EP1668221B1 - Verfahren und vorrichtung zum bohren von löchern in boden- oder gesteinsmaterial - Google Patents

Verfahren und vorrichtung zum bohren von löchern in boden- oder gesteinsmaterial Download PDF

Info

Publication number
EP1668221B1
EP1668221B1 EP04761047A EP04761047A EP1668221B1 EP 1668221 B1 EP1668221 B1 EP 1668221B1 EP 04761047 A EP04761047 A EP 04761047A EP 04761047 A EP04761047 A EP 04761047A EP 1668221 B1 EP1668221 B1 EP 1668221B1
Authority
EP
European Patent Office
Prior art keywords
drill bit
tube
jacket tube
drill
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04761047A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1668221A1 (de
Inventor
Josef Mocivnik
Renè EGGER-MOCIVNIK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alwag Tunnelausbau GmbH
Original Assignee
Alwag Tunnelausbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alwag Tunnelausbau GmbH filed Critical Alwag Tunnelausbau GmbH
Priority to PL04761047T priority Critical patent/PL1668221T3/pl
Priority to SI200430408T priority patent/SI1668221T1/sl
Publication of EP1668221A1 publication Critical patent/EP1668221A1/de
Application granted granted Critical
Publication of EP1668221B1 publication Critical patent/EP1668221B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • E21B7/201Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes with helical conveying means

Definitions

  • the present invention relates to a method of drilling, in particular impact or rotary impact drilling, of holes in soil or rock material, wherein a drill hole is formed by a drill bit mounted on a drill string by a striking and / or rotating movement and one with the drill bit Coupled cladding tube is introduced into the wellbore, as well as to a device for drilling, in particular impact or rotary impact drilling, holes in soil or rock material, wherein a drill bit mounted on a drill bit by a striking and / or rotating movement forms a borehole and with a the drill bit coupled cladding tube is introduced into the wellbore.
  • a borehole is a prerequisite that the cladding tube is designed to be thin or light, so as not to excessive stress or to give strain when introducing the cladding tube into the interior of the borehole.
  • embodiments are known in which the entire drilling work or the entire Bohrvortrieb is transferred by a shock stress on a correspondingly solid trained casing tube on the drill bit.
  • the present invention aims, starting from a method and a device of the type mentioned, to provide a method and an apparatus for drilling holes in soil or rock material, wherein in a simple embodiment not only an accurate and targeted drilling is made possible over long lengths, but which also advantages of a thin-walled cladding tube can be used.
  • a method of the type initially mentioned is characterized essentially in that the cladding tube is received in a receptacle on the end facing away from the excavation surface of the drill bit end of a tubular coupled to the drill bit, and that the cladding tube facing away from the drill bit End of a shock or compressive stress is subjected.
  • the cladding tube is received in a receptacle of a jacket tube coupled to the drill bit and the cladding tube is subjected to a separate impact or compressive stress at the end facing away from the drill bit, it is made possible that a jacket tube coupled to the drill bit, which a has comparatively short length, is introduced during drilling, so that over the casing pipe a targeted and accurate drilling is ensured.
  • the cladding tube is introduced separately by a shock or compressive stress in the interior of the wellbore, so that not exerted by the drill bit or a, for example, in the field of drill bit arranged beater a correspondingly high energy to the entire, to be introduced into the borehole casing must become.
  • the subsequent cladding tube which usually has a lower strength, can be introduced into the interior of the borehole correspondingly simply and without excessive frictional resistance even by providing a correspondingly lower impact or compressive stress can.
  • the force acting on the end facing away from the drill bit compressive stress on the cladding tube is chosen to be less than a force exerted by the drill bit on the casing pipe tensile stress.
  • the fact that the compressive stress on the cladding tube is chosen to be less than the tensile stress exerted on the jacket tube ensures that the cladding tube, which is advantageously accommodated only with a simple plug connection in the receptacle of the jacket tube, is not introduced into the borehole to a greater extent. as this is the case for the drill bit and the jacket tube coupled thereto, so that no compression stresses are exerted on the cladding tube.
  • the drill bit is rotatably supported relative to the jacket tube and / or jacket tube ,
  • mined material via at least one opening in the region of the junction between the drill bit and the casing pipe and / or a distance from the junction between the drill bit and jacket tube provided passage opening is introduced into the defined between the outer periphery of the drill string and the inner circumference of the casing tube and the adjoining casing and annulus is discharged from the wellbore.
  • a device of the type mentioned is essentially characterized in that the cladding tube is received in a receptacle on the side facing away from the excavation surface of the drill bit end of a coupled with the drill casing casing, and that a shock or compressive stress is exerted on the end facing away from the drill bit end of the cladding tube.
  • a sleeve-like intermediate element for transmitting a force exerted by the drill string on the casing tensile stress for coupling the jacket tube to the drill bit.
  • Such a sleeve-like intermediate element can be produced in a simple manner and provides a proper and reliable power transmission between the drill pipe, which is coupled directly to the drill bit for performing the drilling work, and the jacket tube.
  • a sleeve-like intermediate element is provided for transmitting a pressure exerted by the drill string on the cladding tube compressive stress.
  • a stop face of the sleeve-shaped intermediate elements between the drill string and the casing tube and between the drill string and the end of the cladding tube facing away from the drill bit is formed in each case by an abutment surface enclosing an acute angle with the longitudinal axis of the drill string and the casing tube and the cladding tube, which with corresponding, complementary abutment surfaces of the drill string or an adapter coupled thereto.
  • abutment surfaces can be provided correspondingly inexpensively and precisely for a proper and reliable power transmission or insertion both in the jacket tube and in the cladding tube.
  • the abutment surface of the intermediate element between the drill string and the jacket tube is larger than the abutment surface of the intermediate element between the drill string and the end of the cladding tube facing away from the drill bit, thereby ensuring that, as already stated above, the tensile stress transferred to the jacket tube is greater than the impact stress applied to the jacket tube.
  • the drill bit is rotatably mounted relative to the jacket tube and / or cladding tube, so that is reliably prevented that in addition to the required rotational movement of the drill bit a rectilinear Both the jacket tube and the cladding tube are introduced into the interior of the borehole.
  • the outer diameter of the casing tube can be matched exactly to the dimensions of the borehole to be produced, wherein the casing tube has a correspondingly short length, so that frictional forces can be reliably overcome by a precisely fitting contact of the casing tube to the borehole inside wall, while the subsequent casing tube can be introduced easily and without large frictional resistance in the interior of the well corresponding reduced diameter.
  • the jacket tube has a cross section which is reinforced with respect to the cladding tube and / or increased strength. Characterized in that the jacket tube has a reinforced cross-section and / or increased strength, it is ensured that deviations from the desired drilling direction are prevented by the strength or rigidity of the jacket tube.
  • sleeve-like elements are provided for connecting mutually adjacent cladding tube elements, which overlap each adjoining end portions of Hüllrohremia and trained with projections or surveys or be formed which engage in complementary recesses or recesses on the circumference of the Hüllrohremia.
  • projections or elevations which engage in complementary depressions or recesses, can not only be produced simply and cost-effectively, but also enable a normally reliable drilling or reliable connection or coupling when extending sheath tube sections as a simple connection compared to conventional screw connections.
  • depressions or recesses and projections or elevations are not as easily exposed to damage, as is the case with known screw connections for extending cladding tube elements.
  • the sleeve-like elements are formed in the region of the projections or elevations with reduced material cross-section and that the projections or projections after arranging the sleeve-like elements on the outer circumference to be joined together Hüllrohr electrode can be formed according to the wells of the Hüllrohremia.
  • sleeve-like elements for connecting adjacent cladding elements is in accordance with a further preferred embodiment proposed that additional securing elements, such as bolt-shaped pins or pins, are provided for positioning and / or fixing of the sleeve-like elements, whereby connection positions can be maintained according to secure.
  • additional securing elements such as bolt-shaped pins or pins
  • the drill bit or an adapter connected thereto its rear side facing away from the excavation surface is provided with a polygonal profiling which, when withdrawn relative to the casing tube, enters into a complementary, polygonal receiving opening of the adapter or intermediate element for coupling to the casing tube.
  • FIGS. 1 and 2 it can be seen that a generally designated 1 device for drilling or rotary impact drilling has a schematically indicated with 2 drill bit, which via a drill pipe 3 to a percussion or rotary impact drilling for the reduction of in Figs. 1 and 2 is formed unspecified material.
  • To the drill bit 2 includes a jacket tube 4 with comparatively thick cross-section or high strength, wherein at the end remote from the drill bit 2 end of the jacket tube 4 has a receptacle 5, in which a cladding tube 6 is added, wherein the cladding tube 6 not only one across from the diameter D of the jacket tube 4 has reduced diameter d, but also has a smaller wall thickness and lower strength.
  • the drill bit 2 is directly coupled to the drill pipe 3 via an adapter 7 shown in detail in FIG. 3, wherein via this adapter 7 also a entrainment, in particular a tensile stress of the casing tube 4 takes place via an intermediate element 8 shown in detail in FIG. 5b.
  • the jacket tube 4 has a comparatively large length and in addition to a corresponding strength also has a diameter D which largely corresponds to the formed by the drill bit 2 dimensions of the borehole, which is not shown in detail, is through the jacket tube 4th ensures that accurate drilling is feasible.
  • the cladding tube 6 accommodated in the receptacle 5 at the end of the jacket tube 4 facing away from the drill bit 2 is likewise subjected to pressure by the drill string 3 via a further intermediate element 10, which is shown in greater detail in FIGS. 4 and 5a, so that the Cladding tube 6 is also introduced according to the arrow 11 in a propulsion of the drill bit 2 in the borehole.
  • through-pass channels 15 and outlet openings 16 for flushing the drill bit 2 and / or entrainment of degraded material are additionally indicated in the adapter 7, as will be discussed in more detail below.
  • the intermediate element 10 For impact or pressurization of the cladding tube 6, the intermediate element 10 is provided, which is shown in Fig. 4 and 5a in detail.
  • the abutment surfaces of both the adapter 7 and the drill string 3 and the abutment surfaces 13 and 18 of the sleeve-shaped intermediate elements 8 and 10 are each to the longitudinal axis of the drill string, which is indicated at 19 in FIG , inclined.
  • a sleeve-like element 21 is provided in each case, wherein the interior of the sheath 6 protruding projections or projections 22 are indicated, which in corresponding recesses or recesses 23 of the cladding tube for a secure connection of adjacent Hüllrohrmaschinen 6 'and 6 "engage.
  • the projections or elevations 22 may already be formed in advance, so that the sleeve element 21 must have a corresponding elasticity when connecting adjacent Hüllrohremia 6 'and 6 ", or they can after arranging the sleeve-like element 21 in the region to be connected to each other Hüllrohremia. 6 'and 6 "are formed by a simple tool in the range of predetermined breaking points.
  • the adapter 7 is polygonal in the region of the connection to the drill bit 2, in particular substantially triangular with rounded corners, so that in FIG This part also material entry into the ring or space between the drill pipe 3 and the adapter 7 and the jacket tube 4 can be done.
  • the polygonal formation 32, 33 of the protruding from the casing pipe portion 4 of the adapter 7 and the intermediate element 8 ensures that behind the drill bit 2 befindliches mined material is largely crushed, so that a safe removal is possible.
  • a guide 28 is formed at the foremost portion of the drill pipe 3, which of a thread-like profiling or a screw conveyor is formed.
  • the screw conveyor or guide device 28 is also already schematically indicated in FIGS. 1 and 2.
  • targeted and accurate drilling can thus be improved by targeted removal of the degraded material, the drilling speed and increase the directional accuracy.
  • the drill bit 2 can be withdrawn in abutment with the jacket tube 4 according to the arrow 29, whereby a displacement of the guide or screw conveyor 28 takes place relative to the passage openings 24 , so that a cleaning effect of the passage openings 24 can be achieved by the entrainment effect.
  • a rotational movement of the drill string 2 against the actual degradation direction ie, for example, in the clockwise direction in the illustration shown in FIGS. 9 and 10
  • a cleaning of the passage openings 24 be effected by the reverse conveying direction of the screw conveyor 28.
  • the drill bit 2 is again acted upon in the direction of the arrow 30 in FIG. 9 to continue the degradation process.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
EP04761047A 2003-10-01 2004-09-28 Verfahren und vorrichtung zum bohren von löchern in boden- oder gesteinsmaterial Expired - Lifetime EP1668221B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL04761047T PL1668221T3 (pl) 2003-10-01 2004-09-28 Sposób i urządzenie do wiercenia otworów w materiale gruntowym lub skalnym
SI200430408T SI1668221T1 (sl) 2003-10-01 2004-09-28 Postopek in naprava za vrtanje luknjic v zemljo ali skalo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0155903A AT413231B (de) 2003-10-01 2003-10-01 Verfahren und vorrichtung zum bohren von löchern in boden- oder gesteinsmaterial
PCT/AT2004/000325 WO2005031108A1 (de) 2003-10-01 2004-09-28 Verfahren und vorrichtung zum bohren von löchern in boden- oder gesteinsmaterial

Publications (2)

Publication Number Publication Date
EP1668221A1 EP1668221A1 (de) 2006-06-14
EP1668221B1 true EP1668221B1 (de) 2007-05-30

Family

ID=34382394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04761047A Expired - Lifetime EP1668221B1 (de) 2003-10-01 2004-09-28 Verfahren und vorrichtung zum bohren von löchern in boden- oder gesteinsmaterial

Country Status (16)

Country Link
US (1) US7195081B2 (es)
EP (1) EP1668221B1 (es)
JP (1) JP2007507626A (es)
KR (1) KR20060093110A (es)
CN (1) CN1863980A (es)
AT (2) AT413231B (es)
AU (1) AU2004276366B2 (es)
CA (1) CA2540569A1 (es)
DE (1) DE502004003985D1 (es)
DK (1) DK1668221T3 (es)
ES (1) ES2286654T3 (es)
HR (1) HRP20060140A2 (es)
PL (1) PL1668221T3 (es)
PT (1) PT1668221E (es)
WO (1) WO2005031108A1 (es)
ZA (1) ZA200602574B (es)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504561B1 (de) * 2006-11-29 2009-05-15 Techmo Entw & Vertriebs Gmbh Vorrichtung zum bohren in gesteinsmaterial
AT504560B1 (de) * 2006-11-29 2009-06-15 Techmo Entw & Vertriebs Gmbh Vorrichtung zum schlag- bzw. drehschlagbohren in gesteinsmaterial
US8196669B2 (en) * 2007-11-21 2012-06-12 Shell Oil Company Method of drilling a wellbore
US7900716B2 (en) * 2008-01-04 2011-03-08 Longyear Tm, Inc. Vibratory unit for drilling systems
US20100303568A1 (en) * 2009-06-01 2010-12-02 Colleen York Drill bit system, assembly, and method for forming holes in materials
CN107386980B (zh) * 2017-07-18 2023-09-26 中国石油天然气集团公司 辅助套管下入的装置
CN113445502A (zh) * 2021-08-05 2021-09-28 中铁七局集团第五工程有限公司 在超厚且富含石块、砖块杂填土层的钢护筒安装施工方法
CN118361187A (zh) * 2024-03-29 2024-07-19 中铁大桥局集团第二工程有限公司 一种深水岩溶区大直径桩基的快速施工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1079836A (en) * 1912-12-19 1913-11-25 Roger H Canfield Apparatus for boring wells.
GB963670A (en) * 1962-03-01 1964-07-15 Skanska Cementgjuteriet Ab Improvements in or relating to deep drills
SE8002589L (sv) * 1980-04-03 1981-10-04 Atlas Copco Ab Borrstal samt borrmaskin for anvendning med ett sadant borrstal
EP0358786A1 (de) * 1988-09-13 1990-03-21 Ing. G. Klemm Bohrtechnik GmbH Überlagerungsbohrvorrichtung
US5472057A (en) * 1994-04-11 1995-12-05 Atlantic Richfield Company Drilling with casing and retrievable bit-motor assembly
EP0768446B1 (de) * 1995-10-09 2000-07-12 Baker Hughes Incorporated Verfahren und Bohrgerät zum Abteufen von Bohrungen in unterirdische Formationen
US6106200A (en) * 1996-11-12 2000-08-22 Techmo Entwicklungs-Und Vertriebs Gmbh Process and device for simultaneously drilling and lining a hole
JP3348650B2 (ja) * 1998-06-18 2002-11-20 三菱マテリアル株式会社 掘削工具
JP2000337079A (ja) * 1999-05-31 2000-12-05 Drill Machine Kk 二重管方式削孔工法及びその装置並びに埋設管押し込みアダプタ
FI20010699A0 (fi) * 2001-04-04 2001-04-04 Jorma Jaervelae Menetelmä poraukseen ja porauslaitteisto

Also Published As

Publication number Publication date
AU2004276366B2 (en) 2009-02-26
PT1668221E (pt) 2007-07-31
US7195081B2 (en) 2007-03-27
WO2005031108A1 (de) 2005-04-07
EP1668221A1 (de) 2006-06-14
ATA15592003A (de) 2005-05-15
CA2540569A1 (en) 2005-04-07
ZA200602574B (en) 2007-06-27
AU2004276366A1 (en) 2005-04-07
DK1668221T3 (da) 2007-09-24
PL1668221T3 (pl) 2007-10-31
ES2286654T3 (es) 2007-12-01
JP2007507626A (ja) 2007-03-29
AT413231B (de) 2005-12-15
US20060175093A1 (en) 2006-08-10
DE502004003985D1 (de) 2007-07-12
HRP20060140A2 (en) 2006-05-31
KR20060093110A (ko) 2006-08-23
CN1863980A (zh) 2006-11-15
ATE363580T1 (de) 2007-06-15

Similar Documents

Publication Publication Date Title
DE3942438A1 (de) Vorrichtung zum bohren einer neben- oder ablenkbohrung eines insbesondere verrohrten bohrlochs
EP0948701B1 (de) Verfahren und einrichtung zum gleichzeitigen bohren und auskleiden von löchern
DE2107112A1 (de) Impulsformendes Element fur Schlag werkzeuge
EP1730382A1 (de) Verfahren und vorrichtung zum bohren von löchern in boden-oder gesteinsmaterial
DE2924393A1 (de) Bohrvorrichtung zum ueberlagerungsbohren
EP1381756B2 (de) Verfahren und vorrichtung zum bohren eines loches und zum festlegen einer verankerung in einem bohrloch
EP1668221B1 (de) Verfahren und vorrichtung zum bohren von löchern in boden- oder gesteinsmaterial
EP2496786B1 (de) Verfahren zum bohren, insbesondere schlag- oder drehschlagbohren von löchern in boden oder gesteinsmaterial sowie vorrichtung hierfür
EP1682745B1 (de) Verfahren und vorrichtung zum bohren von löchern in boden- oder gesteinsmaterial
EP1668220B1 (de) Verfahren und vorrichtung zum bohren von loechern in boden- oder gesteinsmaterial
EP1818499A1 (de) Einrichtung zum gleichzeitigen Bohren und Auskleiden von Bohrlöchern
EP1257723B1 (de) Vorrichtung zum böhren, insbesondere schlag- oder drehschlagbohren, von bohrlöchern
EP2094933B1 (de) Vorrrichtung zum schlag- bzw. drehschlagbohren in gesteinsmaterial
DE1188014B (de) Gesteinsbohrgeraet mit exzentrisch arbeitendem Bohrwerkzeug
DE2924392A1 (de) Bohrvorrichtung zum ueberlagerungsbohren
DE102020130462B4 (de) Verwendung eines Imlochhammers und einer Imlochhammervorrichtung
AT12766U1 (de) Verfahren und vorrichtung zum bohren, insbesondere schlag- oder drehschlagbohren, von löchern in boden- oder gesteinsmaterial sowie verbindungselement für ein bohrgestänge
DE3908646C2 (es)
DE2824722A1 (de) Drehschlag-bohrvorrichtung
DE3514030A1 (de) Bohrvorrichtung, insbesondere zum rammbohren
DE20317107U1 (de) Drehbohreinrichtung für Kohle und Gestein
EP2171210A1 (de) Verfahren und vorrichtung zum bohren eines loches in boden- oder gesteinsmaterial und ausbilden einer verankerung
DE8511544U1 (de) Bohrvorrichtung, insbesondere zum Rammbohren
DE10022135A1 (de) Gasbohrgerät
AT8853U1 (de) Bohr- bzw. ankergestänge zum räumen eines bohrlochs und/oder zum ausbilden einer verankerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: "ALWAG" TUNNELAUSBAU GESELLSCHAFT M.B.H.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004003985

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070719

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL, KAMINSKI & PARTNER PATENTANWAELTE ESTABLI

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070402385

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070903

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2286654

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002139

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20080929

Year of fee payment: 5

Ref country code: DK

Payment date: 20080912

Year of fee payment: 5

Ref country code: EE

Payment date: 20080905

Year of fee payment: 5

Ref country code: PT

Payment date: 20080905

Year of fee payment: 5

Ref country code: SI

Payment date: 20080918

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20080926

Year of fee payment: 5

Ref country code: FI

Payment date: 20080915

Year of fee payment: 5

Ref country code: FR

Payment date: 20080915

Year of fee payment: 5

Ref country code: IE

Payment date: 20080917

Year of fee payment: 5

Ref country code: MC

Payment date: 20080912

Year of fee payment: 5

Ref country code: NL

Payment date: 20080903

Year of fee payment: 5

Ref country code: RO

Payment date: 20080912

Year of fee payment: 5

Ref country code: SK

Payment date: 20080926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20081003

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080922

Year of fee payment: 5

Ref country code: ES

Payment date: 20081021

Year of fee payment: 5

Ref country code: SE

Payment date: 20080908

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20080919

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: "ALWAG" TUNNELAUSBAU GESELLSCHAFT M.B.H.

Free format text: "ALWAG" TUNNELAUSBAU GESELLSCHAFT M.B.H.#WAGRAM 49#4061 PASCHING (AT) -TRANSFER TO- "ALWAG" TUNNELAUSBAU GESELLSCHAFT M.B.H.#WAGRAM 49#4061 PASCHING (AT)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090923

Year of fee payment: 6

Ref country code: HU

Payment date: 20090917

Year of fee payment: 6

BERE Be: lapsed

Owner name: "ALWAG" TUNNELAUSBAU -G. M.B.H.

Effective date: 20090930

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20100329

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090928

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100329

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090917

Year of fee payment: 6

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2272

Country of ref document: SK

Effective date: 20090928

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E001266

Country of ref document: EE

Effective date: 20090930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20100524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

Ref country code: BG

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20100331

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090928

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090929

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100922

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090928

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100928

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100929

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110913

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20110914

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004003985

Country of ref document: DE

Effective date: 20130403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130924

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120928

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 363580

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140928