EP1674590A1 - Verwendung einer Gasmischung und Verfahren zum Lichtbogenspritzen - Google Patents

Verwendung einer Gasmischung und Verfahren zum Lichtbogenspritzen Download PDF

Info

Publication number
EP1674590A1
EP1674590A1 EP05027513A EP05027513A EP1674590A1 EP 1674590 A1 EP1674590 A1 EP 1674590A1 EP 05027513 A EP05027513 A EP 05027513A EP 05027513 A EP05027513 A EP 05027513A EP 1674590 A1 EP1674590 A1 EP 1674590A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
gas mixture
carrier gas
spray
arc spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05027513A
Other languages
English (en)
French (fr)
Inventor
Thomas Ammann
Peter Heinrich
Werner Krömmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1674590A1 publication Critical patent/EP1674590A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying

Definitions

  • the invention relates to the use of a gas mixture as a carrier gas for arc spraying. Furthermore, the invention relates to a method for arc spraying, wherein a spray material is melted in an arc and atomized in a carrier gas to spray particles and the spray particles are conveyed with the carrier gas to the workpiece, where of the spray particles, the coating is formed.
  • Arc spraying is one of the thermal spray processes. In all methods of thermal spraying, spray particles are directed onto a workpiece by means of a carrier gas. The spray particles form the coating on the workpiece. The spray particles adhere to the surface of the workpiece and to one another due to the kinetic energy and heat that they have on impacting the workpiece.
  • arc spraying a thermal spraying process, two wires are melted in an arc and atomized to spray particles by means of a carrier gas and then transported to the workpiece. The electric arc burns between the two wires. As wires therefore only electrically conductive materials come into question. The two wires can be made of the same or different materials. Instead of wires, two metallic tubes can also be used. The arc is normally generated between the two wire ends, which are fed to each other in the spray gun, by the application of a voltage with a contact ignition. Arc spraying is primarily used to produce coatings that serve as wear or corrosion protection.
  • the disadvantage of arc spraying is the influence of oxygen on the spray material. Due to the high temperatures that prevail in the vicinity of the arc, the oxygen has a strong oxidizing effect. Oxygen enters the spray material during arc spraying either by the carrier gas, which is often used for compressed air, or by the swirling with the carrier gas ambient air. Depending on the energy present, the molten and atomized spray particles burn completely or the metal particles oxidize to metal oxides. The completely burned spray particles are no longer available for the coating, it is called burning. The burnup thus reduces the efficiency for the application of the spray material to the workpiece. The efficiency is defined as the ratio between the spray material forming the coating to the total molten spray material.
  • the metal oxides together with the metallic spray particles, reach the workpiece and become part of the coating there.
  • these metal oxides lead to a deterioration of the coating quality.
  • nitrogen is used as the carrier gas. Nitrogen reduces the oxidation of the spray particles. However, oxidation is insufficiently suppressed by the use of nitrogen, and the coatings often fail to meet the quality requirements.
  • the invention has for its object to provide a method that allows high efficiency for the application of the spray material and which leads to high quality coatings.
  • a gas mixture is used as a carrier gas for arc spraying, which contains hydrogen.
  • the hydrogen in the carrier gas increases the temperature in the arc, causing more spray material to be melted in the arc and atomized and transported by the carrier gas.
  • Higher deposition rates enable higher order rates and thus faster layer production. This leads to a higher efficiency of the arc spraying, which has an advantageous effect especially when coating large areas and when spraying thick layers.
  • the efficiency for the application of the coating increases, ie the proportion of molten Spray material which forms the coating increases with respect to the total molten spray material. This is due to a reduction in burnup.
  • the gas mixture contains 1 to 30% by volume, preferably 2 to 20% by volume, of hydrogen.
  • a hydrogen content of less than or equal to 30% by volume, preferably less than or equal to 20% by volume is chosen, since the danger of an explosion increases with increasing hydrogen content.
  • the optimum hydrogen content of the carrier gas mixture depends on the specific injection task present and can be determined by simple trial and error.
  • the gas mixture contains from 2 to 10% by volume, preferably from 3 to 7% by volume, of hydrogen. Hydrogen contents of this order of magnitude are particularly suitable when non-ferrous metals are used as the spray material. In another particularly advantageous embodiment, the gas mixture contains 10 to 20 vol .-%, preferably 10 to 18 vol .-% hydrogen. Gas mixtures with these hydrogen contents are particularly advantageous when using high-alloy steels as the spray material.
  • the gas mixture contains nitrogen. Since nitrogen is an inert gas, the use of nitrogen as the carrier gas reduces the burnup and prevents the formation of metal oxides or of other metal compounds.
  • the oxygen from the ambient air, which is introduced by turbulence during the injection process in the mixture of spray particles and carrier gas is bound by the hydrogen. Therefore, the binary mixtures of hydrogen and nitrogen are particularly suitable for the invention.
  • the gas mixture contains argon. Since argon is an inert gas, the hydrogen-argon mixtures are also suitable for the invention. Advantageous are v.a. also the teneren mixtures of hydrogen, nitrogen and argon.
  • the object is further achieved by a method for arc spraying, which is characterized in that hydrogen is contained in the carrier gas or hydrogen is added to the carrier gas as a further component.
  • This inventive method shows all the aforementioned advantages.
  • the hydrogen volume fractions are specified in the preceding sections.
  • Hydrogen-containing gas mixtures can be obtained from gas suppliers.
  • the carrier gas may be stored in a buffer after the addition of hydrogen, or the hydrogen may be introduced separately from the other carrier gas components into the spray gun where the mixing takes place.
  • a gas mixture of hydrogen and nitrogen is used.
  • the oxygen introduced by the hydrogen is bound by the hydrogen during the injection process from the environment.
  • hydrogen is mixed into air.
  • the addition of hydrogen to air significantly improves the properties of the carrier gas hydrogen and air in comparison to the use of pure air, since the hydrogen binds at least a portion of the oxygen and thus at least partially adjust the advantages.
  • a deposition rate of at least 10 kg / h is used. Possible melting rates of 20 kg / h and more. As the deposition rate increases, the problems of burnup and oxide formation increase. With the method according to the invention, however, these problems are solved even at high Abschmelz transaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Beim Lichtbogenspritzen wird ein Spritzmaterial in einem Lichtbogen aufgeschmolzen und in einem Trägergas zu Spritzpartikeln zerstäubt. Die Spritzpartikel werden mit dem Trägergas zum Werkstück befördert, wo sie die Beschichtung ausbilden. Erfindungsgemäß wird ein wasserstoffhaltiges Trägergas verwendet. Der Wasserstoff ist in der Gasmischung enthalten oder er wird dem Trägergas als weitere Komponente zugegeben. Vorteilhafterweise handelt es sich um 1 bis 30 Vol.-%, vorzugsweise um 2 bis 20 Vol.-% Wasserstoff.

Description

  • Die Erfindung betrifft die Verwendung einer Gasmischung als Trägergas zum Lichtbogenspritzen. Ferner betrifft die Erfindung ein Verfahren zum Lichtbogenspritzen, wobei ein Spritzmaterial in einem Lichtbogen aufgeschmolzen und in einem Trägergas zu Spritzpartikeln zerstäubt wird und die Spritzpartikel mit dem Trägergas zum Werkstück befördert werden, wo von den Spritzpartikeln die Beschichtung ausgebildet wird.
  • Das Lichtbogenspritzen gehört zu den thermischen Spritzverfahren. Bei allen Verfahren des thermischen Spritzens werden Spritzpartikel mit Hilfe eines Trägergases auf ein Werkstück gelenkt. Auf dem Werkstück bilden die Spritzpartikel die Beschichtung aus. Die Spritzpartikel haften auf der Werkstückoberfläche und aneinander aufgrund der kinetischen Energie und der Wärme, die sie beim Auftreffen auf das Werkstück aufweisen. Beim Lichtbogenspritzen, ein zum thermischen Spritzen zählendes Verfahren, werden zwei Drähte in einem Lichtbogen aufgeschmolzen und mit Hilfe eines Trägergases zu Spritzpartikel zerstäubt und anschließend zum Werkstück befördert. Der elektrische Lichtbogen brennt dabei zwischen den beiden Drähten. Als Drähte kommen deshalb nur elektrisch leitende Materialien in Frage. Die beiden Drähte können dabei aus den gleichen oder aus verschiedenen Materialien sein. Anstelle von Drähten können auch zwei metallische Röhrchen verwendet werden. Der Lichtbogen wird normalerweise zwischen den beiden Drahtenden, die in der Spritzpistole aufeinander zugeführt werden, durch das Anlegen einer Spannung mit einer Kontaktzündung erzeugt. Das Lichtbogenspritzen wird vor allem eingesetzt, um Beschichtungen zu erzeugen, die als Verschleiß- oder Korrosionsschutz dienen.
  • In den vergangenen Jahren nun wurde das Verfahren des Lichtbogenspritzens entscheidend verbessert. Es wurde die Handhabung deutlich vereinfacht und auch die Qualität der Beschichtungen konnte merklich gesteigert werden. Ferner konnte die Abschmelzleistung des Spritzmaterials erhöht werden, so dass nun deutlich höhere Auftragsraten für die Beschichtung möglich sind. Entscheidend für den Fortschritt beim Lichtbogenschweißen waren dabei die Verbesserungen, die zu einem gleichmäßigen Drahtvorschub, einem konstant brennenden Lichtbogen und einer hohen Zündgeschwindigkeit führten.
  • Von Nachteil beim Lichtbogenspritzen ist jedoch der Einfluss des Sauerstoffs auf das Spritzmaterial. Aufgrund der hohen Temperaturen, die in der Nähe des Lichtbogens herrschen, wirkt der Sauerstoff stark oxidierend. Sauerstoff gelangt beim Lichtbogenspritzen an das Spritzmaterial entweder durch das Trägergas, für welches ja oftmals Druckluft verwendet wird, oder durch die mit dem Trägergas verwirbelnde Umgebungsluft. Je nach vorhandener Energie verbrennen die abgeschmolzenen und zerstäubten Spritzpartikel dabei vollständig oder die Metallteilchen oxidieren zu Metalloxiden auf. Die vollständig verbrannten Spritzpartikel stehen für die Beschichtung nicht mehr zur Verfügung, man spricht vom Abbrand. Der Abbrand verringert folglich den Wirkungsgrad für die Aufbringung des Spritzmaterials auf das Werkstück. Der Wirkungsgrad ist definiert als das Verhältnis zwischen dem die Beschichtung ausbildenden Spritzmaterial zu dem insgesamt abgeschmolzenen Spritzmaterial. Die Metalloxide hingegen gelangen zusammen mit den metallischen Spritzpartikeln zum Werkstück und werden dort Bestandteil der Beschichtung. Bei Beschichtungen für den Korrosionsschutz führen diese Metalloxide jedoch zu einer Verschlechterung der Schichtqualität. Um dem gegenzusteuern wird Stickstoff als Trägergas verwendet. Stickstoff vermindert die Oxidation der Spritzpartikel. Jedoch wird die Oxidation durch die Verwendung von Stickstoff nur unzureichend unterdrückt, und die Beschichtungen erfüllen dann oft nicht die bezüglich der Qualität gestellten Anforderungen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, die einen hohen Wirkungsgrad für die Aufbringung des Spritzmaterials ermöglicht und welches zu qualitativ hochwertigen Beschichtungen führt.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass eine Gasmischung als Trägergas zum Lichtbogenspritzen verwendet wird, die Wasserstoff enthält. Durch den Wasserstoff im Trägergas wird die Temperatur im Lichtbogen erhöht, wodurch mehr Spritzmaterial im Lichtbogen aufgeschmolzen und vom Trägergas zerstäubt und befördert wird. Höhere Abschmelzleistungen ermöglichen höhere Auftragsraten und damit eine schnellere Schichterzeugung. Dies führt zu einer höheren Wirtschaftlichkeit des Lichtbogenspritzens, die sich insbesonders beim Beschichten von großen Flächen und beim Spritzen von dicken Schichten vorteilhaft auswirkt. Ferner wird mit dem erfindungsgemäßen Verfahren nicht nur die Abschmelzleistung erhöht, sondern auch der Wirkungsgrad für die Auftragung der Beschichtung steigt an, d.h. der Anteil an abgeschmolzenem Spritzmaterial, welcher die Beschichtung ausbildet, steigt bezüglich des insgesamt abgeschmolzenen Spritzmaterials an. Dies ist auf eine Verringerung des Abbrands zurückzuführen. Es hat sich gezeigt, dass durch die erfindungsgemäße Zugabe von Wasserstoff in das Trägergas sowohl der aus der Umgebung eingewirbelte Sauerstoff als auch der im Trägergas vorhandene Sauerstoff (falls ein sauerstoffhaltiges Trägergas, wie beispielsweise Luft, verwendet wird) durch den Wasserstoff gebunden wird. Dadurch wird der Anteil an zerstäubtem Spritzmaterial, das vollständig verbrennt, deutlich herabgesetzt. Die Verringerung des Abbrands hat ferner den Vorteil, dass die Belastung durch Abgase und Staub sinkt. Durch die Bindung des Sauerstoffs an den Wasserstoff wird weiterhin auch die Bildung der für die Spritzschicht schädlichen Metalloxide unterdrückt und zum Werkstück gelangt die gewünschte metallische Form der Spritzpartikel. Somit entstehen mit dem erfindungsgemäßen Verfahren qualitativ hochwertige Beschichtungen. Die Vorteile der Erfindung zeigen sich bei allen Spritzmaterialien, die beim Lichtbogenspritzen eingesetzt werden, also bei allen metallischen Werkstoffen, wie beispielsweise unlegierten oder legierten Stählen, Nickelbasiswerkstoffen und Nichteisenmetallen.
  • Vorteilhafterweise enthält die Gasmischung 1 bis 30 Vol.-%, vorzugsweise 2 bis 20 Vol.-% Wasserstoff. Eine Zugabe von mindestens 1 Vol.-%, vorzugsweise von mindestens 2 Vol.-% ist normalerweise notwendig, damit sich die Vorteile der Erfindung zeigen. In der Regel wird ein Wasserstoffanteil von weniger oder gleich 30 Vol.-%, vorzugsweise von weniger oder gleich 20 Vol.-% gewählt, da mit steigendem Wasserstoffanteil die Gefahr einer Explosion steigt. Der optimale Wasserstoffanteil der Trägergasmischung hängt von der konkret vorliegenden Spritzaufgabe ab und kann durch einfaches Ausprobieren festgelegt werden.
  • In einer besonders vorteilhaften Ausgestaltung enthält die Gasmischung 2 bis 10 Vol.-%, vorzugsweise 3 bis 7 Vol.-% Wasserstoff. Wasserstoffanteile in dieser Größenordnung eignen sich insbesonders, wenn als Spritzmaterial Nichteisenmetalle verwendet werden. In einer anderen besonders vorteilhaften Ausgestaltung enthält die Gasmischung 10 bis 20 Vol.-%, vorzugsweise 10 bis 18 Vol.-% Wasserstoff. Gasmischungen mit diesen Wasserstoffanteilen sind insbesonders bei der Verwendung von hochlegierten Stählen als Spritzmaterial von Vorteil.
  • Mit Vorteil enthält die Gasmischung Stickstoff. Da Stickstoff ein reaktionsträges Gas ist, wird bei einer Verwendung von Stickstoff als Trägergas der Abbrand verringert und die Bildung von Metalloxiden beziehungsweise von anderen Metallverbindungen unterbunden. Der Sauerstoff aus der Umgebungsluft, die beim Spritzprozess durch Verwirbelung in die Mischung aus Spritzpartikel und Trägergas eingetragen wird, wird von dem Wasserstoff gebunden. Deshalb eignen sich inbesonders die binären Mischungen aus Wasserstoff und Stickstoff für die Erfindung.
  • Vorteilhafterweise enthält die Gasmischung Argon. Da es sich bei Argon um ein inertes Gas handelt, sind auch die Wasserstoff-Argon-Mischungen für die Erfindung geeignet. Von Vorteil sind v.a. auch die tenären Mischungen aus Wasserstoff, Stickstoff und Argon.
  • Die Aufgabe wird ferner durch ein Verfahren zum Lichtbogenspritzen gelöst, welches dadurch gekennzeichnet ist, dass im Trägergas Wasserstoff enthalten ist oder dem Trägergas Wasserstoff als weitere Komponente zugegeben wird. Dieses erfindungsgemäße Verfahren zeigt alle vorgenannten Vorteile. Die Wasserstoffvolumenanteile werden in den vorangehenden Abschnitten näher angegeben. In Ausführung der Erfindung ist es möglich, ein wasserstoffhaltiges Trägergas zu verwenden oder den Wasserstoff dem übrigen Trägergas zuzugeben. Wasserstoffhaltige Gasmischungen können von Gaselieferanten bezogen werden. Bei der Herstellung vor Ort kann das Trägergas nach der Wasserstoffzugabe in einem Puffer zwischengespeichert werden oder der Wasserstoff kann getrennt von den anderen Trägergaskomponenten in die Spritzpistole geführt werden, wo die Vermischung stattfindet.
  • In einer vorteilhaften Ausgestaltung der Erfindung wird eine Gasmischung aus Wasserstoff und Stickstoff verwendet. Bei einer Trägergasmischung aus diesen beiden Komponenten wird von dem Wasserstoff beim Spritzprozess aus der Umgebung eingewirbelter Sauerstoff gebunden. Die Vorteile der Erfindung zeigen sich deshalb bei der Wasserstoff-Stickstoff-Mischung in besonders ausgeprägter Weise.
  • In einer anderen vorteilhaften Ausgestaltung wird Wasserstoff zu Luft gemischt. Durch die Zugabe von Wasserstoff zu Luft werden die Eigenschaften des Trägergases Wasserstoff und Luft im Vergleich zur Verwendung von reiner Luft deutlich verbessert, da der Wasserstoff zumindest einen Teil des Sauerstoffes bindet und sich so die Vorteile zumindest teilweise einstellen.
  • Mit Vorteil wird eine Abschmelzleistung von mindestens 10 kg/h verwendet. Möglich sind dabei Abschmelzleistungen von 20 kg/h und mehr. Mit steigender Abschmelzleistung vergrößern sich die Probleme des Abbrands und der Oxidbildung. Mit dem erfindungsgemäßen Verfahren werden jedoch diese Probleme auch bei hohen Abschmelzleistungen gelöst.
  • Im Folgenden wird die Erfindung anhand von Beispielen, die vorteilhafte Trägergasmischungen für verschiedene Spritzmaterialien nennen, näher erläutert: Bei einer Vervvendung einer Ni-Al-Cr-Legierung als Spritzmaterial, wird eine Trägergasmischung aus Stickstoff und 2 bis 20 Vol.-% Wasserstoff eingesetzt. Wird zum Beschichten als Spritzmaterial eine Fe-Cr-Legierung eingesetzt, wird eine Trägergasmischung aus Stickstoff und 10 bis18 Vol.-% Wasserstoff verwendet. Bei Verwendung von Al oder Zn oder AIZn-Legierung als Spritzmaterial wird eine Trägergasmischung aus Stickstoff und 2 bis 20 Vol.-% Wasserstoff eingesetzt. Ferner wird zum Beschichten als Spritzmaterial eine MCrAIY-Legierung und als Trägergasmischung eine Mischung aus Stickstoff und 10 bis 18 Vol.-% Wasserstoff verwendet.

Claims (10)

  1. Verwendung einer Gasmischung als Trägergas zum Lichtbogenspritzen, dadurch gekennzeichnet, dass die Gasmischung Wasserstoff enthält.
  2. Verwendung einer Gasmischung nach Anspruch 1, dadurch gekennzeichnet, dass die Gasmischung 1 bis 30 Vol.-%, vorzugsweise 2 bis 20 Vol.-% Wasserstoff enthält.
  3. Verwendung einer Gasmischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gasmischung 2 bis 10 Vol.-%, vorzugsweise 3 bis 7 Vol.-% Wasserstoff enthält.
  4. Verwendung einer Gasmischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gasmischung 10 bis 20 Vol.-%, vorzugsweise 10 bis 18 Vol.-% Wasserstoff enthält.
  5. Verwendung einer Gasmischung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gasmischung Stickstoff enthält.
  6. Verwendung einer Gasmischung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gasmischung Argon enthält.
  7. Verfahren zum Lichtbogenspritzen, wobei ein Spritzmaterial in einem Lichtbogen aufgeschmolzen und in einem Trägergas zu Spritzpartikel zerstäubt wird und die Spritzpartikel mit dem Trägergas zum Werkstück befördert werden, wo von den Spritzpartikeln die Beschichtung ausgebildet wird, dadurch gekennzeichnet, dass im Trägergas Wasserstoff enthalten ist oder dem Trägergas Wasserstoff als weitere Komponente zugegeben wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass eine Gasmischung aus Wasserstoff und Stickstoff verwendet wird.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass Wasserstoff zu Luft gemischt wird.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass eine Abschmelzleistung von mindestens 10 kg/h verwendet wird.
EP05027513A 2004-12-21 2005-12-15 Verwendung einer Gasmischung und Verfahren zum Lichtbogenspritzen Ceased EP1674590A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004061569A DE102004061569A1 (de) 2004-12-21 2004-12-21 Verwendung einer Gasmischung und Verfahren zum Lichtbogenspritzen

Publications (1)

Publication Number Publication Date
EP1674590A1 true EP1674590A1 (de) 2006-06-28

Family

ID=36079503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05027513A Ceased EP1674590A1 (de) 2004-12-21 2005-12-15 Verwendung einer Gasmischung und Verfahren zum Lichtbogenspritzen

Country Status (2)

Country Link
EP (1) EP1674590A1 (de)
DE (1) DE102004061569A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803751A1 (de) 2013-05-16 2014-11-19 Linde Aktiengesellschaft Verfahren zum Aufbringen einer Antikorrosionsbeschichtung
DE102013012662A1 (de) 2013-05-16 2014-11-20 Linde Aktiengesellschaft Verfahren zum Aufbringen einer Antikorrosionsbeschichtung

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2020709A1 (de) 1969-04-30 1970-11-12 Gen Electric Verfahren zur Herstellung von Kathoden aus Lanthanborid
CH521228A (de) * 1966-07-22 1972-04-15 Montedison Spa Unterlage mit Schutzschicht, insbesondere mit Flammen in Berührung stehende Metallelemente
DE3533966C1 (de) * 1985-09-24 1986-12-18 Heinz Dieter 4620 Castrop-Rauxel Matthäus Verfahren und Lichtbogenspritzduese zum Beschichten von Werkstueckoberflaechen durch Schmelzen von Draehten in einem elektrischen Lichtbogen
US5271869A (en) 1990-04-04 1993-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plasma producing gas for plasma projection of metallic oxide
US5294462A (en) * 1990-11-08 1994-03-15 Air Products And Chemicals, Inc. Electric arc spray coating with cored wire
EP0924968A1 (de) 1997-12-10 1999-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ternäre Gasmischung und ihre Verwendung für Feuerfestmaterial-Plasmaspritzen
DE19956622A1 (de) 1999-10-29 2000-05-25 Man B & W Diesel As Verfahren und Vorrichtung zur Herstellung von mit wenigstens einer Gleitfläche versehenen Maschinenteilen
US20030049384A1 (en) 2001-09-10 2003-03-13 Liu Jean H. Process and apparatus for preparing transparent electrically conductive coatings
US20030168303A1 (en) * 2002-03-11 2003-09-11 Ford Global Technologies, Inc. Clutch pressure plate and flywheel with friction wear surfaces
EP1361339A1 (de) 2002-05-07 2003-11-12 General Electric Company Verfahren zur Herstellung eines beschaufelten Rotors einer Gasturbine mit einer Aluminium/Bronze-Beschichtung
DE10336989A1 (de) * 2003-08-12 2005-03-10 Mtu Aero Engines Gmbh Verfahren zur Herstellung von Heissgas-Korrosionsschutzschichten

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH521228A (de) * 1966-07-22 1972-04-15 Montedison Spa Unterlage mit Schutzschicht, insbesondere mit Flammen in Berührung stehende Metallelemente
DE2020709A1 (de) 1969-04-30 1970-11-12 Gen Electric Verfahren zur Herstellung von Kathoden aus Lanthanborid
DE3533966C1 (de) * 1985-09-24 1986-12-18 Heinz Dieter 4620 Castrop-Rauxel Matthäus Verfahren und Lichtbogenspritzduese zum Beschichten von Werkstueckoberflaechen durch Schmelzen von Draehten in einem elektrischen Lichtbogen
US5271869A (en) 1990-04-04 1993-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plasma producing gas for plasma projection of metallic oxide
US5294462A (en) * 1990-11-08 1994-03-15 Air Products And Chemicals, Inc. Electric arc spray coating with cored wire
EP0924968A1 (de) 1997-12-10 1999-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ternäre Gasmischung und ihre Verwendung für Feuerfestmaterial-Plasmaspritzen
DE19956622A1 (de) 1999-10-29 2000-05-25 Man B & W Diesel As Verfahren und Vorrichtung zur Herstellung von mit wenigstens einer Gleitfläche versehenen Maschinenteilen
US20030049384A1 (en) 2001-09-10 2003-03-13 Liu Jean H. Process and apparatus for preparing transparent electrically conductive coatings
US20030168303A1 (en) * 2002-03-11 2003-09-11 Ford Global Technologies, Inc. Clutch pressure plate and flywheel with friction wear surfaces
EP1361339A1 (de) 2002-05-07 2003-11-12 General Electric Company Verfahren zur Herstellung eines beschaufelten Rotors einer Gasturbine mit einer Aluminium/Bronze-Beschichtung
DE10336989A1 (de) * 2003-08-12 2005-03-10 Mtu Aero Engines Gmbh Verfahren zur Herstellung von Heissgas-Korrosionsschutzschichten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803751A1 (de) 2013-05-16 2014-11-19 Linde Aktiengesellschaft Verfahren zum Aufbringen einer Antikorrosionsbeschichtung
DE102013012662A1 (de) 2013-05-16 2014-11-20 Linde Aktiengesellschaft Verfahren zum Aufbringen einer Antikorrosionsbeschichtung

Also Published As

Publication number Publication date
DE102004061569A1 (de) 2006-07-06

Similar Documents

Publication Publication Date Title
DE3046412A1 (de) Verfahren zur hochtemperaturbehandlung von kohlenwasserstoffhaltigen materialien
WO2011147526A1 (de) Drahtförmiger spritzwerkstoff, damit erzeugbare funktionsschicht und verfahren zum beschichten eines substrats mit einem spritzwerkstoff
EP0456847B1 (de) Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht
DE3730753A1 (de) Pulver zum erzeugen von hartstoffen bei kurzen reaktionszeiten, insbesondere zur fuellung von hohldraehten zum lichtbogenspritzen
JPS6233089A (ja) 粉末肉盛用Ni基合金粉末
DE3103461C2 (de) Verfahren zur Herstellung einer Lichtbogen-Mantelelektrode mit niedrigem Wasserstoffgehalt
DE2830376A1 (de) Verfahren zur herstellung eines staub- bzw. pulverfoermigen materials fuer die aufbringung von schutzschichten
EP1674590A1 (de) Verwendung einer Gasmischung und Verfahren zum Lichtbogenspritzen
DE3509022A1 (de) Verfahren zur herstellung von elektrischen kontaktteilen
DE3239383A1 (de) Flammspritzlegierungspulver
DE2732566B2 (de) Aus Kupfer oder Kupferlegierung hergestellte, auf der Oberflache beschichtete Hochofen-Blasform und Verfahren zur Beschichtung ihrer Oberfläche
DE2725752A1 (de) Verfahren zur oberflaechenbehandlung von metall in einem wirbelbettsystem
EP0911423A1 (de) Verbinden von Werkstücken
EP0571796B1 (de) Oberflächenschutzschicht sowie Verfahren zur Herstellung derselben
EP0041940A1 (de) Verfahren zum Behandeln von metallischen Hütteneinsatzstoffen, insbesondere Eisenschwammteilchen
DE3726073C1 (de) Verfahren zur Herstellung von duennwandigem Halbzeug und dessen Verwendungen
EP3347505A1 (de) Verfahren zum verbinden von werkstücken und mit diesem verfahren hergestellte verbindungsstücke
EP3078764A2 (de) Verfahren zum erzeugen einer schutz- oder sonstigen funktionsschicht auf einem metallischen werkstoff
EP1523450A2 (de) Verfahren zur herstellung endohedraler fullerene
DE60217380T2 (de) Hitzbeständiger stahl mit verbesserter katalytischer karbonatations- und verkokungsbeständigkeit
DE102017218580A1 (de) Verfahren zum Aufbringen einer Schicht auf ein Bauteil und Bauteil hergestellt nach dem Verfahren
DE3501410A1 (de) Verfahren zum auftragen von lot
DE1926579B2 (de) Verwendung einer Mischung als Diffusionspackung zur Herstellung von temperaturwechsel- und verschleißbeständigen Überzugsschichten auf Werkstücken auf Nickeloder Kobaltbasis
EP1230429B1 (de) Herstellungsverfahren für eine komponente mit schicht
DE2013332A1 (en) Electrode and mechanical application of - corrosion-resistant layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061212

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070425

R17C First examination report despatched (corrected)

Effective date: 20070820

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100609