique a trois couches pour armature de carcasse de pneumatique

Country Status (13)

Country Link
US (4) US20060237110A1 (pt)
EP (1) EP1699973B1 (pt)
JP (2) JP4707675B2 (pt)
KR (1) KR101152692B1 (pt)
CN (1) CN1898435B (pt)
AT (1) ATE373738T1 (pt)
BR (1) BRPI0418080B1 (pt)
CA (1) CA2548969C (pt)
DE (1) DE602004009102T2 (pt)
ES (1) ES2294566T3 (pt)
FR (1) FR2864556B1 (pt)
RU (1) RU2358052C2 (pt)
WO (1) WO2005071157A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037225A1 (fr) 2015-09-04 2017-03-09 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armatures de carcasse presentant un bas taux de carbone et des epaisseurs de melanges caoutchouteux reduites

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864556B1 (fr) * 2003-12-24 2006-02-24 Michelin Soc Tech Cable a couches pour armature de carcasse de pneumatique
JP4940753B2 (ja) * 2006-05-15 2012-05-30 横浜ゴム株式会社 ゴム補強用スチールコード及びそれを用いた空気入りラジアルタイヤの製造方法
JP4806587B2 (ja) * 2006-05-25 2011-11-02 東京製綱株式会社 スチールコードの製造方法及びスチールコード
EP2184401A4 (en) * 2007-07-17 2013-09-18 Bridgestone Corp ROPE, MANUFACTURING METHOD AND ROPE LINK WITH RUBBER
FR2925923B1 (fr) * 2007-12-28 2009-12-18 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ
FR2925922B1 (fr) * 2007-12-28 2009-12-18 Soc Tech Michelin Cable a couches pour ceinture de pneumatique
FR2938558B1 (fr) 2008-11-17 2010-12-31 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ.
FR2938557B1 (fr) * 2008-11-17 2011-02-18 Michelin Soc Tech Cable a trois couches, gomme in situ, pour armature de carcasse de pneumatique
FR2940186A1 (fr) 2008-12-22 2010-06-25 Michelin Soc Tech Bourrelet de pneu
FR2942746B1 (fr) * 2009-03-04 2011-02-25 Michelin Soc Tech Pneumatique pour bicyclette.
FR2943691B1 (fr) * 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ
FR2943690B1 (fr) 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme un situ
FR2946366B1 (fr) * 2009-06-03 2011-12-02 Michelin Soc Tech Cable a trois couches,gomme in situ,pour armature carcasse de pneumatique.
FR2947575B1 (fr) * 2009-07-03 2011-08-19 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
FR2947576B1 (fr) * 2009-07-03 2011-08-19 Michelin Soc Tech Cable metallique a trois couches gomme in situ de construction 2+m+n
FR2947577B1 (fr) * 2009-07-03 2013-02-22 Michelin Soc Tech Cable metallique a trois couches gomme in situ de construction 3+m+n
FR2947574B1 (fr) 2009-07-03 2012-11-09 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
EP2486395B1 (fr) 2009-10-06 2013-05-29 Compagnie Generale Des Etablissements Michelin Methode et dispositif d'inspection automatique d'une bobine de cable
FR2950838B1 (fr) * 2009-10-07 2013-02-22 Michelin Soc Tech Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite, et des epaisseurs de melanges caoutchouteux variables.
FR2954219A1 (fr) * 2009-11-17 2011-06-24 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes
FR2953449B1 (fr) * 2009-12-03 2011-11-18 Michelin Soc Tech Pneumatique comportant une armature de carcasse constituee de cables et de tubes capillaires
FR2953450B1 (fr) * 2009-12-04 2011-11-18 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes
FR2953451B1 (fr) * 2009-12-04 2011-12-09 Soc Tech Michelin Pneumatique comportant des cables d'armature de carcasse hybrides
FR2953452B1 (fr) * 2009-12-04 2011-12-09 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse frettes
FR2962456B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Procede de fabrication d'un cable metallique multicouches gomme in situ par un elastomere thermoplastique insature
FR2962454B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Procede de fabrication d'un cable metallique a trois couches du type gomme in situ
FR2962455B1 (fr) 2010-05-20 2012-09-21 Soc Tech Michelin Cable metallique multicouches gomme in situ par un elastomere thermoplastique insature
FR2962453B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Cable metallique a trois couches, gomme in situ par un elastomere thermoplastique insature
FR2969037B1 (fr) * 2010-12-21 2014-08-29 Michelin Soc Tech Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet
FR2969036B1 (fr) * 2010-12-21 2012-12-28 Michelin Soc Tech Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet
FR2969038B1 (fr) * 2010-12-21 2012-12-28 Michelin Soc Tech Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet
US9073389B2 (en) 2011-10-21 2015-07-07 Bridgestone Americas Tire Operations, Llc All steel fabric radial construction for agricultural tires
FR2982885B1 (fr) 2011-11-23 2014-11-07 Michelin Soc Tech Procede de fabrication d'un cable metallique a deux couches gomme in situ par un elastomere thermoplastique insature
FR2982884B1 (fr) 2011-11-23 2014-06-06 Michelin Soc Tech Cable metallique a deux couches, gomme in situ par un elastomere thermoplastique insature
FR2984338B1 (fr) 2011-12-19 2014-01-24 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
FR2984336B1 (fr) 2011-12-19 2014-01-24 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
FR2984221B1 (fr) 2011-12-19 2014-05-16 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
FR2984223B1 (fr) 2011-12-19 2014-04-18 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
FR2984222B1 (fr) 2011-12-19 2014-05-16 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
FR2984337B1 (fr) 2011-12-19 2014-01-24 Michelin Soc Tech Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse
JP6069364B2 (ja) 2012-02-06 2017-02-01 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme 三元または四元黄銅合金被覆物を備えた細長い鋼製エレメントおよび対応する方法
ES2703782T3 (es) 2012-02-06 2019-03-12 Bekaert Sa Nv Elemento de acero alargado que comprende un recubrimiento de aleación de latón ternaria o cuaternaria y método correspondiente
GB2501156B (en) * 2012-02-27 2015-03-18 Gripple Ltd Improvements in or relating to wire strands
FR2990962B1 (fr) * 2012-05-25 2014-06-27 Michelin & Cie Procede de fabrication d'un cable metallique multi-torons a deux couches.
RS58216B1 (sr) * 2012-07-24 2019-03-29 Bekaert Sa Nv Čelično uže za ojačanje gume sa vlaknima selektivno obloženim mesingom
JP6343872B2 (ja) * 2013-04-11 2018-06-20 横浜ゴム株式会社 スチールコードおよびゴム製品の製造方法
FR3008350B1 (fr) 2013-07-12 2015-08-07 Michelin & Cie Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite
FR3008346B1 (fr) 2013-07-12 2015-08-07 Michelin & Cie Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite
FR3008351B1 (fr) 2013-07-12 2015-08-07 Michelin & Cie Pneumatique comportant des epaisseurs variables des melanges caoutchouteux interieurs a l'armature de carcasse
FR3008348B1 (fr) 2013-07-12 2015-08-07 Michelin & Cie Pneumatique comportant des epaisseurs variables des melanges caoutchouteux interieurs a l'armature de carcasse
WO2015031226A1 (en) * 2013-08-28 2015-03-05 E. I. Du Pont De Nemours And Company Fibrous cord and method of making
FR3013736B1 (fr) * 2013-11-22 2016-12-09 Michelin & Cie Procede de trefilage et fil obtenu par ce procede de trefilage
FR3013735B1 (fr) * 2013-11-22 2016-08-19 Michelin & Cie Procede de trefilage d'un fil d'acier comprenant un taux de carbone en masse compris entre 0,05 % inclus et 0,4 % exclu
FR3014363B1 (fr) 2013-12-09 2015-11-27 Michelin & Cie Pneumatique presentant une pression nominale reduite et une fleche relative sous charge nominale augmentee
FR3020016B1 (fr) 2014-04-22 2016-04-01 Michelin & Cie Pneumatique pour vehicule industriel lourd
FR3020017B1 (fr) 2014-04-22 2017-06-09 Michelin & Cie Pneumatique pour vehicule de genie civil
FR3022264A1 (fr) 2014-06-12 2015-12-18 Michelin & Cie Produit semi-fini comprenant un cable gomme in situ noye dans une composition de caoutchouc de calandrage
FR3022265B1 (fr) * 2014-06-12 2017-12-08 Michelin & Cie Produit semi-fini comprenant un cable gomme in situ noye dans une composition de caoutchouc de calandrage
FR3022263B1 (fr) 2014-06-12 2017-10-27 Michelin & Cie Cable gomme in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
FR3022261B1 (fr) 2014-06-12 2016-06-03 Michelin & Cie Cable gomme in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
FR3022262B1 (fr) * 2014-06-12 2016-06-03 Michelin & Cie Cable gomme in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
FR3028872B1 (fr) 2014-11-25 2017-05-19 Michelin & Cie Procede de fractionnement
FR3028873B1 (fr) 2014-11-25 2016-12-23 Michelin & Cie Installation de fractionnement
FR3033287B1 (fr) 2015-03-05 2017-03-10 Michelin & Cie Armature de sommet de pneumatique pour vehicule lourd de type genie civil
FR3040911A1 (fr) * 2015-09-16 2017-03-17 Michelin & Cie Pneumatique comportant des cables d'armatures de carcasse presentant un bas taux de carbone
CN105862592B (zh) * 2016-04-13 2017-08-11 江苏法尔胜缆索有限公司 一种热挤聚乙烯锌铝合金镀层钢丝拉索的制作方法
US11529697B2 (en) * 2017-09-29 2022-12-20 Lincoln Global, Inc. Additive manufacturing using aluminum-containing wire
US11426824B2 (en) 2017-09-29 2022-08-30 Lincoln Global, Inc. Aluminum-containing welding electrode
US11787235B2 (en) 2017-11-17 2023-10-17 Compagnie Generale Des Etablissements Michelin Tire comprising a carcass reinforcement layer having improved endurance properties
CA3081605A1 (fr) 2017-11-17 2019-05-23 Compagnie Generale Des Etablissements Michelin Pneumatique presentant une couche d'armature de carcasse avec des proprietes d'endurance ameliorees
EP3710284B1 (fr) 2017-11-17 2021-08-25 Compagnie Générale des Etablissements Michelin Pneumatique presentant une couche d'armature de carcasse avec des proprietes d'endurance ameliorees
EP3724261A1 (fr) 2017-12-15 2020-10-21 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un produit renforcé par un élément de renfort
EP3728338B1 (fr) * 2017-12-20 2023-09-06 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
EP3823846B1 (fr) * 2018-07-17 2023-03-08 Compagnie Generale Des Etablissements Michelin Pneumatique dont la zone du bourrelet est allegee
FR3103200A1 (fr) 2019-11-15 2021-05-21 Compagnie Generale Des Etablissements Michelin Câble métalliques à deux couches avec couche interne gainée à rendement amélioré
CN110735340A (zh) * 2019-11-22 2020-01-31 江苏兴达钢帘线股份有限公司 一种十七股子午胎钢丝帘线
FR3107006B1 (fr) * 2020-02-06 2022-01-07 Michelin & Cie Pneumatique pour véhicule agricole comprenant une armature de carcasse monocouche
FR3107206B1 (fr) * 2020-02-19 2022-02-18 Michelin & Cie Pneumatique a faible hauteur de flanc
FR3107207B1 (fr) * 2020-02-19 2022-02-18 Michelin & Cie Pneumatique a faible hauteur de flanc
CN111926597A (zh) * 2020-07-20 2020-11-13 江苏兴达钢帘线股份有限公司 一种子午胎钢丝帘线
FR3112783B1 (fr) 2020-07-24 2023-04-28 Michelin & Cie Produit renforcé obtenu par un procédé comprenant une étape de traitement thermique de la gaine
FR3112714B1 (fr) 2020-07-24 2022-07-29 Michelin & Cie Traitement thermique d’un élément de renfort
CN112359622A (zh) * 2020-11-17 2021-02-12 江苏兴达钢帘线股份有限公司 一种外层不饱和钢丝帘线
CN112779797A (zh) 2021-01-15 2021-05-11 江苏兴达钢帘线股份有限公司 一种紧密型钢帘线
CN113969511A (zh) * 2021-11-16 2022-01-25 山东大业股份有限公司 一种高渗胶密集型钢帘线
CN114151486A (zh) * 2021-11-24 2022-03-08 重庆长安汽车股份有限公司 一种橡胶衬套及汽车悬架
FR3143032A1 (fr) 2022-12-08 2024-06-14 Compagnie Generale Des Etablissements Michelin Composite pour article de caoutchouc

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR812539A (fr) * 1936-10-26 1937-05-12 Michelin & Cie Perfectionnement aux tringles pour bandages pneumatiques
GB1182593A (en) * 1965-12-09 1970-02-25 British Ropes Ltd Improvements in or relating to Rope, Strand or the Like
JPS60143105A (ja) * 1983-12-29 1985-07-29 Kawasaki Steel Corp ラジアルタイヤ用スチ−ルコ−ド
FR2636978B1 (fr) * 1988-09-28 1990-11-02 Michelin & Cie Assemblage a couches de fils concentriques
JPH02118189A (ja) 1988-10-26 1990-05-02 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
US5223060A (en) 1988-10-26 1993-06-29 The Yokohama Rubber Co., Ltd. Pneumatic radial tire including steel cords of flat oblong cross-sectional configuration
JPH0672369B2 (ja) * 1989-02-25 1994-09-14 住友ゴム工業株式会社 スチールコード
US4960473A (en) * 1989-10-02 1990-10-02 The Goodyear Tire & Rubber Company Process for manufacturing steel filament
US5139874A (en) * 1991-09-05 1992-08-18 The Goodyear Tire & Rubber Company Cable for reinforcing rubber articles
IT1251401B (it) * 1991-09-09 1995-05-09 Pirelli Filo metallico con doppio strato di rivestimento per il rinforzo di articoli in materiali elastomerici e articoli in materiali elastomerici rinforzati con detto filo.
FR2711149A1 (fr) * 1993-10-15 1995-04-21 Michelin & Cie Fil en acier inoxydable pour carcasse d'enveloppe de pneumatique.
ES2150526T3 (es) * 1994-02-24 2000-12-01 Bridgestone Corp Hilos de acero para el refuerzo de articulos de caucho y cubiertas neumaticas radiales utilizando dichos hilos.
JP3455352B2 (ja) 1994-12-26 2003-10-14 株式会社ブリヂストン ゴム補強用スチールコード及びそれを使用したラジアルタイヤ
IT1277689B1 (it) 1995-12-21 1997-11-11 Pirelli Cordicella metallica di rinforzo da impiegarsi particolarmente in manufatti compositi a matrice elastomerica procedimento ed apparato
AU6729798A (en) * 1997-03-14 1998-10-12 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Hybrid steel cord for tyre
US6120911A (en) * 1997-09-09 2000-09-19 The Goodyear Tire & Rubber Company Zinc-rich coated steel article
CN1097125C (zh) 1997-12-15 2002-12-25 贝克特股份有限公司 含聚合物的钢丝帘布
EP0976541B1 (fr) 1998-07-30 2003-03-26 Aster Fil composite comprenant une ame en acier au carbone et une couche externe en acier inoxydable
EP1033435A1 (en) * 1999-03-04 2000-09-06 N.V. Bekaert S.A. Steel cord with polymer core
FR2795751A1 (fr) * 1999-06-29 2001-01-05 Michelin Soc Tech Cable d'acier multicouches pour carcasse de pneumatique
JP4705302B2 (ja) * 1999-12-30 2011-06-22 ソシエテ ド テクノロジー ミシュラン タイヤカーカス用多層スチールケーブル
US6313220B1 (en) * 2000-03-03 2001-11-06 Thierry Florent Edme Materne Preparation of reinforced elastomer, elastomer composite, and tire having component thereof
JP2002192921A (ja) * 2000-11-20 2002-07-10 Goodyear Tire & Rubber Co:The らせん六角ビードおよび製造方法
JP4316879B2 (ja) * 2000-12-01 2009-08-19 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム オフロードタイヤおよびコンベヤベルトを補強するスチールコード
US20020134478A1 (en) * 2000-12-28 2002-09-26 Omero Noferi Cord for a vehicle tyre and tyre provided with said cord
EP1349983A1 (fr) * 2001-01-04 2003-10-08 Société de Technologie Michelin Cable d'acier multicouches pour armature de sommet de pneumatique
DE10213289A1 (de) * 2001-03-30 2002-11-14 Yokohama Rubber Co Ltd Elastomer-und-Stahlkord-Verbundwerkstoff und Prozess zur Herstellung desselben
FR2824849B1 (fr) * 2001-05-17 2005-06-10 Trefileurope Cable dynamique a proprietes ameliorees, et procede et installation de fabrication d'un tel cable
WO2003031716A1 (en) * 2001-10-03 2003-04-17 N.V. Bekaert S.A. Multi-layer steel cord where intermediate filaments are coated with a polymer
FR2833277A1 (fr) 2001-12-07 2003-06-13 Michelin Soc Tech Cable metallique utilisable pour renforcer une armature de carcasse d'un pneumatique et un tel pneumatique
PL1646749T3 (pl) 2003-07-17 2008-10-31 N V Bekaert Sa Stalowy kord o otwartych warstwach o wysokim obciążeniu zrywającym
FR2864556B1 (fr) * 2003-12-24 2006-02-24 Michelin Soc Tech Cable a couches pour armature de carcasse de pneumatique
JP4740188B2 (ja) 2007-05-08 2011-08-03 三菱電線工業株式会社 搬送アーム用パッド

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037225A1 (fr) 2015-09-04 2017-03-09 Compagnie Generale Des Etablissements Michelin Pneumatique comportant des cables d'armatures de carcasse presentant un bas taux de carbone et des epaisseurs de melanges caoutchouteux reduites

Also Published As

Publication number Publication date
US8650850B2 (en) 2014-02-18
RU2358052C2 (ru) 2009-06-10
JP4707675B2 (ja) 2011-06-22
JP5485189B2 (ja) 2014-05-07
FR2864556B1 (fr) 2006-02-24
RU2006126712A (ru) 2008-01-27
US20100288412A1 (en) 2010-11-18
CN1898435B (zh) 2010-06-16
DE602004009102D1 (de) 2007-10-31
KR20060131792A (ko) 2006-12-20
WO2005071157A1 (fr) 2005-08-04
JP2007517142A (ja) 2007-06-28
US20060237110A1 (en) 2006-10-26
CN1898435A (zh) 2007-01-17
FR2864556A1 (fr) 2005-07-01
JP2011122291A (ja) 2011-06-23
ATE373738T1 (de) 2007-10-15
US8245490B2 (en) 2012-08-21
CA2548969A1 (fr) 2005-08-04
BRPI0418080B1 (pt) 2015-08-04
US20120298281A1 (en) 2012-11-29
CA2548969C (fr) 2013-06-04
BRPI0418080A (pt) 2007-04-17
KR101152692B1 (ko) 2012-06-15
EP1699973A1 (fr) 2006-09-13
DE602004009102T2 (de) 2008-06-19
ES2294566T3 (es) 2008-04-01
US20120279629A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
EP1699973B1 (fr) Cable metallique a trois couches pour armature de carcasse de pneumatique
EP1200671B1 (fr) Cable d'acier multicouches pour carcasse de pneumatique
EP2727744B1 (fr) Câble d'acier multi-torons pour pneumatique
EP1246964B1 (fr) Cable d'acier multicouches pour carcasse de pneumatique
EP2855763B1 (fr) Procede de fabrication d'un câble metallique multi-torons à deux couches
EP2326765B1 (fr) Cable a couches gomme in situ pour armature carcasse de pneumatique
EP2358548B1 (fr) Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite, et des epaisseurs de melanges caoutchouteux reduites
WO2010054790A1 (fr) Cable a trois couches, gomme in situ, pour armature de carcasse de pneumatique
FR2959517A1 (fr) Cable metallique multitorons elastique a haute permeabilite.
EP2507070B1 (fr) Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes
EP2507071B1 (fr) Pneumatique comportant des cables d'armature de carcasse hybrides
WO2016202622A1 (fr) Câble métallique multi-torons
FR2841573A1 (fr) Cables hybrides a couches utilisables pour renforcer des pneumatiques
WO2003048447A1 (fr) Cable metallique utilisable dans une armature de carcasse d'un pneumatique
EP2501560B1 (fr) Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes
FR3103500A1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
WO2002053827A1 (fr) Cable d'acier multicouches pour armature de sommet de pneumatique
WO2002053828A1 (fr) Cable d'acier multicouches pour armature de sommet de pneumatique
EP4240897A1 (fr) Câble multi-torons à deux couches avec couche interne gainée à pénétrabilité améliorée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602004009102

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2294566

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071220

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

26N No opposition filed

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20111223

Year of fee payment: 8

Ref country code: ES

Payment date: 20111227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121220

Year of fee payment: 9

Ref country code: IT

Payment date: 20121219

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121223

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20151221

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004009102

Country of ref document: DE

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, FR

Free format text: FORMER OWNERS: SOCIETE DE TECHNOLOGIE MICHELIN, CLERMONT-FERRAND, FR; MICHELIN RECHERCHE ET TECHNIQUE S.A., GRANGES-PACCOT, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 20

Ref country code: DE

Payment date: 20231214

Year of fee payment: 20