EP1349983A1 - Cable d'acier multicouches pour armature de sommet de pneumatique - Google Patents

Cable d'acier multicouches pour armature de sommet de pneumatique

Info

Publication number
EP1349983A1
EP1349983A1 EP01991875A EP01991875A EP1349983A1 EP 1349983 A1 EP1349983 A1 EP 1349983A1 EP 01991875 A EP01991875 A EP 01991875A EP 01991875 A EP01991875 A EP 01991875A EP 1349983 A1 EP1349983 A1 EP 1349983A1
Authority
EP
European Patent Office
Prior art keywords
cable
wires
layer
cables
cable according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01991875A
Other languages
German (de)
English (en)
Inventor
François-Jacques CORDONNIER
Alain Domingo
Henri Barguet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Original Assignee
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Michelin Recherche et Technique SA France, Societe de Technologie Michelin SAS filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP1349983A1 publication Critical patent/EP1349983A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/902Reinforcing or tire cords
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249933Fiber embedded in or on the surface of a natural or synthetic rubber matrix
    • Y10T428/249934Fibers are aligned substantially parallel

Definitions

  • the present invention relates to steel cables ("steel cords") which can be used for reinforcing rubber articles such as tires. It relates more particularly to so-called “layered” cables which can be used to reinforce the crown reinforcement of radial tires.
  • Steel cables for tires are generally made up of carbon pearlitic (or ferrito-pearlitic) steel wires, hereinafter referred to as "carbon steel", the carbon content of which is generally between 0.2% and 1.2%, the diameter of these wires generally being between 0.10 and 0.50 mm (millimeter).
  • carbon steel the carbon content of which is generally between 0.2% and 1.2%
  • the diameter of these wires generally being between 0.10 and 0.50 mm (millimeter).
  • These wires are required to have a very high tensile strength, generally greater than 2000 MPa, preferably greater than 2500 MPa, obtained by virtue of the structural hardening occurring during the work hardening phase of the wires.
  • These wires are then assembled in the form of cables or strands, which requires the steels used that they also have sufficient torsional ductility to support the various wiring operations.
  • layered cords or “multilayer” steel cables consisting of a central core and one or more layers of wire. concentric arranged around this soul.
  • These layered cables are preferred to older cables known as “strand cords” because on the one hand of a lower industrial cost, on the other hand of a greater compactness making it possible in particular to reduce the thickness of the rubber plies used for the manufacture of tires.
  • strand cords cables
  • cables with a compact structure cables with tabular or cylindrical layers.
  • those most common in the crown reinforcement of radial tires are essentially cables of the formula [M + N] or [M + N + P], the latter being generally intended for larger tires.
  • These cables are formed so as the known a M wire core (s) surrounded by at least one layer of N son . optionally itself surrounded by an outer layer of P wires, with in general M varying from 1 to 4, N varying from 3 to 12, P varying from 8 to 20 if necessary, the assembly possibly being shrunk by a outer hoop wire wound helically around the last layer.
  • the layered cables must first of all have a high rigidity in compression, which implies in particular that their wires, at least for the majority of them, have a relatively large diameter, in general at least equal to 0.25 mm, greater in particular than that of the wires used in conventional cables for the carcass reinforcement of tires.
  • these cables are impregnated as much as possible with rubber, that this material penetrates into all the spaces between the wires constituting the cables. Indeed, if this penetration is insufficient, then empty channels are formed, along the cables, and corrosive agents, for example water, capable of penetrating into the tires for example following cuts or other attacks from the crown of the tire, travel along these channels through the crown reinforcement of the tire. The presence of this moisture plays an important role in causing corrosion and accelerating fatigue process (called "fatigue-corrosion” phenomena), compared to a dry atmosphere. -
  • the publication RD No. 34370 proposes, to solve this problem, cables of structure [1 + 6 + 12], of the compact type or of the type with concentric tubular layers, consisting of a core formed of a single wire, surrounded by '' an intermediate layer of 6 wires itself surrounded by an outer layer of 12 wires.
  • the penetrability by the rubber can be improved by using different wire diameters from one layer to another, or even within the same layer.
  • Construction cables [1 + 6 + 12] the penetration of which is improved by an appropriate choice of the diameters of the wires, in particular the use of a core wire of larger diameter, have also been described, for example in EP-A-0 648 891 or O98 / 41682.
  • multilayer cables have also been proposed or described with a central core surrounded by at least two concentric layers, in particular cables of formula [1 + N + P] (for example [1 + 4 + P] or [1 + 5 + P]) or even [2 + N + P] (for example [2 + 5 + P]), whose outer layer is unsaturated (ie, incomplete), thus ensuring better penetration by rubber (see for example RD N ° 316107, August 1990, p. 681; EP-A-0 567 334 or US-A-5 661 965; EP-A-0 661 402 or US-A- 5,561,974; EP-A-0 675 223).
  • cables of formula [1 + N + P] for example [1 + 4 + P] or [1 + 5 + P]
  • [2 + N + P] for example [2 + 5 + P]
  • the cables When used for the reinforcement of tire crown reinforcement, the cables must certainly resist corrosion but also satisfy a large number of other criteria, sometimes contradictory, in particular of toughness, high adhesion to rubber, uniformity, flexibility , impact and puncture resistance, endurance in compression and flexion-compression, all in a more or less corrosive atmosphere.
  • the invention also relates to the use of a cable according to the invention for the reinforcement of articles or semi-finished products made of plastic and / or rubber, for example plies, pipes, belts, conveyor belts, tires, more particularly radia ⁇ x tires using a metal crown reinforcement.
  • the cable of the invention is very particularly intended to be used as a reinforcement element for the crown reinforcement of radial tires intended for industrial vehicles chosen from vans, "Heavy vehicles” - ie, metro, bus, road transport vehicles ( trucks, tractors, trailers), off-road vehicles -, agricultural or civil engineering machinery, airplanes, other transport or handling vehicles.
  • the invention also relates to these semi-finished articles or products made of plastic and / or rubber themselves when they are reinforced with a cable according to the invention, in particular tires intended for the vehicles mentioned above, as well as composite fabrics comprising a rubber composition matrix reinforced with a cable according to the invention, which can be used in particular as a crown reinforcement ply of such tires.
  • the air permeability test makes it possible to measure a relative index of air permeability noted "R". It constitutes a simple means of indirect measurement of the penetration rate of the cable by a rubber composition. It is carried out on cables extracted directly, by shelling, from the vulcanized rubber sheets which they reinforce, therefore penetrated by the cooked rubber.
  • the test is carried out on a determined cable length (for example 2 cm) in the following manner: air is sent to the cable inlet, under a given pressure (for example 1 bar), and the quantity is measured air at the outlet, using a flow meter; during the measurement the cable sample is blocked in a tight seal so that only the quantity of air passing through the cable from one end to the other, along its longitudinal axis, is taken into account by the measurement.
  • the measured flow is lower the higher the penetration rate of the cable by the rubber.
  • the diameter of the core and that of the wires of layers C1 and C2 i the helix pitches (therefore the angles) and the winding directions of the different layers are defined by the set of the following characteristics (d 0 , d ] 5 d 2 , pi and p 2 expressed in mm):
  • N 4: 0.40 ⁇ (d 0 / d,) ⁇ 0.80; for N ⁇ 5: 0.70 ⁇ (d 0 / d,) ⁇ 1.10;
  • the cable of the invention in particular when it does not have an external hoop wire, preferably checks the characteristic (vii) below:
  • Characteristics (v) and (vi) - different p ,, and p 2 and layers C1 and C2 wound in the same direction of twist - mean that, in known manner, the wires of layers C1 and C2 are essentially arranged in two cylindrical (ie tubular), adjacent and concentric layers.
  • cables with so-called “tubular” or “cylindrical” layers we mean cables made up of a core (ie, core or central part) and one or more concentric layers, each of tubular shape, arranged around of this core, in such a way that, at least in the cable at rest, the thickness of each layer is substantially equal to the diameter of the wires which constitute it; it follows that the cross section of the cable has a contour or envelope (denoted E) which is substantially circular, as illustrated for example in FIG. 1.
  • the cables with cylindrical or tubular layers of the invention must in particular not be confused with cables with so-called “compact” layers, assemblies of wires wound at the same pitch and in the same direction of twist; in such cables, the compactness is such that practically no distinct layer of wires is visible; it follows that the cross section of such cables has a contour which is no longer circular, but polygonal.
  • the outer layer C2 is a tubular layer of P wires called "unsaturated” or "incomplete”, that is to say that, by definition, there is enough space in this tubular layer C2 to add at least one (P + l) th wire of diameter d 2. several of the P sons possibly being in contact with each other. Conversely, this tubular layer C2 would be qualified as “saturated” or “complete” if there was not enough room in this layer to add at least one (P + 1) th wire of diameter d 2 .
  • the cable of the invention is a layered cable of construction denoted [1 + N + P], that is to say that its core consists of a single wire (M + l), such that shown for example in Figure 1 (cable noted CI).
  • This Figure 1 shows schematically a section perpendicular to the axis (denoted O) of the core and the cable, the cable being assumed to be straight and at rest.
  • the core C0 (diameter d 0 ) is formed of a single wire; it is surrounded and in contact with an intermediate layer C1 of 5 wires of diameter di wound together in a helix at a pitch pi; this layer C1, of thickness substantially equal to d b is itself surrounded and in contact with an external layer C2 of 10 wires of diameter d 2 wound together in a helix according to a ' pitch p 2 , and therefore of thickness substantially equal to d 2 .
  • the wires wound around the core CO are thus arranged in two adjacent and concentric, tubular layers (layer C1 of thickness substantially equal to di, then layer C2 of thickness substantially equal to d 2 ).
  • layer C1 of thickness substantially equal to di
  • layer C2 of thickness substantially equal to d 2
  • the wires of layer C1 have their axes (denoted Oi) arranged practically on a first circle Ci shown in dotted lines
  • the wires of layer C2 have their axes (denoted O 2 ) arranged practically on a second circle C 2 , also shown in dotted lines.
  • the diameter d 0 of the core is preferably within a range of 0.15 to 0.30 mm, more particularly from 0.15 to 0.20 mm in the case of a structure cable [M + 4 + P], from 0.20 to 0.30 mm in the case of a structural cable [M + 5 + P], with in particular M equal to 1.
  • the surface of the penetration channels between these two layers is increased and further improved cable penetration, while optimizing its fatigue-corrosion and compression performance.
  • the pitch represents the length, measured parallel to the axis O of the cable, at the end of which a wire having this pitch makes a complete revolution around the axis O of the cable; thus, if the axis O is sectioned by two planes perpendicular to the axis O and separated by a length equal to the pitch of a wire from one of the two layers Cl or C2, the axis of this wire (Oi or O 2 ) has in these two planes the same position on the two circles corresponding to the layer C1 or C2 of the wire considered.
  • all the wires of layers C1 and C2 are wound in the same direction of twist, that is to say either in the direction S (arrangement noted “S / S”), or in direction Z (arrangement marked “Z / Z”).
  • Such an arrangement of layers C1 and C2 is rather contrary to the most conventional constructions of layered cables [M + N + P], in particular those of construction [3 + 9 + 15], which most often require crossing of the two layers Cl and C2 (either an "S / Z" or "Z / S” arrangement) so that the wires of the layer C2 come to fry the wires of the layer Cl.
  • the winding in the same direction of the layers C1 and C2 advantageously makes it possible, in the cable according to the invention, to minimize the friction between these two layers C1 and C2 and therefore the wear of the wires which constitute them.
  • the ratios (d 0 / d ⁇ ) must be fixed within determined limits, according to the number N (4 or 5) of wires of the layer Cl. Too low a value of this ratio is detrimental to penetration by rubber. A too high value harms the compactness of the cable, for a level of resistance that is ultimately little modified; increased rigidity of the core due to a diameter d 0 too large would also be detrimental to the feasibility itself of the cable, during the wiring operations.
  • the wires of layers C1 and C2 can have an identical or different diameter from one layer to another.
  • the maximum number P max of wires wound in a single saturated layer around the layer Cl is of course a function of many parameters (diameter d 0 of the core, number N and diameter di of the wires of the layer Cl, diameter d 2 of the layer C2). For example, if P max is equal to 12, P can then vary from 9 to 11 (for example constructions [l + N + 9], [l + N + 10] or [1 + N + ll]) ; if P max is for example equal to 11, P can then vary from 8 to 10 (for example constructions [l + N + 8], [l + N + 9] or [l + N + 10]).
  • the number P of wires in the layer C2 is 1 to 2 less than the maximum number P max .
  • the invention is thus preferably implemented with a cable chosen from structural cables [1 + 4 + 8], [1 + 4 + 9], [1 + 4 + 10], [1 + 5 + 9], [1 + 5 + 10] and [1 + 5 + 11].
  • the invention is preferably implemented in the crown reinforcement of truck tires, with cables of structure [1 + 5 + P], more preferably of structure [1 + 5 + 9], [1 + 5 + 10] or [1 + 5 + 11]. Even more preferably, cables of structure [1 + 5 + 10] or [1 + 5 + 11] are used.
  • the wires of the layer C1 can be chosen to have a diameter greater than those of the layer C2, for example in a ratio (dJd 2 ) preferably between 1.05 and 1, 30.
  • the diameters of the wires of layers C1 and C2 that these wires have the same diameter or not, are in a range of 0.25 to 0.35 mm.
  • the steps pi and p 2 are preferably chosen to be between 7 and 21 mm, while more preferably checking at least one of the relations (vii) or (viii) mentioned above.
  • An advantageous embodiment consists for example in choosing pi between 7 and 14 mm and p 2 between 14 and 21 mm.
  • the invention can be implemented with any type of steel wire, for example carbon steel wire and / or stainless steel wire as described for example in applications EP-A-0 648 891 or WO98 / 41682 cited above.
  • steel wire for example carbon steel wire and / or stainless steel wire as described for example in applications EP-A-0 648 891 or WO98 / 41682 cited above.
  • carbon steel is used, but it is of course possible to use other steels or other alloys.
  • carbon steel When carbon steel is used, its carbon content (% by weight of steel) is preferably between 0.50% and 1.0%, more preferably between 0.68% and 0.95%; these contents represent a good compromise between the mechanical properties required for the tire and the feasibility of the wire. It should be noted that in applications where the highest mechanical strengths are not necessary, it is advantageous to use carbon steels whose carbon content is between 0.50% and 0.68%, in particular varies from 0, 55% to 0.60%, such steels being ultimately less expensive because they are easier to draw. Another advantageous embodiment of the invention may also consist, depending on the intended applications, of using steels with a low carbon content, for example between 0.2% and 0.5%, in particular because of a cost lower and easier to draw.
  • the constituent wires of the cables of the invention preferably have a tensile strength greater than 2000 MPa, more preferably greater than 3000 MPa. In the case of tires of very large dimensions, one will especially choose cords whose tensile strength is between 3000 MPa and 4000 MPa. Those skilled in the art know how to manufacture carbon steel wires having such a resistance, in particular by adjusting the carbon content of the steel and the final work hardening rates ( ⁇ ) of these wires.
  • the cable of the invention could comprise an external hoop, consisting for example of a single wire, metallic or not, wound helically around the cable at a shorter pitch than that of the outer layer, and an opposite winding direction or identical to that of this outer layer.
  • an external hoop consisting for example of a single wire, metallic or not, wound helically around the cable at a shorter pitch than that of the outer layer, and an opposite winding direction or identical to that of this outer layer.
  • the cable of the invention already self-wrapped, does not generally require the use of an external wrapping wire, • the one hand advantageously solves the problems of wear between the hoop and the wires of the outermost layer of the cable, on the other hand makes it possible to reduce the overall diameter and the cost of the cable.
  • a hoop wire in the general case where the wires of layer C2 are made of carbon steel, it is then advantageously possible to choose a hoop wire of stainless steel in order to reduce the wear by fretting of these wires.
  • a hoop wire of stainless steel made of carbon steel in contact with the stainless steel hoop, as taught by the aforementioned application WO98 / 41682, the stainless steel wire being able to be optionally replaced, in an equivalent manner, by a composite wire of which only the skin is made of stainless steel and the carbon steel core, as described for example in patent application EP-A-0 976 541.
  • the cable of the invention can advantageously be used in crown reinforcement for all types of tires, in particular tires for large vans, heavy vehicles or civil engineering vehicles.
  • FIG. 2 schematically represents a radial section of a tire with a metal crown reinforcement which may or may not conform to the invention, in this general representation.
  • This tire 1 comprises a crown 2 reinforced by a crown reinforcement 6, two sidewalls 3 and two beads 4, each of these beads 4 being reinforced with a bead wire.
  • the crown 2 is surmounted by a tread not shown on this schematic figure.
  • a carcass reinforcement 7 is wound around the two rods 5 in each bead 4, the reversal 8 of this reinforcement 7 being for example disposed towards the outside of the tire 1 which is here shown mounted on its rim 9.
  • the carcass reinforcement 7 is in a manner known per se consisting of at least one ply reinforced by so-called "radial” cables, that is to say that these cables are arranged practically parallel to each other and extend from a bead to the other so as to form an angle between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is located midway between the two beads 4 and passes through the middle of the 'crown reinforcement 6).
  • the tire according to the invention is characterized in that its crown reinforcement 6 comprises at least one crown ply, the reinforcement cables of which are multilayer steel cables according to the invention.
  • the cables of the invention can for example reinforce all or part of the so-called working crown plies, or so-called crown plies (or half-plies) triangulation and / or so-called protective top plies, when such triangulation or protective top plies are used.
  • the crown reinforcement 6 of the tire of the invention can of course comprise other crown plies, for example one or more crown plies called hooping plies.
  • the density of the cables according to the invention is preferably between 20 and 70 cables per dm (decimeter) of crown ply, more preferably between 30 and 60 cables per dm of ply, the distance between two adjacent cables, from axis to axis, thus preferably being between 1.4 and 5.0 mm, more preferably between 1.7 and 3.3 mm.
  • the cables according to the invention are preferably arranged in such a way that the width (denoted "- £") of the rubber bridge, between two adjacent cables, is between 0.5 and 2.0 mm. This width - ⁇ represents in known manner the difference between the calendering pitch (no laying of the cable in the rubber fabric) and the diameter of the cable. Below the minimum value indicated, the rubber bridge, too narrow, risks mechanical deterioration when working the ply,
  • the width -t is chosen to be between 0.8 and 1.6 mm.
  • the rubber composition used for the fabric of the crown reinforcement ply has, in the vulcanized state (i.e., after baking), a secant module in extension MA10 which is greater than 5 MPa. More preferably, the MA10 module is between 5 and 20 Mpa, in particular between 5 and 10 MPa when this fabric is intended to form a triangulation or protection sheet of the crown reinforcement, between 8 and 20 MPa when this fabric is intended to form a working ply of the crown reinforcement. It is in such fields of modules that the best endurance compromise has been recorded between the cables of the invention on the one hand, and the reinforced fabrics of these cables on the other hand.
  • fine carbon steel wires are used, prepared according to known methods as described, for example, in the abovementioned applications EP-A-0 648 891 or WO98 / 41682. , starting from commercial wires with an initial diameter of about 1.75 mm.
  • the steel used is a known carbon steel, the carbon content of which is approximately 0.9%.
  • the commercial starting wires first undergo a known degreasing and / or pickling treatment before their subsequent implementation. At this stage, their breaking strength is approximately 1150 MPa, their elongation at break is approximately 10%. Copper is then deposited on each wire, followed by a zinc deposit, by electrolytic means at room temperature, and then heat is heated by Joule effect to 540 ° C. to obtain brass by diffusion of copper and zinc, the weight ratio (phase ⁇ ) / (phase ⁇ + phase ⁇ ) being equal to approximately 0.85. No heat treatment is carried out on the wire after obtaining the brass coating.
  • a so-called “final” work hardening is then carried out on each wire (ie after the last heat treatment), by cold wire drawing in a humid environment with a wire drawing lubricant which present as an emulsion in water.
  • This wet drawing is carried out in a known manner in order to obtain the final work hardening rate (denoted ⁇ ) calculated from the initial diameter indicated previously for the starting commercial wires.
  • the steel wires thus drawn have the mechanical properties indicated in Table 1.
  • the elongation At indicated for the wires is the total elongation recorded when the wire breaks, that is to say integrating both the elastic part of the elongation (Hooke's law) and the plastic part of the elongation.
  • the brass coating which surrounds the wires has a very small thickness, clearly less than a micrometer, for example of the order of 0.15 to 0.30 ⁇ m, which is negligible compared to the diameter of the steel wires.
  • the composition of the steel of the wire in its various elements is the same as that of the steel of the starting wire.
  • the brass coating facilitates the wire drawing, as well as the bonding of the wire with the rubber.
  • the wires could be covered with a thin metallic layer other than brass, for example having the function of improving the corrosion resistance of these wires and / or their adhesion to rubber, for example a thin layer of Co , Ni, Zn, Al, an alloy of two or more of the compounds Cu, Zn, Al, Ni, Co, Sn.
  • the preceding wires are then assembled in the form of cables with structural layers [1 + 5 + 10].
  • These cables are manufactured with wiring devices (Barmag cabling machine) and according to methods well known to those skilled in the art which are not described here for the simplicity of the description. Due to different pi and p 2 pitch, they are carried out in two successive operations (manufacturing a cable [1 + 5] then wiring the last layer around this cable [1 + 5]), these two operations being advantageously be made online using two stranding machines arranged in series.
  • These cables according to the invention have the following characteristics:
  • the wires F2 of layers C1 and C2 are wound in the same direction of twist (direction S).
  • the cable tested has no ferrule and has a diameter of about 1.34 mm.
  • the core of this cable has a diameter d 0 equal to that of its single wire, practically devoid of twist on itself.
  • the cable of the invention exemplified here is a cable with tubular layers as shown schematically in cross section in Figure 1, already discussed above. It differs from the cables of the prior art in particular by the fact that its outer layer C2 comprises two wires less than a conventional saturated cable and that its pitches pi and p 2 are different while also checking the relation (v) supra. In other words, in this cable, P is 2 less than the maximum number (here P max ⁇ 12) of wires wound in a single saturated layer around the layer Cl. To further increase its penetration by rubber, the wires of layer C1 were chosen with a diameter greater than those of layer C2 in a preferred ratio (dJd 2 ) of between 1.05 and 1.15.
  • This C-I cable showed excellent penetration by the rubber, measured in the air permeability test. It also checks each of the following preferential relationships:
  • the elongation At indicated for the cable is the total elongation recorded at the break of the cable, that is to say integrating both the elastic part of the elongation (Hooke's law), the plastic part of the elongation and the so-called structural part of the elongation inherent in the specific geometry of the cable tested.
  • the procedure for manufacturing the tires of the invention is as follows.
  • the preceding layered cables are incorporated by calendering into a rubberized fabric formed of a known composition based on natural rubber and carbon black as reinforcing filler, conventionally used for the manufacture of crown reinforcement plies for radial tires (module MA 10 equal to around 18 MPa, after cooking).
  • This composition essentially comprises, in addition to the elastomer and the reinforcing filler, an antioxidant, stearic acid, a reinforcing resin (phenolic resin plus methylene donor), cobalt naphthenate as an adhesion promoter, finally a vulcanization system (sulfur, accelerator, ZnO).
  • the cables are arranged parallel in a known manner, according to a determined cable density, for example 40 cables per dm of ply, which, taking into account the diameter of the cables, is equivalent to a width "- #" rubber bridges, between two adjacent cables, lying in a particularly preferential range of 1.0 to 1.4 mm (in the present case, approximately 1.16 mm).
  • the tires, manufactured in a known manner, are as shown diagrammatically in FIG. 2, already commented on.
  • Their radial carcass reinforcement 7 is for example made up of a single radial ply formed of a conventional rubberized fabric comprising conventional metallic cables arranged at an angle of approximately 90 ° with the median circumferential plane.
  • the crown reinforcement 6 it consists of (i) two crossed overlapping working plies, reinforced with metal cables inclined by 22 degrees, these two working plies being covered by (ii) a protective crown ply reinforced with conventional elastic metal cables inclined by 22 degrees.
  • Each of the two working plies is formed from the rubberized fabric according to the invention.
  • the cables of the invention make it possible to reduce the phenomena of corrosion and of fatigue-corrosion, in particular under conditions of fatigue under compression, in particular in the crown reinforcement of radial tires, and thus to improve the longevity of • such crown reinforcement.
  • the core CO of the cables of the invention could consist of a wire with a non-circular section, for example plastically deformed, in particular a wire with a substantially oval or polygonal section, for example triangular, square or still rectangular; the core CO could also consist of a preformed wire, of circular section or not, for example a wavy, twisted, twisted wire in the form of a helix or in a zig-zag.
  • the diameter d 0 of the core represents the diameter of the imaginary cylinder of revolution which surrounds the core wire (overall diameter), and no longer the diameter (or any other transverse size, if its section is not circular) of the core wire itself.
  • the core CO was formed not of a single wire as in the previous examples, but of several wires assembled together, for example two wires arranged parallel to one another or else twisted together, in a direction of twist identical or not to that of the intermediate layer Cl.
  • the core wire being less stressed during the wiring operation than the other wires, given its position in the cable, it is not necessary for this wire to use, for example, compositions. steel with high torsional ductility; it is advantageously possible to use any type of steel, for example stainless steel, in order to result, for example, in a hybrid steel cable as described in the aforementioned application WO98 / 41682, comprising a stainless steel wire in the center and carbon steel wires around.
  • one (at least one) linear wire from one of the two layers C1 and / or C2 could also be replaced by a preformed or deformed wire, or more generally by a wire of section different from that of other wires of diameter. di and / or d 2 , so as for example to further improve the penetrability of the cable with rubber or any other material, the overall diameter of this replacement wire possibly being less, equal or greater than the diameter (di and / or d 2 ) of the other constituent wires of the layer (Cl and / or C2) concerned.
  • all or part of the wires constituting the cable according to the invention could consist of wires other than steel wires, metallic or not, in particular wires made of mineral or organic material to high mechanical strength, for example monofilaments made of organic liquid crystal polymers as described in application WO92 / 12018.
  • the invention also relates to any multi-strand steel cable.
  • ⁇ multi-strand rope whose structure incorporates at least, as an elementary strand, a layered cable according to the invention.

Landscapes

  • Ropes Or Cables (AREA)

Abstract

Câble multicouches à couche externe insaturée, utilisable comme élément de renforcement d'une armature de sommet de pneumatique, comportant une âme de diamètre d0 entourée d'une couche intermédiaire (notée C1) de quatre ou cinq fils (N = 4 ou 5) de diamètre d1 enroulés ensemble en hélice selon un pas p1, cette couche C1 étant elle-même entourée d'une couche externe (notée C2) de P fils de diamètre d2 enroulés ensemble en hélice selon un pas p2, P étant inférieur de 1 à 3 au nombre maximal Pmax de fils enroulables en une couche autour de la couche C1, ce câble présentant les caractéristiques suivantes (d0, d1, d2, p1 et p2 en mm): L'invention concerne en outre les articles ou produits semi-finis en matière plastique et/ou en caoutchouc renforcés par un tel câble multicouches, notamment les pneumatiques radiaux et leurs nappes d'armature de sommet.

Description

CABLE D'ACIER MULTICOUCHES POUR ARMATURE DE SOMMET DE PNEUMATIQUE
La présente invention est relative aux câbles d'acier ("steel cords") utilisables pour le renforcement d'articles en caoutchouc tels que des pneumatiques. Elle se rapporte plus particulièrement aux câbles dits "à couches" utilisables pour le renforcement de l'armature de sommet de pneumatiques radiaux.
Les câbles d'acier pour pneumatiques sont en règle générale constitués de fils en acier perlitique (ou ferrito-perlitique) au carbone, désigné ci-après "acier au carbone", dont la teneur en carbone est généralement comprise entre 0,2% et 1,2%, le diamètre de ces fils étant en général compris entre 0,10 et 0,50 mm (millimètre). On exige de ces fils une très haute résistance à la traction, en général supérieure à 2000 MPa, de préférence supérieure à 2500 MPa, obtenue grâce au durcissement structural intervenant lors de la phase d'écrouissage des • fils. Ces fils sont ensuite assemblés sous forme de câbles ou torons, ce qui nécessite des aciers utilisés qu'ils aient aussi une ductilité en torsion suffisante pour supporter les diverses opérations de câblage.
Pour le renforcement des pneumatiques radiaux, on utilise le plus souvent aujourd'hui des câbles d'acier dits "à couches" ("layered cords") ou "multicouches" constitués d'une âme centrale et d'une ou plusieurs couches de fils concentriques disposées autour de cette âme. Ces câbles à couches sont préférés aux câbles plus anciens dits "à torons" ("strand cords") en raison d'une part d'un coût industriel plus bas, d'autre part d'une plus grande compacité permettant notamment de diminuer l'épaisseur des nappes caoutchoutées servant à la fabrication des pneumatiques. Parmi les câbles à couches, on distingue notamment, de manière connue, les câbles à structure compacte et les câbles à couches tabulaires ou cylindriques.
De tels câbles à couches, utilisables notamment pour le renforcement de pneumatiques radiaux, ont été décrits dans un très grand nombre de publications. On pourra se reportera notamment aux documents GB-A-2 080 845; US-A-3 922 841; US-A-4 158 946; US-A-4 488 587; EP-A-0 168 858; EP-A-0 176 139 ou US-A-4 651 513; EP-A-0 194 011; EP-A-0 260 556 ou US-A-4 756 151; US-A-4 781 016; EP-A-0 362 570; EP-A-0 497 612 ou US-A-5 285 836;. EP-A-0 567 334 ou US-A-5 661 965; EP-A-0 568 271; EP-A-0 648 891; EP-A-0 661
402 ou US-A-5 561 974; EP-A-0 669 421 ou US-A-5 595 057; EP-A-0 675 223; EP-A-0 709
( 236 ou US-A-5 836 145; EP-A-0 719 889 ou US-A-5 697 204; EP-A-0 744 490 ou US-A-5
806 296; EP-A-0 779 390 ou US-A-5 802 829; EP-A-0 834 613 ou US-A-6 102 095;
WO98/41682; RD (Research Disclosure) N°316107, août 1990, p. 681; RD N°34054, août 1992, pp. 624-33; RD N°34370, novembre 1992, pp. 857-59; RD N°34779, mars 1993, pp. 213-214; RD N°34984, maU993, pp. 333-344; RD N°36329, juillet 1994, pp. 359-365.
Parmi ces câbles à couches, ceux les plus répandus dans lés armatures de sommet des pneumatiques radiaux sont essentiellement des câbles de formule [M+N] ou [M+N+P], les derniers étant généralement destinés aux plus gros pneumatiques. Ces câbles sont formés de manière ' connue d'une âme de M fil(s) entourée d'au moins une couche de N fils . éventuellement elle-même entourée d'une couche externe de P fils, avec en général M variant de 1 à 4, N variant de 3 à 12, P variant de 8 à 20 le cas échéant, l'ensemble pouvant être éventuellement fretté par un fil de frette externe enroulé en hélice autour de la dernière couche.
Pour remplir leur fonction de renforcement des armatures de sommet des pneumatiques radiaux, les câbles à couches doivent tout d'abord présenter une rigidité élevée en compression, ce qui implique notamment que leurs fils, tout au moins pour la majorité d'entre eux, présentent un diamètre relativement élevé, en général au moins égal à 0,25 mm, plus élevé en particulier que celui des fils utilisés dans les câbles conventionnels pour les armatures de carcasse des pneumatiques.
Il est important d'autre part que ces câbles soient imprégnés autant que possible par le caoutchouc, que cette matière pénètre dans tous les espaces entre les fils constituant les câbles. En effet, si cette pénétration est insuffisante, il se forme alors des canaux vides, le long des câbles, et les agents corrosifs, par exemple l'eau, susceptibles de pénétrer dans les pneumatiques par exemple à la suite de coupures ou autres agressions du sommet du pneumatique, cheminent le long de ces canaux à travers l'armature de sommet du pneumatique. La présence de cette humidité joue un rôle important en provoquant de la ' corrosion et en accélérant les processus de fatigue (phénomènes dits de "fatigue-corrosion"), par rapport à une utilisation en atmosphère sèche. -
Ainsi, afin d'améliorer l'endurance des câbles à couches dans les armatures de renforcement des pneumatiques, on a proposé depuis longtemps de modifier leur construction afin d'augmenter notamment leur pénétrabilité par le caoutchouc, et ainsi de limiter les risques dus à la corrosion et à la fatigue-corrosion.
Ont été par exemple proposés ou décrits des câbles à couches de construction [3+9] ou [3+9+15] constitués d'une âme de 3 fils entourée d'une première couche de 9 fils et le cas échéant d'une seconde couche de 15 fils, comme décrit par exemple dans EP-A-0 168 858, EP-A-0 176 139, EP-A-0 497.612, EP-A-0 568 271, EP-A-0 669 421, EP-A-0 709 236, EP-A- 0 744 490, EP-A-0 779 390, EP-A-0 834 613, RD N°34984, mai 1993, pp. 333-344, le diamètre des fils de l'âme étant ou non supérieur à celui des fils des autres couches. Ces câbles, de manière connue, ne sont pas pénétrables jusqu'à, coeur à cause de la présence d'un canal ou capillaire au centre' des trois fils d'âme, qui reste vide après imprégnation par le caoutchouc, et donc propice à la propagation de milieux corrosifs tels -que l'eau.
La publication RD N°34370 propose, pour résoudre ce problème, des câbles de structure [1+6+12], du type compacts ou du type à couches tubulaires concentriques, constitués d'une âme formée d'un seul fil, entourée d'une couche intermédiaire de 6 fils elle-même entourée d'une couche externe de 12 fils. La pénétrabilité par le caoutchouc peut être améliorée en utilisant des diamètres de fils différents d'une couche à l'autre, voire à l'intérieur d'une même couche. Des câbles de construction [1+6+12] dont la pénétrabilité est améliorée grâce à un choix approprié des diamètres des fils, notamment à l'utilisation d'un fil d'âme de plus gros diamètre, ont été également décrits, par exemple dans EP-A-0 648 891 ou O98/41682. Pour améliorer la pénétration du caoutchouc à l'intérieur des câbles, on a aussi proposé ou décrit des câbles multicouches avec une âme centrale entourée d'au moins deux couches concentriques, notamment des câbles de formule [1+N+P] (par exemple [1+4+P] ou [1+5+P]) voire [2+N+P] (par exemple [2+5+P]), dont la couche externe est insaturée (i.e., incomplète), assurant ainsi une meilleure pénétrabilité par le caoutchouc (voir par exemple RD N°316107, août 1990, p. 681; EP-A-0 567 334 ou US-A-5 661 965; EP-A-0 661 402 ou US-A-5 561 974; EP-A-0 675 223).
L'expérience montre toutefois que ces câbles à pénétrabilité améliorée ne sont, pour la plupart, pas encore pénétrés jusqu'à coeur par le caoutchouc, et en tout cas ne procurent pas des performances optimales en pneumatique.
Il doit être noté en effet qu'une amélioration de la pénétrabilité par le caoutchouc n'est pas suffisante pour garantir un niveau de performance optimal. Lorsqu'ils sont utilisés pour le renforcement des armatures de sommet de pneumatiques, les câbles doivent certes résister à la corrosion mais aussi satisfaire un grand nombre d'autres critères, parfois contradictoires, en particulier de ténacité, adhésion élevée au caoutchouc, uniformité, flexibilité, résistance aux chocs et aux perforations, endurance en compression et en flexion-compression, le tout dans une atmosphère plus ou moins corrosive.
Ainsi, pour toutes les raisons exposées précédemment, et malgré les différentes améliorations récentes qui ont pu être apportées ici ou là sur tel ou tel critère déterminé, les meilleurs câbles utilisés aujourd'hui dans les armatures de sommet des pneumatiques radiaux, destinés en particulier aux véhicules Poids-lourds, restent limités à un petit nombre de câbles à couches de structure fort conventionnelle, du type compacts ou à couches cylindriques, avec une couche externe saturée (i.e., complète) ; il s'agit essentiellement des câbles de constructions [3+9] et surtout [3+9+15] tels que décrits précédemment.
Or, la Demanderesse a trouvé lors de ses recherches un câble à couches nouveau, du type [M+N+P] à couche externe insaturée (avec N égal à 4 ou 5), qui présente, grâce à une architecture spécifique, non seulement une excellente pénétrabilité par le caoutchouc, limitant les problèmes de corrosion, mais encore une endurance augmentée en compression. La longévité des pneumatiques et celle de leurs armatures de sommet sont ainsi améliorées.
En conséquence, un premier objet de l'invention est un câble multicouches à couche externe insaturée, utilisable comme élément de renforcement d'une armature de sommet de pneumatique, comportant une âme (notée C0) de diamètre d0, entourée d'une couche intermédiaire (notée Cl) de quatre ou cinq fils (N == 4 ou 5) de diamètre di enroulés ensemble en hélice selon un pas pb cette couche Cl étant elle-même entourée d'une couche externe (notée C2) de P fils de diamètre d2 enroulés ensemble en hélice selon un pas p2, P étant inférieur de 1 à 3 au nombre maximal Pmax de fils enroulables en une couche autour de la couche Cl, ce câble étant caractérisé en ce qu'il présente les caractéristiques suivantes (d0, dÎ5 - (i) 0,10 < d0 < 0,50 ;
- (ϋ) 0,25 < d, < 0,40 ; - (iii) 0,25 < d2 < 0,40 ;
- (iv) pour N ≈ 4 : 0,40 < (d0 / d,) < 0,80 ; pour N = 5 : 0,70 < (d0/ d,) < 1,10 ;
- (v) 4,8 π (d0+ di) < pi < p2 < 5,6 π (do+ 2d, + d2) ; - (vi) les fils des couches Cl et C2 sont enroulés dans le même sens de torsion.
L'invention concerne également l'utilisation d'un câble conforme à l'invention pour le renforcement d'articles ou de produits semi-finis en matière plastique et/ou en caoutchouc, par exemple des nappes, des tuyaux, des courroies, des bandes transporteuses, des pneumatiques, plus particulièrement des pneumatiques radiaμx utilisant une armature de sommet métallique.
Le câble de l'invention est tout particulièrement destiné à être utilisé comme élément de renforcement des armatures de sommet de pneumatiques radiaux destinés à des véhicules industriels choisis parmi camionnettes, "Poids-lourds" - i.e., métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route - , engins agricoles ou de génie civil, avions, autres véhicules de transport ou de manutention.
L'invention concerne en outre ces articles ou produits semi-finis en matière plastique et/ou en caoutchouc eux-mêmes lorsqu'ils sont renforcés par un câble conforme à l'invention, en particulier les pneumatiques destinés aux véhicules cités ci-dessus, ainsi que les tissus composites comportant une matrice de composition de caoutchouc renforcée d'un câble selon l'invention, utilisables notamment comme nappe d'armature de sommet de tels pneumatiques.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que des figures 1 et 2 relatives à ces exemples qui schématisent, respectivement:
- une coupe transversale d'un câble de structure [1+5+10] conforme à l'invention (figure 1);
- une coupe radiale d'une enveloppe de pneumatique radial à armature de sommet métallique (figure 2).
I. MESURES ET TESTS
1-1. Mesures dynamométriques
En ce qui concerne les fils ou câbles métalliques, les mesures de force à la rupture notée Fm (charge maximale en N), de résistance à la rupture notée Rm (en MPa) et d'allongement à la rupture noté At (allongement total en %) sont effectuées en traction selon la norme ISO 6892 de 1984. En ce qui concerne les compositions de caoutchouc, les mesures de module sont effectuées en traction selon la norme française NF T 46-002 de septembre 1988 : on mesure en seconde élongation (i.e., après un cycle d'accommodation) le module sécant nominal (ou contrainte de traction) à 10% d'allongement noté MA10, exprimé en MPa, selon des . conditions normales de température (23±2°C) et d'hygrométrie (50±5 humidité relative) (norme NF T 40-101 de décembre 1979). 1-2. Test de perméabilité à l'air
Le test de perméabilité à l'air permet de mesurer un indice relatif de perméabilité à l'air noté "R ". Il constitue un moyen simple de mesure indirecte du taux de pénétration du câble par une composition de caoutchouc. Il est réalisé sur des câbles extraits directement, par décorticage, des nappes de caoutchouc vulcanisées qu'ils renforcent, donc pénétrés par le caoutchouc cuit.
Le test est réalisé sur une longueur de câble déterminée (par exemple 2 cm) de la manière suivante: on envoie de l'air à l'entrée du câble, sous une pression donnée (par exemple 1 bar), et on mesure la quantité d'air à la sortie, à l'aide d'un débitmètre ; pendant la mesure l'échantillon de câble est bloqué dans un joint étanche de telle manière que seule la quantité d'air traversant le câble d'une extrémité à l'autre, selon son axe longitudinal, est prise en compte par la mesure. Le débit mesuré est d'autant plus faible que le taux de pénétration du câble par le caoutchouc est élevé.
H. DESCRIPTION DETAHLEE DE L'INVENTION
II- 1. Câble de l'invention
Les termes "formule" ou "structure", lorsqu'ils sont utilisés dans la présente description pour décrire les câbles, se réfèrent simplement à la construction de ces câbles.
Le câble de l'invention est un câble multicouches comportant une âme (CO) de diamètre d0, une couche intermédiaire (Cl) de 4 ou 5 fils (N = 4 ou 5) de diamètre di et une couche externe insaturée (C2) de P fils de diamètre d2, P étant inférieur de 1 à 3 au nombre maximal Pmax de fils enroulables en une couche unique autour de la couche Cl .
Dans ce câble à couches de l'invention, le diamètre de l'âme et celui des fils des couches Cl et C2 i les pas d'hélice (donc les angles) et les sens d'enroulement des différentes couches sont définies par l'ensemble des caractéristiques ci-après (d0, d]5 d2, pi et p2 exprimés en mm):
- (i) 0,10 < d0 < 0,50 - (ii) 0,25 < d, < 0,40
- (iii) 0,25 < d2 < 0,40
- (iv) pour N = 4 : 0,40 < (d0 / d,) < 0,80 ; pour N ≈ 5 : 0,70 < (d0/ d,) < 1,10 ;
- (v) ' 4,8 π (d0+ dv-) < p, < p2 < 5,6 π (d0+ 2d, + d2) ; - (vi) ' les fils des couches "Cl et C2 sont enroulés dans le même sens de torsion.
Les caractéristiques (i) à (vi) ci-dessus, en combinaison, permettent d'obtenir à la fois:
- grâce à une optimisation du rapport des diamètres (d0 / di) et des angles d'hélice que forment les fils des couches Cl et C2, une pénétration optimale du caoutchouc à travers les couches Cl et C2 et jusqu'au coeur CO de ce dernier, assurant une très haute protection contre la corrosion et son éventuelle propagation;
- une désorganisation minimale du câble sous sollicitation en forte flexion, ne nécessitant notamment pas la présence d'un fil de frette autour.de la dernière couche;
- une endurance élevée en flexion et flexion-compression.
Afin de renforcer encore les effets techniques ci-dessus, le câble de l'invention, en particulier lorsqu'il est dépourvu d'un fil de frette externe, vérifie de préférence la caractéristique (vii) ci- après:
(vii) 5,0 π (d0 + d,) < p, < p2 < 5,0 π (d0 + 2d, + d2) .
Les caractéristiques (v) et (vi) - pas p,, et p2 différents et couches Cl et C2 enroulés dans le même sens de torsion - font que, de manière connue, les fils des couches Cl et C2 sont essentiellement disposés selon deux couches cylindriques (i.e. tubulaires), adjacentes et concentriques. Par câbles à couches dites "tubulaires" ou "cylindriques", on entend ainsi des câbles constitués d'une âme (i.e., noyau ou partie centrale) et d'une ou plusieurs couches concentriques, chacune de forme tubulaire, disposée(s) autour de cette âme, de telle manière que, au moins dans le câble au repos, l'épaisseur de chaque couche est sensiblement égale au diamètre des fils qui la constituent ; il en résulte que la section transversale du câble a un contour ou enveloppe (notée E) qui est sensiblement circulaire, comme illustré par exemple sur la figure 1.
Les câbles à couches cylindriques ou tubulaires de l'invention ne doivent en particulier pas être confondus avec des câbles à couches dits "compacts", assemblages de fils enroulés au même pas et dans la même direction de torsion ; dans de tels câbles, la compacité est telle que pratiquement aucune couche distincte de fils n'est visible ; il en résulte que la section transversale de tels câbles a un contour qui n'est plus circulaire, mais polygonal.
La couche externe C2 est une couche tubulaire de P fils dite "insaturée" ou "incomplète", c'est-à-dire que, par définition, il existe suffisamment de place dans cette couche tubulaire C2 pour y ajouter au moins un (P+l)ème fil de diamètre d2,. plusieurs des P fils se trouvant éventuellement au contact les uns des autres. Réciproquement, cette couche tubulaire C2 serait qualifiée de "saturée" ou "complète" s'il n'existait pas suffisamment de place dans cette couche pour y ajouter au moins un (P+l)ème fil de diamètre d2.
De préférence, le câble de l'invention est un câble à couches de construction notée [1+N+P], c'est-à-dire que son âme est constituée d'un seul fil (M+l), tel que représenté par exemple à la figure 1 (câble noté C-I).
Cette figure 1 schématise une coupe perpendiculaire à l'axe (noté O) de l'âme et du câble, le câble étant supposé rectiligne et au repos. On voit que l'âme C0 (diamètre d0) est formée d'un fil unique ; elle est entourée et au contact d'une couche intermédiaire Cl de 5 fils de diamètre di enroulés ensemble en hélice selon un pas pi ; cette couche Cl, d'épaisseur sensiblement égale à db est elle-même entourée et au contact d'une couche externe C2 de 10 fils de diamètre d2 enroulés ensemble en hélice selon un' pas p2, et donc d'épaisseur sensiblement égale à d2. Les fils enroulés autour de l'âme CO sont ainsi disposés selon deux couches adjacentes et concentriques, tubulaires (couche Cl d'épaisseur sensiblement égale à di, puis couche C2 d'épaisseur sensiblement égale à d2). On voit que les fils de la couche Cl ont leurs axes (notés Oi) disposés pratiquement sur un premier cercle Ci représenté en pointillés, tandis que les fils de la couche C2 ont leurs axes (notés O2) disposés pratiquement sur un second cercle C2, représenté également en pointillés.
Le diamètre d0 de l'âme est de préférence compris dans un domaine de 0,15 à 0,30 mm, plus particulièrement de 0,15 à 0,20 mm dans le cas d'un câble de structure [M+4+P], de 0,20 à 0,30 mm dans le cas d'un câble de structure [M+5+P], avec notamment M égal à 1.
Le meilleur compromis de résultats, vis-à-vis en particulier de la pénétrabilité du câble par le caoutchouc, mesurée au test dit de perméabilité à l'air, et des propriétés d'endurance en compression, est obtenu lorsque la relation suivante est vérifiée:
(viii) 5,3 π (d0+ dt) < p, < p2 < 4,7 π (d0+ 2dj + d2) .
En décalant ainsi les pas et donc les angles de contact entre les fils de la couche Cl d'Une part, et ceux de la couche C2 d'autre part, on augmente la surface des canaux de pénétration entre ces deux couches et on améliore encore la pénétrabilité du câble, tout en optimisant ses performances en fatigue-corrosion et en compression.
On rappelle ici que, selon une définition connue, le pas représente la longueur, mesurée parallèlement à l'axe O du câble, au bout de laquelle un fil ayant ce pas effectue un tour complet autour de l'axe O du câble ; ainsi, si l'on sectionne l'axe O par deux plans perpendiculaires à l'axe O et séparés par une longueur égale au pas d'un fil d'une des deux couches Cl ou C2, l'axe de ce fil (Oi ou O2) a dans ces deux plans la même position sur les deux cercles correspondant à la couche Cl ou C2 du fil considéré.
Dans le câble conforme à l'invention, tous les fils des couches Cl et C2 sont enroulés dans le même sens de torsion, c'est-à-dire soit dans la direction S (disposition notée "S/S"), soit dans la direction Z (disposition notée "Z/Z"). Une telle disposition des couches Cl et C2 est plutôt contraire aux constructions les plus classiques des câbles à couches [M+N+P], notamment ceux de construction [3+9+15], qui nécessitent le plus souvent un croisement des deux couches Cl et C2 (soit une disposition "S/Z" ou "Z/S") afin que les fils de la couche C2 viennent eux-mêmes fretter les fils de la couche Cl.
L'enroulement dans le même sens des couches Cl et C2 permet avantageusement, dans le câble conforme à l'invention, de minimiser les frottements entre ces deux couches Cl et C2 et donc l'usure des fils qui les constituent.
Dans le câble de l'invention, les rapports (d0/dι) doivent être fixés dans des limites déterminées, selon le nombre N (4 ou 5) de fils de la couche Cl. Une valeur trop faible de ce rapport est préjudiciable à la pénétrabilité par le caoutchouc. Une valeur trop élevée nuit à la compacité du câble, pour un niveau de résistance en définitive peu modifié ; la rigidité accrue de l'âme due à un diamètre d0 trop élevé serait par ailleurs préjudiciable à la faisabilité elle- même du câble, lors des opérations de câblage.
Les fils des couches Cl et C2 peuvent avoir un diamètre identique ou différent d'une couche à l'autre. On utilise de préférence des fils de même diamètre (dι=d2), notamment pour simplifier le procédé de câblage et abaisser les coûts, comme représenté par exemple sur la figure 1.
Le nombre maximal Pmax de fils enroulables en une couche unique saturée autour de la couche Cl est bien entendu fonction de nombreux paramètres (diamètre d0 de l'âme, nombre N et diamètre di des fils de la couche Cl, diamètre d2 des fils. de la couche C2). A titre d'exemple, si Pmax est égal à 12, P peut alors varier de 9 à 11 (par exemple constructions [l+N+9], [l+N+10] ou [1+N+l l]) ; si Pmax est par exemple égal à 11, P peut alors varier de 8 à 10 (par exemple constructions [l+N+8], [l+N+9] ou [l+N+10]).
De préférence, le nombre P de fils dans la couche C2 est inférieur de 1 à 2 au nombre maximal Pmax. Ceci permet dans la plupart des cas d'aménager un espace suffisant entre les fils pour que les compositions de caoutchouc puissent s'infiltrer entre les fils de la couche C2 et atteindre la couche Cl. L'invention est ainsi de préférence mise en oeuvre avec un câble choisi parmi les câbles de structure [1+4+8], [1+4+9], [1+4+10], [1+5+9], [1+5+10] et [1+5+11].
A titre d'exemples de câbles préférentiels conformes à l'invention, on citera notamment les câbles ayant les constructions suivantes (et parmi eux, ceux vérifiant plus préférentiellement au moins une des relations (vii) et (viii) précitées):
- [1+4+8] avec d0 = 0,20 mm et dj = d2 = 0,35 mm ; 8,3 mm < pi < p2 < 22,0 mm ;
- [1+4+8] avec d0 = 0,20 mm et di ≈ d2 - 0,38 mm ; 8,7 mm < pi < ρ2 < 23,6 mm ;
- [1+4+9] avec d0 = 0,20 mm et dj = d2 = 0,26 mm ; 6,9 mm < p, < p2 < 17,2 mm ;
- [1+4+9] avec do = 0,15 mm et d, = d2 = 0,30 mm ; 6,8 mm < pi < p2 < 18,5 mm ;
- [1+4+10] avec d0 = 0,20 mm et di = d2 = 0,28 mm ; 7,2 mm < p, < p2 < 18,3 mm ; - [1+4+10] avec d0 = 0,15 mm et di = d2 = 0,26 mm ; 6,2 mm < pi < p2 < 16,4 mm ;
- [1+5+9] avec d0 = 0,20 mm et dj = d2 = 0,26 mm ; 6,9 mm < p, < p2 < 17,2 mm ;
- [1+5+9] avec d0 = di = 0,26 mm ; d2 = 0,30 mm ; 7,8 mm < p, < ρ2 < 19,0 mm ;
- [1+5+10] avec d0 = d2 ≈ 0,26 mm et d1 ≈ 0,28 mm ; 8,1 mm < p, < p2 < 19,0 mm ;
- [1+5+10] avec d0 = 0,28 mm et di ≈ d2 = 0,30 mm ; 8,7 mm < p < ρ2 < 20,8 mm ;
- [1+5+11] avec d0 = dj = d2 = 0,26 mm ; 7,8 mm < p, < p2 < 18,3 mm ;
- [1+5+11] avec d0 = 0,28 mm et di = d2 = 0,26 mm ; 8,1 mm < pι < ρ2 < 18,6 mm ;
On notera que, dans ces câbles, au moins deux couches sur trois (C0, Cl, C2) contiennent des fils de diamètres (respectivement d0, db d2) identiques.
L'invention est préférentiellement mise en oeuvre, dans les armatures de sommet des pneumatiques Poids-lourd, avec des câbles de structure [1+5+P], plus préférentiellement de structure [1+5+9], [1+5+10] ou [1+5+11]. Plus préférentiellement encore, on utilise des câbles de structure [1+5+10] ou [1+5+11]. Pour de tels câbles [1+5+P], un mode avantageux de réalisation de l'invention consiste à utiliser des fils de même diamètre pour l'âme et au moins une des couches Cl et C2, voire pour les deux couches (dans ce cas, d0 = di = d2), comme représenté par exemple à la figure 1.
Toutefois, pour augmenter encore la pénétrabilité du câble par le caoutchouc, les fils de la couche Cl peuvent être choisis de diamètre supérieur à ceux de la couche C2, par exemple dans un rapport (dJd2) préférentiellement compris entre 1,05 et 1,30.
Pour un meilleur compromis entre résistance, faisabilité, rigidité et tenue en compression du câble, d'une part, pénétrabilité par les compositions de caoutchouc d'autre part, on préfère que les diamètres des fils des couches Cl et C2, que ces fils aient un diamètre identique ou non, soient compris dans un domaine de 0,25 à 0,35 mm.
Dans un tel cas, en particulier lorsque dι=d2, les pas pi et p2 sont choisis de préférence compris entre 7 et 21 mm, tout en vérifiant plus préférentiellement au moins l'une des relation (vii) ou (viii) précitées. Un mode de réalisation avantageux consiste par exemple à choisir pi compris entre 7 et 14 mm et p2 compris entre 14 et 21 mm.
L'invention peut être mise en oeuvre avec tout type de fils en acier, par exemple des fils en acier au carbone et/ou des fils en acier inoxydable tels que décrits par exemple dans les demandes EP-A-0 648 891 ou WO98/41682 précitées. On utilise de préférence un acier au - carbone, mais il est bien entendu possible d'utiliser d'autres aciers ou d'autres alliages.
Lorsqu'un acier au carbone est utilisé, sa teneur en carbone (%» en poids d'acier) est de préférence comprise entre 0,50% et 1,0%, plus préférentiellement entre 0,68% et 0,95% ; ces teneurs représentent un bon compromis entre les propriétés mécaniques requises pour le pneumatique et la faisabilité du fil. Il est à noter que dans les applications où les plus hautes résistances mécaniques ne sont pas nécessaires, on pourra utiliser avantageusement des aciers au carbone dont la teneur en carbone est comprise entre 0,50% et 0,68%, notamment varie de 0,55% à 0,60%, de tels aciers étant finalement moins coûteux car plus faciles à tréfiler. Un autre mode avantageux de réalisation de l'invention peut consister aussi, selon les applications visées, à utiliser des aciers à faible teneur en carbone, comprise par exemple entre 0,2% et 0,5%, en raison notamment d'un coût plus bas et d'une plus grande facilité de tréfilage.
Les fils constitutifs des câbles de l'invention ont de préférence une résistance en traction supérieure à 2000 MPa, plus préférentiellement supérieure à 3000 MPa. Dans le cas de pneumatiques de très grosses dimensions, on choisira notamment des fils dont la résistance en traction est comprise entre 3000 MPa et 4000 MPa. L'homme du métier sait comment fabriquer des fils d'acier au carbone présentant une telle résistance, en ajustant notamment la teneur en carbone de l'acier et les taux d'écrouissage final (ε) de ces fils.
Le câble de l'invention pourrait comporter une frette externe, constituée par exemple d'un fil unique, métallique ou non, enroulé en hélice autour du câble selon un pas plus court que celui de la couche externe, et un sens d'enroulement opposé ou identique à celui de cette couche externe. Cependant, grâce à sa structure spécifique, le câble de l'invention, déjà auto-fretté, ne nécessite généralement pas l'emploi d'un fil de frette externe, ce qui d'une part résout avantageusement les problèmes d'usure entre la frette et les fils de la couche la plus externe du câble, d'autre part permet de diminuer le diamètre d'encombrement et le coût du câble.
Toutefois, si un fil de frette est utilisé, dans le cas général où les fils de la couche C2 sont en acier au carbone, on pourra alors avantageusement choisir un fil de frette en acier inoxydable afin de réduire l'usure par fretting de ces fils en acier au carbone au contact de la frette en acier inoxydable, comme enseigné par la demande WO98/41682 précitée, le fil en acier inoxydable pouvant être éventuellement remplacé, de manière équivalente, par un fil composite dont seule la peau est en acier inoxydable et le cœur en acier au carbone, tel que décrit par exemple dans la demande de brevet EP-A-0 976 541.
II-2. Pneumatique de l'invention
Le câble de l'invention est avantageusement utilisable dans les armatures de sommet de tous types de pneumatiques, en particulier de pneumatiques pour grosses camionnettes, véhicules Poids-lourd ou de génie civil.
A titre d'exemple, la figure 2 représente de manière schématique une coupe radiale d'un pneumatique à armature de sommet métallique pouvant être conforme ou non à l'invention, dans cette représentation générale. Ce pneumatique 1 comporte un sommet 2 renforcé par une armature de sommet 6, deux flancs 3 et deux bourrelets 4, chacun de ces bourrelets 4 étant renforcé avec une tringle 5. Le sommet 2 est surmonté d'une bande de roulement non représentée sur cette figure schématique. Une armature de carcasse 7 est enroulée autour des deux tringles 5 dans chaque bourrelet 4, le retournement 8 de cette armature 7 étant par exemple disposé vers l'extérieur du pneumatique 1 qui est ici représenté monté sur sa jante 9. L'armature de carcasse 7 est de manière connue en soi constituée d'au moins une nappe renforcée par des câbles dits "radiaux", c'est-à-dire que ces câbles sont disposés pratiquement parallèles les uns aux autres et s'étendent d'un bourrelet à l'autre de manière à former un angle compris entre 80° et 90° avec le plan circonférentiel médian (plan perpendiculaire à l'axe de rotation du pneumatique qui est situé à mi-distance des deux bourrelets 4 et passe par le milieu de l'armature de sommet 6).
Le pneumatique conforme à l'invention est caractérisé en ce que son armature de sommet 6 comporte au moins une nappe de sommet dont les câbles de renforcement sont des câbles d'acier multicouches conformes à l'invention. Dans cette armature de sommet 6 schématisée de manière très simple sur la figure 2, on comprendra que les câbles de l'invention peuvent par exemple renforcer tout ou partie des nappes sommet dites de travail, ou des nappes (ou demi- nappes) sommet dites de triangulation et/ou des nappes sommet dites de protection, lorsque de telles nappes sommet de triangulation ou de protection sont utilisées. Outre les nappes de travail, celles de triangulation et/ou de protection, l'armature de sommet 6 du pneumatique de l'invention peut bien entendu comporter d'autres nappes sommet, par exemple une ou plusieurs nappes sommet dites de frettage. Dans cette nappe d'armature de sommet, la densité des câbles conformes à l'invention est de préférence comprise entre 20 et 70 câbles par dm (décimètre) de nappe sommet, plus préférentiellement entre 30 et 60 câbles par dm de nappe, la distance entre deux câbles adjacents, d'axe en axe, étant ainsi de préférence comprise entre 1,4 et 5,0 mm, plus préférentiellement comprise entre 1,7 et 3,3 mm. Les câbles conformes à l'invention sont de préférence disposés de telle manière que la largeur (notée "-£ ") du pont de caoutchouc, entre deux câbles adjacents, est comprise entre 0,5 et 2,0 mm. Cette largeur -υ représente de manière connue la différence entre le pas de calandrage (pas de pose du câble dans le tissu de caoutchouc) et le diamètre du câble. En dessous de la valeur minimale indiquée, le pont de caoutchouc, trop étroit, risque de se dégrader mécaniquement lors du travail de la nappe,
; notamment au cours des déformations subies dans son propre plan par extension ou cisaillement. Au-delà du maximum indiqué, on s'expose à des risques d'apparition de pénétration d'objets, par perforation, entre les câbles. Plus préférentiellement, pour ces mêmes raisons, la largeur -t est choisie comprise entre 0,8 et 1 ,6 mm.
De préférence, la composition de caoutchouc utilisée pour le tissu de la nappe d'armature de sommet présente, à l'état vulcanisé (i.e., après cuisson), un module sécant en extension MA10 qui est supérieur à 5 MPa. Plus préférentiellement, le module MA10 est compris entre 5 et 20 Mpa, en particulier entre 5 et 10 MPa lorsque ce tissu est destiné à former une nappe de triangulation ou de protection de l'armature de sommet, entre 8 et 20 MPa lorsque ce tissu est destiné à former une nappe de travail de l'armature de sommet. C'est dans de tels domaines de modules que l'on a enregistré le meilleur compromis d'endurance entre les câbles de l'invention d'une part, les tissus renforcés de ces câbles d'autre part.
m. EXEMPLES DE REALISATION DE L'INVENTION
III- 1. Nature et propriétés des fils utilisés
Pour la réalisation des exemples de câbles conformes ou non conformes à l'invention, on utilise des fils fins en acier au carbone préparés selon des méthodes connues telles que décrites par exemple dans les demandes EP-A-0 648 891 ou WO98/41682 précitées, en partant de fils commerciaux dont le diamètre initial est d'environ 1,75 mm. L'acier utilisé est un acier au carbone connu dont la teneur en carbone est de 0,9% environ.
Les fils commerciaux de départ subissent d'abord un traitement connu de dégraissage et/ou décapage avant leur mise en oeuvre ultérieure. A ce stade, leur résistance à la rupture est égale à environ 1150 MPa, leur allongement à la rupture est d'environ 10%. On effectue ensuite sur chaque fil un dépôt de cuivre, puis un dépôt de zinc, par voie électrolytique à la température ambiante, et on chauffe ensuite thermiquement par effet Joule à 540°C pour obtenir du laiton par diffusion du cuivre et du zinc, le rapport pondéral (phase α) / (phase α + phase β) étant égal à environ 0,85. Aucun traitement thermique n'est effectué sur le fil après l'obtention du revêtement de laiton.
On effectue alors sur chaque fil un écrouissage dit "final" (i.e. après le dernier traitement thermique), par tréfiiage à froid en milieu humide avec un lubrifiant de tréfilage qui se présente sous forme d'une émulsion dans de l'eau. Ce tréfilage humide est effectué de manière connue afin d'obtenir le taux d'écrouissage final (noté ε) calculé à partir du diamètre initial indiqué précédemment pour les fils commerciaux de départ.
Par définition, le taux d'un écrouissage noté ε est donné par la formule ε = Ln (S / Sf) , dans laquelle Ln est le logarithme népérien, Sf représente la section initiale du fil avant cet écrouissage et Sf la section finale du fil après cet écrouissage.
En jouant sur le taux d'écrouissage final, on prépare ainsi deux groupes de fils de diamètres différents, un premier groupe de fils de diamètre moyen φ égal à environ 0,26 mm (ε = 3,8) pour les fils d'indice 1 (fils notés F l) et un second groupe de fils de diamètre moyen φ égal à environ 0,28 mm (ε = 3,7) pour les fils d'indice 2 (fils notés F2).
Les fils en acier ainsi tréfilés ont les propriétés mécaniques indiquées dans le tableau 1.
Tableau 1
L'allongement At indiqué pour les fils est l'allongement total enregistré à la rupture du fil, c'est-à-dire intégrant à la fois la partie élastique de l'allongement (loi de Hooke) et la partie plastique de l'allongement.
Le revêtement de laiton qui entoure les fils a une épaisseur très faible, nettement inférieure au micromètre, par exemple de l'ordre de 0,15 à 0,30 μm, ce qui est négligeable par rapport au diamètre des fils en acier. Bien entendu, la composition de l'acier du fil en ses différents éléments (par exemple C, Mn, Si) est la même que celle de l'acier du fil de départ.
On rappelle que lors du procédé de fabrication des fils, le revêtement de laiton facilite le tréfilage du fil, ainsi que le collage du fil avec le caoutchouc. Bien entendu, les fils pourraient être recouverts d'une fine couche métallique autre que du laiton, ayant par exemple pour fonction d'améliorer la résistance à la corrosion de ces fils et/ou leur adhésion au caoutchouc, par exemple une fine couche de Co, Ni, Zn, Al, d'un alliage de deux ou plus des composés Cu, Zn, Al, Ni, Co, Sn.
III-2. Réalisation des câbles
Les fils précédents sont ensuite assemblés sous forme de câbles à couches de structure [1+5+10]. Ces câbles sont fabriqués avec des dispositifs de câblage (câbleuse Barmag) et selon des procédés bien connus de l'homme du métier qui ne sont pas décrits ici pour la simplicité de l'exposé. En raison de pas pi et p2 différents, ils sont réalisés en deux opérations successives (fabrication d'un câble [1+5] puis câblage de la dernière couche autour de ce câble [1+5]), ces deux opérations pouvant avantageusement être réalisées en ligne à l'aide de deux câbleuses disposées en série. Ces câbles conformes à l'invention présentent les caractéristiques suivantes:
structure [l+5+l'O] d0 = d2 = 0,26 ; d, = 0,28 ; (d0/ d,) = 0,93 ; . - (d, / d2) = l,08 ;
- p, = 10 (S) ; p2 = 15 (S) .
Les fils F2 des couches Cl et C2 sont enroulés dans le même sens de torsion (direction S). Le câble testé est dépourvu de frette et a un diamètre d'environ 1,34 mm. L'âme de ce câble a un diamètre d0 égal à celui de son fil unique, pratiquement dépourvu de torsion sur lui-même.
Le câble de l'invention exemplifié ici est un câble à couches tubulaires tel que schématisé en coupe transversale sur la figure 1, déjà commentée précédemment. Il se distingue des câbles de l'art antérieur notamment par le fait que sa couche externe C2 comporte deux fils en moins qu'un câble conventionnel saturé et que ses pas pi et p2 sont différents tout en vérifiant par ailleurs la relation (v) précitée. En d'autres termes, dans ce câble, P est inférieur de 2 au nombre maximal (ici Pmax ≈ 12) de fils enroulables en une couche unique saturée autour de la couche Cl. Pour augmenter encore sa pénétrabilité par le caoutchouc, les fils de la couche Cl ont été choisis de diamètre supérieur à ceux de la couche C2 dans un rapport (dJd2) préférentiel compris entre 1,05 et 1,15.
On note que ce câble de l'invention (N = 5) vérifie bien les caractéristiques suivantes:
(i) 0,10 < d0 < 0,50
(ii) 0,25 < d, < 0,40
(iii) 0,25 < d2 < 0,40
(iv) 0,70 < (d0/ dι) < 1,10 ;
(v) 4,8 π (d0 + di) < pi < p2 < 5,6 π (d0 + 2d, + d2) ;
(vi) les fils des couches Cl et C2 sont enroulés dans le même sens de torsion.
Ce câble C-I a montré une excellente pénétrabilité par le caoutchouc, mesurée au test de perméabilité à l'air. Il vérifie en outre chacune des relations préférentielles suivantes:
0,20 < d0 < 0,30 . 0,25 < d, < 0,35 0,25 < d2 < 0,35 - 5,0 π (d0+ d < Pi < p2 < 5,0 π (d0+ 2dι + d2) ;
Les propriétés mécaniques de ce câble sont indiquées dans le tableau 2 ci-après.
L'allongement At indiqué pour le câble est l'allongement total enregistré à la rupture du câble, c'est-à-dire intégrant à la fois la partie élastique de l'allongement (loi de Hooke), la partie plastique de l'allongement et la partie dite structurale de l'allongement inhérente à la géométrie spécifique du câble testé.
III-3. Réalisation des pneumatiques
Pour la fabrication des pneumatiques de l'invention, on procède de la manière suivante.
Les câbles à couches précédents sont incorporés par calandrage à un tissu caoutchouté formé d'une composition connue à base de caoutchouc naturel et de noir de carbone à titre de charge renforçante, utilisée conventionnellement pour la fabrication des nappes d'armature de sommet pour pneumatiques radiaux (module MA 10 égal à 18 MPa environ, après cuisson). Cette composition comporte essentiellement, en plus de l'élastomère et de la charge renforçante, un antioxydant, de l'acide stéarique, une résine renforçante (résine phénolique plus donneur de méthylène), du naphténate de cobalt en tant que promoteur d'adhésion, enfin un système de vulcanisation (soufre, accélérateur, ZnO). Dans le tissu de caoutchouc, les câbles sont disposés parallèlement de manière connue, selon une densité de câbles déterminée, par exemple de 40 câbles par dm de nappe, ce qui, compte tenu du diamètre des câbles, équivaut à une largeur "-#" des ponts de caoutchouc, entre deux câbles adjacents, comprise dans un domaine particulièrement préférentiel de 1,0 à 1,4 mm (dans le cas présent, environ 1,16 mm).
Les pneumatiques, fabriqués de manière connue, sont tels que schématisés sur la figure 2, déjà commentée. Leur armature de carcasse radiale 7 est par exemple constituée d'une seule nappe radiale formé d'un tissu caoutchouté conventionnel comportant des câbles métalliques conventionnels disposés selon un angle d'environ 90° avec le plan circonférentiel médian.
Quant à l'armature de sommet 6, elle est constituée de (i) deux nappes de travail superposées croisées, renforcées de câbles métalliques inclinés de 22 degrés, ces deux nappes de travail étant recouvertes par (ii) une nappe sommet de protection renforcée de câbles métalliques élastiques conventionnels inclinés de 22 degrés. Chacune des deux nappes de travail est formée du tissu caoutchouté selon l'invention.
En résumé, les câbles de l'invention permettent de réduire les phénomènes de corrosion et de fatigue-corrosion, notamment dans des conditions de fatigue sous compression, en particulier dans les armatures de sommet des pneumatiques radiaux, et d'améliorer ainsi la longévité de •telles armatures de sommet.
Leur construction spécifique rend possible, lors du moulage et/ou de la- cuisson des pneumatiques, une migration quasiment complète du caoutchouc à l'intérieur de câble, jusqu'au coeur de ce dernier, sans formation de canaux vides. Le câble, ainsi rendu imperméable par le caoutchouc, se trouve protégé des flux d'oxygène et d'humidité qui transitent par exemple depuis la bande de roulement des pneumatiques vers les zones de l'armature de sommet, où le câble de manière connue est soumis aux agressions externes les plus fréquentes.
Bien entendu, l'invention n'est pas limitée aux exemples de réalisation précédemment décrits.
C'est ainsi par exemple que l'âme CO des câbles de l'invention pourrait être constituée d'un fil à section non circulaire, par exemple déformé plastiquement, notamment un fil de section sensiblement ovale ou polygonale, par exemple triangulaire, carrée ou encore rectangulaire ; l'âme CO pourrait aussi être constituée d'un fil préformé, de section circulaire ou non, par exemple un fil ondulé, vrillé, tordu en forme d'hélice ou en zig-zag. Dans de tels cas, il faut bien sûr comprendre que le diamètre d0 de l'âme représente le diamètre du cylindre de révolution imaginaire qui entoure le fil d'âme (diamètre d'encombrement), et non plus le diamètre (ou toute autre taille transversale, si sa section n'est pas circulaire) du fil d'âme lui- même. Il en serait de même si l'âme CO était formée non pas d'un seul fil comme dans les exemples précédents, mais de plusieurs fils assemblés entre eux, par exemple de deux fils disposés parallèlement l'un à l'autre ou bien tordus ensemble, dans une direction de torsion identique ou non à celle de la couche intermédiaire Cl .
Pour des raisons de faisabilité industrielle, de coût et de performance globale, on préfère toutefois mettre en oeuvre l'invention avec un seul fil d'âme linéaire conventionnel, de section circulaire.
D'autre part, le fil d'âme étant moins sollicité lors de l'opération de câblage que les autres fils, compte tenu de sa position dans le câble, il n'est pas nécessaire pour ce fil d'employer par exemple des compositions d'acier offrant une ductilité en torsion élevée ; on pourra avantageusement utiliser tout type d'acier, par exemple un acier inoxydable, afin d'aboutir par exemple à un câble d'acier hybride tel que décrit dans la demande WO98/41682 précitée, comportant un fil en acier inoxydable au centre et des fils en acier au carbone autour.
En outre, un (au moins un) fil linéaire d'une des deux couches Cl et/ou C2 pourrait lui aussi être remplacé par un fil préformé ou déformé, ou plus généralement par un fil de section différente de celle des autres fils de diamètre di et/ou d2, de manière par exemple à améliorer encore la pénétrabilité du câble par le caoutchouc ou toute autre matière, le diamètre d'encombrement de ce fil de remplacement pouvant être inférieur, égal ou supérieur au diamètre (di et/ou d2) des autres fils constitutifs de la couche (Cl et/ou C2) concernée.
Sans que l'esprit de l'invention soit modifié, tout ou partie des fils constituant le câble conforme à l'invention pourrait être constitué de fils autres que des fils en acier, métalliques ou non, notamment des fils en matière minérale ou organique à haute résistance mécanique, par exemple des monofilaments en polymères organiques cristaux liquides tels que décrits dans la demande WO92/12018.
L'invention concerne également tout câble d'acier multitorons. ^multi-strand rope") dont la structure incorpore au moins, en tant que toron élémentaire, un câble à couches conforme à l'invention. .

Claims

RENENDICATIONS
1. Câble multicouches à couche externe insaturée, utilisable comme élément de renforcement d'une armature de sommet de pneumatique, comportant une âme (notée CO) de diamètre d0 entourée d'une couche intermédiaire (notée Cl) de quatre ou cinq fils (N = 4 ou 5) de diamètre di enroulés ensemble en hélice selon un pas pi, cette couche Cl étant elle-même entourée d'une couche externe (notée C2) de P fils de diamètre d2 enroulés ensemble en hélice selon un pas p2, P étant inférieur de 1 à 3 au nombre maximal Pmax de fils enroulables en une couche autour de la couche Cl, ce câble étant caractérisé en ce qu'il présente les caractéristiques suivantes (d0, dh d2, pi et p2 en mm):
- (i) 0,10 < d0 < 0,50
- (ii) 0,25 < d, < 0,40 - (fii) 0,25 < d2 < 0,40
- (iv) pour N = 4 : 0,40 < (d0/ dι) < 0,80 ; pour N = 5 : 0,70 < (d0/ dι) < 1,10 ;
- (v) 4,8 π (d0 + d < p, < p2 < 5,6 π (d0 + 2dj + d2) ;
- (vi) les fils des couches Cl et C2 sont enroulés dans le même sens de torsion.
2. Câble selon la revendication 1, de construction [1+N+P], dont l'âme est constituée par un seul fil.
3. Câble selon la revendication 2, choisi parmi les câbles de constructions [1+4+8], [1+4+9], [1+4+10], [1+5+9], [1+5+10] et [1+5+11].
4. Câble selon les revendications 2 ou 3, de construction [1+5+P].
5. Câble selon la revendication 4, de construction [1+5+10]. ,
6. Câble selon la revendication 4, de construction [1+5+1 1].
7. Câble selon l'une quelconque des revendications 1 à 6, vérifiant la relation suivante:
- 0,25 < d, < 0,35 ;
0,25 < d2 < 0,35 .
8 Câble selon l'une quelconque des revendications 1 à 7, vérifiant la relation suivante:
0,15 < d0 < 0,30 .
9. Câble selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il s'agit d'un câble d'acier.
10 Câble selon la revendication 8, caractérisé en ce que l'acier est un acier au carbone.
11. Câble selon l'une quelconque des revendications 1 à 10, vérifiant la relation:
5,0 π (d0+ di) < pi < p2 < 5,0 π (d0+ 2dι + d2) .
12. Câble selon la revendication 11 , vérifiant la relation:
5,3 π (d0+ d,) < Pi < p2 < 4,7 π (d0+ 2dι + d2) .
13. Câble selon l'une quelconque des revendications 1 à 12, dans lequel le rapport (dι/d2) est compris entre 1,05 et 1,30.
14. Câble selon la revendication 13, dans lequel le rapport (d]/d2) est compris entre 1,05 et 1,15.
15. Utilisation d'un câble selon l'une quelconque des revendications 1 à 14 comme élément de renforcement d'articles ou de produits semi-finis en matière plastique et/ou en caoutchouc.
16. Utilisation d'un câble selon l'une quelconque des revendications 1 à 14 comme élément de renforcement d'une armature de sommet de pneumatique radial.
17. Pneumatique radial dont l'armature de sommet comporte un câble conforme à l'une quelconque des revendications 1 à 14.
18. Tissu composite utilisable comme nappe d'armature de sommet de pneumatique radial, comportant une .matrice de composition de caoutchouc renforcée d'un câble selon l'une quelconque des revendications 1 à 14.
19. Tissu selon la revendication 18, sa densité de câbles étant comprise entre 20 et 70 câbles par dm de tissu.
20. Tissu selon la revendication 19, la densité de câbles étant comprise entre 30 et 60 câbles par dm de tissu.
21. Tissu selon l'une quelconque des revendications 18 à 20, la largeur notée -υ du pont de composition de caoutchouc, entre deux câbles adjacents, étant comprise entre 0,5 et 2,0 mm.
22. Tissu selon la revendication 21, la largeur -o étant comprise entre 0,8 et 1,6 mm.
23. Tissu selon l'une quelconque des revendications 18 à 22, la composition de caoutchouc présentant, à l'état vulcanisé, un module sécant en extension MA10 qui est supérieur à 5 MPa.
24. Tissu selon la revendication 23, la composition de caoutchouc présentant, à l'état vulcanisé, un module MA 10 compris entre 5 et 20 MPa.
25. Tissu selon l'une quelconque des revendications 18 à 24, le caoutchouc étant du caoutchouc naturel.
26. Pneumatique radial dont l'armature de sommet comporte, à titre de nappe renforçante, au moins un tissu selon l'une quelconque des revendications 18 à 25.
EP01991875A 2001-01-04 2001-12-21 Cable d'acier multicouches pour armature de sommet de pneumatique Withdrawn EP1349983A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0100281 2001-01-04
FR0100281 2001-01-04
PCT/EP2001/015189 WO2002053827A1 (fr) 2001-01-04 2001-12-21 Cable d'acier multicouches pour armature de sommet de pneumatique

Publications (1)

Publication Number Publication Date
EP1349983A1 true EP1349983A1 (fr) 2003-10-08

Family

ID=8858666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01991875A Withdrawn EP1349983A1 (fr) 2001-01-04 2001-12-21 Cable d'acier multicouches pour armature de sommet de pneumatique

Country Status (4)

Country Link
US (1) US6766841B2 (fr)
EP (1) EP1349983A1 (fr)
JP (1) JP2004527666A (fr)
WO (1) WO2002053827A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005113875A (ru) * 2002-10-11 2005-11-10 Сосьете Де Текноложи Мишлен (Fr) Брекер шины на основе неорганического наполнителя и силанового полисульфида
FR2864556B1 (fr) * 2003-12-24 2006-02-24 Michelin Soc Tech Cable a couches pour armature de carcasse de pneumatique
FR2873721A1 (fr) * 2004-08-02 2006-02-03 Michelin Soc Tech Cable a couches pour armature de sommet de pneumatique
CN102292222A (zh) * 2009-01-28 2011-12-21 贝卡尔特公司 用作椭圆形绳芯部的弯皱且扁平的金属线
FR2953451B1 (fr) * 2009-12-04 2011-12-09 Soc Tech Michelin Pneumatique comportant des cables d'armature de carcasse hybrides
FR2971187B1 (fr) * 2011-02-03 2013-03-08 Michelin Soc Tech Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2971188B1 (fr) 2011-02-03 2013-03-08 Michelin Soc Tech Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2986455B1 (fr) * 2012-02-08 2014-10-31 Michelin & Cie Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
FR2987310B1 (fr) 2012-02-29 2014-03-21 Michelin & Cie Stratifie multicouche utilisable pour le renforcement d'une ceinture de pneumatique
FR2999614B1 (fr) * 2012-12-14 2015-08-21 Michelin & Cie Cable metallique a couches a haute penetrabilite
CN113123149A (zh) * 2021-04-22 2021-07-16 江苏兴达钢帘线股份有限公司 一种具有渗胶结构的钢帘线及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781016A (en) 1987-02-16 1988-11-01 Bridgestone Corporation Steel cords
JPH05302282A (ja) 1992-04-24 1993-11-16 Bridgestone Corp ゴム物品補強用スチールコード及び重荷重用空気入りラジアルタイヤ
JP3220318B2 (ja) 1993-12-28 2001-10-22 株式会社ブリヂストン ゴム物品補強用スチールコード、その製造方法およびそれを使用した空気入りラジアルタイヤ
EP0675223A1 (fr) * 1994-03-24 1995-10-04 N.V. Bekaert S.A. Câble d'acier à plusieurs couches
JP3455352B2 (ja) 1994-12-26 2003-10-14 株式会社ブリヂストン ゴム補強用スチールコード及びそれを使用したラジアルタイヤ
US5806296A (en) * 1995-05-26 1998-09-15 Bridgestone Metalpha Corporation Corrosion resistant spiral steel filament and steel cord made therefrom
WO1997039176A1 (fr) 1996-04-18 1997-10-23 Bridgestone Corporation Cable d'acier destine au renfort d'article en caoutchouc et pneumatique
AU6729798A (en) 1997-03-14 1998-10-12 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Hybrid steel cord for tyre
FR2795751A1 (fr) 1999-06-29 2001-01-05 Michelin Soc Tech Cable d'acier multicouches pour carcasse de pneumatique
WO2001049926A1 (fr) * 1999-12-30 2001-07-12 Societe De Technologie Michelin Cable d'acier multicouches pour carcasse de pneumatique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02053827A1 *

Also Published As

Publication number Publication date
US20040060275A1 (en) 2004-04-01
JP2004527666A (ja) 2004-09-09
WO2002053827A1 (fr) 2002-07-11
US6766841B2 (en) 2004-07-27

Similar Documents

Publication Publication Date Title
EP1200671B1 (fr) Cable d&#39;acier multicouches pour carcasse de pneumatique
EP1246964B1 (fr) Cable d&#39;acier multicouches pour carcasse de pneumatique
EP1699973B1 (fr) Cable metallique a trois couches pour armature de carcasse de pneumatique
EP2855763B1 (fr) Procede de fabrication d&#39;un câble metallique multi-torons à deux couches
EP3559337B1 (fr) Câble multi-torons à deux couches à pénétrabilité améliorée
FR2990963A1 (fr) Cable metallique multi-torons a deux couches.
WO2014090996A2 (fr) Câble métallique à couches à haute pénétrabilité
FR2959517A1 (fr) Cable metallique multitorons elastique a haute permeabilite.
WO2006013077A1 (fr) Cable a couches pour ceinture de pneumatique
EP3559338B1 (fr) Câble multi-torons à deux couches à pénétrabilité améliorée
EP3810846B1 (fr) Câble multi-torons à deux couches à pénétrabilité améliorée
EP4061996B1 (fr) Câble multi-torons à deux couches à énergie de rupture surfacique améliorée
WO2002053827A1 (fr) Cable d&#39;acier multicouches pour armature de sommet de pneumatique
WO2002053828A1 (fr) Cable d&#39;acier multicouches pour armature de sommet de pneumatique
WO2019243690A1 (fr) Câble multi-torons à deux couches à pénétrabilité améliorée
WO2014090999A2 (fr) Câble métallique à couches cylindriques de structure 3+9+14
WO2014090998A2 (fr) Câble métallique à couches cylindriques de structure 2+9+14
EP4240897A1 (fr) Câble multi-torons à deux couches avec couche interne gainée à pénétrabilité améliorée
WO2019243689A1 (fr) Câble multi-torons à deux couches à pénétrabilité améliorée
WO2019243692A1 (fr) Câble multi-torons à deux couches à pénétrabilité améliorée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BARGUET, HENRI

Inventor name: DOMINGO, ALAIN

Inventor name: CORDONNIER, FRANEOIS-JACQUES

17Q First examination report despatched

Effective date: 20041102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050513