EP1663627A2 - Procede de fabrication d'un element de transmission optique pourvu d'une gaine remplie et element de transmission optique - Google Patents

Procede de fabrication d'un element de transmission optique pourvu d'une gaine remplie et element de transmission optique

Info

Publication number
EP1663627A2
EP1663627A2 EP04786709A EP04786709A EP1663627A2 EP 1663627 A2 EP1663627 A2 EP 1663627A2 EP 04786709 A EP04786709 A EP 04786709A EP 04786709 A EP04786709 A EP 04786709A EP 1663627 A2 EP1663627 A2 EP 1663627A2
Authority
EP
European Patent Office
Prior art keywords
optical waveguide
transmission element
optical
filler
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04786709A
Other languages
German (de)
English (en)
Inventor
Dieter Kundis
Horst Knoch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Research and Development Corp
Original Assignee
CCS Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCS Technology Inc filed Critical CCS Technology Inc
Publication of EP1663627A2 publication Critical patent/EP1663627A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00673Supports for light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4405Optical cables with longitudinally spaced waveguide clamping

Definitions

  • the present invention relates to a method for producing an optical transmission element with at least one optical waveguide and with a filled chamber element surrounding the optical waveguide.
  • the invention further relates to such an optical transmission element.
  • Optical transmission elements such as optical cables or optical wires, for example in the form of so-called bundle wires, generally contain one or more optical waveguides, which are surrounded by a chamber element enclosing them.
  • a common method of fixing the optical waveguide in an optical transmission element is to fill the chamber element with a highly viscous, thixotropic or crosslinking filler.
  • the filling compound prevents water, which penetrates into the chamber tube if the transmission element is damaged, from advancing further.
  • Such a filling compound has the disadvantage that it can run out or drip out in the case of vertically hanging ends of the transmission element.
  • the filling compound escaping during installation can lead to contamination and handling problems on the part of the installation personnel.
  • the problem of leakage of the filling compound could be countered with a cross-linking silicone filling compound based on two components.
  • This has the disadvantage that the 'manufacturing process with comparatively high costs and a certain production uncertainty due to the used to com- ponents is afflicted.
  • the present invention is based on the object ; to specify a method for producing an optical transmission element with which an easily manageable optical transmission element with a filled chamber element can be produced in an effective manner.
  • This object is achieved by a method for producing an optical transmission element according to claim 1 and by an optical transmission element according to claim 11.
  • the end product being an optical transmission element with an optical waveguide and a chamber element surrounding the optical waveguide, in which several dry and compressible filling elements are arranged in the interior of the comb element, which are formed by material pre-foamed in the interior.
  • the filling elements in the pre-expanded state exert a defined contact pressure against the chamber element and against the optical waveguide for fixing the same in the longitudinal direction of the transmission element, changes in position of the optical waveguide being nevertheless possible.
  • the filling elements each surround the optical waveguide, and any gaps between the optical waveguide and the chamber element in the cross-sectional plane of the transmission element are filled by the subsequently stabilizing and still slightly expanding filling compound.
  • the optical waveguide and the chamber element are essentially positively contacted by the filling elements. There is thus a dry and easy-to-use optical transmission element. Leakage of filling compound and migration of the optical waveguide out of the transmission element is prevented.
  • the foamed filling compound preferably has a diameter when it enters the extruder which is approximately equal to an inner diameter of the chamber element.
  • the pre-expanded filling compound is still comparatively compact and resilient on the optical waveguide during the extrusion of the chamber element and only expands slightly after it has entered the extruder within the chamber element formed in order to produce a positive connection to the chamber element.
  • the foamed filler preferably expands by approximately 10 percent of its volume after entry into the extruder.
  • the chamber element can initially largely cure after the extrusion before the filling compound contacts the inner wall of the chamber element.
  • polyurethanes or silicones can be used as filler.
  • At least two nozzles are advantageously used, which apply the foamed filling compound approximately concentrically and uniformly to the optical waveguide in the radial direction of the transmission element. This largely ensures that the filler elements each match the light wave completely surround the conductor and existing gaps between the optical waveguide and the chamber element in the cross-sectional plane of the transmission element are filled by the filling compound.
  • more than two nozzles are preferably used, which are arranged in a star shape in the radial direction of the transmission element and enclose the optical waveguide between them.
  • FIG. 1 shows a schematically illustrated production line for producing an optical transmission element according to the invention
  • FIG. 2 shows a longitudinal section through an optical transmission element according to the invention in the final state
  • Figure 3 shows a further embodiment of a device for producing an optical transmission element according to the inventive method in cross section.
  • FIG. 1 shows a schematically illustrated production line with which an optical transmission element, in particular in the form of a bundle core, is produced by the method according to the invention.
  • a bundle of optical fibers LW is fed to an extruder EX.
  • a plurality of optical waveguides LW run into one Extruder EX for forming a chamber element, here in the form of a wire sheath AH.
  • the optical waveguides LW are in particular designed as optical fibers which are arranged in the end product as an optical waveguide bundle or fiber bundle LWB within a loose tube BA with the buffer tube AH.
  • optical waveguide LW for example, optical cores, each with a plurality of fibers enclosed, the cores being arranged as a strand within a cable jacket with the sheath AH.
  • the invention is further described with reference to the first embodiment.
  • an already foamed filler FM is discontinuously applied to the optical fiber bundle LWB by means of nozzles D1, D2.
  • the optical fiber bundle LWB is then fed to the extruder EX, which forms the wire sheath AH around the optical waveguide.
  • the prefoamed filling compound FM stabilizes itself within the wire sheath AH formed by the supply of heat to the wire sheath and, in the final state, forms a hardened, dry but still compressible filling element FE, which in each case surrounds the optical waveguides.
  • Fillers based on foamed polyurethanes or silicones are particularly suitable.
  • Two nozzles D1 and D2 are used, which apply the foamed filling compound FM approximately concentrically and uniformly to the optical waveguide LW in the radial direction of the transmission element.
  • the nozzles D1, D2 are arranged opposite one another and enclose the optical waveguides LW between them.
  • Piezo-controlled valves are preferably used as nozzles in order to implement the regulation of the application quantities and the short cycle times during application (approximately 1 ms per filling element to be formed) at a comparatively high take-off speed.
  • the order quantity, opening time and the repetition frequency are adjusted depending on the take-off speed in the take-off direction AZ of the loose tube BA.
  • the distance of the filling elements FE and their size can be set individually.
  • the length and size of the FE filler elements are regulated via opening time, valve lift and material pressure.
  • the LW fiber optic cables are precisely guided to prevent axial vibrations.
  • FIG. 2 shows a longitudinal section through a transmission element BA according to the invention in the final state. Due to the intermittent application of the filling compound FM according to FIG. 1 to the optical waveguide LW, several dry and compressible ones are made
  • FIG. 3 shows a further embodiment of a device for producing an optical transmission element using the method according to the invention in cross section.
  • more than two, in particular four, nozzles D1 to D4 are used, which are arranged in a star shape in the radial direction of the loose tube and enclose the optical waveguides LW between them.
  • the diameter of the filling elements can thus be set even more precisely.
  • the discontinuously provided and foamed filling material only makes a small weight contribution to the finished transmission element. It is such that "it can easily and completely be stripped off without the use of additional tools of the optical fibers. They will assist you with the installation and assembly of a cable.
  • the filling material is such that it voids within the fiber bundle and between the fiber and the chamber wall in cross section line of the loose tube is sealed watertight, but the fibers can easily be pulled through them. The fibers are clean and without residues and can be used immediately for further assembly (splicing, storing in cassettes) without additional cleaning steps.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Integrated Circuits (AREA)
  • Sealing Material Composition (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un élément de transmission optique (BA) composé d'au moins un guide d'onde optique (LW) et d'une gaine (AH) entourant le guide d'onde optique, laquelle gaine renferme une cavité. Selon ledit procédé, une matière de remplissage expansée (FM) est appliquée en discontinu sur le guide d'onde optique (LW) puis ce guide d'onde optique (LW) est acheminé à une extrudeuse (EX) qui forme une gaine (AH) autour du guide d'onde optique. La matière de remplissage (FM) se stabilise à l'intérieur de la gaine formée (AH) et forme à l'état final plusieurs éléments de remplissage compressibles secs (FE, FE1 à FE4) qui entourent chacun le guide d'onde optique. On obtient ainsi un élément de transmission optique sec et facile à manipuler. Une fuite de matière de remplissage et un glissement des guides d'ondes optiques hors de l'élément de transmission sont évités.
EP04786709A 2003-09-12 2004-09-07 Procede de fabrication d'un element de transmission optique pourvu d'une gaine remplie et element de transmission optique Withdrawn EP1663627A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10342319A DE10342319A1 (de) 2003-09-12 2003-09-12 Verfahren zur Herstellung eines optischen Übertragungselements mit einem gefüllten Kammerelement sowie optisches Übertragungselement
PCT/DE2004/001986 WO2005025842A2 (fr) 2003-09-12 2004-09-07 Procede de fabrication d'un element de transmission optique pourvu d'une gaine remplie et element de transmission optique

Publications (1)

Publication Number Publication Date
EP1663627A2 true EP1663627A2 (fr) 2006-06-07

Family

ID=34305719

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786709A Withdrawn EP1663627A2 (fr) 2003-09-12 2004-09-07 Procede de fabrication d'un element de transmission optique pourvu d'une gaine remplie et element de transmission optique

Country Status (5)

Country Link
US (1) US20070058913A1 (fr)
EP (1) EP1663627A2 (fr)
CN (1) CN1878654B (fr)
DE (1) DE10342319A1 (fr)
WO (1) WO2005025842A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311371B4 (de) * 2003-03-14 2005-08-04 CCS Technology, Inc., Wilmington Verfahren zur Herstellung eines optischen Übertragungselements mit mehreren trockenen und kompressiblen Füllelementen
DE102005048730B4 (de) * 2005-10-12 2009-10-15 CCS Technology, Inc., Wilmington Verfahren zum Herstellen eines optischen Übertragungselementes und optisches Übertragungselement
US8929701B2 (en) 2012-02-15 2015-01-06 Draka Comteq, B.V. Loose-tube optical-fiber cable
CN106057156A (zh) * 2016-07-29 2016-10-26 北京小米移动软件有限公司 液晶显示屏的控制方法及装置
CN108318248B (zh) * 2017-01-16 2021-09-28 舍弗勒技术股份两合公司 基于光纤振动传感的轴承状态在线监测系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2445532C2 (de) * 1974-09-20 1976-09-09 Aeg Telefunken Kabelwerke Gewellter umhuellter Faserlichtleiter
DE2743260C2 (de) * 1977-09-26 1990-05-31 kabelmetal electro GmbH, 3000 Hannover Nachrichtenkabel mit Lichtwellenleitern und Verfahren zu seiner Herstellung
DE3306551A1 (de) * 1983-02-22 1984-08-23 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur herstellung eines lichtwellenleiterelementes
DE3931666A1 (de) * 1989-09-22 1991-04-04 Kabelmetal Electro Gmbh Nachrichtenkabel
US5148509A (en) * 1991-03-25 1992-09-15 Corning Incorporated Composite buffer optical fiber cables
DE19500467A1 (de) * 1995-01-05 1996-07-11 Siemens Ag Optisches Kabel und Verfahren zu dessen Wiederverwertung
DE19516970A1 (de) * 1995-05-09 1996-11-14 Siemens Ag Kabel mit einer Füllmasse und Verfahren zu deren Herstellung
DE19713063A1 (de) * 1997-03-27 1998-10-01 Siemens Ag Nachrichtenkabel
US6584251B1 (en) * 2000-05-23 2003-06-24 Alcatel Solid stranding flextube unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005025842A3 *

Also Published As

Publication number Publication date
WO2005025842A3 (fr) 2005-06-16
WO2005025842A2 (fr) 2005-03-24
DE10342319A1 (de) 2005-04-21
CN1878654B (zh) 2011-09-14
CN1878654A (zh) 2006-12-13
US20070058913A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
DE69213274T2 (de) Verbinder und Methode zur wasserdichten Durchführung von isolierten elektrischen Leitern
EP2321684A1 (fr) Dispositif et procédé pour assurer l étanchéité de petits tubes d'un câble à fibres soufflées à l'entrée d'un manchon
EP0255686B1 (fr) Méthode pour la fabrication d'un élément optique de transmission rempli et dispositif pour la réalisation de la méthode
EP0087757A1 (fr) Dispositif de fabrication d'un câble électrique et/ou optique
DE102013206804A1 (de) Anschluss-Behandlungsverfahren und Anschluss-Behandlungseinrichtung für ein Koaxialkabel
DE3808037A1 (de) Verfahren zur herstellung eines optischen kabels und vorrichtung zu dessen durchfuehrung
EP0857312B1 (fr) Dispositif de fixation et procede de fabrication d'un dispositif de fixation destine a au moins une fibre optique gainee
DE112019006772T5 (de) Isolierter elektrischer draht, verkabelung und herstellungsverfahren eines isolierten elektrischen drahts
EP0978929A2 (fr) Procédé et dispositif d'imprégnation de barres conductrices pour l'enroulement statorique d'une machine électrique
DE102019001380B3 (de) Verfahren zur Herstellung eines Kabels
DE10311371B4 (de) Verfahren zur Herstellung eines optischen Übertragungselements mit mehreren trockenen und kompressiblen Füllelementen
EP1663627A2 (fr) Procede de fabrication d'un element de transmission optique pourvu d'une gaine remplie et element de transmission optique
DE4421456A1 (de) Verfahren und Vorrichtung zum Herstellen von strangförmigen Gütern
DE1920637C3 (de) Kabelverbindungsmuffe und Verfahren zu ihrer Herstellung
EP2764387A1 (fr) Système de décharge de traction pour câbles, en particulier pour câbles optiques
EP3285346A1 (fr) Passage étanche d'un câble pour un boîtier des composants
DE102004020162B3 (de) Leitungseinführung und Verfahren zu deren Herstellung
DE102017210096B4 (de) Datenkabel für explosionsgefährdete Bereiche
DE2523843C3 (de) Vorrichtung zur Herstellung längswasserdichter elektrischer Kabel
DE10250879A1 (de) Lichtwellenleiterkabel und Verfahren zur Herstellung eines Lichtwellenleiterkabels
DE2112674C3 (de) Vorrichtung zur Herstellung längswasserdichter Fernmeldekabel
DE2930801C2 (de) Lichtleitfaserkabel
DE102020117819A1 (de) Verfahren zur Erzeugung eines Kanals in einer vergossenen Maschinenkomponente
DE4321341A1 (de) Verfahren und Vorrichtung zum Herstellen einer Lichtwellenleiter-Ader
DE112021004143T5 (de) Isoliertes elektrisches Kabel, Kabelbaum und Verfahren zur Herstellung eines isolierten elektrischen Kabels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060309

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070402

R17C First examination report despatched (corrected)

Effective date: 20070914

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR THE PRODUCTION OF AN OPTICAL TRANSMISSION ELEMENT COMPRISING A FILLED CHAMBER ELEMENT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091029