EP1672301B1 - Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air - Google Patents

Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air Download PDF

Info

Publication number
EP1672301B1
EP1672301B1 EP05024947.3A EP05024947A EP1672301B1 EP 1672301 B1 EP1672301 B1 EP 1672301B1 EP 05024947 A EP05024947 A EP 05024947A EP 1672301 B1 EP1672301 B1 EP 1672301B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
direct contact
line
low
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05024947.3A
Other languages
German (de)
English (en)
Other versions
EP1672301A1 (fr
Inventor
Andreas Brox
Markus Huppenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP05024947.3A priority Critical patent/EP1672301B1/fr
Priority to PL05024947T priority patent/PL1672301T3/pl
Publication of EP1672301A1 publication Critical patent/EP1672301A1/fr
Application granted granted Critical
Publication of EP1672301B1 publication Critical patent/EP1672301B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the invention relates to a device for producing a product by cryogenic separation of a gas mixture, in particular air, with a direct contact cooler for cooling the feed mixture, with a cleaning device for cleaning the cooled feed mixture and with a low temperature part, the main heat exchanger for cooling the purified feed mixture to about dew point and a distillation column for cryogenic decomposition of the feed mixture.
  • cryogenic temperature is meant here basically any temperature which is below the ambient temperature, but preferably a temperature of 200 K or less, most preferably 150 K or less, for example 100 K or less.
  • a direct contact cooler In a "direct contact cooler” the feed mixture is brought into direct heat exchange with a coolant, for example water, and thereby cooled. It is used in particular for removing heat of compression, which has arisen in a feed gas compressor, which is usually connected upstream.
  • a coolant for example water
  • a subsequent "cleaning device” is usually designed as an adsorption device and in particular has at least two switchable container, which are operated cyclically. It serves to separate unwanted components, for example those which can freeze out in the low-temperature part.
  • the feed mixture is first cooled to about dew point temperature and then decomposed in a distillation column system.
  • the low-temperature part thus contains one or more heat exchangers and one or more distillation columns.
  • the product is in Withdrawn gas or liquid form.
  • the cryogenic part is usually thermally insulated by being enclosed by one or more cold boxes.
  • the “main heat exchanger” serves to heat the gaseous product (s) in indirect heat exchange with at least one feed mixture stream.
  • the three mentioned plant components are usually arranged so that the consumption of floor space is as low as possible. This is not satisfactory in all cases.
  • the invention is therefore based on the object to further optimize the arrangement of the components of a cryogenic separation plant in order to achieve a particularly high efficiency of the system.
  • This object is achieved in that the direct contact cooler, the cleaning device and the low-temperature part are arranged in a line.
  • the arrangement “on a line” means that there must be at least one horizontal straight line, which intersects the bases of all three plant components mentioned.
  • “Base area” is understood here as the footprint that is required for the corresponding system components including the directly associated functional units such as, for example, pumps and fittings.
  • the arrangement in a line minimizes in particular the effort in the fluidic connection of the system components with each other.
  • the corresponding pipe lengths and the scope of the associated steel construction devices such as pipe bridges are minimized. For very large plants with a single-gas flow rate of 300,000 Nm, this means 3 / h or more - a noticeable reduction in investment costs.
  • the linear arrangement also has the advantage that the system components are basically accessible from both sides for assembly and maintenance. This reduces the operating and repair costs of the system.
  • the direct contact cooler is preceded by a feed gas compressor for compressing the feed mixture.
  • a feed gas compressor for compressing the feed mixture.
  • This can be arranged in the context of the invention, for example, laterally next to the group of direct contact cooler, cleaning device and low temperature part.
  • it is particularly favorable when the feed gas compressor, the direct contact cooler, the cleaning device and the low-temperature part are arranged in a line. This further enhances the above advantages.
  • connection means may be arranged, for example on the side of the cryogenic part a pipe bridge for discharging the products and / or on the compressor side a gas or steam turbine for driving the feed gas compressor with appropriate accessories, such as an air condenser, steam -, gas and / or cooling water lines for machines or the like. Nevertheless, the various system components remain easily accessible.
  • the drive shaft of the feed gas compressor runs, in this case in particular, preferably substantially perpendicular to the line on which the direct contact cooler, the cleaning device and the low-temperature part are arranged.
  • the feed gas compressor may be arranged laterally next to the other system parts.
  • the drive shaft of the feed gas compressor runs essentially parallel to the line on which the direct contact cooler, the cleaning device and the low-temperature part are arranged.
  • the base of the previously mentioned system components has a relatively elongated shape. More specifically, in this case, the ratio of the dimension of the smallest rectangle including the bases of the direct contact cooler, the purifier, and the cryogenic part and possibly the feed gas compressor in the direction of a straight line connecting direct contact cooler and low temperature part to the extension in the direction perpendicular thereto is larger than 1, in particular greater than 1.5. For example, this ratio is 2.0 or more, especially 3.0 or more.
  • the device for connecting the individual systems with each other (for example, pipe bridge for product lines) is arranged along the narrow sides and can thus be made relatively short and inexpensive.
  • the cryogenic part regularly comprises a heat exchanger box containing at least one main heat exchanger, a rectification box containing at least one distillation column, and an expansion machine located within a turbine box. It is favorable if the turbine box is arranged at a transition section of the low-temperature part, which is located between the heat exchanger box and the rectification box. Alternatively, the turbine box may be connected directly to the heat exchanger box.
  • the claims 7 to 12 contain further advantageous embodiments of the device according to the invention. Their features can be applied in a device for producing a product by cryogenic separation of a gas mixture, in particular air, as a non-inventive embodiment, independently of the features of claims 1 to 6 or according to the invention in combination with these.
  • the feed mixture line for introducing feed mixture into the main heat exchanger and the product line for drawing off the product flow from the main heat exchanger run substantially parallel to a main orientation axis and are arranged on opposite sides of the main heat exchanger.
  • the "main axis of orientation" represents an abstract straight line that runs in a horizontal direction and is not usually materialized by components of the plant or any other physical device.
  • substantially parallel are two directions if they form an angle of less than 20 °, preferably less than 10 °, most preferably less than 5 ° with each other.
  • the arrangement according to claim 7 offers the advantage that the devices for the discharge of the products, for example one or more manifolds, into which the product line (s) open, on one side of the main heat exchanger and the means for pretreatment of the feed mixture on the opposite side of the main heat exchanger can be arranged. This makes very small pipe lengths possible.
  • the arrangement also has the advantage that the system components are basically accessible from both sides for assembly and maintenance. This reduces the operating and repair costs of the system.
  • the device prefferably has a collecting line, into which the product line opens at its end facing away from the main heat exchanger, and when the collecting line runs essentially perpendicular to the main orientation axis.
  • One direction is "substantially perpendicular" to another when the respective straight lines subtend an angle of 70 ° to 110 °, preferably 80 ° to 100 °, most preferably 85 ° to 95 °.
  • One or more manifolds may connect the device and possibly other identical or similar devices (strands) to a multi-line plant, or to a tank farm and / or to an emergency supply device.
  • the manifold (s) can be arranged on a pipe bridge or on the ground. In the latter case, the manifolds are routinely routed to so-called sleepers.
  • manifold (s) are connected to a product line of one or more other cryogenic decomposition devices.
  • manifold (s) may be connected to a storage container for product.
  • the main heat exchanger is embodied exclusively as a recuperative heat exchanger, that is to say as a non-reversible heat exchanger.
  • the claims 13 to 16 contain further advantageous embodiments of the device according to the invention. Their features can be applied in a device for producing a product by cryogenic separation of a gas mixture, in particular air, as a non-inventive embodiment, independently of the features of claims 1 to 12 or according to the invention in combination with these.
  • the ratio of the distance between the evaporative cooler and the direct contact cooler to the distance between the evaporative cooler and the main heat exchanger is at least 0.5, in particular at least 1.0.
  • the evaporative cooler 15 is thus arranged comparatively close to the main heat exchanger. Although this means higher costs for the coolant piping; However, the line for the gas flow from the low-temperature part can be made very short. In the context of the invention has been found that this arrangement leads to a total of comparatively low investment costs costs. In particular, the effort for the pipelines and the associated steel construction costs is reduced. This is partly due to the very high cross section (for example 1 to 2 m) of the gas line to the evaporative cooler.
  • Atmospheric air is sucked in as "feed mixture” via an inlet filter 1 and fed via feed pipes 51, 52, 53, 54 to other plant components.
  • a main air compressor 2 which in the example represents the "feed gas compressor”
  • the compressed air 52 flows into a direct contact cooler 3 where it is cooled in direct heat exchange with cooling water flowing over a cooling water piping 61.
  • the cooled air 53 is further passed into a purifier 4 having a pair of molecular sieve adsorbers 5, 6.
  • the purified air 54 continues to flow to the cryogenic part 7.
  • the low-temperature part can consist of a single cold box, in which all cryogenic apparatus are arranged, in particular the one or more heat exchangers and the distillation column (s), or from a plurality of separate cold boxes.
  • a cylindrical rectification box 9 contains the distillation columns 9a, here a double column with high-pressure and low-pressure column and a main capacitor arranged therebetween.
  • the remaining cold parts, in particular the main heat exchanger 8a are housed in a cuboid heat exchanger box 8.
  • the two cold boxes 8, 9 insulate the respective cold parts of the apparatus against heat from the environment.
  • a transition section 10 also belongs to the low-temperature part. He is also surrounded by a coldbox; Alternatively, located in the transition section 10 piping and fittings are thermally insulated by means of a correspondingly smaller cold box.
  • the main heat exchanger is designed as exclusively recuperative heat exchanger, so not as a switchable heat exchanger (Revex). It consists, for example, of one block or a plurality of flow-connected blocks.
  • the block or blocks are preferably designed as aluminum plate heat exchangers.
  • Possible further heat exchangers, such as one or more subcooling countercurrents, may also be accommodated in the heat exchanger box; alternatively or additionally, one or more blocks of subcooling countercurrents may be arranged in the rectification box.
  • the form of the rectification box may differ from the exemplary embodiment; For example, it may be substantially cuboidal.
  • the main air compressor 2 is driven via a first shaft 11 by a drive means 12, which is designed as an electric motor, gas or steam turbine.
  • a booster 14 is for a portion of the purified air 54 intended.
  • the inlet of the booster 14 is connected to the pipe 54 for the purified air.
  • the further compressed air in the booster 14 is passed through a further, not shown in the drawing pipe in the low-temperature part 7, in particular in the heat exchanger box 8.
  • the booster 14 is also driven by a further shaft 13 of the drive means 12.
  • the booster could be driven independently of the main air compressor, for example by a separate gas or steam turbine or by a separate electric motor.
  • the products of the low-temperature part 7 are discharged via exemplary product lines 105, 106, which open here into manifolds 107 and 108, respectively.
  • the manifolds 107, 108 are arranged on a pipe bridge 109 and can connect the device and possibly other identical or similar devices (strands) to a multi-strand system or lead to a tank farm and / or to an emergency supply device.
  • an evaporative cooler 15 For cooling water before its introduction into the direct contact cooler 3, an evaporative cooler 15 is used. In it, dry residual nitrogen from the low-temperature part is brought into direct heat and mass transfer with cooling water to be cooled. About the cooling water piping 61 cold cooling water is passed to the direct contact cooler. Warm cooling water is returned directly or indirectly to the evaporative cooler. The moist nitrogen from the evaporative cooler escapes into the atmosphere.
  • the apparatus also includes utility piping 63, the location of which is schematically indicated in the drawing.
  • the equipment piping serves to transport steam, gas and / or cooling water and to dispose of condensate, cooling water, etc. It flows into resource headers (not shown), which can be arranged on the pipe bridge 109.
  • Resource and booster air tubing 63, 62 may be located on the floor (on sleepers) or on one or more pipe bridges.
  • the base surfaces of the direct contact cooler 3, the cleaning device 4 and the low-temperature part 7 have in the embodiment circular, rectangular or a complex shape. These bases are arranged in a line, for example on a main orientation axis 101. In addition, this line 101 also extends through the base area of the main air compressor 2. This results in a particularly short feed gas piping 52/53/54.
  • the product lines 105, 106 which are arranged parallel to the entrance of the insert line 54, have a particularly short length. They can even be so short that their own pipe bridge is not needed.
  • the rectangle 102 which encloses the bases of direct contact cooler 3, cleaning device 4 and low-temperature part 7, is approximately 1.7 times longer in the extent that extends vertically in the drawing than in the direction perpendicular thereto (horizontally in the drawing).
  • a factor of about 1.8 applies for the rectangle 103, which also encloses the base of the main air compressor and the apparatuses connected to it.
  • a short pipe bridge 109 and short lines 107, 108 of sufficient length for the product removal or the resource supply and removal; This is particularly advantageous in multi-strand systems. (Due to its schematic character, the drawing is not necessarily to scale in this respect either.)
  • direct contact coolers 3 and evaporative coolers 15 are arranged as a unit or at least as immediately adjacent units because of their functional relationship. In the embodiment, however, the evaporative cooler 15 is much closer to the low temperature part than the direct contact cooler.
  • the distance 104 between the evaporative cooler 15 and the main heat exchanger 8a is about one fifth of the distance between the direct contact cooler 3 and the low temperature part 7.
  • the residual nitrogen pipe between the main heat exchanger and the evaporative cooler 15 which is not shown in the drawing, only a relatively short Overcome route and can therefore be realized particularly cost effective; This saving is significant because of the very large cross-section of the residual nitrogen pipe.
  • the cooling water piping is longer, but has a much smaller cross-section and increases the cost of the apparatus only insignificantly.
  • Cryogenic air separation plants regularly have one or more expansion machines, which serve to generate cold by work-performing relaxation of one or more process streams and are usually designed as turbines.
  • the plant of the embodiment preferably has a turbine for work-performing expansion of a partial flow of the feed air or a product or intermediate product stream from the low-temperature decomposition. This turbine is seated in a turbine box 16, which is arranged in the embodiment at the transition section 10 between the heat exchanger box 8 and rectification box 9.

Claims (16)

  1. Procédé de production d'un produit par séparation cryogénique d'un mélange gazeux, en particulier d'air, avec un refroidisseur à contact direct (3) pour le refroidissement du mélange de charge, avec un dispositif de purification (4) pour purifier le mélange de charge refroidi et avec une partie cryogénique (7), qui présente un échangeur de chaleur principal (8a) pour le refroidissement du mélange de charge purifié environ à la température du point de rosée et une colonne de distillation (9a) pour la séparation cryogénique du mélange de charge, caractérisé en ce que le refroidisseur à contact direct (3), le dispositif de purification (4) et la partie cryogénique (7) sont disposés sur une ligne (101) et le dispositif est conçu pour un débit de gaz de charge de 300 000 Nm3/h ou plus, dans lequel la disposition "sur une ligne" signifie qu'il doit y avoir au moins une droite horizontale, qui coupe les faces de base de tous les trois composants de l'installation précités et par "face de base" on entend ici la face de pose qui est nécessaire pour les composants correspondants de l'installation y compris les unités fonctionnelles directement correspondantes comme par exemple des pompes et des armatures.
  2. Dispositif selon la revendication 1, caractérisé par un compresseur de gaz de charge (2) monté avant le refroidisseur à contact direct (3) pour la compression du mélange de charge, dans lequel le compresseur de gaz de charge (2), le refroidisseur à contact direct (3), le dispositif de purification (4) et la partie cryogénique (7) sont disposés sur une ligne (101).
  3. Dispositif selon la revendication 1 ou 2, caractérisé par un compresseur de gaz de charge (2) monté avant le refroidisseur à contact direct (3) pour la compression du mélange de charge, dans lequel l'arbre d'entraînement (11) du compresseur de gaz de charge (2) est essentiellement perpendiculaire à la ligne (101), sur laquelle le refroidisseur à contact direct (3), le dispositif de purification (4) et la partie cryogénique (7) sont disposés.
  4. Dispositif selon la revendication 1, caractérisé par un compresseur de gaz de charge (2) monté avant le refroidisseur à contact direct (3) pour la compression du mélange de charge, dans lequel l'arbre d'entraînement du compresseur de gaz de charge (2) est essentiellement parallèle à la ligne (101), sur laquelle le refroidisseur à contact direct (3), le dispositif de purification (4) et la partie cryogénique (7) sont disposés.
  5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le rapport de l'extension du plus petit rectangle (102; 103), qui entoure les faces de base du refroidisseur à contact direct (3), du dispositif de purification (4) et de la partie cryogénique (7) et éventuellement du compresseur de gaz de charge (2) dans la direction d'une droite de liaison (101) entre le refroidisseur à contact direct (3) et la partie cryogénique (7) à l'extension dans la direction perpendiculaire à celle-ci, est supérieur à 1, en particulier supérieur à 1,8.
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la partie cryogénique (7) présente un boîtier d'échangeur de chaleur (8), qui contient au moins un échangeur de chaleur principal, un boîtier de rectification (9), qui contient au moins une colonne de distillation, une section de transition (10), qui est disposée entre le boîtier d'échangeur de chaleur (8) et le boîtier de rectification (9), et un caisson de turbine (16), qui contient une machine de détente, dans lequel le caisson de turbine (16) est relié à la section de transition (10).
  7. Dispositif selon l'une quelconque des revendications 1 à 6, avec une conduite de mélange de charge (51, 52, 53, 54) pour l'introduction de mélange de charge dans l'échangeur de chaleur principal et avec une conduite de produit (105, 106) pour soutirer le courant de produit hors de l'échangeur de chaleur principal, caractérisé en ce que la conduite de mélange de charge (54) et la conduite de produit (104, 105) sont essentiellement parallèles à un axe d'orientation principal (101) et sont disposées sur des côtés opposés l'un à l'autre de l'échangeur de chaleur principal.
  8. Dispositif selon la revendication 7, caractérisé par une conduite de collecte (107, 108), dans laquelle la conduite de produit (104, 105) débouche à son extrémité éloignée de l'échangeur de chaleur principal, dans lequel la conduite de collecte (107, 108) est essentiellement perpendiculaire à l'axe d'orientation principal (101).
  9. Dispositif selon la revendication 8, caractérisé en ce que la conduite de collecte (107, 108) est disposée sur une passerelle à tubes (109) ou sur le sol.
  10. Dispositif selon la revendication 8 ou 9, caractérisé en ce que la conduite de collecte est raccordée à une conduite de produit d'une ou de plusieurs autres installations de séparation cryogénique.
  11. Dispositif selon une des revendications 8 ou 9, caractérisé en ce que la conduite de collecte est raccordée à un réservoir d'accumulation pour le produit.
  12. Dispositif selon l'une quelconque des revendications 7 à 11, caractérisé en ce que l'échangeur de chaleur principal (8a) est constitué exclusivement par un échangeur de chaleur à récupération.
  13. Dispositif selon l'une quelconque des revendications 1 à 12, avec un circuit d'agent réfrigérant (61) pour la fourniture d'agent réfrigérant pour le refroidisseur à contact direct, dans lequel le circuit d'agent réfrigérant présente un refroidisseur par évaporation (15) pour le refroidissement d'agent réfrigérant par échange de chaleur direct avec un courant de gaz provenant de la partie cryogénique, caractérisé en ce que le rapport de la distance entre le refroidisseur par évaporation (15) et le refroidisseur à contact direct (3) à la distance (104) entre le refroidisseur par évaporation (15) et l'échangeur de chaleur principal (8a) vaut au moins 0,5, en particulier au moins 1,0.
  14. Dispositif selon la revendication 13, caractérisé en ce que le rapport de la distance entre le refroidisseur par évaporation (15) et le refroidisseur à contact direct (3) à la distance (104) entre le refroidisseur par évaporation (15) et l'échangeur de chaleur principal (8a) vaut au moins 2, en particulier au moins 4.
  15. Dispositif selon la revendication 13 ou 14, caractérisé en ce que la distance (104) entre le refroidisseur par évaporation (15) et l'échangeur de chaleur principal (8a) vaut au plus 20 m, en particulier au plus 10 m.
  16. Dispositif selon l'une quelconque des revendications 13 à 15, caractérisé en ce que la distance entre le refroidisseur par évaporation et le refroidisseur à contact direct (3) vaut au moins 10 m, en particulier au moins 25 m.
EP05024947.3A 2004-12-03 2005-11-15 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air Not-in-force EP1672301B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05024947.3A EP1672301B1 (fr) 2004-12-03 2005-11-15 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
PL05024947T PL1672301T3 (pl) 2004-12-03 2005-11-15 Urządzenie do niskotemperaturowego rozkładu mieszanki gazowej, zwłaszcza powietrza

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP04028683A EP1666823A1 (fr) 2004-12-03 2004-12-03 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
EP04028682 2004-12-03
EP04028681A EP1666822A1 (fr) 2004-12-03 2004-12-03 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
EP05024947.3A EP1672301B1 (fr) 2004-12-03 2005-11-15 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air

Publications (2)

Publication Number Publication Date
EP1672301A1 EP1672301A1 (fr) 2006-06-21
EP1672301B1 true EP1672301B1 (fr) 2018-08-15

Family

ID=36565984

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04028681A Withdrawn EP1666822A1 (fr) 2004-12-03 2004-12-03 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
EP04028683A Withdrawn EP1666823A1 (fr) 2004-12-03 2004-12-03 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
EP05024947.3A Not-in-force EP1672301B1 (fr) 2004-12-03 2005-11-15 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP04028681A Withdrawn EP1666822A1 (fr) 2004-12-03 2004-12-03 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
EP04028683A Withdrawn EP1666823A1 (fr) 2004-12-03 2004-12-03 Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air

Country Status (6)

Country Link
US (1) US7516626B2 (fr)
EP (3) EP1666822A1 (fr)
CN (1) CN100575838C (fr)
CA (1) CA2528735C (fr)
PL (1) PL1672301T3 (fr)
RU (1) RU2382963C2 (fr)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007052136A1 (de) 2007-09-28 2009-04-02 Linde Aktiengesellschaft Verfahren zum Anfahren einer Tieftemperatur-Luftzerlegungsanlage und Tieftemperatur-Luftzerlegungsanlage
US8734545B2 (en) 2008-03-28 2014-05-27 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
EP2268897B1 (fr) 2008-03-28 2020-11-11 Exxonmobil Upstream Research Company Systeme et procede de production d'electricite a faible emission et recuperation d'hydrocarbures
BRPI0920139A2 (pt) 2008-10-14 2015-12-22 Exxonmobil Upstream Res Co sistema de combustão, método de controle de combustão, e, sistema de combustor.
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
CA2764450C (fr) 2009-06-05 2018-02-13 Exxonmobil Upstream Research Company Systemes de chambre de combustion et leurs procedes d'utilisation
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
AU2010318595C1 (en) 2009-11-12 2016-10-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
SG10201505209UA (en) 2010-07-02 2015-08-28 Exxonmobil Upstream Res Co Low emission power generation systems and methods
MY164051A (en) 2010-07-02 2017-11-15 Exxonmobil Upstream Res Co Low emission triple-cycle power generation systems and methods
JP5906555B2 (ja) 2010-07-02 2016-04-20 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式によるリッチエアの化学量論的燃焼
US9732673B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
FR2962526B1 (fr) 2010-07-09 2014-07-04 Air Liquide Appareil de refroidissement et d'epuration d'air destine a une unite de distillation cryogenique d'air
FR2962799B1 (fr) * 2010-07-13 2014-07-04 Air Liquide Ensemble de refroidissement et appareil de separation d'air par distillation cryogenique comprenant un tel ensemble de refroidissement
WO2012018458A1 (fr) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company Système et procédé destiné à l'extraction de gaz d'échappement
EP2601393B1 (fr) 2010-08-06 2020-01-15 Exxonmobil Upstream Research Company Systèmes et procédés destinés à optimiser une combustion stoichiométrique
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090B1 (fr) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
KR20140108686A (ko) * 2011-12-16 2014-09-12 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 혼합기를 구비하는 액체 분배기
US9630123B2 (en) 2011-12-16 2017-04-25 Air Products And Chemicals, Inc. Liquid distributor with a mixer
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
EP2964735A1 (fr) 2013-03-08 2016-01-13 Exxonmobil Upstream Research Company Production d'énergie et récupération de méthane à partir d'hydrates de méthane
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102013018664A1 (de) 2013-10-25 2015-04-30 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Tieftemperatur-Luftzerlegungsanlage
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
TR201808162T4 (tr) 2014-07-05 2018-07-23 Linde Ag Havanın düşük sıcaklıkta ayrıştırılması vasıtasıyla bir basınçlı gaz ürününün kazanılmasına yönelik yöntem ve cihaz.
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
PL2963370T3 (pl) * 2014-07-05 2018-11-30 Linde Aktiengesellschaft Sposób i urządzenie do kriogenicznego rozdziału powietrza
PL2963369T3 (pl) 2014-07-05 2018-10-31 Linde Aktiengesellschaft Sposób i urządzenie do niskotemperaturowej separacji powietrza
EP3040665A1 (fr) 2014-12-30 2016-07-06 Linde Aktiengesellschaft Système de colonne de distillation et installation pour la production d'oxygène par séparation cryogénique de l'air
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN105222524A (zh) * 2015-11-05 2016-01-06 天津市振津石油天然气工程有限公司 一种小型移动式天然气液化撬
FR3086549B1 (fr) * 2018-09-27 2022-05-13 Air Liquide Enceinte de colonne de distillation
CN109676367A (zh) * 2018-12-28 2019-04-26 乔治洛德方法研究和开发液化空气有限公司 一种热交换器组件及装配所述热交换器组件的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822774C2 (de) * 1978-05-24 1982-08-26 Linde Ag, 6200 Wiesbaden Verfahren und Anlagenteile zum Errichten einer Fabrikanlage
FR2695714B1 (fr) * 1992-09-16 1994-10-28 Maurice Grenier Installation de traitement cryogénique, notamment de distillation d'air.
FR2706025B1 (fr) * 1993-06-03 1995-07-28 Air Liquide Installation de distillation d'air.
JP3527609B2 (ja) * 1997-03-13 2004-05-17 株式会社神戸製鋼所 空気分離方法および装置
FR2780147B1 (fr) * 1999-06-29 2001-01-05 Air Liquide Installation de distillation d'air et boite froide correspondante
US6360815B1 (en) * 1999-06-29 2002-03-26 Ecia Industrie Arrangement for mounting a fan motor on a heat exchanger and automobile vehicle front assembly provided with that arrangement
FR2799277B1 (fr) * 1999-10-01 2001-12-28 Air Liquide Echangeur de chaleur et installation de distillation d'air comprenant un tel echangeur de chaleur
FR2828729B1 (fr) * 2001-08-14 2003-10-31 Air Liquide Installation de production d'oxygene sous haute pression par distillation d'air
WO2004015347A2 (fr) * 2002-08-08 2004-02-19 Pacific Consolidated Industries, L.P. Generateur d'azote
FR2844344B1 (fr) * 2002-09-11 2005-04-08 Air Liquide Installation de production de grandes quantites d'oxygene et/ou d'azote

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2528735A1 (fr) 2006-06-03
PL1672301T3 (pl) 2019-01-31
EP1672301A1 (fr) 2006-06-21
EP1666822A1 (fr) 2006-06-07
CN1782644A (zh) 2006-06-07
US7516626B2 (en) 2009-04-14
EP1666823A1 (fr) 2006-06-07
RU2005137481A (ru) 2007-06-20
CA2528735C (fr) 2013-08-06
US20060156759A1 (en) 2006-07-20
RU2382963C2 (ru) 2010-02-27
CN100575838C (zh) 2009-12-30

Similar Documents

Publication Publication Date Title
EP1672301B1 (fr) Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
DE19904527B4 (de) Luftdestillationsanlage mit mehreren kryogenen Destillationseinheiten des gleichen Typs
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
DE19904526B4 (de) Luftdestillationsanlage und zugehörige Kältebox
EP1994344A1 (fr) Procédé et dispositif de décomposition de l'air à basse température
DE2557453A1 (de) Verfahren zur zerlegung von luft
DE10021081A1 (de) Verfahren und Vorrichtung zum Wärmeaustausch
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
WO2010017968A2 (fr) Procédé et dispositif de séparation de l'air à basse température
EP3059536A1 (fr) Procédé et dispositif destinés à la production d'un produit d'azote pressurisé
DE102012008416A1 (de) Verrohrungsmodul für Luftzerlegungsanlage
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
EP2657633B1 (fr) Module de tuyauterie pour installation de séparation de l'air
WO2016146246A1 (fr) Système permettant de produire de l'oxygène par fractionnement d'air à basse température
EP2600090B1 (fr) Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
EP1300640A1 (fr) Procédé et dispositif de production d'azote ultra-pur par séparation cryogénique d'air
EP2647934A1 (fr) Procédé et dispositif de génération d'énergie électrique
EP2645032A1 (fr) Paquet transportable avec boîtier frigorifique et procédé de fabrication d'une installation de décomposition de l'air à basse température
DE102005023434A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2865978A1 (fr) Procédé de décomposition à basse température de l'air et installation de décomposition de l'air à basse température
EP2770286A1 (fr) Procédé et dispositif de collecte d'oxygène et d'azote sous haute pression
DE102012006484A1 (de) Transportables Paket mit einer Coldbox und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
WO2023036460A1 (fr) Module de distributeur pour une installation de traitement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061117

17Q First examination report despatched

Effective date: 20061214

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015879

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 65189 WIESBADEN, DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015879

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181030

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015879

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1030268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20191105

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015879

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015879

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201115