EP0456847B1 - Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht - Google Patents

Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht Download PDF

Info

Publication number
EP0456847B1
EP0456847B1 EP90109028A EP90109028A EP0456847B1 EP 0456847 B1 EP0456847 B1 EP 0456847B1 EP 90109028 A EP90109028 A EP 90109028A EP 90109028 A EP90109028 A EP 90109028A EP 0456847 B1 EP0456847 B1 EP 0456847B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
protective layer
powder
component
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90109028A
Other languages
English (en)
French (fr)
Other versions
EP0456847A1 (de
Inventor
Clemens M. Dr. Verpoort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERNEX GmbH
Original Assignee
BERNEX GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40133659&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0456847(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to DE3816310A priority Critical patent/DE3816310A1/de
Priority to JP63151353A priority patent/JPS6417846A/ja
Application filed by BERNEX GmbH filed Critical BERNEX GmbH
Priority to EP90109028A priority patent/EP0456847B1/de
Priority to DE59007940T priority patent/DE59007940D1/de
Publication of EP0456847A1 publication Critical patent/EP0456847A1/de
Application granted granted Critical
Publication of EP0456847B1 publication Critical patent/EP0456847B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/228Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using electromagnetic radiation, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • C23C12/02Diffusion in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the invention relates to the further development and perfection of the application of protective layers using spraying methods and heat treatments of the surface zone of a workpiece.
  • the invention relates to a method for producing a protective layer with high wear and corrosion resistance from an austenitic iron-based alloy on the surface of a component serving as a substrate by thermal spraying, submerged arc welding or laser treatment, and a protective layer produced by the method.
  • Austenitic steels with a very high nitrogen content can be produced using the pressure electro-slag remelting process (DESU process).
  • DESU process pressure electro-slag remelting process
  • the steel melt is kept under a nitrogen overpressure of 30 bar for a longer time and nitrogen is alloyed into the melt over silicon nitride. If such nitrogen-alloyed melts are cooled under pressure, the high, dissolved nitrogen content in the workpiece is retained. Forgings with nitrogen contents of 0.5 percent by weight can be produced. Higher nitrogen contents cannot be achieved by melt metallurgy, since correspondingly high silicon nitride additions have to be added to introduce nitrogen, which would lead to an excessively high Si content of the steel.
  • the embroidered components are characterized by a very high strength due to the interstitial nitrogen storage.
  • the melt of the austenitic steels is atomized in a gas atomization plant. If nitrogen is used as the atomizing gas, slight nitrogen nitriding (approx. 0.1-0.2% by weight) is achieved.
  • the nitrogen concentration of the powder can be determined by the hot isostatic pressing method described in patent DE-C-3624622 can be further increased. According to the process described there, nitrogen contents of over 1.2% by weight of nitrogen in the powder can be achieved.
  • thermo spraying processes The application of surface layers of all kinds from metallic and / or ceramic materials by numerous so-called “thermal spraying processes” is known per se from many publications. These include flame spraying, plasma spraying, high-speed flame spraying, etc.
  • the materials that are to build up the surface layer are fed to the corresponding apparatus in wire, strip and powder form as starting materials. Also worth mentioning are the methods that use a laser beam as the energy source for heating and melting the materials.
  • the invention has for its object to provide a protective layer of this type and a method for its production, the protective layer having improved mechanical properties, in particular at higher temperatures and being mechanically and chemically stable in the long term, and the method being inexpensively reproducible and feasible with simple means is.
  • FIG. 2 schematically shows the method and the device for embroidering and for applying the protective layer.
  • 10 is Fe / Cr / Mn powder (not containing nitrogen), which serves as the starting material in the present case.
  • 11 shows the feed of the Fe / Cr / Mn powder (indicated by the vertical arrow) into the hot isostatic press.
  • FIG. 12 is an open container for the heat treatment of the powders.
  • 13 means the supply of nitrogen N2 to the container 12 for the nitrogen nitrogen 10.
  • the reference numeral 15 means Fe / Cr / Mn / N powder (containing nitrogen) and the vertical arrow 16 the supply of this powder to the device 3 (spray gun).
  • the remaining reference numerals 1, 2, 6, 7, 8 correspond to those in FIG. 1.
  • Figure 3 relates to the method and apparatus using nitrogenous powder and a high speed flame spray gun.
  • Reference numerals 1, 2, 7, 8, 15 and 16 are the same as in Figures 1 and 2 and can be seen from the latter.
  • 17 is a high-speed flame spray gun which has a mixing chamber 18 for generating a fuel-oxygen mixture and a combustion chamber 19.
  • 20 is the fuel supply (symbols H2; CH4) and 21 is the oxygen supply (symbol 02).
  • other hydrocarbons propane, propylene, etc.
  • 22 represents the inert powder propellant gas, which usually consists of nitrogen (symbol N2) or a nitrogen / argon mixture (symbol N2 / Ar).
  • the supply of the gaseous media is indicated by arrows.
  • Fig. 4 shows the method and the device using nitrogen-containing powder and a submerged arc.
  • the component 1 is covered with a loose powder fill 23 made of Fe / Cr / Mn / N powder. Under this powder layer, a hidden arc 25 burns between non-consumable tungsten electrodes 24.
  • the process is somewhat similar to submerged arc welding, with the difference that here instead of the consumable wire that forms the weld metal as electrodes, tungsten rods and instead of the slag-forming inert powder, metal powder that forms the surface layer forms, is provided.
  • the remaining reference symbols s. Figures 1 and 3.
  • FIG. 5 schematically shows the method and the device using a nitrogen-containing wire and a wire flame spray gun.
  • the reference numerals 1, 2, 6, 7, 8, 20 and 21 are explained in Figs. 1 and 3.
  • 26 is a common wire flame spray gun into which an Fe / Cr / Mn / N wire 27 is axially inserted.
  • 28 represents the supply of an Fe / Cr / Mn / N wire to be melted.
  • 29 are the liquid metal particles which are thrown onto the surface of the component 1 to be coated.
  • FIG. 6 relates to the method and the device using nitrogen-containing sheathed wires as electrodes and an open arc.
  • spray wires made of solid Fe / Cr / Mn / N steel with a high nitrogen content can be used.
  • the wire electrode 30 made of sheathed wire is again shown enlarged in longitudinal section in the figure below.
  • the sheath wire is composed of a core made of Fe / Cr / Mn / N powder with a comparatively high nitrogen content and a sheath made of a ductile metal or plastic.
  • 33 represents the supply of the sheathed wire 30 to be melted.
  • the open arc 34 burns.
  • 35 is the atomizing nozzle through which the atomizing propellant gas 36 is supplied (arrow N2). All other reference numerals correspond to those of the previous figures.
  • FIG. 7 shows the method and device using non-nitrogen-containing powder and subsequently embroidering the porous surface layer.
  • the picture above shows the coating process using the example of a roller.
  • the non-nitrogen-containing Fe / Cr / Mn / powder 10 is sprayed onto the component by means of a spray gun, and a surface layer 37 is produced in this way.
  • the middle picture shows the embroidery process.
  • the coated component is in a furnace 38 for isothermal annealing in a nitrogen atmosphere.
  • 39 is the supply of nitrogen for embroidering the surface layer 37 (symbol and arrow N2).
  • 40 represents the nitrogen washing around the surface layer (trajectories with arrow).
  • the nitrogen partial pressure pN2 is indicated by arrows.
  • the lower picture shows the embroidery process in the case of the continuous embroidery process in longitudinal section.
  • the horizontal arrow indicates the feed direction.
  • 41 is an annular heating device (induction coil, resistance elements), which are flanked by annular annular shower heads 42. The latter serve to wash around the porous surface layer 37 for the purpose of nitriding. That way similar to a zone annealing process, the protective layer 2 is formed at the outlet from the heating device 41.
  • FIG. 8 shows the method and the device using nitrogen-containing powder and a laser beam as a thermal energy source.
  • a vertical laser beam 43 (symbol hv) is applied to the surface of component 1.
  • Feed 16 of the nitrogen-containing Fe / Cr / Mn / N powder 15 takes place obliquely to the laser beam 43 via the feed pipe 44.
  • the laser melting zone 45 is formed, which provides the protective layer 2 after solidification.
  • the direction of advance of component 1 is indicated by a horizontal arrow.
  • FIG. 9 shows the method and the device of a plant for hot isostatic pressing for the purpose of embroidering and surface compaction.
  • the upper picture shows the component after the porous surface layer 37 made of Fe / Cr / Mn (not containing nitrogen) has been applied.
  • the picture below shows the combined embroidery and compaction process.
  • 46 is a furnace and at the same time a pressure vessel for hot isostatic pressing and for embroidering the coated component.
  • 47 represents the supply of nitrogen (symbol N2 and arrow) for hot isostatic feeding.
  • the process is represented by the symbols pN2 with arrow for the nitrogen partial pressure.
  • the latter can be 1-2000 bar, the temperature between 400 and 1100 ° C.
  • a container of 1200 mm diameter and 3000 mm length made of steel intended for chemical processes with chloride-containing media was provided with a wear and corrosion-resistant protective layer 2 made of an austenitic material by plasma spraying on the inside (see substrate).
  • the metal powder 4 was injected into the device 3 - in the present case a plasma torch - and propellant 6 (in the present case an N2 / Ar mixture) with the aid of an inert gas shield 8 made of nitrogen in droplet form onto the substrate.
  • the plasma flame had a temperature of 10,000 ° C and the speed of the gas jet was approx. 100 m / s.
  • the metal particles were nitrided up to a nitrogen content of approx. 0.2% by weight.
  • the thickness of the protective layer 2 averaged 0.3 mm.
  • the connected load of the device 3 (plasma torch) was 80 kW, the coating capacity approx. 4 kg / h.
  • Example 1 A container according to Example 1 was coated on the inside. In principle, the procedure was as in Example 1.
  • the metal powder 4 had the same Composition. However, pure nitrogen was used as the propellant gas (carrier gas) 6 and the process was carried out completely under a nitrogen atmosphere in a protective gas chamber 9 under a pressure of 1.5 bar.
  • the nitrogen content of the protective layer 2 averaged 0.4% by weight.
  • a roller for the textile industry of 90 mm in diameter and 1100 mm in length made of low-alloy steel was provided with a protective layer 2 on its surface by plasma spraying.
  • a powder of similar composition and grain size - as described under Example 1 - was used as the starting material.
  • the non-nitrogen-containing powder was first subjected to a pressure heat treatment in a container 12 in a hot isostatic press with the supply of nitrogen 13. This treatment consisted of annealing at temperatures between 350 and 850 ° C for 1 hour and a pressure of 1.5-10 bar under a nitrogen atmosphere.
  • the embroidered powder was then conveyed as Fe / Cr / Mn / N powder 15 into a low-energy flame spray gun 3. Nitrogen was used as the partial gas 6. The gas velocity was approx.
  • the flame spray temperature approx. 2000 ° C.
  • the average thickness of the protective layer 2 reached the value of 0.5 mm.
  • the application rate was approx. 5 kg / h.
  • An average amount of nitrogen of 2.8% by weight could be determined analytically on the finished protective layer 2.
  • Example 3 a roller was provided with a protective layer 2.
  • the starting powder became 10 Fe / Cr / Mn for 2 hours in a hot isostatic press Subjected nitrogen atmosphere under a pressure of 5 bar at a temperature of 600 ° C.
  • the finished protective layer had a nitrogen content of 3.2% by weight.
  • a plate cylinder (cf. substrate 1) for a printing machine was provided with a protective layer 2 by high-speed flame spraying ("Jet Kote process").
  • the plate cylinder was made of steel and had a diameter of 275 mm and a length of 1700 mm.
  • the high-speed flame spray gun 17 was operated with propane (see fuel supply 20) and with oxygen (see oxygen supply 21). The flame temperature was approx. 2400 ° C. Nitrogen was used as the propellant gas (carrier gas) 22. Particle speeds of over 500 m / s were achieved in the metal / gas jet 7.
  • a protective gas shield 8 made of nitrogen was additionally used.
  • the contract performance was approx. 5 kg / h.
  • the protective layer 2 had a thickness of 0.8 mm and had a nitrogen content of 0.65% by weight.
  • a 30 mm thick steel plate (austenitic, corrosion-resistant steel) was provided with a 2 mm thick protective layer 2.
  • the submerged arc welding process using non-consumable tungsten electrodes 24 was used for this purpose.
  • the height of the loose powder chute averaged 6-8 mm.
  • a protective gas shield 8 made of nitrogen was used.
  • the current of the arc was approx. 160 amperes, the feed approx. 200 mm / min.
  • a welding bead of approx. 8 mm width was achieved.
  • the protective layer 2 had an average nitrogen content of 1.05% by weight.
  • a roller (substrate 1) was coated by the wire flame spraying process.
  • the ingot of the composition according to. Example 5 produced by rolling and drawing a wire of about 3 mm in diameter.
  • the wire flame spray gun 26 was operated with methane as fuel (20) and oxygen (21). The flame temperature was approx. 2200 ° C, the application rate 5 kg / h. Nitrogen was used as propellant 6. The gas speed was approximately 200 m / s. The nitrogen content of the 1.2 mm thick protective layer 2 was 0.6% by weight on average.
  • a roller (substrate 1) was provided with a wear-resistant protective layer 2 of 3 mm in thickness by the wire spraying method by arc spraying.
  • the roller intended for the paper industry had a diameter of 1800 mm and a length of 5000 mm and was made of a low-alloy steel.
  • Wire electrodes 30 made of a sheath wire of 3.2 mm outer diameter were used.
  • the core 31 of the sheathed wire consisting of pressed Fe / Cr / Mn / N powder with 1.2% by weight of nitrogen, had a diameter of 2.0 mm.
  • the sleeve 32 which had a wall thickness of 0.6 mm, consisted of a ductile iron with a very low carbon content.
  • the open arc 34 was charged with an atomizing propellant 36 supplied through an atomizing nozzle 35. Nitrogen was used for this. The whole thing was encased by a double protective shield 8. The material application rate was approx. 15 kg / h at a current of 150 A. With a nitrogen content of the core 31 of 1.2% by weight, the nitrogen content of the protective layer 2 was still 0.75% by weight on average.
  • a steel cylinder 500 mm in diameter and 3000 mm in length was coated using the flame spraying process.
  • a non-nitrogen-containing Fe / Cr / Mn powder 10 with approximately 18% by weight chromium and approximately 18% by weight manganese was used as the starting material.
  • the porous surface layer 37 had an average thickness of 2 mm and had a porosity of approximately 10% by weight.
  • the coated steel cylinder was placed in a gas-tight annealing furnace 38 and for 3 hours exposed to a flowing nitrogen atmosphere under a partial pressure pN2 of 0.5 bar.
  • the supply 39 of nitrogen was from the side and care was taken to ensure that the surface layer was flushed with nitrogen 40 on all sides.
  • the annealing temperature was 750 ° C. and was kept constant (isothermal annealing).
  • the nitrogen content of the finished protective layer was determined to be 0.6% by weight.
  • a steel cylinder was coated according to example 9.
  • the porous surface layer 37 was then embroidered on by the continuous process.
  • the steel cylinder (substrate 1) was passed through a heating device 41 flanked by annular nitrogen showers 42 and consisting of an induction coil.
  • the surface layer 37 was brought to a temperature of 1000 ° C. in a short time.
  • the feed was 60 mm / min.
  • the average residence time was 2 minutes.
  • the nitrogen content of the finished protective layer reached the value of 0.4% by weight.
  • the coating was alternatively carried out by the plasma spray process. After embroidering in a continuous process, practically the same results were achieved.
  • a plate made of low-alloy steel with a thickness of 15 mm was coated with nitrogen-containing Fe / Cr / Mn / N powder 15 via a powder feed tube 44 and locally melted and coated with the aid of a laser beam 43.
  • the powder in the laser melting zone 45 was firmly connected to the substrate 1 by melt metallurgy. With a nitrogen content of approx. 1% by weight of the powder 15, the nitrogen content of the finished protective layer was due to the high cooling rate still 0.8% by weight on average.
  • the feed was 80 mm / min.
  • a roller 80 mm in diameter and 1200 mm in length was provided with a porous surface layer 37 made of Fe / Cr / Mn (not containing nitrogen) by the flame spraying process.
  • the component 1 was then placed in a hot isostatic press 46 and compressed by embroidering under pressure with the supply of nitrogen as compressed gas under 10 bar at a temperature of 700.degree. The process took 1 hour.
  • the result was a protective layer 1.2 mm thick with a nitrogen content of 1.1% by weight.
  • a plasma-sprayed surface layer 37 was assumed. The result was similar.
  • the invention is not restricted to the exemplary embodiments.
  • the process for producing a protective layer with high wear and corrosion resistance from an austenitic iron-based alloy on the surface of a component serving as a substrate by thermal spraying is carried out by selecting the parameters such that the protective layer in its final state has a nitrogen content of at least 0. 2% by weight, the starting material used being an austenitic powder produced by atomizing a liquid metal jet by means of a gas jet and by low-energy flame spraying or by high-speed flame spraying or by plasma spraying under nitrogen or a nitrogen / argon mixture as propellant gas onto the surface of the component is applied and preferably a powder with 18% by weight of chromium and 18% by weight of manganese is used as the starting material.
  • the powder is obtained by annealing in a nitrogen atmosphere before Spraying brought to a nitrogen content of 1.2 wt .-%, wherein it is preferably nitrided with a particle size of 5-45 microns in bulk and for at least 1 hour under a pressure of 1-1000 bar at a temperature of 300 -800 ° C exposed to a still nitrogen atmosphere and brought to the nitrogen content of 1.2 wt .-%, cooled and sieved.
  • the procedure is advantageously such that nitrogen-containing powder is used as the starting material and is applied to the surface of the component by the high-speed flame spraying method at a speed of at least 400 m / s or is applied to the surface of the component by the submerged arc welding method that instead of the consumable welding wire a non-consumable tungsten electrode or a plasma torch under a protective gas or nitrogen atmosphere and instead of the slag-forming ceramic powder, the nitrogen-containing iron-based alloy powder is used.
  • a nitrogen-containing wire made of a block or ingot of 1.5-4 mm diameter is used as the starting material and after the wire spraying process by flame spraying or arc spraying under nitrogen, forming gas or a nitrogen / argon mixture onto the surface of the Component applied or that a sheath wire consisting of a core of nitrogen-containing austenitic metal powder and a jacket made of a ductile metal or an alloy or a plastic is used and is applied to the surface of the component by the wire spraying method by arc spraying.
  • the component is first coated with a powder of an ordinary, non-nitrogenous material by the plasma spraying process or by the high-speed flame spraying process and then the coated workpiece in an oven under a nitrogen atmosphere annealed under isothermal conditions or sent through an inductive or resistance heating device according to the continuous flow principle, in which case the surface is continuously annealed for 3-20 seconds at a temperature of 700-900 ° C and the annealing zone is simultaneously flushed with nitrogen.
  • the procedure is advantageously such that nitrogen-containing powder of an iron-based alloy is applied to the surface of the component by means of a laser beam, in such a way that the surface and the powder particles are easily melted by the laser beam and the surface coated in this way is cooled rapidly by heat removal after the Is subjected to the inside of the workpiece.
  • the component is provided with a porous surface layer by thermal spraying with an ordinary, non-nitrogen-containing material and the surface of the coated workpiece is then subsequently compressed and nitrided using nitrogen as compressed gas by hot isostatic pressing.
  • the component is coated by plasma spraying under a nitrogen gas jacket, by only bringing the molten metal particles into contact with nitrogen and thereby loading them with the necessary nitrogen content, the plasma spraying preferably being carried out in a protective gas chamber under a pressure of 0.5 bar nitrogen is carried out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

    Technisches Gebiet
  • Verschleiß- und korrosionsfeste Schutzschichten hoher mechanischer Festigkeit zur Verbesserung der Oberflächeneigenschaften von Bauteilen. Oberflächentechnologie.
  • Die Erfindung bezieht sich auf die Weiterentwicklung und Vervollkommnung des Aufbringens von Schutzschichten unter Heranziehung von Spritzverfahren und Wärmebehandlungen der Oberflächenzone eines Werkstückes.
  • Im engeren Sinne betrifft die Erfindung ein Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiß- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung auf der Oberfläche eines als Substrat dienenden Bauteiles durch thermisches Spritzen, Unterpulver-Lichtbogenschweißen oder Laserbehandlung sowie eine nach dem Verfahren hergestellte Schutzschicht.
  • Stand der Technik
  • Durch das Druck-Elektroschlacke-Umschmelzverfahren (DESU-Verfahren) lassen sich austenitische Stähle mit sehr hohem Stickstoffgehalt herstellen. Dazu wird die Stahlschmelze unter 30 bar Stickstoffüberdruck für längere Zeit gehalten und Stickstoff wird der Schmelze über Siliziumnitrid zulegiert. Wenn solche stickstofflegierten Schmelzen unter Druck abgekühlt werden, bleibt der hohe, gelöste Stickstoffgehalt im Werkstück erhalten. Es lassen sich Schmiedestücke mit Stickstoffgehalten von 0,5 Gewichtsprozent herstellen. Höhere Stickstoffgehalte lassen sich schmelzmetallurgisch nicht realisieren, da zur Einbringung von Stickstoff entsprechend hohe Silizium-Nitrid-Zugaben beigemischt werden müssen, die zu einem zu hohen Si-Gehalt des Stahles führen würden. Die aufgestickten Bauteile zeichnen sich durch eine sehr hohe Festigkeit infolge der interstitiellen Stickstoffeinlagerung aus. Mit steigendem Stickstoffgehalt nimmt sowohl die Streckgrenze als auch die Zugfestigkeit linear zu. Die Zähigkeit des Werkstoffes wird mit zunehmendem Stickstoffgehalt nicht reduziert. Die Festigkeit dieser Werkstoffklasse, definiert als das Produkt aus der Streckgrenze und der Bruchzähigkeit, ist höher als bei allen herkömmlichen Stählen. Wichtig für den technischen Einsatz dieser Werkstoffe ist aber eine weitere Eigenschaft, und zwar ihre hervorragende Spannungsrißkorrosionsbeständigkeit. Es zeigt sich dabei, daß der Stickstoff als Legierungselement eine Schutzwirkung übernimmt, wie sie bisher nur vom Chrom her bekannt ist.
  • Neben der schmelzmetallurgischen Herstellung durch das beschriebene DESU-Verfahren gibt es die pulvermetallurgische Herstellung. Dazu wird die Schmelze der austenitischen Stähle in einer Gas-Atomisierungsanlage verdüst. Wenn als Atomisierungsgas Stickstoff verwendet wird, wird eine leichte Aufstickung des Pulvers (ca. 0,1-0,2 Gew.-%) erzielt. Die Stickstoffkonzentration des Pulvers kann durch das im Patent DE-C-3624622 beschriebene heiß-isostatische Preßverfahren weiter erhöht werden. Nach dem dort beschriebenenen Verfahren lassen sich Stickstoffgehalte von über 1,2 Gew.-% Stickstoff im Pulver erzielen.
  • Das Aufbringen von Oberflächenschichten aller Art aus metallischen und/oder keramischen Werkstoffen durch zahlreiche sog. "thermische Spritzverfahren" ist an sich aus vielen Veröffentlichungen bekannt. Darunter zählen das Flammspritzen, Plasmaspritzen, Hochgeschwindigkeitsflammspritzen usw. Als Ausgangsmaterialien werden die Werkstoffe, die die Oberflächenschicht aufbauen sollen, sowohl in Draht-, Band-wie in Pulverform dem entsprechenden Apparat zugeführt. Außerdem sind die Verfahren zu erwähnen, die als Energiequelle zum Erhitzen und Schmelzen der Werkstoffe einen Laserstrahl benutzen.
  • Zum Stand der Technik werden die folgenden Druckschriften zitiert:
    • DE-C-3624622
    • J.J. Kaiser, R.A. Miller, "Inert gas improves arc-sprayed coatings" Advanced Materials & Processes, 12/89, S. 37-40
    • W.E. Stanton, "Metal spraying unter protective atmospheres" The Engineers Digest, 20 No. 11, 1959, S. 445-447
    • J. Foct, A. Hendry, "High Nitrogen Steels, HNS 88" Proceedings of the international conference, Lille, Frankreich, 18.-20.Mai 1988, The Institute of Metals 1989
    • G. Stein, J. Menzel "Nitrogen-Alloyed-Steels for High-Strength and High-Temperature Applications in Steam Turbines" 2. International Congress on High Nitrogen Steels, Aachen 1990 (erscheint demnächst)
    Aus dem Artikel von Magome et al. in Hyomen Gijutsu (Surface Technics, Japan), Bd. 40, Seiten 341 bis 343 mit dem Titel "Merkmale des unter Stickstoffatmosphäre gebildeten Flammspritzüberzuges aus Edelstahl" ist es bekannt, Stickstoffgas anstelle von Druckluft zur Beschleunigung der Partikel beim Flammspritzen (Flüssigstrahlmethode) zu verwenden.
  • Bei den entsprechenden Versuchen wurde erkannt, daß derartig hergestellt Flammspritzüberzüge strukturell verbessert sind und eine erhöhte Korrosionsbeständigkeit aufweisen. Dies wurde zurückgeführt auf die Bildung verminderter und dünnerer Oxide beim Flammspritzen, da der störende Einfluß des Luftsauerstoffs weitgehend vermieden werden kann.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Schutzschicht dieses Typs und ein Verfahren zu deren Herstellung zu schaffen, wobei die Schutzsschicht verbesserte mechanische Eigenschaften, insbesondere bei höheren Temperaturen aufweist und langfristig mechanisch und chemisch stabil ist, und das Verfahren kostengünstig reproduzierbar und mit einfachen Mittel durchführbar ist.
  • Diese Aufgabe wird erfindungsgemäß mit den Merkmalen der Ansprüche 1, 13, 14 und 15 gelöst.
  • Vorteilhafte Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.
  • Weg zur Ausführung der Erfindung
  • Die Erfindung wird durch die nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.
  • Dabei zeigt:
  • Fig. 1
    Das Verfahrensprinzip allgemein sowie eine schematische Darstellung einer Pulverspritzvorrichtung mit Stickstoff-Schutzmantel oder alternativ zusätzlich allseitiger Schutzgasatmospäre
    Fig. 2
    Das Verfahren sowie die Vorrichtung zur Aufstickung der Spritzpulver und zum Aufbringen der Schutzschicht
    Fig. 3
    Das Verfahren sowie die Vorrichtung unter Verwendung von stickstoffhaltigem Pulver und einer Hochgeschwindigkeits-Flammspritzpistole
    Fig. 4
    Das Verfahren und die Vorrichtung unter Verwendung von stickstoffhaltigem Pulver und einem Unterpulver-Lichtbogen
    Fig. 5
    Das Verfahren und die Vorrichtung unter Verwendung eines stickstoffhaltigen Drahtes und einer Draht-Flammspritzpistole
    Fig. 6
    Das Verfahren und die Vorrichtung unter Verwendung von stickstoffhaltigen Hülldrähten als Elektroden und einem offenen Lichtbogen. Alternativ: Spritzdraht aus massivem, aufgesticktem austenitischen Stahldraht
    Fig. 7
    Das Verfahren und die Vorrichtung unter Verwendung von nicht stickstoffhaltigem Pulver und nachträglicher Aufstickung der porösen Oberflächenschicht
    Fig. 8
    Das Verfahren und die Vorrichtung unter Verwendung von stickstoffhaltigem Pulver und einem Laserstrahl als thermischer Energiequelle
    Fig. 9
    Das Verfahren und die Vorrichtung einer Anlage zum heißisostatischen Pressen zwecks Aufstickens und Oberflächenverdichtens
    Fig. 1 zeigt das Verfahrensprinzip allgemein sowie eine schematische Darstellung einer Pulverspritzvorrichtung. Alternativ: Zusätzlich allseitige Schutzgas-Atmosphäre aus Stickstoff. 1 ist das zu beschichtende, als Substrat dienende Bauteil, im vorliegenden Fall am Beispiel einer Walze oder Trommel. 2 ist die verschleiß- und korrosionsfeste metallische Schutzschicht. Die Figur zeigt den Beginn des Aufbringens der Schutzschicht 2 auf das Bauteil 1. 3 stellt die Vorrichtung zum thermischen Aufbringen der thermischen Schutzschicht ganz allgemein dar. Das Bezugszeichen 3 steht prinzipiell für jede Art Vorrichtung (Spritzpistole, Plasmabrenner, Lichtbogen usw.). Im vorliegenden Fall gilt die Figur speziell für die Flammspritzpistole. Das Bezugszeichen 4 steht für das Metallpulver allgemein. 5 bedeutet die durch einen Pfeil markierte Zuführung der Metallpulver allgemein. 6 ist das Treibgas (Trägergas), dessen Strömungsrichtung durch einen Pfeil angedeutet ist. Als Treibgas kommen allgemein Stickstoff oder eine Stickstoff-/Argon-Mischung (Symbole N₂ bzw. N₂/Ar) infrage. 7 stellt den Metall-/Gasstrahl dar, der auf die Oberfläche des Bauteils 1 aufgeschleudert wird. 8 ist ein Schutzgasschild, durch Pfeile mit dem Symbol N₂ angedeutet. Alternativ besteht der Schutzgasschild aus einer Stickstoff-/Edelgasmischung oder aus einem reinen Edelgas. Mit dem Bezugszeichen 9 ist alternativ eine Schutzgaskammer angedeutet (strichpunktierte Kursivlinie am Beispiel eines Behälters unter Verwendung von Stickstoff als Schutzgas).
  • In Fig. 2 ist das Verfahren sowie die Vorrichtung zur Aufstickung und zum Aufbringen der Schutzschicht schematisch dargestellt. 10 ist Fe/Cr/Mn-Pulver (nicht stickstoffhaltig), das im vorliegenden Fall als Ausgangsmaterial dient. 11 stellt die Zufuhr des Fe/Cr/Mn-Pulvers (durch vertikalen Pfeil angedeutet) in die heißisostatische Presse dar. 12 ist ein offener Behälter zur Wärmebehandlung der Pulver. 13 bedeutet die Zufuhr von Stickstoff N₂ zum Behälter 12 zwecks Aufstickung des Pulvers 10. 14 ist die heißisostatische Presse (Stickstoffdruck 1-2000 bar, T = 400-1100 °C). Das Bezugszeichen 15 bedeutet Fe/Cr/Mn/N-Pulver (stickstoffhaltig) und der vertikale Pfeil 16 die Zufuhr dieses Pulvers zur Vorrichtung 3 (Spritzpistole). Die übrigen Bezugszeichen 1, 2, 6, 7, 8 stimmen mit denjenigen der Figur 1 überein.
  • Fig. 3 bezieht sich auf das Verfahren sowie die Vorrichtung unter Verwendung von stickstoffhaltigem Pulver und einer Hochgeschwindigkeits-Flammspritzpistole. Die Bedeutung der Bezugszeichen 1, 2, 7, 8, 15 und 16 ist die gleiche wie in Figuren 1 und 2 und kann aus letzteren entnommen werden. 17 ist eine Hochgeschwindigkeits-Flammspritzpistole, welche eine Mischkammer 18 zur Erzeugung eines Brennstoff-Sauerstoffgemisches und eine Brennkammer 19 aufweist. 20 ist die Brennstoffzufuhr (Symbole H₂; CH₄) und 21 die Sauerstoffzufuhr (Symbol 0₂). Selbstverständlich können auch andere Kohlenwasserstoffe (Propan, Propylen etc.) als Brennstoff verwendet werden. 22 stellt das inerte Pulver-Treibgas dar, welches in der Regel aus Stickstoff (Symbol N₂) oder einem Stickstoff/Argon-Gemisch (Symbol N₂/Ar) besteht. Die Zufuhr der gasförmigen Medien ist jeweils durch Pfeile gekennzeichnet.
  • Fig. 4 zeigt das Verfahren und die Vorrichtung unter Verwendung von stickstoffhaltigem Pulver und einem Unterpulver-Lichtbogen. Das Bauteil 1 wird mit einer losen Pulverschüttung 23 aus Fe/Cr/Mn/N-Pulver bedeckt. Unter dieser Pulverschicht brennt ein verdeckter Lichtbogen 25 zwischen nichtkonsumierbaren Wolframelektroden 24. Das Verfahren ähnelt etwas dem Unterpulver-Lichtbogenschweißen, mit dem Unterschied, daß hier statt des konsumierbaren, das Schweißgut bildenden Drahtes als Elektroden Wolframstäbe und statt des schlackenausbildenden inerten Pulvers Metallpulver, das die Oberflächenschicht bildet, vorgesehen ist. Die restlichen Bezugszeichen s. Figuren 1 und 3.
  • In Figur 5 ist das Verfahren und die Vorrichtung unter Verwendung eines stickstoffhaltigen Drahtes und einer Draht-Flammspritzpistole schematisch dargestellt. Die Bezugszeichen 1, 2, 6, 7, 8, 20 und 21 sind in Fig. 1 und 3 erklärt. 26 ist eine übliche Draht-Flammspritzpistole, in die axial ein Fe/Cr/Mn/N-Draht 27 eingeführt wird. 28 (Pfeil) stellt die Zufuhr eines zu schmelzenden Fe/Cr/Mn/N-Drahtes dar. 29 sind die flüssigen Metallpartikel, die auf die Oberfläche des zu beschichtenden Bauteils 1 geschleudert werden.
  • Die Figur 6 bezieht sich auf das Verfahren und die Vorrichtung unter Verwendung von stickstoffhaltigen Hülldrähten als Elektroden und einem offenen Lichtbogen. Alternativ können auch Spritzdrähte aus massivem Fe/Cr/Mn/N-Stahl mit hohem Stickstoffgehalt verwendet werden. Die Drahtelektrode 30 aus Hülldraht ist in der Figur unten nochmals im Längsschnitt vergrößert dargestellt. Der Hülldraht ist aus einem aus Fe/Cr/Mn/N-Pulver bestehenden Kern mit vergleichweise hohem Stickstoffgehalt und einer Hülle aus einem duktilen Metall oder aus Kunststoff aufgebaut. 33 stellt die Zufuhr des zu schmelzenden Hülldrahtes 30 dar. Zwischen den beiden Hülldrähten 30 brennt der offene Lichtbogen 34. 35 ist die Zerstäubungsdüse, durch die das Zerstäubungstreibgas 36 zugeführt wird (Pfeil N₂). Alle übrigen Bezugszeichen entsprechen denjenigen der vorangegangenen Figuren.
  • Figur 7 zeigt Verfahren und Vorrichtung unter Verwendung von nicht stickstoffhaltigem Pulver und nachträglicher Aufstickung der porösen Oberflächenschicht. Das obere Bild zeigt den Beschichtungsvorgang am Beispiel einer Walze. Das nicht stickstoffhaltige Fe/Cr/Mn/Pulver 10 wird mittels Spritzpistole auf das Bauteil aufgeschleudert und auf diese Weise eine Oberflächenschicht 37 hergestellt. Das mittlere Bild zeigt den Aufstickungsprozeß. Das beschichtete Bauteil befindet sich in einem Ofen 38 für das isotherme Glühen in Stickstoffatmosphäre. 39 ist die Zufuhr von Stickstoff zur Aufstickung der Oberflächenschicht 37 (Symbol und Pfeil N₂). 40 stellt die Stickstoffumspülung der Oberflächenschicht dar (Trajektorien mit Pfeil). Der Stickstoff-Partialdruck pN₂ ist mit Pfeilen angedeutet. Das untere Bild zeigt den Aufstickungsprozeß im Fall des Durchlauf-Aufstickverfahrens im Längsschnitt. Der horizontale Pfeil deutet die Vorschubrichtung an. 41 ist eine ringförmige Heizeinrichtung (Induktionsspule, Widerstandselemente), die von ebenfalls ringförmigen Stickstoffbrausen 42 flankiert werden. Letztere dienen zur Umspülung der porösen Oberflächenschicht 37 zwecks Aufstickung. Auf diese Weise wird ähnlich einem Zonenglühprozeß die Schutzschicht 2 am Austritt aus der Heizeinrichtung 41 gebildet.
  • In Figur 8 ist das Verfahren und die Vorrichtung unter Verwendung von stickstoffhaltigem Pulver und einem Laserstrahl als thermischer Energiequelle dargestellt. Die Oberfläche des Bauteils 1 wird mit einem senkrecht auftreffenden Laserstrahl 43 (Symbol hv) beaufschlagt. Zufuhr 16 des stickstoffhaltigen Fe/Cr/Mn/N-Pulvers 15 erfolgt schräg zum Laserstrahl 43 über das Zufuhrrohr 44. Es bildet sich die Laser-Schmelzzone 45 aus, welche nach der Erstarrung die Schutzschicht 2 liefert. Die Vorschubrichtung des Bauteiles 1 ist durch einen horizontalen Pfeil angedeutet.
  • In Figur 9 ist das Verfahren und die Vorrichtung einer Anlage zum heiß-isostatischen Pressen zwecks Aufstickens und Oberflächenverdichtens dargestellt. Das obere Bild zeigt das Bauteil nach dem Aufbringen der porösen Oberflächenschicht 37 aus Fe/Cr/Mn (nicht stickstoffhaltig). Das untere Bild zeigt den kombinierten Aufstickungs- und Verdichtungsprozeß. 46 ist ein Ofen und gleichzeitig ein Druckbehälter für heiß-isostatisches Pressen und für Aufsticken des beschichteten Bauteiles. 47 stellt die Zufuhr von Stickstoff (Symbol N₂ und Pfeil) zum heiß-isostatischen Fressen dar. Der Vorgang ist durch die Symbole pN₂ mit Pfeil für den Stickstoffpartialdruck dargestellt. Letzterer kann 1-2000 bar betragen, die Temperatur zwischen 400 und 1100 °C.
  • Ausführungsbeispiel 1: Vergl. Fig. 1
  • Ein für chemische Prozesse mit chloridhaltigen Medien bestimmter Behälter von 1200 mm Durchmesser und 3000 mm Länge aus einem Stahl wurde durch Plasmaspritzen auf seiner Innenseite (vergl. Substrat) mit einer verschleiß- und korrosionsfesten Schutzschicht 2 aus einem austenitischen Werkstoff versehen. Als Ausgangsmaterial wurde ein Pulver der Körnung 5-45 µm mit der folgenden Zusammensetzung verwendet:
       Cr = 18 Gew.-%
       Mn = 18 Gew.-%
       C <= 0,02 Gew.-%
       Fe = Rest
    Das Metallpulver 4 wurde in die Vorrichtung 3 - im vorliegenden Fall ein Plasmabrenner - injiziert und mittels Treibgas 6 (im vorliegenden Fall eine N₂/Ar-Mischung) unter Zuhilfenahme eines aus Stickstoff bestehenden Schutzgasschildes 8 in Tropfenform auf das Substrat aufgeschleudert. Die Plasmaflamme hatte eine Temperatur von 10000 °C und die Geschwindigkeit des Gasstrahles betrug ca. 100 m/s. Beim Durchlaufen des Plasmabrenners erfolgte eine Aufstickung der Metallpartikel bis zu einem Stickstoffgehalt von ca. 0,2 Gew.-%. Die Dicke der Schutzschicht 2 betrug durchschnittlich 0,3 mm. Die Anschlußleistung der Vorrichtung 3 (Plasmabrenner) betrug 80 kW, die Beschichtungsleistung ca. 4 kg/h.
  • Ausführungsbeispiel 2: Vergl. Fig. 1
  • Ein Behälter entsprechend Beispiel 1 wurde auf seiner Innenseite beschichtet. Dabei wurde prinzipiell gemäß Beispiel 1 vorgegangen. Das Metallpulver 4 hatte die gleiche Zusammensetzung. Als Treibgas (Trägergas) 6 wurde jedoch reiner Stickstoff verwendet und das Verfahren wurde vollständig unter Stickstoffatmosphäre in einer Schutzgaskammer 9 unter einem Druck von 1,5 bar durchgeführt. Der Stickstoffgehalt der Schutzschicht 2 betrug durchschnittlich 0,4 Gew.-%.
  • Ausführungsbeispiel 3: Vergl. Fig. 2
  • Eine Walze für die Textilindustrie von 90 mm Durchmesser und 1100 mm Länge aus niedriglegiertem Stahl wurde durch Plasmaspritzen auf ihrer Oberfläche mit einer Schutzschicht 2 versehen. Als Ausgangsmaterial wurde ein Pulver ähnlicher Zusammensetzung und Korngröße - wie unter Beispiel 1 beschrieben - verwendet. Das nicht stickstoffhaltige Pulver wurde zunächst in einem Behälter 12 in einer heißisostatischen Presse unter Zufuhr von Stickstoff 13 einer Druckwärmebehandlung unterzogen. Diese Behandlung bestand in einem Glühen bei Temperaturen zwischen 350 und 850 °C während 1 Stunde und einem Druck von 1,5-10 bar unter Stickstoffatmosphäre. Das aufgestickte Pulver wurde dann als Fe/Cr/Mn/N-Pulver 15 in eine Niederenergie-Flammspritzpistole 3 gefördert. Als Teibgas 6 wurde Stickstoff verwendet. Die Gasgeschwindigkeit betrug ca. 200 m/s, die Flammspritztemperatur ca. 2000 °C. Die durchschnittliche Dicke der Schutzschicht 2 erreichte den Wert von 0,5 mm. Die Auftragsleistung betrug ca. 5 kg/h. An der fertigen Schutzschicht 2 konnte eine Stickstoffmenge von durchschnittlich 2,8 Gew.-% analytisch festgestellt werden.
  • Ausführungsbeispiel 4: Vergl. Fig. 2
  • Gemäß Beispiel 3 wurde eine Walze mit einer Schutzschicht 2 versehen. Dabei wurde das Ausgangspulver 10 Fe/Cr/Mn während 2 Stunden in einer heißisostatischen Presse einer Stickstoffatmosphäre unter einem Druck von 5 bar bei einer Temperatur von 600 °C unterworfen. Die fertige Schutzschicht wies einen Stickstoffgehalt von 3,2 Gew.-% auf.
  • Ausführungsbeispiel 5: Vergl. Fig. 3
  • Ein Plattenzylinder (vergl. Substrat 1) für eine Druckereimaschine wurde durch Hochgeschwindigkeits-Flammspritzen ("Jet Kote-Verfahren") mit einer Schutzschicht 2 versehen. Der Plattenzylinder bestand aus Stahl und hatte einen Durchmesser von 275 mm und eine Länge von 1700 mm. Als Ausgangsmaterial wurde ein stickstoffhaltiges Pulver 15 (Fe/Cr/Mn/N) mit einer mittleren Partikelgröße von 30 µm gewählt. Das Pulver 15 hatte die nachfolgende Zusammensetzung:
       Cr = 18,25 Gew.-%
       Mn = 19,41 Gew.-%
       Ni = 0,70 Gew.-%
       Mo = 0,06 Gew.-%
       Si = 0,42 Gew.-%
       C = 0,063 Gew.-%
       P <= 0,03 Gew.-%
       S <= 0,004 Gew.-%
       N = 0,80 Gew.-%
       Fe = Rest
    Die Hochgeschwindigkeitsflammspritzpistole 17 wurde mit Propan (vergl. Brennstoffzufuhr 20) und mit Sauerstoff (vergl. Sauerstoffzufuhr 21) betrieben. Die Flammtemperatur betrug ca. 2400 °C. Als Treibgas (Trägergas) 22 wurde Stickstoff verwendet. Im Metall-/Gasstrahl 7 wurden Partikelgeschwindigkeiten von über 500 m/s erreicht. Zum Schutz des Metall-/Gasstrahles 7, in welchem Gasgeschwindigkeiten bis zu 1500 m/s auftraten, wurde zusätzlich ein Schutzgasschild 8 aus Stickstoff verwendet. Die Auftragsleistung betrug ca. 5 kg/h. Die Schutzschicht 2 hatte eine Dicke von 0,8 mm und wies einen Stickstoffgehalt von 0,65 Gew.-% auf.
  • Ausführungsbeispiel 6: Vergl. Fig. 4
  • Eine 30 mm dicke Stahlplatte (austenitischer, korrosionsbeständiger Stahl) wurde mit einer 2 mm dicken Schutzschicht 2 versehen. Zu diesem Zweck wurde das Unterpulver-Lichtbogen-Schweißverfahren unter Verwendung von nichtkonsumierbaren Wolframelektroden 24 herangezogen. Als Ausgangsmaterial wurde ein stickstoffhaltiges Fe/Cr/Mn/N-Pulver 15 mit 1,2 Gew.-% Stickstoff und einer max. Partikelgröße von 60 µm verwendet. Die Höhe der losen Pulverschuttung betrug durchschnittlich 6-8 mm. Um das Pulver und die Elektroden vor Oxidation zu schützen, wurde mit einem Schutzgasschild 8 aus Stickstoff gearbeitet. Die Stromstärke des Lichtbogens betrug ca. 160 Ampere, der Vorschub ca. 200 mm/min. Es wurde eine Schweißraupe von ca. 8 mm Breite erzielt. Für großflächige Beschichtungen wurden mehrere gestaffelt angeordnete Elektrodenpaare mit ihren Lichtbögen verwendet. Die Schutzschicht 2 hatte einen durchschnittlichen Stickstoffgehalt von 1,05 Gew.-%.
  • Ausführungsbeispiel 7: Vergl. Fig. 5
  • Eine Walze (Substrat 1) wurde nach dem Drahtflammspritzverfahren beschichtet. Zu diesem Zweck wurde zunächst aus einem schmelzmetallurgisch (DESU-Anlage) hergestellten Barren der Zusammensetzung gem. Beispiel 5 durch Walzen und Ziehen ein Draht von ca. 3 mm Durchmesser hergestellt. Die Draht-Flammspritzpistole 26 wurde mit Methan als Brennstoff (20) und Sauerstoff (21) betrieben. Die Flammentemperatur betrug ca. 2200 °C, die Auftragsleistung 5 kg/h. Als Treibgas 6 wurde Stickstoff verwendet. Die Gasgeschwindigkeit betrug ca. 200 m/s. Der Stickstoffgehalt der 1,2 mm dicken Schutzschicht 2 war durchschnittlich 0,6 Gew.-%. Es wurde mit einem Schutzgasschild 8 aus Stickstoff gearbeitet.
  • Ausführungsbeispiel 8: Vergl. Fig. 6
  • Eine Walze (Substrat 1) wurde nach dem Drahtspritzverfahren durch Lichtbogenspritzen mit einer verschleißfesten Schutzschicht 2 von 3 mm Dicke versehen. Die für die Papierindustrie bestimmte Walze hatte einen Durchmesser von 1800 mm und eine Länge von 5000 mm und bestand aus einem niedriglegierten Stahl. Es wurden Drahtelektroden 30 aus einem Hülldraht von 3,2 mm Außendurchmesser verwendet. Der aus gepreßtem Fe/Cr/Mn/N-Pulver mit 1,2 Gew.-% Stickstoff bestehende Kern 31 des Hülldrahtes hatte einen Durchmesser von 2,0 mm. Die 0,6 mm Wandstärke aufweisende Hülle 32 bestand aus einem duktilen Eisen mit sehr niedrigem Kohlenstoffgehalt. Der offene Lichtbogen 34 wurde mit einem durch eine Zerstäubungsdüse 35 zugeführten Zerstäubungs-Treibgas 36 beaufschlagt. Dazu wurde Stickstoff verwendet. Das Ganze wurde von einem doppelten Schutzgasschild 8 ummantelt. Die Materialauftragsleistung betrug bei einer Stromstärke von 150 A ca. 15 kg/h. Bei einem Stickstoffgehalt des Kerns 31 von 1,2 Gew.-% betrug der Stickstoffgehalt der Schutzschicht 2 noch durchschnittlich 0,75 Gew.-%.
  • Ausführungsbeispiel 9: Vergl. Fig. 7
  • Ein Stahlzylinder von 500 mm Durchmesser und 3000 mm Länge wurde nach dem Flammspritzverfahren beschichtet. Es wurde ein nicht stickstoffhaltiges Fe/Cr/Mn-Pulver 10 mit ca. 18 Gew.-% Chrom und ca. 18 Gew.-% Mangan als Ausgangsmaterial verwendet. Die poröse Oberflächenschicht 37 hatte eine Dicke von durchschnittlich 2 mm und wies eine Porosität von ca. 10 Gew.-% auf. Der beschichtete Stahlzylinder wurde in einen gasdichten Glühofen 38 gebracht und während 3 Stunden einer strömenden Stickstoffatmosphäre unter einem Partialdruck pN₂ von 0,5 bar ausgesetzt. Die Zufuhr 39 von Stickstoff erfolgte seitlich und es wurde dafür gesorgt, daß eine allseitige Stickstoffumspülung 40 der Oberflächenschicht gewährleistet war. Die Glühtemperatur betrug 750 °C und wurde konstant gehalten (isothermes Glühen). Der Stickstoffgehalt der fertigen Schutzschicht wurde zu 0,6 Gew.-% bestimmt.
  • Ausführungsbeispiel 10: Vergl. Fig. 7
  • Ein Stahlzylinder wurde gemäß Beispiel 9 beschichtet. Anschließend wurde die poröse Oberflächenschicht 37 nach dem Durchlaufverfahren aufgestickt. Der Stahlzylinder (Substrat 1) wurde durch eine von ringförmigen stickstoffbrausen 42 flankierte, aus einer Induktionsspule bestehenden Heizeinrichtung 41 hindurchgeführt. Dabei wurde die Oberflächenschicht 37 in kurzer Zeit auf eine Temperatur von 1000 °C gebracht. Der Vorschub betrug 60 mm/min. Die Verweilzeit betrug durchschnittlich 2 Minuten. Der Stickstoffgehalt der fertigen Schutzschicht erreichte den Wert von 0,4 Gew.-%. Die Beschichtung erfolgte alternativ nach dem Plasmaspritz-Verfahren. Nach dem Aufsticken im Durchlaufverfahren wurden praktisch die gleichen Ergebnisse erzielt.
  • Ausführungsbeispiel 11: Vergl. Fig. 8
  • Eine Platte aus niedriglegiertem Stahl von 15 mm Dicke wurde über ein Pulverzuführrohr 44 mit stickstoffhaltigem Fe/Cr/Mn/N-Pulver 15 belegt und mit Hilfe eines Laserstrahles 43 örtlich aufgeschmolzen und beschichtet. Dabei wurde das Pulver in der Laserschmelzzone 45 fest mit dem Substrat 1 schmelzmetallurgisch verbunden. Bei einem Stickstoffgehalt von ca. 1 Gew.-% des Pulvers 15 betrug der Stickstoffgehalt der fertigen Schutzschicht aufgrund der hohen Abkühlungsgeschwindigkeit durchschnittlich noch 0,8 Gew.-% . Der Vorschub war 80 mm/min.
  • Ausführungsbeispiel 12: Vergl. Fig. 9
  • Eine Walze von 80 mm Durchmesser und 1200 mm Länge wurde nach dem Flammspritzverfahren mit einer porösen Oberflächenschicht 37 aus Fe/Cr/Mn (nicht stickstoffhaltig) versehen. Hierauf wurde das Bauteil 1 in eine heißisostatische Presse 46 gebracht und durch Druckaufsticken unter Zufuhr 47 von Stickstoff als Druckgas unter 10 bar bei einer Temperatur von 700 °C verdichtet. Der Vorgang dauerte 1 Stunde. Das Ergebnis war eine Schutzschicht von 1,2 mm Dicke mit einem Stickstoffgehalt von 1,1 Gew.-%. In einer Variante wurde von einer plasmagespritzten Oberflächenschicht 37 ausgegangen. Das Ergebnis war ähnlich.
  • Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt.
  • Das Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiß- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung auf der Oberfläche eines als Substrat dienenden Bauteils durch Thermisches Spritzen wird durchgeführt, indem die Parameter so gewählt wurden, daß die Schutzschicht in ihrem Endzustand einen Stickstoffgehalt von mind. 0,2 Gew.-% aufweist, wobei als Ausgangsmaterial ein durch Zerstäuben eines flüssigen Metallstrahls durch einen Gasstrahl hergestelltes austenitisches Pulver benutzt und durch Niederenergie-Flammspritzen oder durch Hochgeschwindigkeits-Flammspritzen oder durch Plasmaspritzen unter Stickstoff oder einer Stickstoff/Argon-Mischung als Treibgas auf die Oberfläche des Bauteils aufgebracht wird und vorzugsweise als Ausgangsmaterial ein Pulver mit 18 Gew.-% Chrom und 18 Gew.-% Mangan benutzt wird. Das Pulver wird durch Glühen in einer Stickstoffatmosphäre vor dem Aufspritzen auf einen Stickstoffgehalt von 1,2 Gew.-% gebracht, wobei es vorzugsweise mit einer Partikelkorngröße von 5-45 µm in loser Schüttung aufnitriert wird und während mind. 1 Std. unter einem Druck von 1-1000 bar bei einer Temperatur von 300-800 °C einer ruhenden Stickstoffatmosphäre ausgesetzt und auf diese Weise auf den Stickstoffgehalt von 1,2 Gew.-% gebracht, abgekühlt und ausgesiebt wird. In vorteilhafter Weise wird derart verfahren, daß als Ausgangsmaterial stickstoffhaltiges Pulver verwendet und nach dem Hochgeschwindigkeits-Flammspritzverfahren mit einer Geschwindigkeit von mind. 400 m/s auf die Oberfläche des Bauteils aufgebracht oder nach dem Unterpulver-Lichtbogenschweißverfahren auf die Oberfläche des Bauteiles aufgebracht wird, dergestalt, daß statt des konsumierbaren Schweißdrahtes eine nichtkonsumierbare Wolframelektrode oder ein Plasmabrenner unter Schutzgas oder Stickstoffatmosphäre und statt des schlackebildenden Keramikpulvers das stickstoffhaltige Eisenbasis-Legierungspulver verwendet wird. Eine andere Variante besteht darin, daß als Ausgangsmaterial ein aus einem Block oder Barren hergestellter stickstoffhaltiger Draht von 1,5-4 mm Durchmesser verwendet und nach dem Drahtspritzverfahren durch Flammspritzen oder Lichtbogenspritzen unter Stickstoff, Formiergas oder einem Stickstoff/Argon-Gemisch auf die Oberfläche des Bauteils aufgebracht oder daß ein aus einem Kern aus stickstoffhaltigem austenitischen Metallpulver und einem Mantel aus einem duktilen Metall oder einer Legierung oder einem Kunststoff bestehender Hülldraht benutzt wird und nach dem Drahtspritzverfahren durch Lichtbogenspritzen auf die Oberfläche des Bauteils aufgebracht wird.
  • Eine weitere Ausbildungsart des Verfahrens besteht darin, daß das Bauteil zunächst mit einem Pulver eines gewöhnlichen, nicht stickstoffhaltigen Werkstoffes nach dem Plasmaspritzverfahren oder nach dem Hochgeschwindigkeits-Flammspritzverfahren beschichtet wird und daß das beschichtete Werkstück daraufhin in einem Ofen unter Stickstoffatmosphäre unter isothermen Bedingungen geglüht oder nach dem Durchlaufprinzip durch eine induktive oder eine Widerstandsheizeinrichtung geschickt wird, wobei im letzteren Fall die Oberfläche kontinuierlich während 3-20 sec. bei einer Temperatur von 700-900 C° zonengeglüht und die Glühzone gleichzeitig mit Stickstoff umspült wird. In vorteilhafter Weise wird dermaßen verfahren, daß stickstoffhaltiges Pulver einer Eisenbasislegierung mittels eines Laserstrahls auf die Oberfläche des Bauteils aufgebracht wird, dergestalt, daß die Oberfläche sowie die Pulverpartikel durch den Laserstrahl leicht angeschmolzen und die auf diese Weise beschichtete Oberfläche einer raschen Abkühlung durch Wärmeentzug nach dem Inneren des Werkstücks hin unterworfen wird.
  • Gemäß einer weiteren Variante wird das Bauteil durch thermisches Spritzen mit einem gewöhnlichen, nicht stickstoffhaltigen Werkstoff mit einer porösen Oberflächenschicht versehen und die Oberfläche des beschichteten Werkstückes daraufhin unter Verwendung von Stickstoff als Druckgas gleichzeitig durch heißisostatisches Pressen nachverdichtet und nitriert. Im allgemeinen ist es vorteilhaft, wenn das Bauteil durch Plasmaspritzen unter einem Stickstoffgasmantel beschichtet wird, indem die schmelzflüssigen Metallpartikel nur mit Stickstoff in Berührung gebracht und dadurch mit dem nötigen Stickstoffgehalt beladen werden, wobei das Plasmaspritzen vorzugsweise in einer Schutzgaskammer unter einem Druck von 0,5 bar Stickstoff durchgeführt wird.
  • Die nach dem Verfahren auf einem Bauteil - bestehend aus einem als Substrat dienenden Grundwerkstoff - aus einem metallischen Material aufgebrachte verschleiß- und korrosionsfeste Oberflächenschutzschicht aus einer Eisenbasisleglerung ist austenitisch, weist einen Stickstoffgehalt von mind. 0,2 Gew.-% auf und ist nach dem Verfahren des thermischen Spritzens aufgebracht, dergestalt, daß eine festhaftende, rißfreie und nichtabblätternde Schutzschicht gewährleistet ist, weiche vorzugsweise nachfolgende Zusammensetzung hat:
       Cr = 18,25 Gew.-%
       Mn = 19,41 Gew.-%
       Ni = 0,70 Gew.-%
       Mo = 0,06 Gew.-%
       Si = 0,42 Gew.-%
       C = 0,063 Gew.-%
       P < 0,03 Gew.-%
       S < 0,004 Gew.-%
       N = 0,80 Gew.-%
       Fe = Rest
    Alternativ hat die Schutzschicht eine der nachfolgenden Zusammensetzungen:
       Cr = 18,5 Gew.-%
       Mn = 0,84 Gew.-%
       Ni = 13,5 Gew.-%
       Mo = 4,58 Gew.-%
       Si = 1,73 Gew.-%
       C = 0,03 Gew.-%
       N = 0,55 Gew.-%
       Fe = Rest
    oder:
       Cr = 17,0 Gew.-%
       Mn = 2,4 Gew.-%
       Ni = 12,9 Gew.-%
       Mo = 4,3 Gew.-%
       Si = 1,4 Gew.-%
       C = 0,10 Gew.-%
       N = 0,71 Gew.-%
       Fe = Rest
    oder:
       Cr = 20,8 Gew.-%
       Mn = 5,30 Gew.-%
       Ni = 3,0 Gew.-%
       Si = 1,60 Gew.-%
       C = 0,06 Gew.-%
       N = 0,85 Gew.-%
       Fe = Rest
    oder
       Cr = 12,86 Gew.-%
       Mn = 18,85 Gew.-%
       Ni = 1,74 Gew.-%
       Mo = 0,70 Gew.-%
       Si = 0,56 Gew.-%
       C = 0,059 Gew.-%
       N = 0,24 Gew.-%
       Fe = Rest
  • Bezeichnungsliste
  • 1 =
    Bauteil (Substrat)
    2 =
    Metallische Schutzschicht, verschleiß- und korrosionsfest
    3 =
    Vorrichtung zum thermischen Aufbringen der Schutzschicht allgemein (Spritzpistole etc.)
    4 =
    Metallpulver, allgemein
    5 =
    Zufuhr von Metallpulver allgemein
    6 =
    Treibgas (Trägergas)
    7 =
    Metall-/Gasstrahl
    8 =
    Schutzgasschild
    9 =
    Schutzgaskammer (alternativ)
    10 =
    Fe/Cr/Mn-Pulver (nicht stickstoffhaltig)
    11 =
    Zufuhr von Fe/Cr/Mn-Pulver
    12 =
    Behälter zur Wärmebehandlung von Pulver
    13 =
    Zufuhr von Stickstoff
    14 =
    Heißisostatische Presse
    15 =
    Fe/Cr/Mn/N-Pulver (stickstoffhaltig)
    16 =
    Zufuhr von Fe/Cr/Mn/N-Pulver
    17 =
    Hochgeschwindigkeits-Flammsprltzpistole
    18 =
    Mischkammer
    19 =
    Brennkammer
    20 =
    Brennstoffzufuhr (H₂, CH₄ etc.)
    21 =
    Sauerstoffzufuhr
    22 =
    Inertes Pulver-Treibgas (N₂, N₂/Ar)
    23 =
    Lose Pulverschüttung (Fe/Cr/Mn/N-Pulver)
    24 =
    Wolframelektrode
    25 =
    Verdeckter Lichtbogen (Unterpulverschüttung)
    26 =
    Draht-Flammspritzpistole
    27 =
    Fe/Cr/Mn/N-Draht
    28 =
    Zufuhr des zu schmelzenden Fe/Cr/Mn/N-Drahtes
    29 =
    Flüssige Metallpartikel
    30 =
    Drahtelektrode aus Hülldraht
    31 =
    Kern des Hülldrahtes (Fe/Cr/Mn/N-Pulver
    32 =
    Hülle des Hülldrahtes (Metall, Kunststoff)
    33 =
    Zufuhr des zu schmelzenden Hülldrahtes
    34 =
    Offener Lichtbogen
    35 =
    Zerstäubungsdüse
    36 =
    Zerstäubungs-/Treibgas
    37 =
    Poröse Oberflächenschicht aus Fe/Cr/Mn (nicht stickstoffhaltig)
    38 =
    Ofen für isothermes Glühen des beschichteten Bauteiles
    39 =
    Zufuhr von Stickstoff zur Aufstickung der Oberflächenschicht
    40 =
    Stickstoffumspülung der Oberflächenschicht
    41 =
    Ringförmige Heizeinrichtung (induktiv)
    42 =
    Ringförmige Stickstoffbrause zur Umspülung der Oberflächenschicht
    43 =
    Laserstrahl
    44 =
    Zufuhrrohr für Fe/Cr/Mn/N-Pulver
    45 =
    Laserschmelzzone
    46 =
    Ofen und Druckbehälter für heißisostatisches Pressen und Aufsticken des beschichteten Bauteiles
    47 =
    Zufuhr von Stickstoff zum heißisostatischen Pressen und zur Aufstickung der Oberflächenschicht

Claims (21)

  1. Verfahren zur Herstellung einer Schutzschicht (2) mit hohem Verschleiß- und Korrisionswiderstand aus einer austenitischen Eisenbasislegierung auf der Oberfläche eines als Substrat dienenden Bauteils (1) durch thermisches Spritzen eines entsprechenden Ausgangsmaterials (10;15;27;31) mit stickstoffhaltigem Treibgas,
    dadurch gekennzeichnet, daß
    durch Verwenden entsprechend aufgestickten Ausgangsmaterials oder
    durch Aufsticken beim Aufbringen unter stickstoffhaltiger Schutzgasatmosphäre bei entsprechendem Druck oder
    durch Aufsticken der aufgebrachten Schutzschicht unter stickstoffhaltiger Atmosphäre bei entsprechender Temperatur und entsprechendem Druck
    die Schutzschicht (2) in ihrem Endzustand einen Stickstoffgehalt von mindestens 0,2 Gew.-% aufweist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
    das Ausgangsmaterial (10;15) ein durch Zerstäuben eines flüssigen Metallstrahls durch einen Gasstrahl hergestelltes austenitisches Pulver ist; und
    das thermische Spritzen Niederenergie-Flammspritzen, Hochgeschwindigkeits-Flammspritzen oder Plasmaspritzen unter Verwendung von Stickstoff oder einer Stickstoff/Argon - Mischung als Treibgas (22) ist.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß
    das Ausgangsmaterial (10;15;27;31) ein Pulver einer Eisenbasislegierung mit 18 Gew.-% Chrom und 18 Gew.-% Mangan ist.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das Pulver durch Glühen in einer Stickstoffatmosphäre vor dem thermischen Spritzen auf einen Stickstoffgehalt von 0,4 - 1,2 Gew.-% aufgestickt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß
    das aufzustickende Pulver mit einer Partikelgröße von 5-45 µm in loser Schüttung in ein offenes Gefäß (12) gebracht und mindestens eine Stunde lang unter einem Druck von 1-1000 bar bei einer Temperatur von 300-800°C einer ruhenden Stickstoffatmosphäre ausgesetzt wird, auf diese Weise auf den gewünschten Stickstoffgehalt gebracht, abgekühlt und gesiebt wird.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
    das Ausgangsmaterial (10;15) stickstoffhaltiges Pulver ist; und
    das thermische Spritzen Hochgeschwindigkeits-Flammspritzen ist;
    wobei das Pulver (11) in einem Metall-/Gasstrahl (7) mit einer Geschwindigkeit von mindestens 400 m/s auf die Oberfläche des Bauteils (1) aufgebracht wird.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
    das Ausgangsmaterial (27) ein aus einem Block oder Barren hergestellter stickstoffhaltiger Draht von 1,5 bis 4 mm Durchmesser ist; und
    das thermische Spritzen Draht-Flammspritzen unter Verwendung von Stickstoff, Formiergas oder einer Stickstoff/Argon-Mischung als Treibgas (22) ist.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
    das Ausgangsmaterial ein stickstoffhaltiges austenitisches Pulver ist, das als Kern (31) in einem aus einem duktilen Metall oder einer Legierung oder einem Kunststoff bestehenden Hülldraht als Mantel (32) zugeführt wird; und
    das thermische Spritzen Drahtspritzen durch Lichtbogenspritzen unter Verwendung von Stickstoff als Treibgas (22) ist.
  9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
    das Bauteil (1) zunächst mit einem Pulver (37) aus nicht-stickstoffhaltigem Ausgangsmaterial (11) nach dem Plasmaspritzverfahren oder nach dem Hochgeschwindigkeits-Flammspritzverfahren beschichtet wird; und
    das beschichtete Bauteil danach in einem Ofen (38) unter Stickstoffatmosphäre und isothermen Bedingungen geglüht oder nach dem Durchlaufprinzip durch eine induktive oder widerstandsbeheizte Heizeinrichtung (41) geschickt wird, wobei im letzteren Fall die Oberfläche kontinuierlich 3 bis 20 s lang bei einer Temperatur von 700 - 900°C zonengeglüht und die Glühzone gleichzeitig mit Stickstoff (42) umspült wird.
  10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, das
    das Bauteil (1) zunächst mit einem Pulver (37) aus nicht-stickstoffhaltigen Ausgangsmaterial (11) mit einer porösen Oberflächenschicht versehen wird; und
    die Oberflächenschicht des Bauteils (1) danach unter Verwendung von Stickstoff als Druckgas durch heißisostatisches Pressen gleichzeitig nachverdichtet und aufgestickt wird.
  11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
    das Ausgangsmaterial (10) nicht-stickstoffhaltig ist und das thermische Spritzen Plasmaspritzen ist,
    wobei ein Stickstoff-Schutzmantel um die schmelzflüssigen Metallpartikel gelegt wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß
    das Plasmaspritzen in einer Schutzgaskammer (9) unter einem Druck von 0,5 bar Stickstoff durchgeführt wird.
  13. Verfahren zur Herstellung einer Schutzschicht (2) mit hohem Verschleiß- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung auf der Oberfläche eines als Substrat dienenden Bauteils (1) durch Unterpulver-Lichtbogenschweißen mit den Schritten:
    Bedecken des Bauteils (1) mit einer losen Pulverschüttung (23) aus entsprechenden stickstoffhaltigen Ausgangsmaterial (16); und
    Verschweißen der Pulverschüttung (23) durch Anlegen eines Lichtbogens (25) zwischen nicht konsumierbaren Wolframelektroden (24);
    so daß die Schutzschicht (2) in ihrem Endzustand einen Stickstoffgehalt von mindestens 0,2 Gew.-% aufweist.
  14. Verfahren zur Herstellung einer Schutzschicht (2) mit hohem Verschleiß - und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung auf der Oberfläche eines als Substrat dienenden Bauteils (1) durch Lasereinstrahlen mit den Schritten:
    Einstrahlen eines Laserstrahls (43) auf die Oberfläche des Bauteils (1); und
    Zuführen eines entsprechenden stickstoffhaltigen AusgangsmaterialS (15) zum Ausbilden einer Laser-Schutzzone (45) auf der Oberfläche, welche nach Erstarren die Schutzschicht (2) bildet;
    wobei die Oberfläche des Bauteils (1) sowie die Pulverpartikel (15) durch den Laserstrahl leicht angeschmolzen werden und die auf diese Weise beschichtete Oberfläche einer raschen Abkühlung durch Wärmeentzug nach dem Inneren des Bauteils (1) hin unterworfen wird;
    so daß die Schutzschicht in ihrem Endzustand einen Stickstoffgehalt von mindestens 0,2 Gew.-% aufweist.
  15. Metallisches Bauteil (1) mit einer darauf angebrachten Schutzschicht (2) aus einer austenitischen Eisenbasislegierung mit hohem Verschleiß- und Korrosionswiderstand, hergestellt nach einem der Verfahren gemäß den Ansprüchen 1 - 14 und 21;
    dadurch gekennzeichnet, daß
    die Schutzschicht (2) einen Stickstoffgehalt von mindestens 0,2 Gew.-% aufweist.
  16. Bauteil (1) mit einer Schutzschicht (2) nach Anspruch 15, gekennzeichnet durch folgende Zusammensetzung der Schutzschicht (2):
       Cr = 18,25 Gew.-%
       Mn = 19,41 Gew.-%
       Ni = 0,70 Gew.-%
       Mo = 0,06 Gew.-%
       Si = 0,42 Gew.-%
       C = 0,063 Gew.-%
       P <= 0,03 Gew.-%
       S <= 0,004 Gew.-%
       N = 0,80 Gew.-%
       Fe = Rest
  17. Bauteil (1) mit einer Schutzschicht (2) nach Anspruch 15, gekennzeichnet durch folgende Zusammensetzung der Schutzschicht (2):
       Cr = 18,5 Gew.-%
       Mn = 0,84 Gew.-%
       Ni = 13,5 Gew.-%
       Mo = 4,58 Gew.-%
       Si = 1,73 Gew.-%
       C = 0,03 Gew.-%
       N = 0,55 Gew.-%
       Fe = Rest
  18. Bauteil (1) mit einer Schutzschicht (2) nach Anspruch 15, gekennzeichnet durch folgende Zusammensetzung der Schutzschicht (2):
       Cr = 17,0 Gew.-%
       Mn = 2,40 Gew.-%
       Ni = 12,9 Gew.-%
       Mo = 4,3 Gew.-%
       Si = 1,4 Gew.-%
       C = 0,10 Gew.-%
       N = 0,71 Gew.-%
       Fe = Rest
  19. Bauteil (1) mit einer Schutzschicht (2) nach Anspruch 15, gekennzeichnet durch folgende Zusammensetzung der Schutzschicht (2):
       Cr = 20,8 Gew.-%
       Mn = 5,30 Gew.-%
       Ni = 3,0 Gew.-%
       Si = 1,60 Gew.-%
       C = 0,06 Gew.-%
       N = 0,85 Gew.-%
       Fe = Rest
  20. Bauteil (1) mit einer Schutzschicht (2) nach Anspruch 15, gekennzeichnet durch folgende Zusammensetzung der Schutzschicht (2):
       Cr = 12,86 Gew.-%
       Mn = 18,85 Gew.-%
       Ni = 1,74 Gew.-%
       Mo = 0,70 Gew.-%
       Si = 0,56 Gew.-%
       C = 0,059 Gew.-%
       N = 0,24 Gew.-%
       Fe = Rest
  21. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß
    das Ausgangsmaterial (27) ein stickstoffhaltiger oder stichstofffreier Draht ist; und
    das thermische Spritzen Plasma-Drahtspritzen unter Verwendung von Stickstoff als Treibgas (6) ist.
EP90109028A 1987-06-26 1990-05-14 Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht Expired - Lifetime EP0456847B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE3816310A DE3816310A1 (de) 1987-06-26 1988-05-13 Verfahren zur anreicherung von titan in der unmittelbaren oberflaechenzone eines bauteils aus einer mindestens 2,0 gew.-% titan enthaltenden nickelbasis-superlegierung und verwendung der nach dem verfahren angereicherten oberflaeche
JP63151353A JPS6417846A (en) 1987-06-26 1988-06-21 Method for directly enriching titanium in surface zone of structural material and titanium enriched surface zone
EP90109028A EP0456847B1 (de) 1987-06-26 1990-05-14 Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht
DE59007940T DE59007940D1 (de) 1987-06-26 1990-05-14 Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH242587 1987-06-26
EP90109028A EP0456847B1 (de) 1987-06-26 1990-05-14 Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht

Publications (2)

Publication Number Publication Date
EP0456847A1 EP0456847A1 (de) 1991-11-21
EP0456847B1 true EP0456847B1 (de) 1994-12-07

Family

ID=40133659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90109028A Expired - Lifetime EP0456847B1 (de) 1987-06-26 1990-05-14 Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht

Country Status (3)

Country Link
EP (1) EP0456847B1 (de)
JP (1) JPS6417846A (de)
DE (2) DE3816310A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168893A1 (en) * 2018-02-27 2019-09-06 Somnio Global Holdings, Llc Articles with nitrogen alloy protective layer and methods of making same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT404905B (de) * 1990-08-03 1999-03-25 Andritz Ag Maschf Anlage zum aufbringen einer spritzschicht auf eine ebene oder gekrümmte fläche eines werkstückes
GB9200880D0 (en) * 1992-01-16 1992-03-11 Atomic Energy Authority Uk A method of producing a surface coating upon a substrate
JPH07119420A (ja) * 1993-10-27 1995-05-09 Fuji Oozx Inc チタン又はチタン合金製エンジンバルブの表面処理方法
DE4447514C2 (de) * 1994-01-14 1996-07-25 Castolin Sa Verfahren zur Herstellung eines Hilfsmittels zum thermischen Spritzen und seine Verwendung als Pulverfüllung von Fülldraht
US5761720A (en) * 1996-03-15 1998-06-02 Rendition, Inc. Pixel engine pipeline processor data caching mechanism
US6074022A (en) * 1998-03-23 2000-06-13 Caterpillar Inc. Track bushing having arc welded end treatment for improved abrasion and corrosion resistance, and a process for making the same
DE19840951A1 (de) 1998-09-08 2000-03-09 Jagenberg Papiertech Gmbh Rakelstange für eine Beschichtungsvorrichtung
DE19960353A1 (de) * 1999-12-14 2001-06-21 Dechema Deutsche Gesellschaft Fuer Chemisches Apparatewesen, Chemische Technik Und Biotechnologie Ev Verfahren zur Herstellung einer Diffusionsbarriere zur Lebensdauererhöhung von Hochtemperatur-Schutzschichten
DE19963223A1 (de) * 1999-12-27 2001-06-28 Volkswagen Ag Stahlhaltiges Material für eine Plasmaabscheidung
DE10033980A1 (de) * 2000-07-13 2002-01-24 Voith Paper Patent Gmbh Verfahren zur Vorbehandlung einer Faserstoffsuspension sowie Garnitur zur Durchführung des Verfahrens
US6833203B2 (en) 2002-08-05 2004-12-21 United Technologies Corporation Thermal barrier coating utilizing a dispersion strengthened metallic bond coat
EP1522375A1 (de) 2003-10-06 2005-04-13 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Schichtsystems
RU2486277C2 (ru) * 2010-11-02 2013-06-27 Федеральное государственное унитарное предприятие "Научно-производственный центр газотурбостроения "Салют" (ФГУП "НПЦ газотурбостроения "Салют") Способ формирования покрытия на рабочей охлаждаемой лопатке газовой турбины из никелевого сплава
DE102011084608A1 (de) * 2011-10-17 2013-04-18 Ford-Werke Gmbh Plasmaspritzverfahren
LV14659B (lv) * 2012-08-07 2013-06-20 Toms Torims Iekārta un metode kloķvārpstu gultņu kakliņu virsmu remontam un atjaunošanai, pielietojot uzkausēšanu ar lāzeru
CN104087885B (zh) * 2014-06-17 2016-09-14 宁国东方碾磨材料股份有限公司 一种耐腐蚀涂层磨段
CA3131528A1 (en) * 2019-02-26 2020-09-03 Somnio Global Holdings, Llc High nitrogen steel powder and methods of making the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR719270A (fr) * 1931-06-30 1932-02-03 Changement des qualités de la surface d'organes ou de pièces quelconques par l'apport, la fixation et, s'il y a lieu, le traitement d'un métal auquel on garde en tout ou en partie ses qualités d'origine
DE942484C (de) * 1942-10-31 1956-05-03 Hans Biel Verfahren zur Herstellung von Metallschichten durch Zerstaeubung
GB1182242A (en) * 1966-02-11 1970-02-25 United States Borax Chem Improvements in or relating to Nitrides.
DE3715325A1 (de) * 1987-05-08 1988-11-24 Castolin Sa Verfahren zum herstellen von gleitflaechen auf teilen von fahrzeugmotoren
US4999052A (en) * 1988-10-05 1991-03-12 United Kingdon Atomic Energy Authority Method of producing nitrogen-strengthened alloys

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Handbook of Stainless Steels, McGraw-Hill Book Company, 1977, Seite 1-7 und 4-14 *
JIS H 9301, 1977 *
Oberflächenveredeln und Plattieren von Metallen, VEB Verlag für Grundstoffindustrie 1978, Seiten 239-248 *
Stahlschlüssel, 1986, Seiten 336 und 367 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168893A1 (en) * 2018-02-27 2019-09-06 Somnio Global Holdings, Llc Articles with nitrogen alloy protective layer and methods of making same

Also Published As

Publication number Publication date
EP0456847A1 (de) 1991-11-21
JPS6417846A (en) 1989-01-20
DE59007940D1 (de) 1995-01-19
DE3816310A1 (de) 1989-01-12

Similar Documents

Publication Publication Date Title
EP0456847B1 (de) Verfahren zur Herstellung einer Schutzschicht mit hohem Verschleiss- und Korrosionswiderstand aus einer austenitischen Eisenbasislegierung und nach dem Verfahren hergestellte Schutzschicht
DE2632739C3 (de) Verfahren zum thermischen Aufspritzen eines selbsthaftenden Nickel-Aluminium- oder-Nickel-Titan-Überzugs auf ein Metallsubstrat
DE69108963T2 (de) Verschleissfeste Titannitridbeschichtung und Verfahren zum Aufbringen.
DE3433698C2 (de)
DE1446207B2 (de) Aus mehreren bestandteilen bestehendes flammspritzmaterial
DE4321673A1 (de) Thermisches Sprühen von Zusammensetzungen aus Metall und Feststoffschmiermitteln unter Verwendung von Draht als Ausgangsmaterial
EP2824216B1 (de) Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts und Durchlaufofen für eine Schmelztauchbeschichtungsanlage
EP0915184A1 (de) Verfahren zur Herstellung einer keramischen Schicht auf einem metallischen Grundwerkstoff
DE3306142A1 (de) Verfahren zur herstellung eines zweiphasigen oder mehrphasigen metallischen materials
DE2208070A1 (de) Plasma-flammgespritzte titancarbidwerkzeugstahl-ueberzuege auf metallsubstraten, die so gebildeten verbundwerkstoffe und verfahren zu deren herstellung
EP3314033B1 (de) Eisenbasierte legierung zur herstellung thermisch aufgebrachter verschleissschutzschichten
WO2021245134A1 (de) Verfahren und vorrichtung zur additiven fertigung unter schutzgas
EP1274872A1 (de) Verfahren zur herstellung eines stickstofflegierten, sprühkompaktierten stahls, verfahren zu seiner herstellung
DE2100237A1 (de) Wolframlegierung und Verfahren zu ihrer Herstellung
DE2043275A1 (de) Verfahren und Vorrichtung zum Her stellen hochgradig reiner Metallpulver
DE1182016B (de) Oberflaechenhaertung eines metallenen Koerpers, der aus Titan oder Zirkon besteht odeer solche Metalle enthaelt
DE2725752A1 (de) Verfahren zur oberflaechenbehandlung von metall in einem wirbelbettsystem
DE3726073C1 (de) Verfahren zur Herstellung von duennwandigem Halbzeug und dessen Verwendungen
DE69022064T2 (de) Verfahren zum ändern eines oberflächenbereiches eines werkstückes.
DE60217380T2 (de) Hitzbeständiger stahl mit verbesserter katalytischer karbonatations- und verkokungsbeständigkeit
DE952586C (de) Verfahren zur Herstellung von spratzigen Metallpulvern
DE2818720B1 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver
DE4139956C2 (de) Verfahren zur Herstellung von verschleißbeständigen Borierschichten auf metallischen Gegenständen sowie Metallgegenstand mit einer verschleißbeständigen Borierschicht
DE102009004201A1 (de) Lichtbogendrahtspritzverfahren
DE1758455C3 (de) Verfahren zum Frischen von legierten kohlenstoffhaltigen Eisenschmelzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19930129

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19941207

Ref country code: GB

Effective date: 19941207

Ref country code: NL

Effective date: 19941207

Ref country code: FR

Effective date: 19941207

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19941207

REF Corresponds to:

Ref document number: 59007940

Country of ref document: DE

Date of ref document: 19950119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950307

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19941207

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: CASTOLIN S.A.

Effective date: 19950907

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19960408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970603

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970612

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990302

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO