EP1699973A1 - Cable metallique a trois couches pour armature de carcasse de pneumatique - Google Patents
Cable metallique a trois couches pour armature de carcasse de pneumatiqueInfo
- Publication number
- EP1699973A1 EP1699973A1 EP04804256A EP04804256A EP1699973A1 EP 1699973 A1 EP1699973 A1 EP 1699973A1 EP 04804256 A EP04804256 A EP 04804256A EP 04804256 A EP04804256 A EP 04804256A EP 1699973 A1 EP1699973 A1 EP 1699973A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cable according
- rubber
- layer
- wires
- cables
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002787 reinforcement Effects 0.000 title claims description 51
- 239000002184 metal Substances 0.000 title claims description 9
- 229910052751 metal Inorganic materials 0.000 title claims description 9
- 229920001971 elastomer Polymers 0.000 claims abstract description 91
- 239000005060 rubber Substances 0.000 claims abstract description 74
- 229910000975 Carbon steel Inorganic materials 0.000 claims abstract description 13
- 244000043261 Hevea brasiliensis Species 0.000 claims abstract description 13
- 239000010962 carbon steel Substances 0.000 claims abstract description 13
- 229920003052 natural elastomer Polymers 0.000 claims abstract description 13
- 229920001194 natural rubber Polymers 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229920003051 synthetic elastomer Polymers 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 39
- 229920003244 diene elastomer Polymers 0.000 claims description 25
- 229910000831 Steel Inorganic materials 0.000 claims description 21
- 239000010959 steel Substances 0.000 claims description 21
- 238000010276 construction Methods 0.000 claims description 18
- 239000000806 elastomer Substances 0.000 claims description 17
- 229920001577 copolymer Polymers 0.000 claims description 15
- 239000004744 fabric Substances 0.000 claims description 11
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Natural products CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 9
- 239000011324 bead Substances 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- 239000004033 plastic Substances 0.000 claims description 7
- 229920003023 plastic Polymers 0.000 claims description 7
- 229920006395 saturated elastomer Polymers 0.000 claims description 7
- 239000006229 carbon black Substances 0.000 claims description 5
- 239000012763 reinforcing filler Substances 0.000 claims description 5
- 239000011265 semifinished product Substances 0.000 claims description 3
- 229920002857 polybutadiene Polymers 0.000 claims description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 2
- 239000005061 synthetic rubber Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 123
- 238000012360 testing method Methods 0.000 description 18
- 150000001993 dienes Chemical class 0.000 description 14
- 239000003570 air Substances 0.000 description 13
- 230000035515 penetration Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 11
- 238000005096 rolling process Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 238000005482 strain hardening Methods 0.000 description 6
- 229910001369 Brass Inorganic materials 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 239000010951 brass Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000004073 vulcanization Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000003490 calendering Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- NAHBVNMACPIHAH-HLICZWCASA-N p-ii Chemical compound C([C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H]2CSSC[C@H](NC(=O)[C@H](CC=3C=CC=CC=3)NC(=O)CNC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC2=O)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(N)=O)=O)C(C)C)C1=CC=CC=C1 NAHBVNMACPIHAH-HLICZWCASA-N 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 229920000034 Plastomer Polymers 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002318 adhesion promoter Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- -1 vinyl aromatic compounds Chemical class 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920006027 ternary co-polymer Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000012936 vulcanization activator Substances 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/062—Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
- D07B1/0633—Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/02—Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/16—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
- D07B1/162—Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0646—Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0646—Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
- D07B1/0653—Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires in the core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/10—Rope or cable structures
- D07B2201/1028—Rope or cable structures characterised by the number of strands
- D07B2201/1036—Rope or cable structures characterised by the number of strands nine or more strands respectively forming multiple layers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2023—Strands with core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2024—Strands twisted
- D07B2201/2025—Strands twisted characterised by a value or range of the pitch parameter given
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2024—Strands twisted
- D07B2201/2027—Compact winding
- D07B2201/2028—Compact winding having the same lay direction and lay pitch
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2024—Strands twisted
- D07B2201/2029—Open winding
- D07B2201/2031—Different twist pitch
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2038—Strands characterised by the number of wires or filaments
- D07B2201/204—Strands characterised by the number of wires or filaments nine or more wires or filaments respectively forming multiple layers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2041—Strands characterised by the materials used
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2042—Strands characterised by a coating
- D07B2201/2043—Strands characterised by a coating comprising metals
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2042—Strands characterised by a coating
- D07B2201/2044—Strands characterised by a coating comprising polymers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2042—Strands characterised by a coating
- D07B2201/2045—Strands characterised by a coating comprising multiple layers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2046—Strands comprising fillers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2059—Cores characterised by their structure comprising wires
- D07B2201/206—Cores characterised by their structure comprising wires arranged parallel to the axis
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2059—Cores characterised by their structure comprising wires
- D07B2201/2061—Cores characterised by their structure comprising wires resulting in a twisted structure
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2059—Cores characterised by their structure comprising wires
- D07B2201/2062—Cores characterised by their structure comprising wires comprising fillers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2065—Cores characterised by their structure comprising a coating
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2071—Spacers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2075—Fillers
- D07B2201/2079—Fillers characterised by the kind or amount of filling
- D07B2201/2081—Fillers characterised by the kind or amount of filling having maximum filling
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2095—Auxiliary components, e.g. electric conductors or light guides
- D07B2201/2097—Binding wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/10—Natural organic materials
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/201—Polyolefins
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2075—Rubbers, i.e. elastomers
- D07B2205/2078—Rubbers, i.e. elastomers being of natural origin
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2075—Rubbers, i.e. elastomers
- D07B2205/2082—Rubbers, i.e. elastomers being of synthetic nature, e.g. chloroprene
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2401/00—Aspects related to the problem to be solved or advantage
- D07B2401/20—Aspects related to the problem to be solved or advantage related to ropes or cables
- D07B2401/208—Enabling filler penetration
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2046—Tire cords
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2076—Power transmissions
Definitions
- the present invention relates to three-layer metallic cables usable as reinforcing elements for rubber and / or plastic articles.
- It relates in particular to the reinforcement of tires, more particularly to the reinforcement of the carcass reinforcement of tires for industrial vehicles such as Heavy goods vehicles.
- Steel cables (“steel cords”) for tires generally consist of pearlitic (or ferrito-perlitic) carbon steel wires, hereinafter referred to as "carbon steel", the carbon content of which (% by steel weight) is generally between 0.1% and 1.2%, the diameter of these wires being most often between 0.10 and 0.40 mm (millimeter).
- carbon steel the carbon content of which (% by steel weight) is generally between 0.1% and 1.2%, the diameter of these wires being most often between 0.10 and 0.40 mm (millimeter).
- These wires are required to have a very high tensile strength, generally greater than 2000 MPa, preferably greater than 2500 MPa, obtained by virtue of the structural hardening occurring during the work hardening phase of the wires.
- These wires are then assembled in the form of cables or strands, which requires the steels used that they also have sufficient torsional ductility to support the various wiring operations.
- layered cords or “multilayer” steel cables consisting of a central layer and one or more layers of practically concentric wires arranged around this central layer.
- These layered cables which favor longer contact lengths between the wires, are preferred to the older so-called “strand cords” cables because on the one hand of a greater compactness, on the other hand part of a lower sensitivity to wear by fretting.
- strand cords there are in particular, in a known manner, cables with a compact structure and cables with tabular or cylindrical layers.
- the most common layered cables in truck tire carcasses are cables of formula L + M or L + M + N, the latter being generally intended for larger tires. These cables are formed in a known manner of an internal layer of L wire (s) surrounded by a layer of M wires itself surrounded by an external layer of N wires, with in general L varying from 1 to 4, M varying from 3 to 12, N varying from 8 to 20, the assembly possibly being hooped by an external hoop wire wound in a helix around the last layer.
- the layered cables must first of all have good flexibility and high endurance in bending, which implies in particular that their wires have a relatively small diameter, preferably less than 0, 28 mm, more preferably less than 0.25 mm, generally smaller than that of the wires used in conventional cables for the crown reinforcement of tires.
- cables with construction layers 3 + 9 + 15 have been proposed, consisting of an inner layer of 3 wires surrounded by an intermediate layer of 9 wires and an outer layer of 15 wires, the diameter of the wires of the central or internal layer being or not superior to that of the wires of the other layers.
- These cables cannot be penetrated to the core because of the presence of a channel or capillary at the center of the three wires of the inner layer, which remains empty after impregnation with the rubber, and therefore conducive to the propagation of corrosive media such as than water.
- RD Research Disclosure
- 34370 describes cables of structure 1 + 6 + 12, of the compact type or with concentric tubular layers, consisting of an inner layer formed of a single wire, surrounded by an intermediate layer of 6 wires itself surrounded by an outer layer of 12 wires.
- the penetrability by rubber can be improved by using different wire diameters from one layer to another, or even within the same layer.
- Construction cables 1 + 6 + 12 whose penetrability is improved thanks to an appropriate choice of the diameters of the wires, in particular the use of a central wire of larger diameter, have also been described, for example in EP documents -A-648 891 or WO-A-98/41682.
- multilayer cables have been proposed with a central layer surrounded by at least two concentric layers, for example cables of formula 1 + 6 + N, in particular 1 + 6 + 11, the outer layer of which is unsaturated (incomplete), thus ensuring better penetration by the rubber (see for example patent documents EP-A-719 889 and WO-A-98/41682) .
- the proposed constructions allow the elimination of the hoop wire, thanks to a better penetration of the rubber through the outer layer and the resulting auto-frettage; However, experience shows that these cables are not penetrated to the core by the rubber, at least not yet optimally.
- the cables When used for the reinforcement of tire carcasses, the cables must not only resist corrosion but also satisfy a large number of criteria, sometimes contradictory, in particular of toughness, resistance to fretting, high adhesion to rubber, uniformity, flexibility, endurance in bending or repeated traction, stability under strong bending, etc.
- This cable of the invention has, thanks to a specific architecture, not only excellent penetrability by rubber, limiting corrosion problems, but also fatigue-fretting endurance properties which are significantly improved compared to cables of the prior art. The longevity of HGV tires and that of their carcass reinforcement are thus very significantly improved.
- a first object of the invention is a cable with three layers of construction L + M + N which can be used as a reinforcing element for a tire carcass reinforcement, comprising an internal layer (Cl) of diameter d] with L going from 1 to 4, surrounded by at least one intermediate layer (C2) with M wires of diameter d 2 wound together in a helix at a pitch p 2 with M going from 3 to 12, said intermediate layer C2 being surrounded by a outer layer C3 of N wires of diameter d 3 wound together in a helix at a pitch p 3 with N ranging from 8 to 20, this cable being characterized in that a sheath made of a crosslinkable or crosslinked rubber composition based on d 'at least one diene elastomer covers at least said layer C2.
- the invention also relates to the use of a cable according to the invention for the reinforcement of articles or semi-finished products made of plastic and / or rubber, for example plies, pipes, belts, conveyor belts, tires, more particularly tires intended for industrial vehicles usually using a metal carcass reinforcement.
- the cable of the invention is very particularly intended to be used as a reinforcing element for a tire carcass reinforcement intended for industrial vehicles chosen from vans, "Heavy vehicles” - ie, metro, bus, road transport vehicles (trucks, tractors, trailers), off-road vehicles -, machinery, agricultural or civil engineering, airplanes, other transport or handling vehicles.
- industrial vehicles chosen from vans, "Heavy vehicles” - ie, metro, bus, road transport vehicles (trucks, tractors, trailers), off-road vehicles -, machinery, agricultural or civil engineering, airplanes, other transport or handling vehicles.
- this cable of the invention could also be used, according to other particular embodiments of the invention, to reinforce other parts of the tires, in particular belts or crown reinforcements of such tires, in particular of tires industrial companies such as Heavy goods vehicles or civil engineering.
- the invention further relates to these semi-finished articles or products made of plastic and / or rubber themselves when they are reinforced with a cable according to the invention, in particular the tires intended for the industrial vehicles mentioned above. , more particularly truck tires, as well as composite fabrics comprising a rubber composition matrix reinforced with a cable according to the invention, usable as a carcass reinforcement ply or at the top of such tires.
- the invention as well as its advantages will be easily understood in the light of the description and of the exemplary embodiments which follow, as well as of figures 1 to 3 relating to these examples which reproduce or schematize, respectively: - a photograph taken under the microscope (magnification 40) a cross section of a construction control cable 1 + 6 + 12 (Fig. 1); - a snapshot taken under the microscope (magnification 40) of a cross section of a cable according to the invention of construction 1 + 6 + 12 (Fig. 2);
- the air permeability test is a simple means of indirectly measuring the cable penetration rate with a rubber composition. It is carried out on cables extracted directly, by shelling, from the vulcanized rubber sheets which they reinforce, therefore penetrated by the cooked rubber.
- the test is carried out on a determined cable length (for example 2 cm) in the following manner: air is sent to the cable inlet, under a given pressure (for example 1 bar), and the volume is measured air at the outlet, using a flow meter; during the measurement, the cable sample is locked in a tight seal so that only the quantity of air passing through the cable from one end to the other, along its longitudinal axis, is taken into account by the measurement.
- the measured flow rate is lower the higher the penetration rate of the cable by the rubber.
- Truck tires are manufactured for this, the carcass reinforcement of which consists of a single rubberized ply reinforced by the cables to be tested. These tires are mounted on suitable known rims and inflated to the same pressure (with an overpressure relative to the nominal pressure) with air saturated with humidity. These tires are then rolled on an automatic rolling machine, under a load very high (overload compared to the nominal load) and at the same speed, for a determined number of kilometers. At the end of rolling, the cables are extracted from the carcass of the tire, by shelling, and the residual breaking force is measured both on the wires and on the cables thus tired.
- tires identical to the previous ones are produced and they are peeled in the same way as above, but this time without subjecting them to running. In this way, after shelling, the initial breaking force of the non-tired wires and cables is measured.
- ⁇ Fm and expressed in% the lapse of force-rupture after fatigue (noted ⁇ Fm and expressed in%), by comparing the residual force-rupture to the initial force-rupture.
- This lapse ⁇ Fm is due to the fatigue and wear (reduction in section) of the wires caused by the joint action of the various mechanical stresses, in particular the intense work of the contact forces between the wires, and the water coming from the ambient air, in other words to the fatigue-fretting-corrosion undergone by the cable inside the tire, during rolling.
- the three-layer cable according to the invention of construction L + M + N, comprises an internal layer C1 of diameter di consisting of L wires, surrounded by an intermediate layer C2 of diameter d 2 consisting of M wires , which is surrounded by an outer layer C3 of diameter d 3 consisting of N wires.
- a sheath made of a crosslinkable or crosslinked rubber composition based on at least one diene elastomer covers at least said layer C2. It should be understood that the layer C1 could itself be covered with this rubber sheath.
- composition based on at least one diene elastomer it is understood in known manner that the composition comprises in the majority (ie according to a mass fraction greater than 50%) this or these diene elastomers.
- the sheath according to the invention extends continuously around said layer C2 which it covers (that is to say that this sheath is continuous in the "orthoradial" direction of the cable which is perpendicular radius), so as to form a continuous sleeve of cross section which is advantageously practically circular.
- the rubber composition of this sheath is crosslinkable or crosslinked, that is to say that it by definition comprises a crosslinking system suitable for allowing the crosslinking of the composition during its curing (ie, its hardening and not its merger); thus, this rubber composition can be described as infusible, since it cannot be melted by heating at any temperature whatsoever.
- iene elastomer or rubber in known manner an elastomer derived at least in part (i.e. a homopolymer or a copolymer) from diene monomers (monomers carrying two carbon-carbon double bonds, conjugated or not).
- Diene elastomers can be classified in a known manner into two categories: those called “essentially unsaturated” and those called “essentially saturated”.
- the term “essentially unsaturated” diene elastomer is understood here to mean a diene elastomer derived at least in part from conjugated diene monomers, having a proportion of units or units of diene origin (conjugated dienes) which is greater than 15% (% in moles).
- diene elastomers such as butyl rubbers or copolymers of dienes and of alpha-olefins of the EPDM type do not come within the preceding definition and can be qualified in particular as "essentially saturated” diemic elastomers.
- the expression “highly unsaturated” diene elastomer is understood in particular to mean a diene elastomer having a rate of units of diene origin (conjugated dienes) which is greater than 50%.
- the present invention is firstly implemented with essentially unsaturated diene elastomers, in particular of the type (a) or (b) above.
- the diene elastomer is preferably chosen from the group consisting of polybutadienes (BR), natural rubber (NR), synthetic polyisoprenes (IR), the different butadiene copolymers, the different isoprene copolymers, and the mixtures of these elastomers.
- Such copolymers are more preferably chosen from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR) and isoprene copolymers- butadiene-styrene (SBIR).
- the diene elastomer chosen is mainly (that is to say, say for more than 50 pce) made of an isoprene elastomer.
- isoprene elastomer is understood to mean, in known manner, an isoprene homopolymer or copolymer, in other words a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), the various isoprene copolymers and mixtures of these elastomers.
- the diene elastomer chosen is exclusively (that is to say per 100 phr) made of natural rubber, synthetic polyisoprene or a mixture of these elastomers, synthetic polyisoprene having a rate (mol%) of cis-1,4 bonds preferably greater than 90%, more preferably still greater than 98%.
- the rubber sheath of the cable of the invention can contain one or more diene elastomer (s), the latter being able to be used in combination with any type of synthetic elastomer other than diene, or even with polymers other than elastomers, for example thermoplastic polymers, these polymers other than elastomers then being present as a minority polymer.
- the rubber composition of said sheath is preferably devoid of any plastomer and that it only comprises a diene elastomer (or mixture of elastomers) as polymer base, said composition could also comprise at least one plastomer according to a mass fraction x p less than the mass fraction x e of the elastomer (s).
- the crosslinking system of the rubber sheath is a so-called vulcanization system, that is to say based on sulfur (or a sulfur donor agent) and a primary vulcanization accelerator.
- a vulcanization system that is to say based on sulfur (or a sulfur donor agent) and a primary vulcanization accelerator.
- sulfur or a sulfur donor agent
- a primary vulcanization accelerator To this basic vulcanization system can be added various secondary accelerators or known vulcanization activators.
- Sulfur is used at a preferential rate of between 0.5 and 10 phr, more preferably between 1 and 8 phr
- the primary vulcanization accelerator for example a sulfenamide, is used at a preferential rate of between 0.5 and 10 pce, more preferably between 0.5 and 5.0 pce.
- the rubber composition of the sheath according to the invention comprises, in addition to said crosslinking system, all the usual ingredients which can be used in rubber compositions for tires, such as reinforcing fillers based on carbon black and / or a filler.
- reinforcing inorganic such as silica, anti-aging agents, for example antioxidants, extension oils, plasticizers or agents facilitating the use of compositions in the raw state, methylene acceptors and donors, resins , bismaleimides, known adhesion promoter systems of the "RFS" (resorcinol-formaldehyde-silica) type or metal salts, in particular cobalt salts.
- the composition of the rubber sheath has, in the crosslinked state, a secant module in extension M 10, measured according to standard ASTM D 412 of 1998, less than 20 MPa and more preferably less than 12 MPa, in particular between 4 and 11 MPa.
- the composition of this sheath is chosen to be identical to the composition used for the rubber matrix that the cables according to the invention are intended for. to reinforce.
- the composition of this sheath is chosen to be identical to the composition used for the rubber matrix that the cables according to the invention are intended for. to reinforce.
- said composition is based on natural rubber and it comprises carbon black as reinforcing filler, for example a carbon black of grade (ASTM) 300, 600 or 700 (for example N326, N330, N347, N375 , N683, N772).
- ASTM carbon black of grade
- the layer C3 is a saturated layer, that is to say that there is not enough room in this layer to add at least one (N + 1) th wire of diameter d 3 , N then representing the maximum number of wires wound in a layer around the layer C2;
- the rubber sheath also covers the internal layer C1 and / or separates the adjacent two by two wires from the intermediate layer C2;
- the rubber sheath practically covers the radially inner half-circumference of each wire of the layer C3, so that it separates the two by two wires adjacent to this layer C3.
- the intermediate layer C2 preferably comprises six or seven wires, and the cable according to the invention then has the following preferential characteristics (d ls d 2 , d 3 , p 2 and p 3 in mm):
- the pitch represents the length, measured parallel to the axis O of the cable, at the end of which a wire having this pitch makes a complete revolution around the axis O of the cable; thus, if one cuts the axis O by two planes perpendicular to the axis O and separated by a length equal to the pitch of a wire of one of the two layers C2 or C3, the axis of this wire has in these two planes the same position on the two circles corresponding to the layer C2 or C3 of the wire considered.
- all the wires of layers C2 and G3 are wound in the same direction of twist, that is to say either in the direction S ("S / S” arrangement), or in the direction Z ("Z / Z" layout).
- the winding in the same direction of the layers C2 and C3 advantageously allows, in the cable according to the invention, to minimize the friction between these two layers C2 and C3 and therefore the wear of the wires which constitute them (since there are n there is more cross contact between the wires).
- the layer C3 has a practically circular cross section thanks to the incorporation of said sheath, as illustrated in Fig. 2.
- the coefficient of variation CV defined by the ratio (standard deviation / arithmetic mean) of the respective radii of the N wires of the layer C3 measured from the longitudinal axis of symmetry of the cable, is very small.
- the cable of the invention is a layered cable of construction denoted 1 + M + N, that is to say that its internal layer Cl consists of a single wire, as shown in FIG. 2.
- the ratios (d] / d 2 ) are preferably fixed within given limits, according to the number M (6 or 7) of wires of the layer C2, as follows:
- a too low value of the ratio can be detrimental to the wear between the internal layer and the wires of layer C2. Too high a value can affect the compactness of the cable, for a level of resistance that is ultimately little modified, as well as its flexibility; the increased rigidity of the internal layer Cl due to a diameter di too high could also be detrimental to the feasibility itself of the cable, during wiring operations.
- the maximum number N max of wires wound in a single saturated layer C3 around the layer C2 is of course a function of many parameters (diameter d ! Of the internal layer, number M and diameter d 2 of the wires of layer C2, diameter d 3 of the wires of layer C3).
- the invention is preferably implemented with a cable chosen from structural cables 1 + 6 + 10, 1 + 6 + 11, 1 + 6 + 12, 1 + 7 + 11, 1 + 7 + 12 or 1+ 7 + 13.
- the invention is more preferably implemented, in particular in the carcasses of truck tires, with cables of structure 1 + 6 + 12.
- the diameters d 2 and d 3 are preferably chosen between 0.16 and 0.19 mm: a diameter less than 0.19 mm makes it possible to reduce the level of stresses undergone by the wires during large variations in the curvature of the cables, whereas diameters greater than 0.16 mm are preferably chosen for reasons notably of resistance of the wires and of industrial cost.
- An advantageous embodiment consists, for example, in choosing p 2 and p 3 between 8 and 12 mm, advantageously with cables of structure 1 + 6 + 12.
- the rubber sheath has an average thickness ranging from 0.010 mm to 0.040 mm.
- the invention can be implemented with any type of metal wire, in particular steel, for example carbon steel wire and / or stainless steel wire.
- Carbon steel is preferably used, but it is of course possible to use other steels or other alloys.
- its carbon content (% by weight of steel) is preferably between 0.1%) and 1.2%, more preferably from 0.4% to 1.0%; these contents represent a good compromise between the mechanical properties required for the tire and the feasibility of the wire.
- a carbon content of between 0.5% and 0.6% makes such steels ultimately less expensive because they are easier to draw.
- Another advantageous embodiment of the invention may also consist, depending on the intended applications, of using steels with low carbon content (for example between 0.2%) and 0.5%, in particular due to a lower cost and easier drawing.
- the cables of the invention When the cables of the invention are used to reinforce the carcasses of tires for industrial vehicles, their cords preferably have a tensile strength greater than 2000 MPa, more preferably greater than 3000 MPa. In the case of tires of very large dimensions, it will in particular be chosen from wires whose tensile strength is between 3000 MPa and 4000 MPa. A person skilled in the art knows how to manufacture carbon steel wires having such a resistance, in particular by adjusting the carbon content of the steel and the final work hardening rates ( ⁇ ) of these wires.
- the cable of the invention could be provided with an external hoop, consisting for example of a single wire, metallic or not, wound helically around the cable at a shorter pitch than that of the external layer, and a direction d winding opposite or identical to that of this outer layer.
- an external hoop consisting for example of a single wire, metallic or not, wound helically around the cable at a shorter pitch than that of the external layer, and a direction d winding opposite or identical to that of this outer layer.
- the cable of the invention already self-hooped, generally does not require the use of an external hoop wire, which advantageously solves the problems of wear between the hoop and the wires. of the outermost layer of the cable.
- a hoop wire in the general case where the wires of the layer C3 are made of carbon steel, one can then advantageously choose a hoop wire of stainless steel in order to reduce the wear by fretting of these wires.
- the stainless steel wire made of carbon steel in contact with the stainless steel hoop, as taught by patent document WO-A-98/41682, the stainless steel wire being able to be optionally replaced, in an equivalent manner, by a composite wire of which only the skin is made of stainless steel and the core of carbon steel, as described for example in patent document EP-A-976 541.
- the cable according to the invention can be obtained according to various techniques known to those skilled in the art, for example in two stages, firstly by cladding via an extrusion head of the core or intermediate structure L + M (layers C1 + C2), step followed in a second step by a final wiring operation or twisting of the remaining N wires (layer C3) around the layer C2 thus sheathed.
- the problem of stickiness in the raw state posed by the rubber sheath, during any intermediate winding and unwinding operations can be resolved in a manner known to those skilled in the art, for example by the use of an interlayer film in plastic material.
- FIG. 3 schematically represents a radial section of a truck tire 1 with a radial carcass reinforcement which may or may not be in accordance with the invention, in this general representation.
- This tire 1 has a crown 2, two sidewalls 3 and two beads 4 in which is anchored a carcass reinforcement 7.
- the crown 2 surmounted by a tread (to simplify, not shown in FIG. 3) which is joined to said beads 4 by the two sides 3, is in a manner known per se reinforced by a crown reinforcement 6 consisting for example of at least two crossed overlapping plies, reinforced by known metal cables.
- the carcass reinforcement 7 is here anchored in each bead 4 by winding around two bead wires 5, the upturn 8 of this reinforcement 7 being for example disposed towards the outside of the tire 1 which is here shown mounted on its rim 9.
- the carcass reinforcement 7 consists of at least one ply reinforced by so-called "radial” cables, that is to say that these cables are arranged practically parallel to one another and extend from a bead to the other so as to form an angle of between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is located midway between the two beads 4 and passes through the middle of the 'crown reinforcement 6).
- this tire 1 also comprises, in a known manner, a layer of inner rubber or elastomer (commonly called “inner rubber”) which defines the radially internal face of the tire and which is intended to protect the carcass ply from the diffusion of air from the interior of the tire.
- inner rubber commonly called "inner rubber”
- it further comprises an intermediate elastomeric reinforcing layer which is situated between the carcass ply and the internal layer, intended to reinforce the internal layer and, consequently, the carcass ply, and also intended to partially relocate the forces undergone by the carcass reinforcement.
- the tire according to the invention is characterized in that its carcass reinforcement 7 comprises at least one carcass ply whose radial cables are three-layer steel cables according to the invention.
- the density of the cables according to the invention is preferably between 40 and 100 cables per dm (decimeter) of radial ply, more preferably between 50 and 80 cables per dm, the distance between two adjacent radial cables, from axis to axis, thus preferably being between 1.0 and 2.5 mm, more preferably between 1.25 and 2.0 mm.
- the cables according to the invention are preferably arranged in such a way that the width (denoted "Le") of the rubber bridge, between two adjacent cables, is between 0.35 and 1 mm. This width "Le” represents in known manner the difference between the calendering pitch (no laying of the cable in the rubber fabric) and the diameter of the cable.
- the rubber bridge which is too narrow, risks mechanical deterioration during the working of the ply, in particular during the deformations undergone in its own plane by extension or shearing. Beyond the maximum indicated, there is a risk of appearance defects appearing on the sidewalls of the tires or of objects penetrating, by perforation, between the cables. More preferably, for these same reasons, the width "Le" is chosen to be between 0.5 and 0.8 mm.
- the rubber composition used for the fabric of the carcass ply has, in the vulcanized state (ie, after baking), a secant module in extension M10 which is less than 20 MPa, more preferably less than 12 MPa, in particular between 5 and 11 MPa. It is in such a field of modules that the best endurance compromise has been recorded between the cables of the invention on the one hand, and the reinforced fabrics of these cables on the other hand.
- fine carbon steel wires are used, prepared according to known methods, starting from commercial wires whose initial diameter is approximately 1 mm.
- the steel used is for example a known carbon steel (USA standard AISI 1069), the carbon content of which is 0.70%.
- the commercial starting wires first undergo a known degreasing and / or pickling treatment before their subsequent implementation. At this stage, their breaking strength is approximately 1150 MPa, their elongation at break is approximately 10%. Copper is then deposited on each wire, followed by a zinc deposit, by electrolytic means at room temperature, and then heat is heated by Joule effect to 540 ° C. to obtain brass by diffusion of copper and zinc, the weight ratio (phase ⁇ ) / (phase ⁇ + phase ⁇ ) being equal to approximately 0.85. No heat treatment is carried out on the wire after obtaining the brass coating.
- a so-called "final” work hardening is then carried out on each wire (ie after the last heat treatment), by cold wire drawing in a wet environment with a wire drawing lubricant which is in the form of an emulsion in water.
- This wet drawing is carried out in a known manner in order to obtain the final work hardening rate (denoted ⁇ ) calculated from the initial diameter indicated previously for the starting commercial wires.
- the brass coating which surrounds the wires has a very small thickness, clearly less than a micrometer, for example of the order of 0.15 to 0.30 ⁇ m, which is negligible compared to the diameter of the steel wires.
- the composition of the steel of the wire in its various elements is the same as that of the steel of the starting wire.
- the brass coating facilitates the wire drawing, as well as the bonding of the wire with the rubber.
- the wires could be covered with a thin metallic layer other than brass, for example having the function of improving the corrosion resistance of these wires and / or their adhesion to rubber, for example a thin layer of Co , Ni, Zn, Al, an alloy of two or more of the compounds Cu, Zn, Al, Ni, Co, Sn.
- the preceding wires are then assembled in the form of cables with layers of structure 1 + 6 + 12 for the control cable of the prior art (Fig. 1) and for the cable according to the invention (Fig. 2); the wires F1 are used to form the layer C1, the wires F2 and F3 to form the layers C2 and C3 of these different cables.
- the wires F2 and F3 of the layers C2 and C3 are wound in the same direction of twist (direction Z).
- the two types of cable control cable noted CI and cable of the invention noted C-JI
- the central core formed by the layers Cl and C2 structure 1 + 6
- the cable C-II according to the invention was obtained in several stages, first by making an intermediate cable 1 + 6, then by sheathing via an extrusion head of this intermediate cable, finally followed by an operation final wiring of the 12 remaining wires around the layer C2 thus sheathed.
- an interlayer plastic film PET was used during the intermediate winding and unwinding operations.
- the layer C3 is distant from the layer C2 thanks to the cladding of the latter; the internal layer C1 is also sheathed (since it is visibly distant from the layer C2), simply because of the penetration of the rubber between the wires of the layer C2.
- the elastomeric composition constituting the rubber sheath has the same formulation, based on natural rubber and carbon black, as that of the carcass reinforcement ply which the cables are intended to reinforce.
- the above three-layer cables are then incorporated by calendering into composite fabrics formed from a known composition based on natural rubber and carbon as a reinforcing filler, conventionally used for the manufacture of carcass plies for radial truck tires.
- This composition essentially comprises, in addition to the elastomer and the reinforcing filler, an antioxidant, stearic acid, an extension oil, cobalt naphthenate as an adhesion promoter, finally a vulcanization system ( sulfur, accelerator, ZnO).
- the composite fabrics reinforced by these cables comprise a rubber matrix formed by two thin layers of rubber which are superimposed on either side of the cables and which each have a thickness of 0.75 mm.
- the calendering pitch (no laying of cables in the rubber fabric) is 1.5 mm for the two types of cables.
- the carcass reinforcement of these tires consists of a single radial ply formed of the rubberized fabrics described above.
- the tires P-I are reinforced by the cables C-I and constitute the control tires of the prior art, while the tires P-II are the tires according to the invention reinforced with the cables C-II. These tires are therefore identical except for the layered cables which reinforce their carcass reinforcement 7.
- Their crown reinforcement 6 in particular, is in a manner known per se consisting of two triangulation half-plies reinforced with metal cables inclined by 65 degrees, surmounted by two crossed overlapping working plies, reinforced by inextensible metallic cables inclined by 26 degrees (radially internal ply) and 18 degrees (radially external ply), these two working plies being covered by a protective top ply reinforced with elastic metallic cables (high elongation) inclined by 18 degrees.
- the metal cables used are known conventional cables, arranged substantially parallel to one another, and all the angles of inclination indicated are measured relative to the median circumferential plane.
- PI tires are tires sold by the Applicant for HGV vehicles and constitute, because of their recognized performance, a witness of choice for this test. These tires are subjected to a severe rolling test as described in. paragraph 1-2, by conducting the test until the forced destruction of the tires tested.
- the P-II tires in accordance with the invention show significantly greater endurance, with an average distance traveled close to 400,000 km, ie an endurance gain of around 70%.
- the average lapse ⁇ Fm is given in% in table 1 below; it is calculated both for the wires of the internal layer C1 and for the wires of layers C2 and C3. Overall ⁇ Fm lapses are also measured on the cables themselves.
- the use of the cable C-II according to the invention makes it possible to significantly increase the longevity of the carcass, which is already excellent on the control tire.
- Table 2 presents the results obtained, in terms of average air flow (average over 10 measurements - in relative units base 100 on the control cables) and number of measurements corresponding to zero air flow.
- the cables C-II of the invention are those which, by far, have the most reduced air permeability (average air flow zero or practically zero) and, consequently, the penetration rate by the highest rubber.
- the cables according to the invention made impermeable by the rubber sheath which covers their intermediate layer C2 (and the internal layer Cl), are thus protected from the oxygen and humidity flows which pass for example from the sides or the tire tread to the areas of the carcass reinforcement, where the cables in known manner are subjected to the most intense mechanical work.
- control tires (denoted P-III), under these extreme driving conditions, covered an average distance of 250,000 km, with ultimately a deformation of their bead zone due to the start of rupture of the indicator cables (denoted C-III ) in said area.
- the tires in accordance with the invention revealed markedly improved endurance, with an average distance traveled of 430,000 km, ie an endurance gain of around 70%.
- the destruction of the tires of the invention did not occur at the reinforcement reinforcement of the carcass (which continued to resist), but in the reinforcement reinforcement of the crown, which illustrates and confirms the excellent performance of the cables according to the invention.
- the cables of the invention make it possible to significantly reduce the fatigue-fretting-corrosion phenomena of cables in the carcass reinforcement of tires, in particular HGV tires, and thus improving the longevity of these tires.
- the internal layer C1 of the cables of the invention could consist of a wire with a non-circular section, for example plastically deformed, in particular a wire with a substantially oval or polygonal section, for example triangular, square or still rectangular; the layer C1 could also consist of a preformed wire, of circular section or not, for example a corrugated, twisted, twisted wire in the form of a helix or in a zig-zag.
- the diameter d] of the layer C1 represents the diameter of the imaginary cylinder of revolution which surrounds the central wire (overall diameter), and no longer the diameter (or any other transverse size , if its section is not circular) of the central wire itself.
- the layer C1 was formed not of a single wire as in the previous examples, but of several wires assembled together, for example two wires arranged parallel to one another or else twisted together , in a direction of torsion identical or not to that of the intermediate layer C2.
- the central wire being less stressed during the wiring operation than the other wires, given its position in the cable, it is not necessary for this wire to use, for example, compositions of steel with high torsional ductility; advantageously, any type of steel can be used, for example stainless steel.
- one (at least one) linear wire from one of the two layers C2 and / or C3 could also be replaced by a preformed or deformed wire, or more generally by a wire of section different from that of other wires of diameter. d 2 and / or d 3 , so as for example to further improve the penetration of the cable by rubber or any other material, the overall diameter of this replacement wire possibly being less, equal or greater than the diameter (d 2 and / or d 3 ) of the other constituent wires of the layer (C2 and / or C3) concerned.
- wires constituting the cable according to the invention could consist of wires other than steel wires, metallic or not, in particular wires made of mineral or organic material to high mechanical resistance, for example monofilaments made of organic liquid crystal polymers.
- the invention also relates to any multi-strand steel cable (“multi-strand rope”) whose structure incorporates at least, as an elementary strand, a three-layer cable according to the invention.
Landscapes
- Ropes Or Cables (AREA)
- Tires In General (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0315371A FR2864556B1 (fr) | 2003-12-24 | 2003-12-24 | Cable a couches pour armature de carcasse de pneumatique |
PCT/EP2004/014662 WO2005071157A1 (fr) | 2003-12-24 | 2004-12-23 | Cable metallique a trois couches pour armature de carcasse de pneumatique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1699973A1 true EP1699973A1 (fr) | 2006-09-13 |
EP1699973B1 EP1699973B1 (fr) | 2007-09-19 |
Family
ID=34639588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04804256A Active EP1699973B1 (fr) | 2003-12-24 | 2004-12-23 | Cable metallique a trois couches pour armature de carcasse de pneumatique |
Country Status (13)
Country | Link |
---|---|
US (4) | US20060237110A1 (fr) |
EP (1) | EP1699973B1 (fr) |
JP (2) | JP4707675B2 (fr) |
KR (1) | KR101152692B1 (fr) |
CN (1) | CN1898435B (fr) |
AT (1) | ATE373738T1 (fr) |
BR (1) | BRPI0418080B1 (fr) |
CA (1) | CA2548969C (fr) |
DE (1) | DE602004009102T2 (fr) |
ES (1) | ES2294566T3 (fr) |
FR (1) | FR2864556B1 (fr) |
RU (1) | RU2358052C2 (fr) |
WO (1) | WO2005071157A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015189314A1 (fr) | 2014-06-12 | 2015-12-17 | Compagnie Generale Des Etablissements Michelin | Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion |
WO2015189313A2 (fr) | 2014-06-12 | 2015-12-17 | Compagnie Generale Des Etablissements Michelin | Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion |
WO2015189310A1 (fr) | 2014-06-12 | 2015-12-17 | Compagnie Generale Des Etablissements Michelin | Produit semi-fini comprenant un câble gommé in situ noyé dans une composition de caoutchouc de calandrage |
CN106661830A (zh) * | 2014-06-12 | 2017-05-10 | 米其林集团总公司 | 包括原位橡胶处理并包在压延橡胶组合物中的缆线的半成品 |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2864556B1 (fr) * | 2003-12-24 | 2006-02-24 | Michelin Soc Tech | Cable a couches pour armature de carcasse de pneumatique |
JP4940753B2 (ja) * | 2006-05-15 | 2012-05-30 | 横浜ゴム株式会社 | ゴム補強用スチールコード及びそれを用いた空気入りラジアルタイヤの製造方法 |
JP4806587B2 (ja) * | 2006-05-25 | 2011-11-02 | 東京製綱株式会社 | スチールコードの製造方法及びスチールコード |
EP2184401A4 (fr) * | 2007-07-17 | 2013-09-18 | Bridgestone Corp | Cordon, son procédé de production, et composite de cordon avec du caoutchouc |
FR2925923B1 (fr) * | 2007-12-28 | 2009-12-18 | Michelin Soc Tech | Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ |
FR2925922B1 (fr) * | 2007-12-28 | 2009-12-18 | Soc Tech Michelin | Cable a couches pour ceinture de pneumatique |
FR2938558B1 (fr) | 2008-11-17 | 2010-12-31 | Michelin Soc Tech | Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ. |
FR2938557B1 (fr) * | 2008-11-17 | 2011-02-18 | Michelin Soc Tech | Cable a trois couches, gomme in situ, pour armature de carcasse de pneumatique |
FR2940186A1 (fr) | 2008-12-22 | 2010-06-25 | Michelin Soc Tech | Bourrelet de pneu |
FR2942746B1 (fr) * | 2009-03-04 | 2011-02-25 | Michelin Soc Tech | Pneumatique pour bicyclette. |
FR2943691B1 (fr) * | 2009-03-31 | 2011-08-19 | Michelin Soc Tech | Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ |
FR2943690B1 (fr) | 2009-03-31 | 2011-08-19 | Michelin Soc Tech | Procede et dispositif de fabrication d'un cable a trois couches du type gomme un situ |
FR2946366B1 (fr) * | 2009-06-03 | 2011-12-02 | Michelin Soc Tech | Cable a trois couches,gomme in situ,pour armature carcasse de pneumatique. |
FR2947575B1 (fr) * | 2009-07-03 | 2011-08-19 | Michelin Soc Tech | Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ. |
FR2947576B1 (fr) * | 2009-07-03 | 2011-08-19 | Michelin Soc Tech | Cable metallique a trois couches gomme in situ de construction 2+m+n |
FR2947577B1 (fr) * | 2009-07-03 | 2013-02-22 | Michelin Soc Tech | Cable metallique a trois couches gomme in situ de construction 3+m+n |
FR2947574B1 (fr) | 2009-07-03 | 2012-11-09 | Michelin Soc Tech | Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ. |
EP2486395B1 (fr) | 2009-10-06 | 2013-05-29 | Compagnie Generale Des Etablissements Michelin | Methode et dispositif d'inspection automatique d'une bobine de cable |
FR2950838B1 (fr) * | 2009-10-07 | 2013-02-22 | Michelin Soc Tech | Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite, et des epaisseurs de melanges caoutchouteux variables. |
FR2954219A1 (fr) * | 2009-11-17 | 2011-06-24 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes |
FR2953449B1 (fr) * | 2009-12-03 | 2011-11-18 | Michelin Soc Tech | Pneumatique comportant une armature de carcasse constituee de cables et de tubes capillaires |
FR2953450B1 (fr) * | 2009-12-04 | 2011-11-18 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes |
FR2953451B1 (fr) * | 2009-12-04 | 2011-12-09 | Soc Tech Michelin | Pneumatique comportant des cables d'armature de carcasse hybrides |
FR2953452B1 (fr) * | 2009-12-04 | 2011-12-09 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse frettes |
FR2962456B1 (fr) * | 2010-05-20 | 2012-09-21 | Michelin Soc Tech | Procede de fabrication d'un cable metallique multicouches gomme in situ par un elastomere thermoplastique insature |
FR2962454B1 (fr) * | 2010-05-20 | 2012-09-21 | Michelin Soc Tech | Procede de fabrication d'un cable metallique a trois couches du type gomme in situ |
FR2962455B1 (fr) | 2010-05-20 | 2012-09-21 | Soc Tech Michelin | Cable metallique multicouches gomme in situ par un elastomere thermoplastique insature |
FR2962453B1 (fr) * | 2010-05-20 | 2012-09-21 | Michelin Soc Tech | Cable metallique a trois couches, gomme in situ par un elastomere thermoplastique insature |
FR2969037B1 (fr) * | 2010-12-21 | 2014-08-29 | Michelin Soc Tech | Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet |
FR2969036B1 (fr) * | 2010-12-21 | 2012-12-28 | Michelin Soc Tech | Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet |
FR2969038B1 (fr) * | 2010-12-21 | 2012-12-28 | Michelin Soc Tech | Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet |
US9073389B2 (en) | 2011-10-21 | 2015-07-07 | Bridgestone Americas Tire Operations, Llc | All steel fabric radial construction for agricultural tires |
FR2982885B1 (fr) | 2011-11-23 | 2014-11-07 | Michelin Soc Tech | Procede de fabrication d'un cable metallique a deux couches gomme in situ par un elastomere thermoplastique insature |
FR2982884B1 (fr) | 2011-11-23 | 2014-06-06 | Michelin Soc Tech | Cable metallique a deux couches, gomme in situ par un elastomere thermoplastique insature |
FR2984338B1 (fr) | 2011-12-19 | 2014-01-24 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse |
FR2984336B1 (fr) | 2011-12-19 | 2014-01-24 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse |
FR2984221B1 (fr) | 2011-12-19 | 2014-05-16 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse |
FR2984223B1 (fr) | 2011-12-19 | 2014-04-18 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse |
FR2984222B1 (fr) | 2011-12-19 | 2014-05-16 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse |
FR2984337B1 (fr) | 2011-12-19 | 2014-01-24 | Michelin Soc Tech | Pneumatique comportant des cables d'armature de carcasse presentant une faible permeabilite, et des fils textiles associes a l'armature de carcasse |
JP6069364B2 (ja) | 2012-02-06 | 2017-02-01 | ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme | 三元または四元黄銅合金被覆物を備えた細長い鋼製エレメントおよび対応する方法 |
ES2703782T3 (es) | 2012-02-06 | 2019-03-12 | Bekaert Sa Nv | Elemento de acero alargado que comprende un recubrimiento de aleación de latón ternaria o cuaternaria y método correspondiente |
GB2501156B (en) * | 2012-02-27 | 2015-03-18 | Gripple Ltd | Improvements in or relating to wire strands |
FR2990962B1 (fr) * | 2012-05-25 | 2014-06-27 | Michelin & Cie | Procede de fabrication d'un cable metallique multi-torons a deux couches. |
RS58216B1 (sr) * | 2012-07-24 | 2019-03-29 | Bekaert Sa Nv | Čelično uže za ojačanje gume sa vlaknima selektivno obloženim mesingom |
JP6343872B2 (ja) * | 2013-04-11 | 2018-06-20 | 横浜ゴム株式会社 | スチールコードおよびゴム製品の製造方法 |
FR3008350B1 (fr) | 2013-07-12 | 2015-08-07 | Michelin & Cie | Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite |
FR3008346B1 (fr) | 2013-07-12 | 2015-08-07 | Michelin & Cie | Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite |
FR3008351B1 (fr) | 2013-07-12 | 2015-08-07 | Michelin & Cie | Pneumatique comportant des epaisseurs variables des melanges caoutchouteux interieurs a l'armature de carcasse |
FR3008348B1 (fr) | 2013-07-12 | 2015-08-07 | Michelin & Cie | Pneumatique comportant des epaisseurs variables des melanges caoutchouteux interieurs a l'armature de carcasse |
WO2015031226A1 (fr) * | 2013-08-28 | 2015-03-05 | E. I. Du Pont De Nemours And Company | Cordon fibreux et procédé de fabrication |
FR3013736B1 (fr) * | 2013-11-22 | 2016-12-09 | Michelin & Cie | Procede de trefilage et fil obtenu par ce procede de trefilage |
FR3013735B1 (fr) * | 2013-11-22 | 2016-08-19 | Michelin & Cie | Procede de trefilage d'un fil d'acier comprenant un taux de carbone en masse compris entre 0,05 % inclus et 0,4 % exclu |
FR3014363B1 (fr) | 2013-12-09 | 2015-11-27 | Michelin & Cie | Pneumatique presentant une pression nominale reduite et une fleche relative sous charge nominale augmentee |
FR3020016B1 (fr) | 2014-04-22 | 2016-04-01 | Michelin & Cie | Pneumatique pour vehicule industriel lourd |
FR3020017B1 (fr) | 2014-04-22 | 2017-06-09 | Michelin & Cie | Pneumatique pour vehicule de genie civil |
FR3022263B1 (fr) | 2014-06-12 | 2017-10-27 | Michelin & Cie | Cable gomme in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion |
FR3028872B1 (fr) | 2014-11-25 | 2017-05-19 | Michelin & Cie | Procede de fractionnement |
FR3028873B1 (fr) | 2014-11-25 | 2016-12-23 | Michelin & Cie | Installation de fractionnement |
FR3033287B1 (fr) | 2015-03-05 | 2017-03-10 | Michelin & Cie | Armature de sommet de pneumatique pour vehicule lourd de type genie civil |
FR3040655B1 (fr) | 2015-09-04 | 2017-08-25 | Michelin & Cie | Pneumatique comportant des cables d’armatures de carcasse presentant un bas taux de carbone et des epaisseurs de melanges caoutchouteux reduites |
FR3040911A1 (fr) * | 2015-09-16 | 2017-03-17 | Michelin & Cie | Pneumatique comportant des cables d'armatures de carcasse presentant un bas taux de carbone |
CN105862592B (zh) * | 2016-04-13 | 2017-08-11 | 江苏法尔胜缆索有限公司 | 一种热挤聚乙烯锌铝合金镀层钢丝拉索的制作方法 |
US11529697B2 (en) * | 2017-09-29 | 2022-12-20 | Lincoln Global, Inc. | Additive manufacturing using aluminum-containing wire |
US11426824B2 (en) | 2017-09-29 | 2022-08-30 | Lincoln Global, Inc. | Aluminum-containing welding electrode |
US11787235B2 (en) | 2017-11-17 | 2023-10-17 | Compagnie Generale Des Etablissements Michelin | Tire comprising a carcass reinforcement layer having improved endurance properties |
CA3081605A1 (fr) | 2017-11-17 | 2019-05-23 | Compagnie Generale Des Etablissements Michelin | Pneumatique presentant une couche d'armature de carcasse avec des proprietes d'endurance ameliorees |
EP3710284B1 (fr) | 2017-11-17 | 2021-08-25 | Compagnie Générale des Etablissements Michelin | Pneumatique presentant une couche d'armature de carcasse avec des proprietes d'endurance ameliorees |
EP3724261A1 (fr) | 2017-12-15 | 2020-10-21 | Compagnie Generale Des Etablissements Michelin | Procédé de fabrication d'un produit renforcé par un élément de renfort |
EP3728338B1 (fr) * | 2017-12-20 | 2023-09-06 | Compagnie Generale Des Etablissements Michelin | Composition de caoutchouc |
EP3823846B1 (fr) * | 2018-07-17 | 2023-03-08 | Compagnie Generale Des Etablissements Michelin | Pneumatique dont la zone du bourrelet est allegee |
FR3103200A1 (fr) | 2019-11-15 | 2021-05-21 | Compagnie Generale Des Etablissements Michelin | Câble métalliques à deux couches avec couche interne gainée à rendement amélioré |
CN110735340A (zh) * | 2019-11-22 | 2020-01-31 | 江苏兴达钢帘线股份有限公司 | 一种十七股子午胎钢丝帘线 |
FR3107006B1 (fr) * | 2020-02-06 | 2022-01-07 | Michelin & Cie | Pneumatique pour véhicule agricole comprenant une armature de carcasse monocouche |
FR3107206B1 (fr) * | 2020-02-19 | 2022-02-18 | Michelin & Cie | Pneumatique a faible hauteur de flanc |
FR3107207B1 (fr) * | 2020-02-19 | 2022-02-18 | Michelin & Cie | Pneumatique a faible hauteur de flanc |
CN111926597A (zh) * | 2020-07-20 | 2020-11-13 | 江苏兴达钢帘线股份有限公司 | 一种子午胎钢丝帘线 |
FR3112783B1 (fr) | 2020-07-24 | 2023-04-28 | Michelin & Cie | Produit renforcé obtenu par un procédé comprenant une étape de traitement thermique de la gaine |
FR3112714B1 (fr) | 2020-07-24 | 2022-07-29 | Michelin & Cie | Traitement thermique d’un élément de renfort |
CN112359622A (zh) * | 2020-11-17 | 2021-02-12 | 江苏兴达钢帘线股份有限公司 | 一种外层不饱和钢丝帘线 |
CN112779797A (zh) | 2021-01-15 | 2021-05-11 | 江苏兴达钢帘线股份有限公司 | 一种紧密型钢帘线 |
CN113969511A (zh) * | 2021-11-16 | 2022-01-25 | 山东大业股份有限公司 | 一种高渗胶密集型钢帘线 |
CN114151486A (zh) * | 2021-11-24 | 2022-03-08 | 重庆长安汽车股份有限公司 | 一种橡胶衬套及汽车悬架 |
FR3143032A1 (fr) | 2022-12-08 | 2024-06-14 | Compagnie Generale Des Etablissements Michelin | Composite pour article de caoutchouc |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR812539A (fr) * | 1936-10-26 | 1937-05-12 | Michelin & Cie | Perfectionnement aux tringles pour bandages pneumatiques |
GB1182593A (en) * | 1965-12-09 | 1970-02-25 | British Ropes Ltd | Improvements in or relating to Rope, Strand or the Like |
JPS60143105A (ja) * | 1983-12-29 | 1985-07-29 | Kawasaki Steel Corp | ラジアルタイヤ用スチ−ルコ−ド |
FR2636978B1 (fr) * | 1988-09-28 | 1990-11-02 | Michelin & Cie | Assemblage a couches de fils concentriques |
JPH02118189A (ja) | 1988-10-26 | 1990-05-02 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
US5223060A (en) | 1988-10-26 | 1993-06-29 | The Yokohama Rubber Co., Ltd. | Pneumatic radial tire including steel cords of flat oblong cross-sectional configuration |
JPH0672369B2 (ja) * | 1989-02-25 | 1994-09-14 | 住友ゴム工業株式会社 | スチールコード |
US4960473A (en) * | 1989-10-02 | 1990-10-02 | The Goodyear Tire & Rubber Company | Process for manufacturing steel filament |
US5139874A (en) * | 1991-09-05 | 1992-08-18 | The Goodyear Tire & Rubber Company | Cable for reinforcing rubber articles |
IT1251401B (it) * | 1991-09-09 | 1995-05-09 | Pirelli | Filo metallico con doppio strato di rivestimento per il rinforzo di articoli in materiali elastomerici e articoli in materiali elastomerici rinforzati con detto filo. |
FR2711149A1 (fr) * | 1993-10-15 | 1995-04-21 | Michelin & Cie | Fil en acier inoxydable pour carcasse d'enveloppe de pneumatique. |
ES2150526T3 (es) * | 1994-02-24 | 2000-12-01 | Bridgestone Corp | Hilos de acero para el refuerzo de articulos de caucho y cubiertas neumaticas radiales utilizando dichos hilos. |
JP3455352B2 (ja) | 1994-12-26 | 2003-10-14 | 株式会社ブリヂストン | ゴム補強用スチールコード及びそれを使用したラジアルタイヤ |
IT1277689B1 (it) | 1995-12-21 | 1997-11-11 | Pirelli | Cordicella metallica di rinforzo da impiegarsi particolarmente in manufatti compositi a matrice elastomerica procedimento ed apparato |
AU6729798A (en) * | 1997-03-14 | 1998-10-12 | Compagnie Generale Des Etablissements Michelin - Michelin & Cie | Hybrid steel cord for tyre |
US6120911A (en) * | 1997-09-09 | 2000-09-19 | The Goodyear Tire & Rubber Company | Zinc-rich coated steel article |
CN1097125C (zh) | 1997-12-15 | 2002-12-25 | 贝克特股份有限公司 | 含聚合物的钢丝帘布 |
EP0976541B1 (fr) | 1998-07-30 | 2003-03-26 | Aster | Fil composite comprenant une ame en acier au carbone et une couche externe en acier inoxydable |
EP1033435A1 (fr) * | 1999-03-04 | 2000-09-06 | N.V. Bekaert S.A. | Câble d'acier avec un coeur en polymère |
FR2795751A1 (fr) * | 1999-06-29 | 2001-01-05 | Michelin Soc Tech | Cable d'acier multicouches pour carcasse de pneumatique |
JP4705302B2 (ja) * | 1999-12-30 | 2011-06-22 | ソシエテ ド テクノロジー ミシュラン | タイヤカーカス用多層スチールケーブル |
US6313220B1 (en) * | 2000-03-03 | 2001-11-06 | Thierry Florent Edme Materne | Preparation of reinforced elastomer, elastomer composite, and tire having component thereof |
JP2002192921A (ja) * | 2000-11-20 | 2002-07-10 | Goodyear Tire & Rubber Co:The | らせん六角ビードおよび製造方法 |
JP4316879B2 (ja) * | 2000-12-01 | 2009-08-19 | ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム | オフロードタイヤおよびコンベヤベルトを補強するスチールコード |
US20020134478A1 (en) * | 2000-12-28 | 2002-09-26 | Omero Noferi | Cord for a vehicle tyre and tyre provided with said cord |
EP1349983A1 (fr) * | 2001-01-04 | 2003-10-08 | Société de Technologie Michelin | Cable d'acier multicouches pour armature de sommet de pneumatique |
DE10213289A1 (de) * | 2001-03-30 | 2002-11-14 | Yokohama Rubber Co Ltd | Elastomer-und-Stahlkord-Verbundwerkstoff und Prozess zur Herstellung desselben |
FR2824849B1 (fr) * | 2001-05-17 | 2005-06-10 | Trefileurope | Cable dynamique a proprietes ameliorees, et procede et installation de fabrication d'un tel cable |
WO2003031716A1 (fr) * | 2001-10-03 | 2003-04-17 | N.V. Bekaert S.A. | Cable d'acier multicouches a filaments intermediaires enrobes d'un polymere |
FR2833277A1 (fr) | 2001-12-07 | 2003-06-13 | Michelin Soc Tech | Cable metallique utilisable pour renforcer une armature de carcasse d'un pneumatique et un tel pneumatique |
PL1646749T3 (pl) | 2003-07-17 | 2008-10-31 | N V Bekaert Sa | Stalowy kord o otwartych warstwach o wysokim obciążeniu zrywającym |
FR2864556B1 (fr) * | 2003-12-24 | 2006-02-24 | Michelin Soc Tech | Cable a couches pour armature de carcasse de pneumatique |
JP4740188B2 (ja) | 2007-05-08 | 2011-08-03 | 三菱電線工業株式会社 | 搬送アーム用パッド |
-
2003
- 2003-12-24 FR FR0315371A patent/FR2864556B1/fr not_active Expired - Fee Related
-
2004
- 2004-12-23 EP EP04804256A patent/EP1699973B1/fr active Active
- 2004-12-23 KR KR1020067012719A patent/KR101152692B1/ko not_active IP Right Cessation
- 2004-12-23 CA CA2548969A patent/CA2548969C/fr not_active Expired - Fee Related
- 2004-12-23 DE DE602004009102T patent/DE602004009102T2/de active Active
- 2004-12-23 JP JP2006546073A patent/JP4707675B2/ja active Active
- 2004-12-23 BR BRPI0418080-1A patent/BRPI0418080B1/pt not_active IP Right Cessation
- 2004-12-23 CN CN200480038717XA patent/CN1898435B/zh active Active
- 2004-12-23 ES ES04804256T patent/ES2294566T3/es active Active
- 2004-12-23 WO PCT/EP2004/014662 patent/WO2005071157A1/fr active IP Right Grant
- 2004-12-23 AT AT04804256T patent/ATE373738T1/de not_active IP Right Cessation
- 2004-12-23 RU RU2006126712/12A patent/RU2358052C2/ru not_active IP Right Cessation
-
2006
- 2006-06-23 US US11/473,756 patent/US20060237110A1/en not_active Abandoned
-
2010
- 2010-06-04 US US12/794,010 patent/US8245490B2/en active Active
-
2011
- 2011-01-18 JP JP2011007517A patent/JP5485189B2/ja active Active
-
2012
- 2012-07-17 US US13/550,763 patent/US8650850B2/en active Active
- 2012-07-17 US US13/550,782 patent/US20120279629A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2005071157A1 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015189314A1 (fr) | 2014-06-12 | 2015-12-17 | Compagnie Generale Des Etablissements Michelin | Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion |
WO2015189313A2 (fr) | 2014-06-12 | 2015-12-17 | Compagnie Generale Des Etablissements Michelin | Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion |
WO2015189310A1 (fr) | 2014-06-12 | 2015-12-17 | Compagnie Generale Des Etablissements Michelin | Produit semi-fini comprenant un câble gommé in situ noyé dans une composition de caoutchouc de calandrage |
CN106661830A (zh) * | 2014-06-12 | 2017-05-10 | 米其林集团总公司 | 包括原位橡胶处理并包在压延橡胶组合物中的缆线的半成品 |
CN106661829A (zh) * | 2014-06-12 | 2017-05-10 | 米其林集团总公司 | 原位橡胶处理并包含含有腐蚀抑制剂的橡胶组合物的缆线 |
CN106661829B (zh) * | 2014-06-12 | 2019-01-15 | 米其林集团总公司 | 原位橡胶处理并包含含有腐蚀抑制剂的橡胶组合物的缆线 |
CN106661830B (zh) * | 2014-06-12 | 2019-02-01 | 米其林集团总公司 | 包括原位橡胶处理并包在压延橡胶组合物中的缆线的半成品 |
Also Published As
Publication number | Publication date |
---|---|
US8650850B2 (en) | 2014-02-18 |
RU2358052C2 (ru) | 2009-06-10 |
JP4707675B2 (ja) | 2011-06-22 |
JP5485189B2 (ja) | 2014-05-07 |
FR2864556B1 (fr) | 2006-02-24 |
RU2006126712A (ru) | 2008-01-27 |
US20100288412A1 (en) | 2010-11-18 |
CN1898435B (zh) | 2010-06-16 |
DE602004009102D1 (de) | 2007-10-31 |
KR20060131792A (ko) | 2006-12-20 |
WO2005071157A1 (fr) | 2005-08-04 |
JP2007517142A (ja) | 2007-06-28 |
US20060237110A1 (en) | 2006-10-26 |
CN1898435A (zh) | 2007-01-17 |
FR2864556A1 (fr) | 2005-07-01 |
EP1699973B1 (fr) | 2007-09-19 |
JP2011122291A (ja) | 2011-06-23 |
ATE373738T1 (de) | 2007-10-15 |
US8245490B2 (en) | 2012-08-21 |
CA2548969A1 (fr) | 2005-08-04 |
BRPI0418080B1 (pt) | 2015-08-04 |
US20120298281A1 (en) | 2012-11-29 |
CA2548969C (fr) | 2013-06-04 |
BRPI0418080A (pt) | 2007-04-17 |
KR101152692B1 (ko) | 2012-06-15 |
DE602004009102T2 (de) | 2008-06-19 |
ES2294566T3 (es) | 2008-04-01 |
US20120279629A1 (en) | 2012-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1699973B1 (fr) | Cable metallique a trois couches pour armature de carcasse de pneumatique | |
EP2727744B1 (fr) | Câble d'acier multi-torons pour pneumatique | |
EP1200671B1 (fr) | Cable d'acier multicouches pour carcasse de pneumatique | |
EP1246964B1 (fr) | Cable d'acier multicouches pour carcasse de pneumatique | |
EP2855763B1 (fr) | Procede de fabrication d'un câble metallique multi-torons à deux couches | |
FR2959517A1 (fr) | Cable metallique multitorons elastique a haute permeabilite. | |
EP2507070B1 (fr) | Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes | |
EP2507071B1 (fr) | Pneumatique comportant des cables d'armature de carcasse hybrides | |
WO2016202622A1 (fr) | Câble métallique multi-torons | |
EP2655096B1 (fr) | Pneumatique dont l'armature de carcasse est renforcee par une couche d'elements de renforcement dans la zone du bourrelet | |
WO2003048447A1 (fr) | Cable metallique utilisable dans une armature de carcasse d'un pneumatique | |
EP2501560B1 (fr) | Pneumatique comportant des cables d'armature de carcasse presentant des permeabilites differentes | |
EP3349995B1 (fr) | Pneumatique comportant des cables d'armatures de carcasse presentant un bas taux de carbone | |
WO2002053827A1 (fr) | Cable d'acier multicouches pour armature de sommet de pneumatique | |
WO2002053828A1 (fr) | Cable d'acier multicouches pour armature de sommet de pneumatique | |
EP3349994B1 (fr) | Pneumatique comportant des cables d'armatures de carcasse presentant un bas taux de carbone | |
EP4240897A1 (fr) | Câble multi-torons à deux couches avec couche interne gainée à pénétrabilité améliorée | |
FR2999616A1 (fr) | Cable metallique a couches cylindriques de structure 3+9+14 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060724 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 602004009102 Country of ref document: DE Date of ref document: 20071031 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20071210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2294566 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071220 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080119 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080219 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071219 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
26N | No opposition filed |
Effective date: 20080620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20111223 Year of fee payment: 8 Ref country code: ES Payment date: 20111227 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121220 Year of fee payment: 9 Ref country code: IT Payment date: 20121219 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121224 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121223 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20151221 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131223 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602004009102 Country of ref document: DE Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, FR Free format text: FORMER OWNERS: SOCIETE DE TECHNOLOGIE MICHELIN, CLERMONT-FERRAND, FR; MICHELIN RECHERCHE ET TECHNIQUE S.A., GRANGES-PACCOT, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231221 Year of fee payment: 20 Ref country code: DE Payment date: 20231214 Year of fee payment: 20 |