RU2382963C2 - Установка для криогенного разделения смеси газов, в частности воздуха - Google Patents

Установка для криогенного разделения смеси газов, в частности воздуха Download PDF

Info

Publication number
RU2382963C2
RU2382963C2 RU2005137481/06A RU2005137481A RU2382963C2 RU 2382963 C2 RU2382963 C2 RU 2382963C2 RU 2005137481/06 A RU2005137481/06 A RU 2005137481/06A RU 2005137481 A RU2005137481 A RU 2005137481A RU 2382963 C2 RU2382963 C2 RU 2382963C2
Authority
RU
Russia
Prior art keywords
cooler
heat exchanger
installation according
low
direct cooling
Prior art date
Application number
RU2005137481/06A
Other languages
English (en)
Other versions
RU2005137481A (ru
Inventor
Андреас БРОКС (DE)
Андреас БРОКС
Маркус ХУППЕНБЕРГЕР (DE)
Маркус ХУППЕНБЕРГЕР
Original Assignee
Линде Акциенгезельшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезельшафт filed Critical Линде Акциенгезельшафт
Publication of RU2005137481A publication Critical patent/RU2005137481A/ru
Application granted granted Critical
Publication of RU2382963C2 publication Critical patent/RU2382963C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится к области криогенного разделения смеси газов, в частности воздуха. Установка состоит из охладителя (3) с непосредственным охлаждением для охлаждения исходной смеси газов, очистителя (4) для очистки охлажденной исходной смеси газов и низкотемпературной секции (7). Низкотемпературная секция состоит из главного теплообменника (8а) для охлаждения очищенной исходной смеси газов приблизительно до температуры конденсации и перегонной колонны (9а) для криогенного разделения исходной смеси газов. В предлагаемой в изобретении установке охладитель (3) с непосредственным охлаждением, очиститель (4) и низкотемпературная секция (7) расположены на одной линии (101). Использование изобретения позволит оптимизировать компоновку установки и повысить ее экономичность. 15 з.п. ф-лы, 1 ил.

Description

Настоящее изобретение относится к установке для получения продукта криогенного разделения смеси газов, в частности воздуха, содержащей охладитель с непосредственным охлаждением для охлаждения исходной смеси газов, очиститель для очистки охлажденной исходной смеси газов и низкотемпературную секцию с главным теплообменником для охлаждения очищенной исходной смеси газов приблизительно до температуры конденсации и перегонной колонной для криогенного разделения исходной смеси газов.
Установки для криогенного разделения воздуха или других смесей газов известны, например, из публикации Hausen/Linde, Tieftemperaturechnick, Cryogenic Engineering, 2-е изд., 1985.
В контексте настоящего описания термин "криогенная температура" или "низкая температура" означает любую температуру ниже окружающей температуры, предпочтительно температуру порядка 200 К или ниже, наиболее предпочтительно порядка 150 К или ниже, например 100 К или ниже.
В охладителе с непосредственным охлаждением исходная смесь охлаждается в результате прямого теплообмена с охлаждающим средством, например водой. Такие охладители используются, в частности, для рассеивания теплоты сжатия, которое происходит в расположенном до охладителя воздушном компрессоре.
Расположенный за охладителем очиститель представляет собой адсорбер, состоящий по меньшей мере из двух попеременно работающих реверсивных емкостей. Такие очистители обычно используют для удаления из поступающей в них смеси газов различных нежелательных компонентов, например, тех, которые могут замерзать в низкотемпературной секции.
В низкотемпературной секции исходную смесь газов сначала охлаждают приблизительно до температуры конденсации, а затем разделяют на фракции в перегонной колонне. Низкотемпературная секция состоит из одного или нескольких теплообменников и одной или нескольких перегонных колонн. Конечный продукт отбирают из низкотемпературной секции в газообразном или жидком состоянии. Очевидно, что в низкотемпературной секции можно получать несколько конечных продуктов в одном и том же или в разном состоянии и одинакового или разного химического состава. Во избежание потерь, связанных с увеличением температуры из-за теплообмена с окружающей средой, низкотемпературную секцию обычно размещают в одном или нескольких теплоизолирующих кожухах.
Главный теплообменник предназначен для подогрева газообразного(-ых) продукта(-ов) путем косвенного теплообмена по меньшей мере с одним потоком исходной смеси газов.
Три перечисленных выше компонента установки для криогенного разделения смеси газов обычно стремятся скомпоновать таким образом, чтобы они занимали минимальную площадь. Добиться этого, к сожалению, удается далеко не во всех случаях.
В основу настоящего изобретения была положена задача дальнейшей оптимизации компоновки установки для криогенного разделения смеси газов и создания экономичной установки для криогенного разделения смеси газов.
Указанная задача решается с помощью предлагаемой в изобретении установки для получения конечного продукта путем криогенного разделения смеси газов, в частности воздуха, содержащая охладитель с непосредственным охлаждением для охлаждения исходной смеси газов, очиститель для очистки охлажденной исходной смеси газов и низкотемпературную секцию с главным теплообменником для охлаждения очищенной исходной смеси газов приблизительно до температуры конденсации и перегонной колонной для криогенного разделения исходной смеси газов, отличающейся тем, что охладитель с непосредственным охлаждением, очиститель и низкотемпературная секция расположены на одной линии.
Под расположением в одну линию в данном случае имеется в виду наличие в установке по меньшей мере одной горизонтальной прямой линии, пересекающей основания всех трех упомянутых выше компонентов. Под основанием в данном контексте подразумевается площадь поверхности, необходимая для соответствующего монтажа различных компонентов установки, включая функционально связанные с ними устройства, такие как насосы и арматура.
Очевидно, что такая компоновка в отличие от общепринятой не является оптимальной с точки зрения использования площади основания всей установки, поскольку основания ее разных компонентов имеют разные размеры. Так, в частности, охладитель с непосредственным охлаждением и очиститель обычно имеют меньшие размеры, чем низкотемпературная секция. Тем не менее этот недостаток предлагаемой в изобретении установки в полной мере компенсируется ее другими, более существенными преимуществами.
Расположение компонентов установки в одну линию существенно уменьшает, в частности, расходы, связанные с их соединением друг с другом. При этом, в частности, существенно уменьшается длина соответствующих трубопроводов и размеры стальных конструкций, таких как эстакады для трубопроводов. В конечном итоге удается существенно снизить капитальные затраты, особенно при создании крупных установок для разделения больших объемов газа производительностью порядка 50000 м3/ч (при стандартных температуре и давлении) или более и, в частности, установок производительностью порядка 300000 м3/ч (при стандартных температуре и давлении) или более.
Кроме того, преимуществом расположения компонентов установки в одну линию является возможность двустороннего доступа к отдельным компонентам установки, а следовательно, более простого их обслуживания и ремонта. Такая возможность позволяет существенно снизить все затраты, связанные с эксплуатацией и ремонтом установки.
Компрессор, предназначенный для сжатия исходной смеси газов, обычно устанавливают до охладителя с непосредственным охлаждением. В предлагаемой в изобретении установке реализовать это можно, например, путем установки компрессора рядом с блоком, состоящим из охладителя с непосредственным охлаждением, очистителя и низкотемпературной секции. Более предпочтительно, однако, монтировать предназначенный для сжатия исходной смеси газов компрессор, охладитель с непосредственным охлаждением, очиститель и низкотемпературную секцию на одной линии. При таком расположении компрессора указанные выше преимущества предлагаемой в изобретении установки становятся еще более ощутимыми.
Расположение всех четырех компонентов в одну линию предпочтительно, в частности, в варианте выполнения установки, состоящей из расположенных рядом друг с другом многоступенчатых блоков. В выполненной по такой схеме установке различные соединительные устройства можно расположить на концах отдельных ступеней, например эстакаду для трубопроводов, через которые отбирают полученные продукты, на стороне низкотемпературной секции и/или газовую или паровую турбину привода газового компрессора с соответствующими вспомогательными устройствами, такими как воздушный конденсатор, а также трубопроводы для пара, газа и воды, предназначенной для охлаждения различных машин, на стороне компрессора. При такой компоновке различные компоненты установки полностью доступны и для обслуживания и для ремонта.
Ось вращения приводного вала компрессора в этом случае предпочтительно должна проходить, по существу, перпендикулярно линии, на которой расположены охладитель с непосредственным охлаждением, очиститель и низкотемпературная секция.
В другом варианте компрессор, предназначенный для сжатия исходной смеси газов, можно установить рядом с остальными элементами установки. В этом случае ось вращения приводного вала компрессора будет проходить, по существу, параллельно линии, на которой расположены охладитель с непосредственным охлаждением, очиститель и низкотемпературная секция.
В многоступенчатых установках, выполненных по предлагаемой в изобретении схеме, основание перечисленных выше компонентов имеет относительно удлиненную форму. Иными словами, в таких установках отношение параллельной соединяющей охладитель с непосредственным охлаждением и низкотемпературную секцию прямой линии стороны наименьшего по площади прямоугольника, в пределах которого расположены основания охладителя с непосредственным охлаждением, очистителя и низкотемпературной секции и, возможно, компрессора, предназначенного для сжатия исходной смеси газов, к стороне, перпендикулярной первому направлению, превышает 1 и, в частности, превышает 1,5, предпочтительно больше 1,8. В некоторых случаях это отношение может быть больше 2,0 или даже больше 3,0.
При создании многоступенчатых установок множество отдельных блоков такого типа устанавливают в продольном направлении рядом друг с другом. Расположение соответствующих металлоконструкций, предназначенных для соединения отдельных блоков друг с другом (например, эстакады для трубопроводов), вдоль коротких сторон прямоугольников позволяет заметно сократить их длину и соответственно уменьшить их стоимость.
Низкотемпературная секция предлагаемой в изобретении установки состоит из теплообменного блока, в состав которого входит по меньшей мере один главный теплообменник, ректификационного блока, в состав которого входит по меньшей мере одна перегонная колонна, и расположенного в корпусе турбины детандера. Корпус турбины предпочтительно монтировать в переходной части низкотемпературной секции между теплообменным блоком и ректификационным блоком. В другом варианте корпус турбины можно напрямую соединить с теплообменным блоком.
В других предпочтительных вариантах возможного выполнения предлагаемой в изобретении установки она имеет трубопроводы для подачи исходной смеси газов в главный теплообменник и трубопровод для отбора из главного теплообменника полученного в нем продукта, причем трубопровод для подачи исходной смеси газов и трубопровод для отбора полученного продукта проходят, по существу, параллельно главной оси установки по разные стороны от главного теплообменника. С дальним от главного теплообменника концом отводящего трубопровода для отбора полученного продукта соединен отводящий трубопровод, который проходит, по существу, перпендикулярно главной оси установки. Отводящий трубопровод может проходить по эстакаде или по земле и может быть соединен с трубопроводом для отбора продуктов, полученных в других установках криогенного разделения смеси газов, или отводящий трубопровод соединен с емкостью для хранения полученного продукта. Главный теплообменник предпочтительно выполнен как рекуперативный теплообменник.
Как отмечено выше, трубопровод для подачи исходной смеси газов в главный теплообменник и трубопровод для отбора полученного продукта из главного теплообменника проходят, по существу, параллельно главной оси установки по разные стороны от главного теплообменника.
Под главной осью установки подразумевается воображаемая прямая горизонтальная линия, которая обычно физически не проходит через основные компоненты установки или любое другое имеющееся на ней оборудование.
Упомянутые выше два трубопровода считаются по существу параллельными, если угол между ними составляет меньше 20°, предпочтительно меньше 10°, наиболее предпочтительно меньше 5°.
Преимуществом варианта выполнения установки по п.7 формулы изобретения является возможность размещения устройств для отбора продуктов, например одного или нескольких соединенных с соответствующими трубопроводами отводящих трубопроводов, вдоль одной из сторон главного теплообменника, а устройств, предназначенных для предварительного подогрева исходной смеси, вдоль его другой стороны. Такая компоновка предлагаемой в изобретении установки позволяет, как очевидно, существенно сократить длину трубопроводов.
Расположение трубопроводов для подачи исходной смеси газов и отбора полученных продуктов по разные стороны от главного теплообменника позволяет, в частности, существенно уменьшить затраты, связанные с необходимостью соединения между собой отдельных компонентов установки. При этом, в частности, существенно уменьшается длина соответствующих трубопроводов и размеры необходимых для их монтажа металлоконструкций (эстакад). В конечном итоге благодаря этому удается существенно снизить капитальные затраты, особенно при создании крупных установок для разделения больших объемов газа производительностью порядка 50000 м3/ч (при стандартных температуре и давлении) или более и, в частности, установок производительностью порядка 300000 м3/ч (при стандартных температуре и давлении) или более.
Преимуществом предлагаемой в изобретении установки является также возможность двустороннего доступа к ее компонентам при проведении различных монтажных и ремонтных работ. Такая возможность позволяет существенно снизить все затраты, связанные с эксплуатацией и ремонтом установки.
Предлагаемая в одном из предпочтительных вариантов осуществления изобретения установка имеет соединенный с удаленным от главного теплообменника концом отводящего трубопровода трубопровод для сбора отбираемых из теплообменника продуктов, который проходит, по существу, перпендикулярно главной оси установки.
Под, по существу, перпендикулярным направлением в данном контексте подразумевается направление прямой линии, расположенной к главной оси установки под углом от 70 до 110°, предпочтительно от 80 до 100°, наиболее предпочтительно от 85 до 95°.
При создании многоступенчатых установок один или несколько трубопроводов для отбора полученных в главном теплообменнике продуктов соединяют с соответствующими одно- или многоступенчатыми блоками установки и/или с резервуаром и/или с оборудованием для аварийной подпитки.
Трубопровод(-ы) для отбора полученных в главном теплообменнике продуктов может(-гут) быть расположен(-ы) на эстакаде или на земле. В последнем случае трубопровод устанавливают на специальных подпорках.
Трубопровод(-ы) для отбора полученных в главном теплообменнике продуктов предпочтительно соединять с трубопроводом для подачи продуктов в одну или несколько других установок для криогенного разделения смеси газов.
Альтернативно этому или в дополнение к этому трубопровод(-ы) для отбора полученных продуктов из главного теплообменника можно соединить с емкостью для хранения полученного в теплообменнике продукта.
В предлагаемой в изобретении установке в качестве главного теплообменника предпочтительно использовать рекуперативный, т.е. нереверсивный теплообменник.
В других предпочтительных вариантах выполнения предлагаемой в изобретении установки она содержит контур охлаждения, предназначенный для подачи охлаждающего средства в охладитель с непосредственным охлаждением и имеющий испарительный охладитель, в котором подаваемое в охладитель с непосредственным охлаждением охлаждающее средство охлаждается отбираемым из низкотемпературной секции газом, причем отношение расстояния между испарительным охладителем и охладителем с непосредственным охлаждением к расстоянию между испарительным охладителем и главным теплообменником составляет по меньшей мере 0,5, предпочтительно по меньшей мере 1,0. Отношение расстояния между испарительным охладителем и охладителем с непосредственным охлаждением к расстоянию между испарительным охладителем и главным теплообменником составляет по меньшей мере 2, предпочтительно по меньшей мере 4. Расстояние между испарительным охладителем и главным теплообменником не превышает 20 м, предпочтительно 10 м. Расстояние между испарительным охладителем и охладителем с непосредственным охлаждением составляет по меньшей мере 10 м, предпочтительно по меньшей мере 25 м.
В предлагаемой в изобретении установке испарительный охладитель расположен сравнительно близко от главного теплообменника. При этом некоторое увеличение расходов, связанных со стоимостью трубопровода испарительного охладителя, вполне компенсируется уменьшением длины трубопровода для отбора газа из низкотемпературной секции установки. В целом же такая схема позволяет заметно уменьшить общие расходы на создание установки. Достигается это, в частности, за счет снижения стоимости самих трубопроводов и необходимых для их прокладки металлоконструкций. Сказанное относится в первую очередь к установкам с очень большим поперечным сечением (порядка 1-2 м) трубопроводов для подачи газа в испарительный охладитель.
Ниже изобретение более подробно рассмотрено на примере одного из вариантов возможного выполнения предлагаемой в нем установки, схема которой показана на прилагаемом чертеже и которая в данном случае представляет собой криогенную воздухоразделительную установку.
Всасываемый из атмосферы воздух (исходную смесь газов) пропускают через входной фильтр 1 и по трубопроводам 51, 52, 53 и 54 подают в соответствующие компоненты установки. Профильтрованный воздух сначала по трубопроводу 51 сжимают в главном компрессоре, который в данном случае выполняет функцию компрессора исходной смеси газов. Сжатый в компрессоре воздух по трубопроводу 52 попадает в охладитель 3 с непосредственным охлаждением, в котором он охлаждается в результате прямого теплообмена с охлаждающей водой, которую подают в охладитель по трубопроводу 61. Охлажденный воздух по трубопроводу 53 попадает в очиститель 4, состоящий из двух адсорберов 5, 6 с молекулярными ситами. Очищенный воздух по трубопроводу 54 затем подают в низкотемпературную секцию 7 установки.
Низкотемпературная секция имеет один, поддерживающий внутри низкую температуру (теплоизолированный) кожух, в котором расположено все криогенное оборудование низкотемпературной секции и, в частности, теплообменник(-и) и перегонная(-ые) колонна(-ы), либо в другом варианте имеет несколько отдельных теплоизолированных кожухов. В показанном на чертеже варианте низкотемпературная секция имеет два отдельных теплоизолированных кожуха. Ректификационный блок 9 имеет кожух цилиндрической формы и состоит из перегонных колонн 9а, в данном случае из аппарата двукратной ректификации, состоящего из колонны высокого и колонны низкого давления и расположенного между ними главного конденсатора. Главный теплообменник 8а низкотемпературной секции и другие ее компоненты расположены в теплообменном блоке 8 с кожухом, имеющим форму прямоугольного параллелепипеда. Теплоизолированные кожухи обоих указанных блоков 8, 9 теплоизолируют расположенные в них компоненты от воздействия окружающего тепла. Низкотемпературная секция имеет также переходный участок 10. В показанном на чертеже варианте переходный участок 10 низкотемпературной секции находится внутри теплоизолированного кожуха, что, однако, не исключает возможности использования для теплоизоляции всех трубопроводов и арматуры переходного участка 10 отдельного, сравнительно небольшого по размерам теплоизолированного кожуха.
Главный теплообменник низкотемпературной секции работает как исключительно рекуперативный, т.е. нереверсивный теплообменник. Такой теплообменник можно выполнить, например, в виде одного или нескольких соединенных друг с другом блоков. Каждый из блоков главного теплообменника предпочтительно выполнить в виде изготовленного из алюминия пластинчатого теплообменника. В кожухе главного теплообменника можно при необходимости смонтировать и другие теплообменники, например один или несколько переохлаждающих противоточных теплообменников, которые также можно выполнить в виде одного или нескольких блоков и смонтировать в кожухе ректификационного блока. Кожух ректификационного блока может иметь не только форму цилиндра, как в показанном на чертеже варианте, но и, например, форму прямоугольного параллелепипеда.
Главный воздушный компрессор 2 соединен первым валом 11 с соответствующим приводом, в качестве которого можно использовать электрический двигатель 12 или газовую либо паровую турбину. В варианте, показанном на чертеже, предлагаемая в изобретении криогенная воздухоразделительная установка имеет дополнительный компрессор 14, предназначенный для сжатия очищенного воздуха 54. Очищенный воздух подают на вход в дополнительный компрессор 14 через вспомогательный (бустерный) воздушный трубопровод 62, который соединен с трубопроводом 54. Сжатый в дополнительном компрессоре 14 очищенный воздух по (не показанному на чертеже) трубопроводу подают в низкотемпературную секцию 7, в частности, в кожух ее теплообменного блока 8, содержащего главный теплообменник. В показанном на чертеже варианте дополнительный компрессор 14 соединен с приводом 12 главного компрессора валом 13. В принципе дополнительный компрессор может иметь свой собственный привод, например, в виде отдельной газовой или паровой турбины, либо отдельного электрического двигателя.
Полученные продукты отбирают из низкотемпературной секции 7 по соединенным с отводящими трубопроводами 107 и 108 трубопроводам 105, 106, которые показаны на чертеже только в качестве примера. Отводящие трубопроводы 107, 108 проходят по эстакаде 109 и либо используются для соединения отдельных блоков многоступенчатой установки либо соединяются с соответствующими емкостями для хранения полученных продуктов или с оборудованием для аварийной подпитки.
Испарительный охладитель 15 предназначен для предварительного охлаждения воды до ее подачи в охладитель 3 с непосредственным охлаждением. В испарительном охладителе остающийся в низкотемпературной секции азот в результате прямого теплообмена и массообмена охлаждает подаваемую затем в охладитель с непосредственным охлаждением воду. Предварительно охлажденную воду подают в охладитель с непосредственным охлаждением по трубопроводу 61. Нагретая в охладителе с непосредственным охлаждением вода напрямую или в обход возвращается в испарительный охладитель. Влажный водород из испарительного охладителя сбрасывают непосредственно в атмосферу.
Предлагаемая в изобретении установка имеет также схематично показанные на чертеже технологические трубопроводы 63. Эти технологические трубопроводы предназначены для подачи водяного пара, газа и/или охлаждающей воды и отбора конденсата, охлаждающей воды и т.д. Технологические трубопроводы соединяют с соответствующими (не показанными на чертеже) отводящими трубопроводами, которые можно проложить по упомянутой выше эстакаде 109. Технологические и вспомогательные (бустерные) воздушные трубопроводы 63, 62 можно проложить по земле (на подставках) или по одной или нескольким эстакадам.
В рассматриваемой в качестве примера установке основания охладителя 3 с непосредственным охлаждением, очистителя 4 и низкотемпературной секции 7 имеют форму окружности или прямоугольника, или несколько более сложную форму. Основания всех этих трех компонентов установки расположены на одной линии, в частности, на ее главной оси 101. Линия 101 проходит также через основание главного воздушного компрессора 2. Такая компоновка существенно уменьшает длину трубопроводов 52, 53 и 54, предназначенных для подачи газа в соответствующие компоненты установки. Одновременно существенно снижается и длина расположенных по другую сторону от входа трубопровода 54 трубопроводов 105, 106, предназначенных для отбора из низкотемпературной секции полученных в ней продуктов. Возможность существенного снижения длины этих трубопроводов позволяет отказаться от сооружения для их прокладки отдельной эстакады.
У прямоугольника 102, внутри которого расположены основания охладителя 3 с непосредственным охлаждением, очистителя 4 и низкотемпературной секции 7, длина вертикальной (в плоскости чертежа) стороны в 1,7 раза превышает длину перпендикулярной ей (горизонтальной) стороны. У прямоугольника 103, внутри которого расположены также основания главного воздушного компрессора и соединенного с ним оборудования, это соотношение составляет около 1,8. Преимущества такой компоновки, позволяющей существенно снизить длину эстакады 109 и соединительных трубопроводов 107, 108 для отбора полученных продуктов и технологических магистралей, наиболее существенно проявляются при создании многоступенчатых установок. Размеры показанных на чертеже прямоугольников по масштабу не соответствуют указанным выше соотношениям.
Функционально связанные между собой охладитель 3 с непосредственным охлаждением и испарительный охладитель 15 обычно выполняют в виде одного или двух очень близко расположенных друг от друга блоков. Однако в показанном на чертеже варианте испарительный охладитель 15 расположен ближе к низкотемпературной секции, чем к охладителю 3 с непосредственным охлаждением. Расстояние 104 между испарительным охладителем 15 и главным теплообменником 8а составляет приблизительно одну пятую от расстояния между охладителем 3 с непосредственным охлаждением и низкотемпературной секцией 7. Поэтому трубопровод (не показан на чертеже), по которому оставшийся азот подают из главного теплообменника в испарительный охладитель, можно выполнить сравнительно коротким и поэтому с учетом его очень большого поперечного сечения сравнительно дешевым. Связанное с этим увеличение длины трубопровода для охлаждающей воды, который имеет существенно меньшее поперечное сечение, незначительно сказывается на общей стоимости установки.
Обычно блоки для криогенного разделения воздуха имеют один или несколько детандеров, которые вырабатывают холод за счет механической энергии расширения одного или нескольких потоков газа и, как правило, выполняются в виде турбин. Показанная на чертеже в качестве предпочтительного примера установка имеет турбину, в которой происходит расширение части исходного воздуха либо конечного, или промежуточного продукта криогенного разделения воздуха. Такая турбина (турбодетандер) 10 расположена в корпусе 16 переходного участка 10 между кожухом теплообменного блока 8 и кожухом ректификационного блока 9.

Claims (16)

1. Установка для получения конечного продукта путем криогенного разделения смеси газов, в частности воздуха, содержащая охладитель (3) с непосредственным охлаждением для охлаждения исходной смеси газов, очиститель (4) для очистки охлажденной исходной смеси газов и низкотемпературную секцию (7) с главным теплообменником (8а) для охлаждения очищенной исходной смеси газов приблизительно до температуры конденсации и перегонной колонной (9а) для криогенного разделения исходной смеси газов, отличающаяся тем, что охладитель (3) с непосредственным охлаждением, очиститель (4) и низкотемпературная секция (7) расположены на одной линии (101).
2. Установка по п.1, отличающаяся тем, что перед охладителем (3) с непосредственным охлаждением установлен предназначенный для сжатия исходной смеси газов компрессор (2), который расположен на одной линии (101) с охладителем (3) с непосредственным охлаждением, очистителем (4) и низкотемпературной секцией (7).
3. Установка по п.1 или 2, отличающаяся тем, что перед охладителем (3) с непосредственным охлаждением установлен компрессор (2) для сжатия исходной смеси газов, приводной вал (11) которого вращается вокруг оси, по существу перпендикулярной линии (101), на которой расположены охладитель (3) с непосредственным охлаждением, очиститель (4) и низкотемпературная секция (7).
4. Установка по п.1, отличающаяся тем, что перед охладителем (3) с непосредственным охлаждением установлен компрессор (2) для сжатия исходной смеси газов, приводной вал которого вращается вокруг оси, по существу параллельной линии (101), на которой расположены охладитель (3) с непосредственным охлаждением, очиститель (4) и низкотемпературная секция (7).
5. Установка по любому из пп.1, 2 или 4, отличающаяся тем, что отношение параллельной соединяющей охладитель (3) с непосредственным охлаждением и низкотемпературную секцию (7) прямой линии (101) стороны наименьшего по площади прямоугольника (102, 103), в пределах которого расположены основания охладителя (3) с непосредственным охлаждением, очистителя (4), низкотемпературной секции (7) и возможно компрессора (2), предназначенного для сжатия исходной смеси газов, к стороне, перпендикулярной первому направлению, больше 1 и, в частности, больше 1,8.
6. Установка по п.1, отличающаяся тем, что низкотемпературная секция (7) состоит из теплообменного блока (8), в состав которого входит по меньшей мере один главный теплообменник, ректификационного блока (9), в состав которого входит по меньшей мере одна перегонная колонна, переходного участка (10), расположенного между теплообменным блоком (8) и ректификационным блоком (9), и соединенного с переходным участком (10) корпуса (16) турбины, в котором расположена турбина.
7. Установка по п.1, отличающаяся тем, что она имеет трубопроводы (51, 52, 53, 54) для подачи исходной смеси газов в главный теплообменник и трубопровод (105, 106) для отбора из главного теплообменника полученного в нем продукта, причем трубопровод (54) для подачи исходной смеси газов и трубопровод (104, 105) для отбора полученного продукта проходят по существу параллельно главной оси (101) установки по разные стороны от главного теплообменника.
8. Установка по п.7, отличающаяся тем, что с дальним от главного теплообменника концом отводящего трубопровода (104, 105) для отбора полученного продукта соединен отводящий трубопровод (107, 108), который проходит по существу перпендикулярно главной оси (101) установки.
9. Установка по п.8, отличающаяся тем, что отводящий трубопровод (107, 108) проходит по эстакаде (109) или по земле.
10. Установка по п.8 или 9, отличающаяся тем, что отводящий трубопровод соединен с трубопроводом для отбора продуктов, полученных в других установках криогенного разделения смеси газов.
11. Установка по п.8 или 9, отличающаяся тем, что отводящий трубопровод соединен с емкостью для хранения полученного продукта.
12. Установка по любому из пп.7-9, отличающаяся тем, что главный теплообменник (8а) выполнен как рекуперативный теплообменник.
13. Установка по п.1, отличающаяся тем, что она содержит контур охлаждения, предназначенный для подачи охлаждающего средства в охладитель с непосредственным охлаждением и имеющий испарительный охладитель (15), в котором подаваемое в охладитель с непосредственным охлаждением охлаждающее средство охлаждается отбираемым из низкотемпературной секции газом, причем отношение расстояния между испарительным охладителем (15) и охладителем (3) с непосредственным охлаждением к расстоянию (104) между испарительным охладителем (15) и главным теплообменником (8а) составляет по меньшей мере 0,5, предпочтительно по меньшей мере 1,0.
14. Установка по п.13, отличающаяся тем, что отношение расстояния между испарительным охладителем (15) и охладителем (3) с непосредственным охлаждением к расстоянию (104) между испарительным охладителем (15) и главным теплообменником (8а) составляет по меньшей мере 2, предпочтительно по меньшей мере 4.
15. Установка по п.13 или 14, отличающаяся тем, что расстояние (104) между испарительным охладителем (15) и главным теплообменником (8а) не превышает 20 м, предпочтительно 10 м.
16. Установка по п.13 или 14, отличающаяся тем, что расстояние между испарительным охладителем и охладителем (3) с непосредственным охлаждением составляет по меньшей мере 10 м, предпочтительно по меньшей мере 25 м.
RU2005137481/06A 2004-12-03 2005-12-02 Установка для криогенного разделения смеси газов, в частности воздуха RU2382963C2 (ru)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP04028683A EP1666823A1 (de) 2004-12-03 2004-12-03 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
EP04028683.3 2004-12-03
EP04028681A EP1666822A1 (de) 2004-12-03 2004-12-03 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
EP04028682.5 2004-12-03
EP04028682 2004-12-03
EP04028681.7 2004-12-03

Publications (2)

Publication Number Publication Date
RU2005137481A RU2005137481A (ru) 2007-06-20
RU2382963C2 true RU2382963C2 (ru) 2010-02-27

Family

ID=36565984

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005137481/06A RU2382963C2 (ru) 2004-12-03 2005-12-02 Установка для криогенного разделения смеси газов, в частности воздуха

Country Status (6)

Country Link
US (1) US7516626B2 (ru)
EP (3) EP1666823A1 (ru)
CN (1) CN100575838C (ru)
CA (1) CA2528735C (ru)
PL (1) PL1672301T3 (ru)
RU (1) RU2382963C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557151C2 (ru) * 2010-07-09 2015-07-20 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Аппарат охлаждения и очистки воздуха для установки криогенной дистилляции воздуха
RU2591151C2 (ru) * 2011-12-16 2016-07-10 Эр Продактс Энд Кемикалз, Инк. Распределитель жидкости со смесителем
US9630123B2 (en) 2011-12-16 2017-04-25 Air Products And Chemicals, Inc. Liquid distributor with a mixer
RU2681901C2 (ru) * 2014-07-05 2019-03-13 Линде Акциенгезелльшафт Способ и устройство для низкотемпературного разделения воздуха

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007052136A1 (de) 2007-09-28 2009-04-02 Linde Aktiengesellschaft Verfahren zum Anfahren einer Tieftemperatur-Luftzerlegungsanlage und Tieftemperatur-Luftzerlegungsanlage
CN101981272B (zh) 2008-03-28 2014-06-11 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
CN101981162B (zh) 2008-03-28 2014-07-02 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
JP5580320B2 (ja) 2008-10-14 2014-08-27 エクソンモービル アップストリーム リサーチ カンパニー 燃焼生成物を制御するための方法およびシステム
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
WO2010141777A1 (en) 2009-06-05 2010-12-09 Exxonmobil Upstream Research Company Combustor systems and methods for using same
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
CN102597418A (zh) 2009-11-12 2012-07-18 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
JP5906555B2 (ja) 2010-07-02 2016-04-20 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式によるリッチエアの化学量論的燃焼
BR112012031153A2 (pt) 2010-07-02 2016-11-08 Exxonmobil Upstream Res Co sistemas e métodos de geração de energia de triplo-ciclo de baixa emissão
MY156099A (en) 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
JP5759543B2 (ja) 2010-07-02 2015-08-05 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼
US9732675B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Low emission power generation systems and methods
FR2962799B1 (fr) * 2010-07-13 2014-07-04 Air Liquide Ensemble de refroidissement et appareil de separation d'air par distillation cryogenique comprenant un tel ensemble de refroidissement
CA2805089C (en) 2010-08-06 2018-04-03 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
WO2012018458A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company System and method for exhaust gas extraction
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090B1 (de) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US9784182B2 (en) 2013-03-08 2017-10-10 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102013018664A1 (de) 2013-10-25 2015-04-30 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Tieftemperatur-Luftzerlegungsanlage
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
TR201808162T4 (tr) 2014-07-05 2018-07-23 Linde Ag Havanın düşük sıcaklıkta ayrıştırılması vasıtasıyla bir basınçlı gaz ürününün kazanılmasına yönelik yöntem ve cihaz.
EP2963369B1 (de) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP3040665A1 (de) 2014-12-30 2016-07-06 Linde Aktiengesellschaft Destillationssäulen-system und anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN105222524A (zh) * 2015-11-05 2016-01-06 天津市振津石油天然气工程有限公司 一种小型移动式天然气液化撬
FR3086549B1 (fr) * 2018-09-27 2022-05-13 Air Liquide Enceinte de colonne de distillation
CN109676367A (zh) * 2018-12-28 2019-04-26 乔治洛德方法研究和开发液化空气有限公司 一种热交换器组件及装配所述热交换器组件的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822774C2 (de) * 1978-05-24 1982-08-26 Linde Ag, 6200 Wiesbaden Verfahren und Anlagenteile zum Errichten einer Fabrikanlage
FR2695714B1 (fr) * 1992-09-16 1994-10-28 Maurice Grenier Installation de traitement cryogénique, notamment de distillation d'air.
FR2706025B1 (fr) * 1993-06-03 1995-07-28 Air Liquide Installation de distillation d'air.
JP3527609B2 (ja) * 1997-03-13 2004-05-17 株式会社神戸製鋼所 空気分離方法および装置
FR2780147B1 (fr) * 1999-06-29 2001-01-05 Air Liquide Installation de distillation d'air et boite froide correspondante
US6360815B1 (en) 1999-06-29 2002-03-26 Ecia Industrie Arrangement for mounting a fan motor on a heat exchanger and automobile vehicle front assembly provided with that arrangement
FR2799277B1 (fr) * 1999-10-01 2001-12-28 Air Liquide Echangeur de chaleur et installation de distillation d'air comprenant un tel echangeur de chaleur
FR2828729B1 (fr) * 2001-08-14 2003-10-31 Air Liquide Installation de production d'oxygene sous haute pression par distillation d'air
WO2004015347A2 (en) * 2002-08-08 2004-02-19 Pacific Consolidated Industries, L.P. Nitrogen generator
FR2844344B1 (fr) * 2002-09-11 2005-04-08 Air Liquide Installation de production de grandes quantites d'oxygene et/ou d'azote

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557151C2 (ru) * 2010-07-09 2015-07-20 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Аппарат охлаждения и очистки воздуха для установки криогенной дистилляции воздуха
RU2591151C2 (ru) * 2011-12-16 2016-07-10 Эр Продактс Энд Кемикалз, Инк. Распределитель жидкости со смесителем
US9630123B2 (en) 2011-12-16 2017-04-25 Air Products And Chemicals, Inc. Liquid distributor with a mixer
RU2681901C2 (ru) * 2014-07-05 2019-03-13 Линде Акциенгезелльшафт Способ и устройство для низкотемпературного разделения воздуха

Also Published As

Publication number Publication date
EP1666823A1 (de) 2006-06-07
CA2528735A1 (en) 2006-06-03
US7516626B2 (en) 2009-04-14
CN1782644A (zh) 2006-06-07
EP1666822A1 (de) 2006-06-07
EP1672301B1 (de) 2018-08-15
RU2005137481A (ru) 2007-06-20
US20060156759A1 (en) 2006-07-20
PL1672301T3 (pl) 2019-01-31
CA2528735C (en) 2013-08-06
CN100575838C (zh) 2009-12-30
EP1672301A1 (de) 2006-06-21

Similar Documents

Publication Publication Date Title
RU2382963C2 (ru) Установка для криогенного разделения смеси газов, в частности воздуха
RU2121637C1 (ru) Способ и установка для охлаждения текучей среды, в частности, при сжижении природного газа
RU2304746C2 (ru) Способ и установка для сжижения природного газа
KR100636562B1 (ko) 천연 가스를 액화시키기 위한 플랜트
US7540171B2 (en) Cryogenic liquefying/refrigerating method and system
RU2541360C1 (ru) Способ производства сжиженного природного газа и комплекс для его реализации
RU2241181C2 (ru) Способ ожижения газообразного вещества (варианты) и устройство для его осуществления (варианты)
CN103270381A (zh) 集成液体存储器
AU723530B2 (en) Improved cooling process and installation, in particular for the liquefaction of natural gas
RU2531719C2 (ru) Способ и устройство для производства сжатого продукта
RU2360194C2 (ru) Способ разделения воздуха посредством низкотемпературной перегонки и установка для его осуществления
US20160003528A1 (en) Station for reducing gas pressure and liquefying gas
US7497092B2 (en) Integrated air compression, cooling, and purification unit and process
JP2005083588A (ja) ヘリウムガス液化装置およびヘリウムガス回収・精製・液化装置
CN104185767A (zh) 用于产生两股净化的部分空气流的方法和设备
CN108645116A (zh) 一种带盘管蓄冷器的液化空气储能系统
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
RU2137067C1 (ru) Установка ожижения природного газа
CN108072235B (zh) 空分系统
HU220322B (hu) Eljárás és berendezés termékek hűtésére cseppfolyósított gáz felhasználásával
PL189870B1 (pl) Sposób i urządzenie do rozdzielania powietrza techniką destylacji kriogenicznej
RU2804469C1 (ru) Способ сжижения водорода и установка для его осуществления
JP7313466B2 (ja) 天然ガス液化装置
RU2699872C1 (ru) Установка по производству сжиженного природного газа
CN109057899B (zh) 气体压缩冷凝液化和低温工质发电装置及发电系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201203