EP1680812A2 - Halbleiterchip mit flip-chip-kontakten und verfahren zur herstellung desselben - Google Patents

Halbleiterchip mit flip-chip-kontakten und verfahren zur herstellung desselben

Info

Publication number
EP1680812A2
EP1680812A2 EP04802671A EP04802671A EP1680812A2 EP 1680812 A2 EP1680812 A2 EP 1680812A2 EP 04802671 A EP04802671 A EP 04802671A EP 04802671 A EP04802671 A EP 04802671A EP 1680812 A2 EP1680812 A2 EP 1680812A2
Authority
EP
European Patent Office
Prior art keywords
semiconductor
chip
semiconductor chip
flip
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04802671A
Other languages
English (en)
French (fr)
Inventor
Gerald Ofner
Mary Teo
Ai Min Tan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1680812A2 publication Critical patent/EP1680812A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13006Bump connector larger than the underlying bonding area, e.g. than the under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0101Neon [Ne]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the invention relates to a semiconductor chip with flip-chip contacts, the flip-chip contacts being arranged on contact areas on the active top side of the semiconductor chip.
  • the contact areas are surrounded by a passivation layer, which protects the uppermost metallization layer and only releases the contact areas for attaching flip-chip contacts.
  • Such semiconductor chips have the disadvantage that after application to a circuit carrier, in particular both after the flip-chip contacts have been soldered onto contact pads of the circuit carrier and after the gap between the semiconductor chip and circuit carrier has been filled with a filled plastic compound, there is an increased risk of microcracking the solder connections and an increased
  • the object of the invention is to provide a semiconductor chip in which the risk of delamination is avoided despite the formation of bubbles and cracks and the rejection rate after soldering onto a circuit carrier and after introduction of a plastic compound is reduced.
  • a semiconductor chip with flip-chip contacts is created, the flip-chip contacts being arranged on contact areas on the active upper side of the semiconductor chip.
  • the contact areas are surrounded by a passivation layer, which covers the active upper side while leaving the contact areas free.
  • This passivation layer has thickenings that surround the contact areas.
  • Such a semiconductor chip with thickenings in the passivation layer around the contact areas has the advantage that if cracks form in the interface between the passivation layer and the plastic compound to be introduced when the semiconductor chip is attached to a circuit carrier, the thickening path in this interface is extended. This removes the energy from crack propagation before complete delamination can occur.
  • the thickening has the advantage that micropores are deliberately formed at the edges of the thickening, especially since the plastic mass is not able to completely fill a minimal distance between the contact surface with flip-chip contact and the thickening, so that micropores of this type, which form around the flip-chip contact in the region of the thickenings, exert a stop effect on micro-crack propagation.
  • the topographical structure which form such thickenings around the contact areas, and thus around the flip-chip contacts, at the same time increases the adhesion area of the passivation layer with respect to the plastic mass, so that an additional anchoring effect between the semiconductor chip and the plastic mass is caused by the thickenings is achieved around the contact surfaces of the semiconductor chip.
  • the thickenings can have the material of the passivation layer and a metallic bead.
  • This metallic bead can be designed in the form of a conductor track ring around the contact surface, the ring being designed to be open when a conductor track leads to the metal contact surface.
  • the metallic bead in the form of a conductor track ring can be structured with the uppermost metallization layer of the semiconductor chip.
  • the ring opening is dimensioned so large that the conductor track leading to the contact area does not touch the metallic ring that forms the bead.
  • the thickness of the metallic bead corresponds to the thickness of the uppermost metallization structure of the semiconductor chip.
  • This construction of a thickening from the material of the passivation layer and a metallic bead has the advantage that no additional method steps are required to form such a thickening of the passivation layer. Rather, this thickening occurs automatically when the passivation layer is applied to the active top side of the semiconductor chip while leaving the contact areas free.
  • the advantageous effects of these thickenings in such a way that delamination of the semiconductor chip during assembly or after assembly on the circuit carrier is prevented, regardless of whether the thickening consists of passivation layer material or metal material.
  • the invention has the additional advantage that no additional process steps are required to form such thickenings around the contact areas.
  • the metallic bead is arranged in the form of a metallic line to form the thickening on the passivation layer.
  • This embodiment of the invention has the advantage that the metallic bead can form a closed ring as a thickening around the contact areas, since the passivation layer is an insulation to the conductor tracks that lead to the contact areas.
  • Another advantage of this construction is that such metallic beads can be formed from metal rings around a contact surface with sharp edges, which increases the probability of micropores forming around a chip contact, so that crack propagation within the plastic mass is stopped.
  • the effect of the thickening around a contact area can also be improved if several closed or open circular rings are formed around a contact area.
  • the anchoring effect is also reinforced with several rings.
  • the thickenings around a contact spot can be introduced in a targeted manner where the risk of delamination is greatest.
  • Thickenings that have a polygonal, circularly curved zigzag structure have the advantage that, on the one hand, they prevent the formation of micropores. Promote interruption of crack propagation and, on the other hand, enable better anchoring compared to ring-shaped thickenings.
  • Another aspect of the invention relates to a semiconductor wafer which has semiconductor chip positions arranged in rows and columns, which in turn have contact areas which are surrounded by a passivation layer which has thickenings around the contact areas.
  • a semiconductor wafer of this type has the advantage that several semiconductor chips with thickenings around their contact surfaces are prepared simultaneously in the parallel process.
  • flip-chip contacts can also be applied to the semiconductor wafer in the individual component positions on the contact surfaces, so that individual semiconductor chips according to the invention are present after the semiconductor wafer has been opened.
  • Another aspect of the invention relates to semiconductor components which have semiconductor chips according to the invention.
  • Such semiconductor components have the advantage that delamination of their semiconductor chips with flip-chip contacts from a circuit carrier arranged underneath is prevented by the special design of the semiconductor chips according to the invention.
  • the semiconductor component has a plastic mass which is filled with particles and has the micropores of a few ⁇ m in diameter at the thickenings which surround the flip-chip contacts of the semiconductor chip.
  • Such a semiconductor component is advantageously protected against delamination in the interface between the semiconductor material and the plastic compound.
  • the de-laminating of individual flip-chip contacts is largely prevented, since micro-cracks are prevented from spreading by the micropores surrounding the flip-chip contact.
  • Such a semiconductor component has a circuit carrier in addition to the semiconductor chip.
  • This circuit carrier in turn has contact pads of a rewiring tion structure, wherein the flip-chip contacts of the semiconductor chip are attached to the contact connection surfaces.
  • the space between the active top side of the semiconductor chip and the circuit carrier has the particle-filled plastic mass with the micropores on the thickened portions.
  • Such a circuit carrier can have a plurality of surface-mounted semiconductor chips and form a semiconductor module.
  • the invention in particular the advantageous effect of the thickening of the passivation layer around the contact areas, it is not necessary for the entire semiconductor chip to be embedded in a plastic mass on the circuit carrier. Rather, the invention
  • Another aspect of the invention relates to a benefit which has component positions arranged in rows and columns with semiconductor components according to the invention.
  • the advantageous effect of the structure of semiconductor chips according to the invention also has a positive effect on the benefit, especially since such a benefit has several semiconductor components and due to the special type of structuring of the top side of the semiconductor chips, there is a risk of delamination of individuals Semiconductor chips reduced in their component positions.
  • a method for producing a semiconductor wafer with semiconductor chip positions arranged in rows and columns has the following method steps.
  • a semiconductor wafer with semiconductor chip positions is manufactured.
  • the uppermost metallization layer is structured with conductor tracks and contact areas for flip-chip contacts, the contact areas being surrounded by ring-shaped structures which are not in contact with the conductor tracks or the contact areas.
  • the top metallization layer is coated with a passivation layer made of oxides or nitrides, covering the ring-shaped structures and the conductor tracks, leaving the contact areas free. With this coating, thickening of the passivation layer arises due to the ring-shaped metal structures around the contact surfaces, which are congruent with the ring-shaped structures in the uppermost metal layer.
  • Such a method has the advantage that it is completely compatible with the method for producing semiconductor wafers and corresponding semiconductor chip positions on the semiconductor wafers of semiconductor technology.
  • the special structure according to the invention in each of the semiconductor chip positions, no additional method steps are required.
  • the structuring mask for the production of the top metallization has to be adapted to the structure according to the invention.
  • An alternative method for producing a semiconductor wafer with semiconductor chip positions arranged in rows and columns has the following method steps.
  • a semiconductor wafer with semiconductor chip positions in rows and columns is first produced and the uppermost metallization layer with contact areas for flip- Structured chip contacts.
  • the top metallization layer is provided with a passivation layer made of oxides or nitrides, covering the conductor tracks and leaving the contact areas free.
  • a further metallization is then applied and structured on the passivation layer to form closed circular or polygonal closed structures around the contact areas.
  • the thickenings on the passivation layer consist of a metal alloy in the uppermost region.
  • a method for producing a panel with a plurality of semiconductor component positions has the following method steps.
  • a semiconductor chip according to the invention is manufactured using one of the manufacturing methods for a wafer.
  • a circuit carrier with a plurality of semiconductor component positions can be produced in parallel, the circuit carrier having on its upper side in the semiconductor positions rewiring structures with contact connection areas for flip-chip contacts.
  • the rewiring structure of the circuit carrier has rewiring lines to through contacts.
  • a further rewiring structure is applied to the back of the circuit carrier, which leads to external contact areas of semiconductor components in the semiconductor positions.
  • This method of producing a benefit has two advantages; on the one hand, several process steps are used simultaneously for several semiconductor components and, on the other hand, component external contacts can be applied to the back of the circuit carrier, which can be much larger than the flip-chip contacts of the semiconductor chip, since the circuit carrier is of any size for such a use and that so-called "foot print" of the customer can be customized.
  • To produce semiconductor components from such a benefit only the method step of separating the benefit into individual semiconductor components is required.
  • These special structures can be metal lines around the contact areas of the flip-chip contacts and can be produced with the uppermost metallization step of the semiconductor chip or additionally by adding a further structured metallization.
  • the construction of these metal lines around the contact surfaces can be ring-shaped, serpentine-like, meandering or zigzag-shaped. The more complex the topographical structure, the more the reliability of the semiconductor components which are produced with such chips is improved.
  • micropores along the edges of the thickened areas or around the contact areas, the micro- This is due to the fact that the distance between the thickened areas and the contact surfaces cannot be completely filled by the plastic mass filled with particles.
  • the micropores act as microcrack stop areas and prevent further spreading of the microcracks and thus delamination.
  • FIG. 1 shows a schematic cross section through a partial region of a semiconductor chip with a transition region from the semiconductor chip to a flip-chip contact
  • FIG. 2 shows a schematic cross section through a semiconductor component with a semiconductor chip and with a circuit carrier
  • FIG. 3 shows a schematic top view of a thickening structure of a first embodiment of the invention
  • FIG. 4 shows a schematic top view of a thickening structure of a second embodiment of the invention
  • FIG. 5 shows a schematic top view of a thickening structure of a third embodiment of the invention.
  • FIG. 1 shows a schematic cross section through a partial area of a semiconductor chip 1, in the transition area from the semiconductor chip 1 to a flip-chip contact 2.
  • the semiconductor chip 1 has a contact area 3 on its active top side 4, which is provided with a solderable coating 29 is coated and on which a flip-chip contact 2 is arranged.
  • a passivation layer 5 is arranged around the contact area 3 and in some cases also on the edge areas 34 of the contact area 3, leaving a central area of the contact area 3 which is covered with the solderable coating 29.
  • An open circular structure 10 is covered by the passivation layer 5, so that there is a thickening 6 of the passivation layer 5 over this open circular structure 10.
  • the distance between the resulting thickening 6 and the edge region 34 of the contact surface 3 is so small that micropores 16 can form with a plastic compound 15 when filling the intermediate space 21 between the semiconductor chip 1 and a circuit carrier (not shown here).
  • the thickness d of the open circular structure 10 corresponds to the thickness of the contact area 3, since the circular structure 10 in this embodiment of the invention, with the uppermost metallization layer, ie simultaneously with the formation and structuring of the contact area 3, on the active top side 4 of the semiconductor chip 1 is made.
  • the plastic mass 15 is filled with particles 17, so that it is practically not possible to completely fill the minimal distance of a few micrometers between the thickening 6 and the edge region 34 of the contact surface 3 with plastic mass 15.
  • Line 37 shows in principle a microcrack that has spread out in the boundary layer between passivation layer 5 and plastic compound 15, for example starting from a bubble (not shown). This microcrack is stopped at the micropore 16, which is illustrated by the black spot 38.
  • FIG. 2 shows a schematic cross section through a semiconductor component 30 with a semiconductor chip 1 and with a circuit carrier 18.
  • the advantages have the effect that delamination of the semiconductor chip 1 and the plastic mass 15 in the boundary region between the active top 4 of the semiconductor chip 1 and the plastic mass 15 is prevented.
  • the semiconductor device ⁇ 1 30 shown here which represents an example of a surface-mounted halloconductor chip 1
  • the semiconductor device ⁇ 1 30 shown here which represents an example of a surface-mounted halloconductor chip 1
  • FIG. 2 shows that thickenings 6 are arranged around the flip-chip contacts 2 of the semiconductor chip 1, in which the active top side 4 of the semiconductor chip 1 is in one Plastic mass 15 is embedded. Cracking, as usually occurs in the critical boundary layer between the semiconductor chip 1 and the plastic compound 15, is absorbed energetically by the thickenings 6 of the semiconductor chip 1 or stopped by the formation of micropores in the thickenings, since the voltage peaks at the micropores are reduced.
  • the semiconductor chip 1 is fixed on the circuit carrier 18 via the flip-chip contacts 2, in that the flip-chip contacts 2 are soldered onto corresponding contact connection areas 19 of the circuit carrier.
  • the circuit carrier 18 is a fiber-reinforced plastic plate, which has a rewiring structure 20 on its upper side 23, the rewiring structure 20 having rewiring lines 24 which are electrically connected to through contacts 25 to the rear side 26 of the circuit carrier 18.
  • a further rewiring structure 27 is arranged on the rear side 26 of the circuit carrier 18, which has rewiring lines 24, before the through contacts 25 connect to external contact areas 28, on which external contacts 9 of the semiconductor component 30 are arranged.
  • the external contacts 9 of the semiconductor component 30 can be made substantially larger than the flip-chip contacts 2 of the semiconductor chip 1, especially since the circuit carrier 18 can be enlarged as desired in relation to the size of the semiconductor chip 1.
  • Both the upper side 23 of the circuit carrier 18 and the rear side 26 are coated with solder resist layers 35 and 36, respectively, leaving the contact connection areas 19 and the outer contact surfaces 28 free, in order to electrically isolate the rewiring structures 20 and 27 and to protect them from damage.
  • the solder resist layers 35 and 36 for the fact that the material of the flip-chip contacts 2 and. of the external contacts 9 does not spread out on the rewiring lines 24 when soldering.
  • FIG. 3 shows a schematic top view of a thickening structure 31 of a first embodiment of the invention.
  • the passivation layer is omitted to clarify the structure on the active top side 4 of the semiconductor chip. Only the top metallization layer 8 can be seen, which has a conductor track 12 and a contact area 3, which are electrically connected to one another. Arranged around the contact area 3 are two open circular structures 10 which do not touch the conductor track 12, the opening 11 in the open circular structures 10 ensuring that these do not make electrical contact with the conductor track 12.
  • these structures 10 have the same thickness as the conductor track 12 and, after applying a passivation layer, for example made of silicon nitride or silicon oxide, to the active top side 4 of the semiconductor chip underneath
  • FIG. 4 shows a schematic top view of a thickening structure 32 of a second embodiment of the invention.
  • the thickening structure 32 consists of closed circular metal rings 13, which, however, only after a passivation layer 5 has been applied to the active top side of a semiconductor chip by means of a further metallization
  • This closed circular structure which here comprises two rings, forms two rings 13 which have no opening and consequently one in each direction Prevent microcracks from spreading when a plastic compound is applied to these semiconductor chips.
  • FIG. 5 shows a schematic top view of a thickening structure 33 of a third embodiment of the invention.
  • This thickening structure 33 differs from the thickening structure 31 according to FIG. 3 in that it has a polygonal, circularly curved zigzag structure 14.
  • the passivation layer is omitted in order to make the structure, both of the conductor track 12 and the contact area 3, and the polygonal circularly curved zigzag structure 14 visible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

Die Erfindung betrifft einen Halbleiterchip (1) mit Flip-Chip-Kontakten (2), wobei die Flip-Chip-Kontakte (2) auf Kontaktflächen (3) der aktiven Oberseite (4) des Halbleiterchips (1) angeordnet sind. Die Kontaktflächen (3) sind von einer Passivierungsschicht (5) umgeben, welche die aktive Oberseite (4) unter Freilassung der Kontaktflächen (3) bedeckt. Die Passivierungsschicht (5) weist Verdickungen (6) auf, welche die Kontaktflächen (3) umgeben. Ein derartiger Halbleiterchip (1) mit Verdickungen (6) rund um die Kontaktflächen (3) ist vor Delamination beim Verpacken des Halbleiterchips (1) zu einem Halbleiterbauteil geschützt.

Description

Beschreibung
Halbleiterchip mit Flip-Chip-Kontakten und Verfahren zur Herstellung desselben
Die Erfindung betrifft einen Halbleiterchip mit Flip-Chip- Kontakten, wobei die Flip-Chip-Kontakte auf Kontaktflächen der aktiven Oberseite des Halbleiterchips angeordnet sind. Die Kontaktflächen sind von einer Passivierungsschicht umge- ben, welche die oberste Metallisierungslage schützt und nur die Kontaktflächen zum Anbringen von Flip-Chip-Kontakten freigibt.
Derartige Halbleiterchips haben den Nachteil, dass sie nach Aufbringen auf einen Schaltungsträger, insbesondere sowohl nach Anlöten der Flip-Chip-Kontakte auf Kontaktanschlussflächen des Schaltungsträgers, als auch nach Auffüllen des Zwischenraums zwischen Halbleiterchip und Schaltungsträger mit einer gefüllten Kunststoffmasse, einer erhöhten Gefahr einer Mikrorissbildung in den Lötverbindungen und einer erhöhten
Gefahr einer Blasenbildung in der Kunststoffmasse mit Mikro- rissfortsetzungen bis hin zur Delamination des Halbleiterchips von dem Schaltungsträger ausgesetzt sind.
Aufgabe der Erfindung ist es, einen Halbleiterchip anzugeben, bei dem die Gefahr der Delamination trotz Blasen- und Rissbildung vermieden wird und die Ausschussrate nach einem Löten auf einen Schaltungsträger und nach einem Einbringen von einer Kunststoffmasse verringert ist.
Diese Aufgabe wird mit dem Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen. Erfindungsgemäß wird ein Halbleiterchip mit Flip-Chip- Kontakten geschaffen, wobei die Flip-Chip-Kontakte auf Kontaktflächen der aktiven Oberseite des Halbleiterchips ange- ordnet sind. Die Kontaktflächen sind von einer Passivierungs- schicht umgeben, welche die aktive Oberseite unter Freilassung der Kontaktflächen bedeckt. Diese Passivierungsschicht weist Verdickungen auf, welche die Kontaktflächen umgeben.
Ein derartiger Halbleiterchip mit Verdickungen in der Passivierungsschicht rund um die Kontaktflächen hat den Vorteil, dass bei Rissbildungen in der Grenzfläche zwischen Passivierungsschicht und einzubringender Kunststoffmasse beim Anbringen des Halbleiterchips auf einen Schaltungsträger, der Riss- bildungsweg in dieser Grenzfläche durch die Verdickungen verlängert wird. Damit wird einer Rissausbreitung die Energie entzogen, bevor eine vollständige Delamination auftreten kann. Darüber hinaus hat die Verdickung den Vorteil, dass sich gewollt Mikroporen an den Rändern der Verdickungen bil- den, zumal die Kunststoffmasse nicht in der Lage ist, vollständig einen minimalen Abstand zwischen der Kontaktfläche mit Flip-Chip-Kontakt und der Verdickung aufzufüllen, so dass derartige Mikroporen, die sich rund um den Flip-Chip-Kontakt im Bereich der Verdickungen bilden, eine Stopwirkung auf eine Mikrorissausbreitung ausüben. Durch die topographische Struktur, die derartige Verdickungen rund um die Kontaktflächen, und damit rund um die Flip-Chip-Kontakte bilden, wird gleichzeitig die Adhäsionsfläche der Passivierungsschicht gegenüber der Kunststoffmasse vergrößert, so dass eine zusätzliche Ver- ankerungswirkung zwischen Halbleiterchip und Kunststoffmasse durch die Verdickungen rund um die Kontaktflächen des Halbleiterchips erreicht wird. Die Verdickungen können das Material der Passivierungsschicht und einen metallischen Wulst aufweisen. Dieser metallische Wulst kann in Form eines Leiterbahnringes rund um die Kontaktfläche ausgebildet sein, wobei der Ring offen ausgeführt ist, wenn eine Leiterbahn zu der Metallkontaktfläche führt. Der metallische Wulst in Form eines Leiterbahnringes kann mit der obersten Metallisierungslage des Halbleiterchips strukturiert sein. Die Ringöffnung wird dabei so groß dimensioniert, dass die Leiterbahn, die zu der Kontaktfläche führt, nicht den metallischen Ring, der den Wulst bildet, berührt. In diesem Fall entspricht die Dicke des metallischen Wulstes der Dicke der obersten Metallisierungsstruktur des Halbleiterchips.
Diese Konstruktion einer Verdickung aus dem Material der Passivierungsschicht und einem metallischen Wulst hat den Vorteil, dass keine zusätzlichen Verfahrensschritte erforderlich sind, um eine derartige Verdickung der Passivierungsschicht zu bilden. Vielmehr entsteht diese Verdickung dann automa- tisch, wenn die Passivierungsschicht unter Freilassung der Kontaktflächen auf die aktive Oberseite des Halbleiterchips aufgebracht wird. Die vorteilhaften Wirkungen dieser Verdickungen in der Weise, dass eine Delamination des Halbleiterchips bei der Montage oder nach der Montage auf dem Schal- tungsträger verhindert wird, bleiben erhalten, unabhängig davon, ob die Verdickung aus Passivierungsschichtmaterial oder Metallmaterial besteht.
Wann die Passivierungsschicht zur Bildung der Verdickung auf einem metallischen Wulst angeordnet ist, hat die Erfindung darüber hinaus den Vorteil, dass keine zusätzlichen Verfahrensschritte erforderlich sind, um derartige Verdickungen rund um die Kontaktflächen zu bilden. In einer weiteren Ausführungsform der Erfindung ist der metallische Wulst in Form einer metallischen Leitung zur Bildung der Verdickung auf der Passivierungsschicht angeordnet. Diese Ausführungsform der Erfindung hat den Vorteil, dass der metallische Wulst einen geschlossenen Ring als Verdickung um die Kontaktflächen bilden kann, da die Passivierungsschicht eine Isolierung zu den Leiterbahnen, die zu den Kontaktflächen führen, darstellt. Ein weiterer Vorteil dieser Konstruk- tion ist, dass derartige metallische Wulste aus Metallringen um eine Kontaktfläche herum mit scharfen Kanten ausgebildet sein können, womit die Wahrscheinlichkeit der Bildung von Mikroporen rund um einen Chipkontakt vergrößert wird, sodass Rissausbreitungen innerhalb der Kunststoffmasse gestoppt wer- den. Die Wirkung der Verdickungen rund um eine Kontaktfläche kann außerdem verbessert werden, wenn mehrere geschlossene oder auch offene kreisförmige Ringe rund um eine Kontaktfläche ausgebildet sind. Auch die Verankerungswirkung, wie sie oben erwähnt wurde, wird mit mehreren Ringen verstärkt.
Wenn für ein Halbleiterchip bekannt ist, aus welcher Richtung Mikrorisse auf die Chipkontakte zulaufen, können die Verdickungen rund um einen Kontaktfleck gezielt dort eingebracht werden, wo die Delaminationsgefahr am größten ist. Insbeson- dere ist es möglich, die Verdickungen als eine polygonale kreisförmig gebogene Zick-Zack-Struktur auszubilden. Verdickungen, die eine polygonale kreisförmig gebogene Zick-Zack- Struktur aufweisen, haben den Vorteil, dass sie einerseits die Mikroporenbildung zum. Unterbrechen der Rissfortsetzung fördern und andererseits eine gegenüber ringförmigen Verdickungen verbesserte Verankerung ermöglichen. Ein weiterer Aspekt der Erfindung betrifft einen Halbleiter- wafer, der in Zeilen und Spalten angeordnete Halbleiterchippositionen aufweist, die ihrerseits Kontaktflächen besitzen, die von einer Passivierungsschicht umgeben sind, welche Ver- dickungen rund um die Kontaktflächen aufweist. Ein derartiger Halbleiterwafer hat den Vorteil, dass im Parallelverfahren gleichzeitig mehrere Halbleiterchips mit Verdickungen um ihre Kontaktflächen vorbereitet werden. Außerdem können noch auf dem Halbleiterwafer Flip-Chip-Kontakte in den einzelnen Bau- teilpositionen auf den Kontaktflächen aufgebracht werden, so- dass nach Auftrennen des Halbleiterwafers, einzelne erfindungsgemäße Halbleiterchips vorliegen.
Ein weiterer Aspekt der Erfindung betrifft Halbleiterbautei- le, die erfindungsgemäße Halbleiterchips aufweisen. Derartige Halbleiterbauteile haben den Vorteil, dass eine Delamination ihrer Halbleiterchips mit Flip-Chip-Kontakten von einem darunter angeordneten Schaltungsträger durch die besondere erfindungsgemäße Konstruktion der Halbleiterchips unterbunden ist. Dabei weist das Halbleiterbauteil eine Kunststoffmasse auf, die mit Partikeln gefüllt ist und die Mikroporen von wenigen μm Durchmesser an den Verdickungen, welche die Flip- Chip-Kontakte des Halbleiterchips umgeben, aufweist. Ein derartiges Halbleiterbauteil ist in vorteilhafter Weise vor ei- ner Delamination in der Grenzfläche zwischen Halbleitermaterial und Kunststoffmasse geschützt. Insbesondere ist das De- laminieren von einzelnen Flip-Chip-Kontakten weitestgehend unterbunden, da eine Ausbreitung von Mikrorissen durch die den Flip-Chip-Kontakt umgebenen Mikroporen verhindert wird.
Ein derartiges Halbleiterbauteil weist neben dem Halbleiterchip einen Schaltungsträger auf. Dieser Schaltungsträger weist seinerseits Kontaktanschlussflächen einer Umverdrah- tungsstruktur auf, wobei die Flip-Chip-Kontakte des Halbleiterchips auf den Kontaktanscblussflachen befestigt sind. Der Zwischenraum zwischen der aktiven Oberseite des Halbleiterchips und dem Schaltungsträger weist die partikelgefüllte Kunststoffmasse mit den Mikroporen an den Verdickungen auf. Ein derartiger Schaltungsträger kann mehrere oberflächenmontierte Halbleiterchips aufweisen und ein Halbleitermodul bilden.
Um die vorteilhaften Wirkungen der erfindungsgemäßen Halbleiterchipstruktur, insbesondere die vorteilhafte Wirkung der Verdickung der Passivierungsschicht rund um die Kontaktflächen zu nutzen, ist es nicht erforderlich, dass der gesamte Halbleiterchip in einer Kunst stoffmasse auf dem Schaltungs- träger eingebettet ist. Vielmehr wird die erfindungsgemäße
Wirkung auch erreicht, wenn lediglich der Zwischenraum, zwischen der aktiven Oberseite des Halbleiterchips und dem Schaltungsträger die partikelgefüllte Kunststoffmasse mit den Mikroporen an den Verdickungen der Passivierungsschicht auf- weist.
Ein weiterer Aspekt der Erfindung betrifft einen Nutzen, der in Zeilen und Spalten angeordnete Bauteilpositionen mit Halbleiterbauteilen gemäß der Erfindung aufweist. Die vorteilhaf- te Wirkung der erfindungsgemä-ßen Struktur von Halbleiterchips, wirkt sich auch auf den Nutzen positiv aus, zumal ein derartiger Nutzen mehrere Halbleiterbauteile aufweist und durch die besondere Art der Strukturierung der Oberseite der Halbleiterchips, ist die Gefahr der Delamination von einzel- nen Halbleiterchips in ihren Bauteilpositionen vermindert.
Somit kann die Ausbeute pro Nutzen an funktionierenden Halbleiterbauteilen verbessert werden. Ein Verfahren zur Herstellung eines Halbleiterwafers mit in Zeilen und Spalten angeordneten Halbleiterchippositionen weist die nachfolgenden Verfahrensschritte auf. Zunächst wird ein Halbleiterwafer mit Halbleiterchippositionen hergestellt. Dazu wird die oberste Metallisierungslage mit Leiterbahnen und Kontaktflächen für Flip-Chip-Kontakte strukturiert, wobei die Kontaktflächen von ringförmigen Strukturen umgeben werden, die nicht mit den Leiterbahnen oder den Kontaktflächen in Berührung stehen. Anschließend wird die oberste Metalli- sierungslage mit einer Passivierungsschicht aus Oxyden oder Nitriden unter Abdecken der ringförmigen Strukturen und der Leiterbahnen unter Freilassen der Kontaktflächen beschichtet. Bei dieser Beschichtung entstehen aufgrund der ringförmigen Metallstrukturen rund um die Kontaktflächen Verdickungen der Passivierungsschicht, die kongruent zu den ringförmigen Strukturen in der obersten Metallschicht sind.
Ein derartiges Verfahren hat den Vorteil, dass es vollständig mit dem Verfahren zur Herstellung von Halbleiterwafern und entsprechenden Halbleiterchippositionen auf den Halbleiterwa- fern der Halbleitertechnologie kompatibel ist. Um die besondere erfindungsgemäße Struktur in jeder der Halbleiterchippositionen aufbringen zu können, sind keine zusätzlichen Verfahrensschritte erforderlich. Lediglich ist die Strukturie- rungsmaske für die Herstellung der obersten Metallisierung an die erfindungsgemäße Struktur anzupassen.
Ein alternatives Verfahren zur Herstellung eines Halbleiterwafers mit in Zeilen und Spalten angeordneten Halbleiterchip- Positionen weist die nachfolgenden Verfahrensschritte auf. Dabei wird ebenfalls zunächst ein Halbleiterwafer mit Halbleiterchippositionen in Zeilen und Spalten hergestellt und die oberste Metallisierungslage mit Kontaktflächen für Flip- Chip-Kontakte strukturiert. Nach der Strukturierung wird die oberste Metallisierungslage mit einer Passivierungsschicht aus Oxyden oder Nitriden unter Abdeckung der Leiterbahnen und unter Freilassen der Kontaktflächen versehen. Anschließend wird nun eine weitere Metallisierung auf die Passivierungsschicht unter Ausbilden von geschlossenen kreisförmigen oder polygonalen geschlossenen Strukturen rund um die Kontaktflächen aufgebracht und strukturiert.
Bei diesem Verfahren ist es vorteilhaft möglich, geschlossene kreisförmige oder polygonale Strukturen rund um die Kontaktflächen zu erzeugen, jedoch ist dazu ein weiterer Metallisierungsschritt erforderlich, der erst nach Aufbringen der Passivierungsschicht eingebracht werden kann, um die geschlosse- nen Strukturen von Leiterbahnen zu isolieren. Die Verdickungen auf der Passivierungsschicht bestehen bei diesem Verfahren in ihrem obersten Bereich aus einer Metalllegierung. Der Vorteil ist nicht allein in der geschlossenen kreisförmigen Struktur der Verdickung zu sehen, sondern auch in den scharf- kantigen Rändern, die mit einer derartigen Metallstrukturie- rung nach dem Herstellen der Passivierungsschicht realisiert werden können. Derartig scharfkantige Strukturen haben den Vorteil, dass die Wahrscheinlichkeit der Ausbildung von Mikroporen beim Aufbringen einer Kunststoffmasse zwischen der Halbleiteroberfläche und dem Schaltungsträger vergrößert ist.
Um aus einem derartig hergestellten Wafer nun Halbleiterchips zu erzeugen, sind weitere Verf hrensschritte erforderlich, nämlich dass der Halbleiterwafer in einzelnen Halbleiterchips aufgetrennt wird und anschließend Flip-Chip-Kontakte auf die Kontaktflächen des Halbleiterchips aufgebracht werden. Andererseits ist es auch möglich, die Flip-Chip-Kontakte in den Halbleiterchippositionen aufzubringen, bevor der Halbleiter- wafer in einzelne Halbleiterchips getrennt wird. Das hat den Vorteil, dass großflächig und parallel für eine Mehrzahl von Halbleiterchips die Flip-Chip-Kontakte positioniert und angelötet werden können.
Ein Verfahren zur Herstellung eines Nutzens, mit mehreren Halbleiterbauteilpositionen weist die nachfolgenden Verfahrensschritte auf. Zunächst wird ein Halbleiterchip gemäß der Erfindung unter Anwendung eines der Herstellungsverfahren für einen Wafer hergestellt. Parallel kann ein Schaltungsträger mit mehreren Halbleiterbauteilpositionen hergestellt werden, wobei der Schaltungsträger auf seiner Oberseite in den Halbleiterpositionen Umverdrahtungsstrukturen mit Kontaktanschlussflächen für Flip-Chip-Kontakte aufweist. Darüber hin- aus weist die Umverdrahtungsstruktur des Schaltungsträger Um- verdrahtungsleitungen zu Durchkontakten auf. Auf der Rückseite des Schaltungsträgers ist eine weitere Umverdrahtungsstruktur aufgebracht, die in den Halbleiterpositionen zu Außenkontaktflachen von Halbleiterbauteilen führt.
Dieses Verfahren des Herstellen eines Nutzens hat zwei Vorteile; einerseits werden mehrere Verfahrensschritte gleichzeitig für mehrere Halbleiterbauteile angewandt und andererseits können auf der Rückseite des Schaltungsträgers Bauteil- außenkontakte aufgebracht werden, die wesentlich größer als die Flip-Chip-Kontakte des Halbleiterchips ausfallen können, da der Schaltungsträger für einen derartigen Nutzen beliebig groß gestaltet und dem sogenannten "Foot Print" des Kunden angepaßt werden kann. Zum Herstellen von Halbleiterbauteilen aus einem derartigen Nutzen ist lediglich noch der Verfahrensschritt des Auftrennens des Nutzens in einzelne Halbleiterbauteile erforderlich. Zusammenfassend ist festzustellen, wenn die Gefahr einer Delamination mit oder ohne Popcorn-Effekt besteht, so kann mit Hilfe der Erfindung die Ausbreitung von Mikrorissen und damit die Delamination verhindert werden, indem der Halbleiterchip derart gestaltet wird, dass das höchstwahrscheinliche Auftreten von Mikrorissen an der Grenzfläche zwischen Kunststoffmasse und aktiver Oberseite der Halbleiterchips durch die besondere Ausbildung der Umgebung von Flip-Chip-Kontakten verhindert wird.
Durch die spezielle Struktur der Verdickungen rund um die Flip-Chip-Kontakte wird die Energie der Mikrorisse in der Grenzfläche verteilt. Diese speziellen Strukturen können Metallleitungen rund um die Kontaktflächen der Flip-Chip- Kontakte sein und können mit dem obersten Metallisierungsschritt des Halbleiterchips oder zusätzlich durch Hinzufügen einer weiteren strukturierten Metallisierung erzeugt werden. Die Konstruktion dieser Metallleitungen rund um die Kontaktflächen können ringförmig, serpentinenartig, mäanderartig o- der in Zick-Zack-Form durchgeführt sein. Je komplexer die topographische Struktur, umso mehr wird die Zuverlässigkeit der Halbleiterbauteile, die mit derartigen Chips hergestellt sind, verbessert. Dabei werden drei vorteilhafte Wirkungen von zusätzlichen Verdickungen rund um die Flip-Chip-Kontakte eines Halbleiterchips genutzt:
1. Verlängerung des Mikrorisspfades wegen der Verdickungen und der zwischen den Verdickungen herstellbaren Vertiefungen, wobei die Mikrorissenergie unschädlich verteilt wird.
2. Erzeugung von Mikroporen entlang der Ränder der Verdickungen bzw. rund um die Kontaktflächen, wobei die Mik- roporen dadurch entstehen, dass der Abstand zwischen den Verdickungen und den Kontaktflächen nicht vollständig von der mit Partikeln gefüllten Kunststoffmasse aufgefüllt werden kann. Dabei wirken die Mikroporen als Mi- krorissstopbereiche und verhindern eine weitere Ausbreitung der Mikrorisse und damit eine Delamination.
3. Verbesserung der Adhäsion der mit Partikeln gefüllten Kunststoffmasse an der Oberseite des Halbleiterchip, da die Adhäsionsfläche einerseits vergrößert wird und andererseits die typographische Struktur der Verdickungen ein Verankern der Kunststoffmasse an dem Halbleiterchip verbessert .
Die Erfindung wird nun anhand der beigefügten Figuren näher erläutert .
Figur 1 zeigt einen schematischen Querschnitt durch einen Teilbereich eines Halbleiterchips mit Übergangsbe- reich von dem Halbleiterchip zu einem Flip-Chip- Kontakt;
Figur 2 zeigt einen schematisehen Querschnitt durch ein Halbleiterbauteil mit einem Halbleiterchip und mit einem Schaltungsträger;
Figur 3 zeigt eine schematische Draufsicht auf eine Verdi- ckungsstruktur einer ersten Ausführungsform der Erfindung;
Figur 4 zeigt eine schematische Draufsicht auf eine Verdi- ckungsstruktur einer zweiten Ausführungsform der Erfindung; Figur 5 zeigt eine schematische Draufsicht auf eine Verdi- ckungsstruktur einer dritten Ausführungsform der Erfindung.
Figur 1 zeigt einen schematischen Querschnitt durch einen Teilbereich eines Halbleiterchips 1, im Übergangsbereich von dem Halbleiterchip 1 zu einem Flip-Chip-Kontakt 2. Der Halbleiterchip 1 weist in diesem Ausschnitt auf seiner aktiven Oberseite 4 eine Kontaktfläche 3 auf, die mit einer lötbaren Beschichtung 29 beschichtet ist und auf der ein Flip-Chip- Kontakt 2 angeordnet ist. Rund um die Kontaktfläche 3 und teilweise auch auf den Randbereichen 34 der Kontaktfläche 3 ist eine Passivierungsschicht 5 angeordnet, welche einen zentralen Bereich der Kontaktfläche 3 freilässt, der mit der lötbaren Beschichtung 29 bedeckt ist.
Von der Passivierungsschicht 5 wird eine offene kreisförmige Struktur 10 bedeckt, so dass sich eine Verdickung 6 der Pas- sivierungsschicht 5 über dieser offenen kreisförmigen Struktur 10 ergibt. Der Abstand, der sich ergebenden Verdickung 6 zu dem Randbereich 34 der Kontaktfläche 3 ist derart gering, dass sich Mikroporen 16 beim Auffüllen des Zwischenraumes 21 zwischen dem Halbleiterchip 1 und einem, hier nicht gezeigten Schaltungsträger, mit einer Kunststoffmasse 15 ausbilden können. Die Dicke d der offenen kreisförmigen Struktur 10 entspricht der Dicke der Kontaktfläche 3, da die kreisförmige Struktur 10 in dieser Ausführungsform der Erfindung, mit der obersten Metallisierungsschicht, d.h. gleichzeitig mit der Ausbildung und Strukturierung der Kontaktfläche 3, auf der aktiven Oberseite 4 des Halbleiterchips 1 hergestellt ist. Die Kunststoffmasse 15 ist in diesem Ausführungsbeispiel mit Partikeln 17 gefüllt, sodass es praktisch nicht möglich ist, vollständig den minimalen Abstand von wenigen Mikrometern zwischen der Verdickung 6 und dem Randbereich 34 der Kontakt- fläche 3 mit Kunststoffmasse 15 aufzufüllen. Die Linie 37 zeigt prinzipiell einen Mikroriss, der sich in der Grenzschicht zwischen Passivierungsschicht 5 und Kunststoffmasse 15 beispielsweise von einem nicht gezeigten Bläschen ausgehend ausgebreitet hat. Dieser Mikroriss wird an der Mikropore 16 gestoppt, was durch den schwarzen Fleck 38 verdeutlicht wird. Die weiteren Vorteile, die sich mit einer derartigen ringförmigen Struktur rund um eine Kontaktfläche 3 erzielen lassen, wurden bereits ausführlich diskutiert und werden hier nicht wiederholt.
Figur 2 zeigt einen schematischen Querschnitt durch ein Halbleiterbauteil 30 mit einem Halbleiterchip 1 und mit einem Schaltungsträger 18. Bei «derartigen Bauteilen, wie dem in Figur 2 gezeigten Halbleiteαrbauteil 30, wirken sich die Vortei- le dahingehend aus, dass eine Delamination des Halbleiterchips 1 und der Kunststoffmasse 15 in dem Grenzbereich zwischen der aktiven Oberseite 4 des Halbleiterchips 1 und der Kunststoffmasse 15 verhindert wird. Besonders bei dem hier gezeigten Halbleiterbaute±l 30, das ein Beispiel für einen oberflächenmontierten Halloleiterchip 1 darstellt, wird die
Ausfallrate bei der Fertigung durch die erfindungsgemäße Gestaltung des Halbleiterchips 1 reduziert.
Komponenten mit gleichen Funktionen, wie in Figur 1, werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert. Figur 2 zeigt, dass rings um die Flip-Chip-Kontakte 2 des Halbleiterchips 1, Verdickungen 6 angeordnet sind, bei denen die aktive Oberseite 4 des Halbleiterchips 1 in eine Kunststoffmasse 15 eingebettet ist. Rissbildungen, wie sie üblicherweise in der kritischen Grenzschicht zwischen Halbleiterchip 1 und Kunststoffmasse 15 auftreten, werden durch die Verdickungen 6 des Halbleiterchips 1 energetisch aufge- fangen oder durch Mikroporenbildung an den Verdickungen in ihrer Ausbreitung angehalten, da die Spannungsspitzen an den Mikroporen herabgesetzt werden.
Der Halbleiterchip 1 ist über die Flip-Chip-Kontakte 2 auf dem Schaltungsträger 18 fixiert, indem die Flip-Chip-Kontakte 2 auf entsprechende Kontaktanschlussflächen 19 des Schaltungsträgers aufgelötet sind. Der Schaltungsträger 18 ist eine faserverstärkte Kunststoffplatte, die auf ihrer Oberseite 23 eine Umverdrahtungsstruktur 20 aufweist, wobei die Um- Verdrahtungsstruktur 20 Umverdrahtungsleitungen 24 besitzt, die mit Durchkontakten 25 zur Rückseite 26 des Schaltungsträgers 18 elektrisch verbunden sind. Auf der Rückseite 26 des Schaltungsträgers 18 ist eine weitere Umverdrahtungsstruktur 27 angeordnet, die Umverdrahtungsleitungen 24 aufweist, wel- ehe die Durchkontakte 25 mit Außenkontaktflächen 28 verbinden, auf denen Außenkontakten 9 des Halbleiterbauteils 30 angeordnet sind.
Die Außenkontakte 9 des Halbleiterbauteils 30 können wesent- lieh größer gestaltet werden, als die Flip-Chip-Kontakte 2 des Halbleiterchips 1, zumal der Schaltungsträger 18 gegenüber der Größe des Halbleiterchips 1 beliebig vergrößert werden kann. Sowohl die Oberseite 23 des Schaltungsträgers 18, als auch die Rückseite 26 sind mit Lötstoplackschichten 35 bzw. 36 unter Freilassung der Kontaktanschlussflächen 19 bzw. der Außenkontaktflachen 28 beschichtet, um die Umverdrah- tungsstrukturen 20 bzw. 27 elektrisch zu isolieren und vor Beschädigungen zu schützen. Außerdem sorgen die Lötstoplack- schichten 35 und 36 dafür, dass sich das Material der Flip- Chip-Kontakte 2 bz . der Außenkontakte 9 beim Anlöten nicht auf den Umverdrahtungsleitungen 24 ausbreitet.
Figur 3 zeigt eine schematische Draufsicht auf eine Verdi- ckungsstruktur 31 einer ersten Ausführungsform der Erfindung. Die Passivierungsschicht ist zur Verdeutlichung der Struktur auf der aktiven Oberseite 4 des Halbleiterchips weggelassen. Es ist lediglich die oberste Metallisierungslage 8 zu sehen, die eine Leiterbahn 12 und eine Kontaktfläche 3 aufweist, welche elektrisch miteinander in Verbindung stehen. Um die Kontaktfläche 3 sind zwei offene kreisförmige Strukturen 10 angeordnet, die nicht die Leiterbahn 12 berühren, wobei die Öffnung 11 in den offenen kreisförmigen Strukturen 10 gewähr- leistet, dass diese nicht die Leiterbahn 12 elektrisch kontaktieren. Diese Strukturen 10 weisen die gleiche Dicke in dieser ersten Ausführungsform der Erfindung auf, wie die Leiterbahn 12 und bewirken, dass nach Aufbringen einer Passivierungsschicht beispielsweise aus Siliziumnitrid oder Silizium- oxyd auf die aktive Oberseite 4 des Halbleiterchips unter
Freilassung der Kontaktfläche 3, kreisförmige Verdickungen 6 der Passivierungsschicht gebildet werden.
Figur 4 zeigt eine schematische Draufsicht auf eine Verdi- ckungsstruktur 32 einer zweiten Ausführungsform der Erfindung. Die Verdickungsstruktur 32 besteht im Gegensatz zur Verdickungsstruktur 31, gemäß Figur 3, aus geschlossenen kreisförmigen Metallringen 13, die jedoch erst nach dem Aufbringen einer Passivierungsschicht 5 auf die aktive Oberseite eines Halbleiterchips mittels einer weiteren Metallisierung
22 aufgebracht werden. Diese geschlossene kreisförmige Struktur, die hier zwei Ringe umfasst, bildet zwei Ringe 13, die keine Öffnung aufweisen und folglich in jede Richtung ein Ausbreiten von Mikrorissbildungen behindern, wenn auf diesen Halbleiterchips eine Kunststoffmasse aufgebracht wird.
Figur 5 zeigt eine schematische Draufsicht auf eine Verdi- ckungsstruktur 33 einer dritten Ausführungsform der Erfindung. Diese Verdickungsstruktur 33 unterscheidet sich von der Verdickungsstruktur 31 gemäß Figur 3 dadurch, dass sie eine polygonale kreisförmig gebogene Zick-Zack-Struktur 14 aufweist. Auch in dieser dritten Ausführungsform der Erfindung wird, wie in Figur 3, die Passivierungsschicht weggelassen, um die Struktur, sowohl der Leiterbahn 12, als auch der Kontaktfläche 3, sowie der polygonalen kreisförmig gebogenen Zick-Zack-Struktur 14 sichtbar zu machen. Diese polygonale Struktur der Verdickung 6, die in diesem Fall aufgrund eines metallischen Wulstes 7 gebildet wurde, soll zeigen, dass die Verdickungen 6 beliebige Muster aufweisen können, jedoch mit der Maßgabe, dass sie in geringem Abstand zu der Kontaktfläche 3 auf der aktiven Oberseite 4 des Halbleiterchip angeordnet sind, um auch eine Mikroporenbildung zwischen dem hier nicht gezeigten Flip-Chip-Kontakt und der Verdickungsstruktur 33 zu ermöglichen.

Claims

Patentansprüche
1. Halbleiterchip mit Flip-Chip-Kontakten (2), wobei die Flip-Chip-Kontakte (2) auf Kontaktflächen (3) der akti- ven Oberseite (4) des Halbleiterchips (1) angeordnet sind und wobei die Kontaktflächen (3) von einer Passivierungsschicht (5), welche die aktive Oberseite (4) unter Freilassung der Kontaktflächen (3) bedeckt, umgeben sind und wobei die Passivierungsschicht (5) Verdickungen (6) aufweist, welche die Kontaktflächen (3) umgeben.
2. Halbleiterchip nach Anspruch 1, dadurch gekennzeichnet, dass die Verdickungen (6) Material der Passivierungsschicht (5) und einen metallischen Wulst (7) aufweisen.
3. Halbleiterchip nach Anspruch 2, dadurch gekennzeichnet, dass die Dicke (d) des metallischen Wulstes (7) der Dicke (d) der obersten Metallisierungsstruktur (8) des Halbleiterchips (1) entspricht.
4. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Passivierungsschicht (5) zur Bildung der Verdickungen (6) auf einem metallischen Wulst (7) angeordnet ist.
5. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein metallischer Wulst (7) zur Bildung der Verdickungen (6) auf der Passivierungsschicht (5) angeordnet ist.
6. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verdickungen (6) mehrere offene kreisförmige Strukturen (10) rund um eine Kontaktfläche (3) aufweisen, wo- bei durch die Öffnungen (11) der Strukturen (10) eine Leiterbahn (12) zu der Kontaktfläche (3) führt.
7. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verdickungen (6) mehrere geschlossene kreisförmige Strukturen (13) rund um eine Kontaktfläche (3) aufweisen .
8. Halbleiterchip nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verdickungen (6) eine polygonale kreisförmig gebogene Zick-Zack-Struktur (14) aufweisen.
9. Halbleiterwafer mit in Zeilen und Spalten angeordneten Halbleiterchippositionen, in denen Halbleiterchips (1) gemäß einem der Ansprüche 1 bis 8 angeordnet sind.
10. Halbleiterbauteil das einen Halbleiterchip (1) gemäß einem der Ansprüche 1 bis 8 aufweist
11. Halbleiterbauteil nach Anspruch 10, dadurch gekennzeichnet , dass der Halbleiterchip (1) mit seinen Flip-Chip-Kontakten (2) und den umgebenden Verdickungen (6) in eine Kunst- stoffmasse (15) eingebettet ist, wobei die Kunststoffmasse (15) mit Partikeln (17) gefüllt ist und Mikroporen (16) von wenigen Mikrometern Durchmesser (d) an den Verdickungen (6) aufweist.
2. Halbleiterbauteil nach Anspruch 10 oder Anspruch 11, dadurch gekennzeichnet, dass der Halbleiterchip (1) auf einem Schaltungsträger (18) angeordnet ist, wobei der Schaltungsträger (18) Kontakt- anschlussflachen (19) einer Umverdrahtungsstruktur (20) aufweist, wobei die Flip-Chip-Kontakte (2) des Halbleiterchips (1) auf den Kontaktanschlussflächen (19) befestigt sind, und wobei der Zwischenraum (21) zwischen der aktiven Oberseite (4) des Halbleiterchips (1) und dem Schaltungsträger (18) die partiklelgefüllte Kunststoffmasse (15) mit den Mikroporen (16) an den Verdickungen (6) aufweist.
13. Nutzen, der in Zeilen und Spalten angeordnete Bauteilpositionen mit Halbleiterbauteilen (30) gemäß einem der Ansprüche 10 bis 12 aufweist.
14. Verfahren zur Herstellung eines Halbleiterwafers mit in Zeilen und Spalten angeordneten Halbleiterchippositionen, wobei das Verfahren folgende Verfahrensschritte aufweist: Herstellen eines Halbleiterwafers mit Halbleiterchippositionen, - Strukturieren der obersten Metallisierungslage (8) mit Leiterbahnen (12) und Kontaktflächen (3) für Flip-Chip-Kontakte (2), wobei die Kontaktflächen (3) offene von kreisförmigen Strukturen (10) umgeben werden, - Beschichten der obersten Metallisierungslage (8) mit einer Passivierungsschicht (5) aus Oxiden oder Nitriden unter Abdecken der offene kreisförmigen Strukturen (10) und der Leiterbahnen (12) und unter Freilassen der Kontaktflächen (3) .
15. Verfahren zur Herstellung eines Halbleiterwafers mit in Zeilen und Spalten angeordneten Halbleiterchippositionen, wobei das Verfahren folgende Verfahrensschritte aufweist: Herstellen eines Halbleiterwafers mit Halbleiterchippositionen, - Strukturieren der obersten Metallisierungslage (8) mit Leiterbahnen (12) und Kontaktflächen (3) für Flip-Chip-Kontakte (2), - Beschichten der obersten Metallisierungslage (8) mit einer Passivierungsschicht (5) aus Oxiden oder Nitriden unter Abdecken der Leiterbahnen (12) und unter Freilassen der Kontaktflächen (3) , Aufbringen und Strukturtieren einer weiteren Metallisierung (22) auf die Passivierungsschicht (5) unter Ausbilden von geschlossenen kreisförmigen oder polygonalen geschlossenen Strukturen (13, 14) rund um die Kontaktflächen (3) .
16. Verfahren zur Herstellung von Halbleiterchips mit Hilfe eines der Verfahren gemäß Anspruch 14 oder Anspruch 15, wobei das Verfahren die zusätzlichen Verfahrensschritte aufweist: Auftrennen des Halbleiterwafers in einzelne Halbleiterchips (1), Aufbringen von Flip-Chip-Kontakten (2) auf die Kon- taktflächen (3) .
17. Verfahren zur Herstellung von Halbleiterchips mit Hilfe eines der Verfahren gemäß Anspruch 14 oder Anspruch 15, wobei das Verfahren den zusätzlichen Verfahrensschritt aufweist : Aufbringen von Flip-Chip-Kontakten (2) in den Halbleiterchippositionen des Halbleiterwafers, - Auftrennen des Halbleiterwafers in einzelne Halbleiterchips (1) .
18. Verfahren zur Herstellung eines Nutzens mit mehreren Halbleiterbauteilpositionen, wobei das Verfahren folgen- de Verfahrensschritte aufweist: Herstellen von Halbleiterchips (1) gemäß einem der Ansprüche 1 bis 8 unter Anwendung eines der Verfahren gemäß Anspruch 16 oder Anspruch 17, Herstellen eines Schaltungsträgers (18) mit mehre- ren Halbleiterbauteilpositionen, wobei der Schaltungsträger (18) auf seiner Oberseite (23) in den Halbleiterbauteilpositionen UmverdrahtungsStrukturen (20) mit Kontaktanschlussflächen (19) für Flip- Chip-Kontakte (2) und Umverdrahtungsleitungen (24) zu Durchkontakten (25) aufweist, und auf seiner Rückseite (26) Umverdrahtungsstrukturen (27) in den Halbleiterbauteilpositionen zu Außenkontaktflachen (28) von Halbleiterbauteilen (30) besitzt, Aufbringen der Halbleiterchips (1) in den Halblei- terbauteilpositionen unter Auflöten der Flip-Chip- Kontakte (2) auf die Kontaktanschlussflächen (19), Aufbringen einer mit Partikeln (17) gefüllten Kunststoffmasse (15) in Zwischenräume (21) zwischen den Halbleiterchips (1) und dem Schaltungsträger (18), Aufbringen von Außenkontakten (9) auf die Außenkontaktflachen (28) der Rückseite (26) des Schaltungsträgers (18) .
9. Verfahren zur Herstellung von Halbleiterbauteilen, wobei das Verfahren nachfolgende Verfahrensschritte aufweist: Herstellen eines Nutzens gemäß Anspruch 18, Auftrennen des Nutzens in einzelne Halbleiterbauteile (30) .
EP04802671A 2003-11-06 2004-11-03 Halbleiterchip mit flip-chip-kontakten und verfahren zur herstellung desselben Withdrawn EP1680812A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352349A DE10352349B4 (de) 2003-11-06 2003-11-06 Halbleiterchip mit Flip-Chip-Kontakten und Verfahren zur Herstellung desselben
PCT/DE2004/002440 WO2005045931A2 (de) 2003-11-06 2004-11-03 Halbleiterchip mit flip-chip-kontakten und verfahren zur herstellung desselben

Publications (1)

Publication Number Publication Date
EP1680812A2 true EP1680812A2 (de) 2006-07-19

Family

ID=34559528

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802671A Withdrawn EP1680812A2 (de) 2003-11-06 2004-11-03 Halbleiterchip mit flip-chip-kontakten und verfahren zur herstellung desselben

Country Status (4)

Country Link
US (1) US7768137B2 (de)
EP (1) EP1680812A2 (de)
DE (1) DE10352349B4 (de)
WO (1) WO2005045931A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005005749A1 (de) 2005-02-07 2006-08-17 Infineon Technologies Ag Halbleiterbauteil mit oberflächenmontierbaren Aussenkontakten und Verfahren zur Herstellung desselben
US20080169555A1 (en) * 2007-01-16 2008-07-17 Ati Technologies Ulc Anchor structure for an integrated circuit
JP2011146513A (ja) * 2010-01-14 2011-07-28 Renesas Electronics Corp 半導体装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312671B1 (de) 1987-10-19 1993-01-27 International Business Machines Corporation Prädiktive Taktwiedergewinnungsschaltung
JPH05226339A (ja) * 1992-01-28 1993-09-03 Nec Corp 樹脂封止半導体装置
JP2546472B2 (ja) 1992-09-28 1996-10-23 株式会社日立製作所 半導体装置
JP3353508B2 (ja) * 1994-12-20 2002-12-03 ソニー株式会社 プリント配線板とこれを用いた電子装置
US6022792A (en) 1996-03-13 2000-02-08 Seiko Instruments, Inc. Semiconductor dicing and assembling method
US5874356A (en) * 1997-02-28 1999-02-23 Taiwan Semiconductor Manufacturing Co. Ltd. Method for forming zig-zag bordered openings in semiconductor structures
JPH11233544A (ja) * 1998-02-18 1999-08-27 Matsushita Electron Corp 半導体装置
US5943597A (en) * 1998-06-15 1999-08-24 Motorola, Inc. Bumped semiconductor device having a trench for stress relief
TW441050B (en) 1999-04-16 2001-06-16 Advanced Semiconductor Eng Flip-chip packaging structure and instilling method
US6313541B1 (en) 1999-06-08 2001-11-06 Winbond Electronics Corp. Bone-pad with pad edge strengthening structure
US6551916B2 (en) 1999-06-08 2003-04-22 Winbond Electronics Corp. Bond-pad with pad edge strengthening structure
JP3446826B2 (ja) 2000-04-06 2003-09-16 沖電気工業株式会社 半導体装置及びその製造方法
DE10031204A1 (de) * 2000-06-27 2002-01-17 Infineon Technologies Ag Systemträger für Halbleiterchips und elektronische Bauteile sowie Herstellungsverfahren für einen Systemträger und für elektronische Bauteile
JP2002151551A (ja) * 2000-11-10 2002-05-24 Hitachi Ltd フリップチップ実装構造、その実装構造を有する半導体装置及び実装方法
US6459144B1 (en) * 2001-03-02 2002-10-01 Siliconware Precision Industries Co., Ltd. Flip chip semiconductor package
JP2002280401A (ja) * 2001-03-21 2002-09-27 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6586843B2 (en) * 2001-11-08 2003-07-01 Intel Corporation Integrated circuit device with covalently bonded connection structure
JP2003158141A (ja) * 2001-11-26 2003-05-30 Shindo Denshi Kogyo Kk 半導体装置
TW586207B (en) * 2002-01-29 2004-05-01 Via Tech Inc Flip-chip die
TWI291210B (en) * 2002-09-10 2007-12-11 Advanced Semiconductor Eng Under-bump-metallurgy layer
KR100659527B1 (ko) * 2003-10-22 2006-12-20 삼성전자주식회사 3차원 범프 하부 금속층을 갖는 플립 칩 본딩용 반도체칩과 그 실장 구조

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2005045931A2 *

Also Published As

Publication number Publication date
WO2005045931A2 (de) 2005-05-19
DE10352349A1 (de) 2005-06-23
WO2005045931A3 (de) 2005-08-11
DE10352349B4 (de) 2006-11-16
US20060270163A1 (en) 2006-11-30
US7768137B2 (en) 2010-08-03

Similar Documents

Publication Publication Date Title
DE60022458T2 (de) Halbleitergehäuse, halbleitervorrichtung, elektronikelement und herstellung eines halbleitergehäuses
DE10333841B4 (de) Verfahren zur Herstellung eines Nutzens mit in Zeilen und Spalten angeordneten Halbleiterbauteilpositionen und Verfahren zur Herstellung eines Halbleiterbauteils
DE3913221A1 (de) Halbleiteranordnung
EP1351298B1 (de) Method for producing a semiconductor wafer
DE102005014665A1 (de) Substrat zur Herstellung einer Lötverbindung mit einem zweiten Substrat
CH658540A5 (de) Verfahren zum anbringen von kontakterhoehungen an kontaktstellen einer elektronischen mikroschaltung.
DE102011079708B4 (de) Trägervorrichtung, elektrische vorrichtung mit einer trägervorrichtung und verfahren zur herstellung dieser
DE3331624A1 (de) Elektronische einrichtung
DE102010038933A1 (de) Halbleitervorrichtung mit Halbleiterchip und Metallplatte und Verfahren zu deren Fertigung
DE19736139A1 (de) Leiterplatte
DE69013646T2 (de) Integrierte Halbleiterschaltungsvorrichtung mit Kontaktierungsflächen am Rande des Halbleiterchips.
DE102015109333A1 (de) Optoelektronisches Bauelement
WO2017144691A1 (de) Optoelektronisches bauteil mit einem leiterrahmenabschnitt
DE102015114579B4 (de) Halbleiterchip
EP1680812A2 (de) Halbleiterchip mit flip-chip-kontakten und verfahren zur herstellung desselben
EP2260511B1 (de) Bauelementanordnung und verfahren zur herstellung einer bauelementanordnung
DE19736754A1 (de) Überspannungsschutzelement
DE102019109200A1 (de) Halbleitervorrichtungen mit nicht-galvanischer verbindung
DE10333840B4 (de) Halbleiterbauteil mit einem Kunststoffgehäuse, das eine Umverdrahrungsstruktur aufweist und Verfahren zu deren Herstellung
WO2022263543A1 (de) Leiterplattenanordnung
DE102019215471B4 (de) Elektronisches Bauteil mit einer Kontaktieranordnung und Verfahren zur Herstellung eines elektronischen Bauteils
EP1116420B1 (de) Leiterplatte zur verwendung bei der prüfung von elektrischen bauteilen
DE10148043A1 (de) Elektronisches Bauteil mit einem Kunststoffgehäuse und Komponenten eines Systemträgers und Verfahren zu deren Herstellung
DE10252556B3 (de) Elektronisches Bauteil mit Außenkontaktelementen und Verfahren zur Herstellung einer Mehrzahl dieses Bauteils
DE10139985A1 (de) Elektronisches Bauteil mit einem Halbleiterchip sowie Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060505

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TAN, AI, MIN

Inventor name: OFNER, GERALD

Inventor name: TEO, MARY

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20081110

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180602