EP1658423A1 - Moteur a combustion interne comportant un systeme de frein moteur - Google Patents

Moteur a combustion interne comportant un systeme de frein moteur

Info

Publication number
EP1658423A1
EP1658423A1 EP04741405A EP04741405A EP1658423A1 EP 1658423 A1 EP1658423 A1 EP 1658423A1 EP 04741405 A EP04741405 A EP 04741405A EP 04741405 A EP04741405 A EP 04741405A EP 1658423 A1 EP1658423 A1 EP 1658423A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
internal combustion
combustion engine
exhaust
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04741405A
Other languages
German (de)
English (en)
Inventor
Rainer Albat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1658423A1 publication Critical patent/EP1658423A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/06Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/06Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for braking
    • F01L13/065Compression release engine retarders of the "Jacobs Manufacturing" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86863Rotary valve unit
    • Y10T137/86871Plug

Definitions

  • the invention relates to an internal combustion engine with an engine brake device according to the preamble of claim 1.
  • the internal combustion engine has an exhaust gas turbocharger, the exhaust gas turbine of which is provided in an exhaust tract and the compressor of which is provided in an intake tract of the internal combustion engine. Downstream of the exhaust gas turbine there is a utility turbine driven by the exhaust gas of the internal combustion engine and coupled to the internal combustion engine via a transmission.
  • a bypass device is provided in an exhaust gas line downstream of the utility turbine, which allows a bypass line to be opened or closed around the utility turbine.
  • the bypass device is designed as a variable switching valve in the form of a flap valve.
  • the exhaust gas from the internal combustion engine drives the exhaust gas turbine, which drives the compressor via a common shaft.
  • the compressor sucks in air and conveys the compressed air into the intake tract of the internal combustion engine.
  • the exhaust gas from the internal combustion engine first flows into the exhaust gas turbine of the exhaust gas turbocharger and then further into the utility turbine, which feeds the remaining energy in the exhaust gas back to the internal combustion engine via the transmission.
  • fuel injection is deactivated and the compression brake is activated.
  • the compression brake opens at least one exhaust valve provided on the cylinder head for a short period of time.
  • the compressed air in the combustion chamber then escapes into the exhaust tract when the exhaust valve is open.
  • the internal combustion engine only performs compression work and thereby generates braking power.
  • the compression work depends on the degree of filling of the cylinders.
  • the exhaust gas back pressure after the exhaust gas turbine must be low.
  • the utility turbine downstream of the exhaust gas turbine represents a throttle that increases the exhaust gas back pressure.
  • the utility turbine driven by the exhaust gas drives the internal combustion engine.
  • the bypass device opens in order to reduce the exhaust gas back pressure and not drive the power turbine.
  • the exhaust gas flows into the bypass line past the utility turbine.
  • the braking power generated by a clocked compression brake shows a flat, approximately linear course over the speed. This means that the braking power is low at low to medium speeds.
  • the object of the invention is to provide an internal combustion engine of the type mentioned at the beginning, the braking power of which is significantly increased at low and medium engine speeds.
  • the braking power increases, even at medium to high engine speeds.
  • the internal combustion engine according to the invention is characterized by the bypass device, which is designed in the form of a combined switching and throttle valve, so that the exhaust line can be closed completely and the bypass line completely or partially.
  • An exhaust gas turbocharger and a power turbine are provided on the internal combustion engine with an engine brake device in the form of a compression brake.
  • the exhaust gas turbocharger has an exhaust gas turbine which has an exhaust tract and a compressor which is assigned to an intake tract.
  • the utility turbine is downstream of the exhaust gas turbine arranged and coupled via a gearbox to the internal combustion engine.
  • the exhaust gas turbine and the power turbine are connected to one another via a connecting line.
  • a bypass line branches off from the connecting line.
  • the bypass device is provided in the bypass line around the utility turbine.
  • the bypass device controls the amount of bypassed exhaust gas around the utility turbine.
  • the bypass device opens or closes the exhaust line, which leads from the utility turbine to the bypass device.
  • the bypass device is designed such that when the exhaust line and the bypass line are completely closed by the bypass device, they can be closed gas-tight.
  • the exhaust line and the bypass line are completely closed by the bypass device, they can be closed gas-tight.
  • the bypass device is designed in the form of a rotary slide valve.
  • the advantage of using a rotary valve as a bypass device lies in the low actuation forces even at high exhaust gas pressures.
  • the rotary slide valve has a housing with a tubular channel inserted therein, in which a freely rotatable rotor is mounted, which is designed with a cross section in the form of a circular section.
  • the housing has an opening the exhaust line, an opening to the bypass line and an opening to an exhaust line through which the exhaust gas can flow into the atmosphere or an exhaust system.
  • the channel allows the exhaust line and the bypass line to communicate with the exhaust line or to establish a connection.
  • the circular cross-section of the rotor is selected so that the rotor can either completely close the exhaust line and the bypass channel or only the exhaust line or the exhaust line and partially close the bypass line.
  • the circular section-shaped cross section of the rotor has a circular section angle of 120 ° to 140 °.
  • the compression brake opens in the engine brake mode and the bypass device closes the exhaust line and the bypass line in the engine brake mode at low to medium engine speeds.
  • the compression brake is preferably designed in the form of a known constant throttle.
  • the constant throttle egg is designed as an additional throttle valve in the cylinder head, which can be opened continuously during engine braking.
  • the throttle valve opens or closes a bypass around an exhaust valve of a cylinder of the internal combustion engine, so that compressed air gets into the exhaust tract.
  • the constant throttle opens and releases at least part of the compression work.
  • the bypass device closes the exhaust line and the bypass line in engine braking mode. This also increases the pumping power of the internal combustion engine.
  • the advantage of using a constant throttle with the bypass device as a dust brake is the increased braking power at low to medium engine speeds. There is also no need for a brake flap in the exhaust system.
  • the compression brake opens in the engine brake mode and the exhaust gas turbine, which has a variable turbine geometry, which changes the flow of the exhaust gas onto a turbine wheel in the engine brake mode so that an increase in the speed of the exhaust gas turbine in the engine brake mode at medium to high engine speeds takes place
  • the bypass device closes the exhaust line and opens the bypass line completely.
  • the variable turbine geometry is designed as a known guide vane, in particular as a radial guide vane with adjustable or fixed guide vanes.
  • the radial guide grid reduces an effective turbine cross-section when the engine is braking, so that the exhaust gas speed increases. This increases the speed of the exhaust gas turbine.
  • Increasing the speed of the exhaust gas turbine also increases the speed of a compressor, which increases the boost pressure.
  • the bypass device closes the exhaust line and opens the bypass line in engine braking mode.
  • the exhaust gas flows through the bypass line past the utility turbine. This reduces the exhaust gas back pressure after the exhaust gas turbine.
  • the speed of the exhaust gas turbine increases due to the increased pressure difference. This advantageously leads to an additional boost pressure increase and thus to an increased braking power.
  • the power turbine contributes to the braking power, since the internal combustion engine drives the power turbine and the power turbine does not deliver energy from the exhaust gas to the internal combustion engine.
  • the compression brake opens in the engine brake mode and the exhaust gas turbine, which has a variable turbine geometry, which changes the flow of the exhaust gas onto a turbine wheel in the engine brake mode so that an increase in the speed of the internal combustion engine increases at high to very high engine speeds Exhaust gas turbine takes place, the bypass device closing the exhaust line and partially closing the bypass line.
  • the exhaust gas turbocharger is optimally designed for the combustion operation of the internal combustion engine. Critical exhaust gas turbocharger speeds can therefore be exceeded in engine braking operation, in particular if an exhaust gas turbine of an exhaust gas turbocharger has a variable turbine geometry. In engine braking mode, the variable turbine geometry serves to increase the speed of the exhaust gas turbocharger.
  • the exhaust gas back pressure increases after the exhaust gas turbine, which leads to a reduction in the pressure difference at the exhaust gas turbine and to a reduction in the speed of the exhaust gas turbocharger.
  • the advantage lies in the omission of a speed-regulating measure on the exhaust gas turbocharger, for example a waste gate valve.
  • the exhaust valves of the internal combustion engine in engine braking operation, can be opened briefly by pressure peaks in the exhaust gas in the exhaust tract, as a result of which exhaust gas from the exhaust tract enters the cylinders of the internal combustion engine. It is possible to open the exhaust valves briefly, especially at low cylinder pressures. This leads, particularly at the end of the first work cycle (intake) or at the start of the second work cycle (compression), to a recharging effect in which exhaust gas from the exhaust system travels into the cylinders of the internal combustion engine. The leads advantageously Reloading effect to an increased cylinder charge and thus increased engine braking power.
  • FIG. 1 shows a schematically simplified illustration of an internal combustion engine which is equipped with an engine brake device, an exhaust gas turbocharger and a utility turbine,
  • FIG. 2 shows a schematically simplified illustration of the rotary slide valve according to the invention with an open exhaust gas line and a closed bypass line
  • FIG. 3 shows a schematically simplified illustration of the rotary slide valve according to the invention with closed exhaust pipe and closed bypass pipe
  • FIG. 4 shows a schematically simplified illustration of the rotary slide valve according to the invention with the exhaust pipe closed and the bypass pipe open and
  • FIG. 5 shows a schematically simplified representation of the rotary slide valve according to the invention with the exhaust gas line closed and with the bypass line partially open.
  • the engine brake device 2 is preferably designed as a constant throttle in the form of a known compression brake.
  • the exhaust gas turbocharger 3 has an exhaust gas turbine 5 and a compressor 6, which are connected to one another via a common shaft 7.
  • the exhaust gas turbine 5 is assigned to an exhaust tract 8 and the compressor 6 is assigned to an intake tract 9 of the internal combustion engine 1.
  • a charge air cooler (not shown in detail) can be introduced in the intake tract 9.
  • the utility turbine 4 is provided downstream of the exhaust gas turbine 5 and is coupled to the internal combustion engine 1 via a transmission 10.
  • the exhaust gas turbine 5 is equipped with a variable turbine geometry 11.
  • the variable turbine geometry 11 is designed as a radial guide vane with adjustable or fixed guide vanes. With the help of the radial guide vane 11, the exhaust gas flow in front of a turbine wheel on the blades of the turbine wheel of the exhaust gas turbine 5 can be changed.
  • the radial guide grill 11 can be actuated electrically, pneumatically or hydraulically by an actuating device, not shown in more detail, which engages the radial guide grill 10 and is located outside a housing of the exhaust gas turbine 5.
  • the actuation device is controlled by means of an electronic engine control unit 12, which is connected to the actuation device via a first control line 13.
  • the exhaust gas turbine 5 and the power turbine 4 are connected to one another via a connecting line 14.
  • a bypass line 15 branches off from the connecting line 14.
  • a bypass device 16 is provided in the bypass line 15 around the utility turbine 4.
  • the bypass device 16 controls the amount of bypassed exhaust gas around the power turbine 4.
  • the bypass device 16 opens or closes an exhaust line 17 which leads from the power turbine 4 to the bypass device 16.
  • the bypass device 16 is controlled by means of the engine control unit 12 via a second control line 18.
  • the engine control unit 12 controls the constant throttle 2 via a third control line 19.
  • the exhaust gases flow via the Bypass device 16 further into an exhaust pipe 20 into the atmosphere or a further exhaust system, not shown.
  • the bypass device 16 is designed in the form of a rotary slide valve or roller control valve with a housing 21.
  • the housing 21 has a tubular channel inserted therein
  • the housing 21 has an opening 24 to the bypass line 15, an opening 25 to the exhaust line 17 and an opening 26 to the exhaust line 20.
  • the rotor 23 in the channel 22 allows either the bypass line 15 or the exhaust line 17 to communicate with the exhaust line 20 via the channel 22 or to establish a connection.
  • the rotor 23 is designed such that, in a position according to FIG. 3, both the bypass line 15 and the exhaust line 17 are closed together by covering the openings 24 and 25 by means of the rotor 23. 2, the bypass line 15 is closed and the exhaust line 17 is completely open. In a position according to FIG. 4, the bypass line 15 is completely open and the exhaust line 17 is closed. 5, the bypass line 15 is partially open and the exhaust line 17 is closed.
  • the rotor 23 is preferably designed as a rod element with a circular cross-sectional cross section, which has a circular cutting angle of 120 ° to 140 °. It is also conceivable to have a rotor 23 which has two cross-sectional cross-sections which are arranged one above the other in the longitudinal direction of a rotor axis of rotation.
  • the two circular section-shaped cross sections can have different circular section angles and, depending on the position of the openings 23, 24 or 25 in the housing 21 to be closed, opened or partially opened, are at any angle to one another.
  • the rotary slide valve 16 is designed such that the rotor 23 when one of the openings 24 and 25 is completely covered, seals them gas-tight.
  • the actuator 23 can be rotated electrically, pneumatically or hydraulically by an actuating device, not shown, which engages the rotor 23 and lies outside the rotary slide valve 16.
  • An electric servomotor is preferably provided for this.
  • the advantage of using a rotary slide valve 16 is its gas tightness when the rotor 23 is completely covered with the openings 24 and 25 to the lines 15 and 17 and the low actuation forces even at high exhaust gas pressures.
  • the internal combustion engine 1 sucks in the air pre-compressed by the compressor 6 from the intake tract 9.
  • the pre-compressed air is compressed further and the compressed air is mixed with fuel (diesel) or an already existing fuel-air mixture is compressed (Otto).
  • the exhaust gas resulting from the combustion of the fuel-air mixture flows through the exhaust gas turbine 5 without its flow being influenced by the radial guide vane 11.
  • the exhaust gas turbine 5 drives the compressor 6 by means of a common shaft 7.
  • the rotor 23 of the rotary slide valve 16 closes the bypass line 15 and opens the exhaust gas line 17, so that the exhaust gas flows completely through the power turbine 4.
  • the power turbine 4 can absorb the remaining energy of the exhaust gas and then supply it to the internal combustion engine 1 by means of the transmission 10.
  • the internal combustion engine 1 draws in pre-compressed air from the intake tract 8.
  • the internal combustion engine 1 compresses the air and, on the other hand, does not mix the compressed air with fuel, so that no combustion can take place.
  • the engine control unit 12 opens the constant throttle 2 in the respective cylinders via the control line 19 in order to to let compressed air escape from the internal combustion engine 1 into the exhaust tract 8.
  • the constant throttle valve 2 is designed as an additional throttle valve in the cylinder head, which can be opened continuously during engine braking.
  • the throttle valve opens or closes a bypass around an exhaust valve of a cylinder of the internal combustion engine 1, so that compressed air enters the exhaust tract 8.
  • the braking power of the internal combustion engine 1 arises from the power which the internal combustion engine 1 applies in order to compress the intake air, but does not get it back by decompression of the compressed air.
  • the engine control unit 12 additionally controls the rotary slide valve 16 and the radial guide vane 11 as a function of the speed of the internal combustion engine 1.
  • the constant throttle valve 2 interacts with the rotary slide valve 16 in such a way that the constant throttle valve 2 is opened and the rotor 23 closes the bypass line 15 and the exhaust gas line 17 equally gas-tight (FIG. 3).
  • This increases the pumping power or engine braking power of the internal combustion engine 1, since the pistons have to perform a higher push-out work in the fourth work cycle (extension cycle) due to the higher exhaust gas back pressure in the exhaust system 8.
  • the constant throttle valve 2 interacts with the radial guide vane 11 and the rotary slide valve 16 such that the constant throttle 2 is open and the radial guide vane 11 changes an effective turbine cross section such that the speed of the exhaust gas turbine 5 increases.
  • This increases the boost pressure and thus the filling of the cylinders and ultimately the compression work in engine braking.
  • the rotor 23 closes the exhaust pipe 17 and opens the Bypass line 15 completely (FIG. 4) or only partially (FIG. 5), the bypass line 15 and the exhaust line 20 being connected to one another via the channel 22 of the rotary slide valve 16.
  • the exhaust gas flows through the bypass line 15 past the utility turbine 4.
  • the exhaust gas counterpressure after the exhaust gas turbine 5 drops and the increased pressure difference at the exhaust gas turbine 5 increases the speed of the exhaust gas turbine 5.
  • this leads to an additional boost pressure increase and thus to an increase in the engine braking power.
  • the exhaust back pressure after the exhaust gas turbine 5 can be increased by partially closing the bypass line 15 by means of the rotary slide valve 16, which leads to a reduction in the pressure difference at the exhaust gas turbine 5 and leads to a decrease in the speed of the exhaust gas turbocharger 3.
  • a characteristic curve for controlling the constant throttle 2, the radial guide vane 11 and the rotary slide valve 16 is stored in the engine control unit 12.
  • the characteristic curve was previously determined in test bench tests depending on the exhaust gas temperature of the internal combustion engine 1 and the speed of the exhaust gas turbocharger 3.
  • the transition point is determined at a medium speed at which the constant throttle 2 interacts with the rotary slide valve 16 or with the radial guide vane 11 and the rotary slide valve 16.
  • the transition point at a medium speed depends on a maximum permissible exhaust gas temperature and / or indicated work in engine braking mode from the high and low

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

L'invention concerne un moteur à combustion interne (1) comportant un système de frein moteur, en particulier sous la forme d'un étranglement constant, présentant un turbocompresseur à gaz d'échappement (3), une géométrie de turbine variable (11), ainsi qu'une turbine à récupération (4), la turbine à gaz d'échappement (5) étant associée à une conduite de gaz d'échappement (8) et le compresseur étant associé à une conduite d'admission (9). La turbine à récupération (4) est montée en aval de la turbine à gaz d'échappement (5) du turbo compresseur à gaz d'échappement (3) et entraînée par les gaz d'échappement du moteur à combustion interne (1). La turbine à récupération (4) est couplée avec le moteur à combustion interne (1), de préférence, par l'intermédiaire d'un engrenage (10). Dans une conduite de dérivation (15) évitant la turbine à récupération (4) se trouve un dispositif de dérivation (16) qui est relié à la turbine à récupération (4) par l'intermédiaire d'une conduite de gaz d'échappement (14). Le dispositif de dérivation (16) selon l'invention, qui se présente sous la forme d'un tiroir rotatif, est destiné à des moteurs à combustion interne à compression d'air ou à compression du mélange comportant un système de frein moteur.
EP04741405A 2003-08-29 2004-08-11 Moteur a combustion interne comportant un systeme de frein moteur Withdrawn EP1658423A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003139857 DE10339857A1 (de) 2003-08-29 2003-08-29 Brennkraftmaschine mit einer Motorbremseinrichtung
PCT/EP2004/008978 WO2005028830A1 (fr) 2003-08-29 2004-08-11 Moteur a combustion interne comportant un systeme de frein moteur

Publications (1)

Publication Number Publication Date
EP1658423A1 true EP1658423A1 (fr) 2006-05-24

Family

ID=34202200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741405A Withdrawn EP1658423A1 (fr) 2003-08-29 2004-08-11 Moteur a combustion interne comportant un systeme de frein moteur

Country Status (5)

Country Link
US (1) US7347048B2 (fr)
EP (1) EP1658423A1 (fr)
JP (1) JP2007504383A (fr)
DE (1) DE10339857A1 (fr)
WO (1) WO2005028830A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0615143D0 (en) * 2006-07-29 2006-09-06 Cummins Turbo Tech Ltd Multi-stage turbocharger system
US9103274B2 (en) * 2006-07-29 2015-08-11 Cummins Emission Solution Inc. Multi-stage turbocharger system
US8640672B2 (en) * 2006-12-20 2014-02-04 Volvo Lastvagnar Ab Engine brake for vehicle
US8230684B2 (en) * 2007-04-20 2012-07-31 Borgwarner Inc. Combustion engine breathing system including a compressor valve for a biturbo with cylinder deactivation
GB0717212D0 (en) * 2007-09-05 2007-10-17 Cummins Turbo Tech Ltd Multi-stage turbocharger system
US8069664B2 (en) * 2008-09-18 2011-12-06 GM Global Technology Operations LLC Integrated inlet and bypass throttle for positive-displacement supercharged engines
GB2475534B (en) * 2009-11-21 2014-11-12 Cummins Turbo Tech Ltd Sequential two-stage turbocharger system
US9995207B2 (en) 2009-11-21 2018-06-12 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US10054037B2 (en) 2009-11-21 2018-08-21 Cummins Turbo Technologies Limited Multi-stage turbocharger system with bypass flowpaths and flow control valve
AT510237B1 (de) 2010-07-26 2015-12-15 MAN Truck & Bus Österreich AG Verfahren zur motorbremsung
US8127544B2 (en) * 2010-11-03 2012-03-06 Paul Albert Schwiesow Two-stroke HCCI compound free-piston/gas-turbine engine
AU2011366252B2 (en) * 2011-04-21 2017-03-09 Mack Trucks, Inc. Power system with turbine bypass and method of operating a power system
DE102011107413A1 (de) * 2011-07-15 2013-01-17 Meta Motoren- Und Energie-Technik Gmbh Drehschieberventil, insbesondere zum Verbinden eines Abgasturboladers mit einer Brennkraftmaschine, sowie Abgaskrümmerbaugruppe
US9108628B2 (en) * 2012-08-31 2015-08-18 GM Global Technology Operations LLC Turbo compounding hybrid generator powertrain
US20140214308A1 (en) * 2013-01-29 2014-07-31 Cummins Ip, Inc. Apparatus, system and method for increasing braking power
DE102013006876B4 (de) 2013-04-20 2017-07-06 Jenoptik Industrial Metrology Germany Gmbh Rauheitsmessgerät
RU2568763C2 (ru) * 2014-01-30 2015-11-20 Альстом Текнолоджи Лтд Компонент газовой турбины
EP3144471B1 (fr) * 2015-09-21 2018-02-28 Fuelsave GmbH Moteur a piston rotatif et procede d'entrainement d'un moteur a piston rotatif
CN105464769B (zh) * 2015-12-30 2017-11-17 东风商用车有限公司 一种双流道动力涡轮系统及其控制方法
JP6670924B2 (ja) * 2016-02-29 2020-03-25 三菱重工エンジン&ターボチャージャ株式会社 過給機および内燃機関
GB201713461D0 (en) 2017-08-22 2017-10-04 Cummins Ltd Valve system
JP6581163B2 (ja) * 2017-10-03 2019-09-25 本田技研工業株式会社 内燃機関
US11391223B2 (en) 2020-08-19 2022-07-19 Caterpillar Inc. Increasing braking power and exhaust gas temperature
US11668255B2 (en) 2020-12-09 2023-06-06 Caterpillar Inc. Engine braking method and control system varying engine braking power within cylinder-number braking mode

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728681A1 (de) * 1986-08-29 1988-03-10 Isuzu Motors Ltd Turbo-verbundkraftmaschine
JPS6357824A (ja) * 1986-08-29 1988-03-12 Isuzu Motors Ltd タ−ボコンパウンドエンジン
IT1197943B (it) * 1986-11-03 1988-12-21 Giuseppe Ponzielli Dispositivo di separazione di particelle solide da un fluido in pressione
EP0292010B1 (fr) * 1987-05-22 1991-11-06 Isuzu Motors Limited Système de freinage pour moteur
JPS6435026A (en) * 1987-07-30 1989-02-06 Isuzu Motors Ltd Turbo compound engine
JPH0361612A (ja) * 1989-07-29 1991-03-18 Fuji Heavy Ind Ltd 2サイクルエンジンの排気ロータリ弁
US5119633A (en) * 1990-09-25 1992-06-09 Cummins Engine Company, Inc. Power turbine bypass for improved compression braking
DE4324749A1 (de) * 1993-07-23 1995-01-26 Freudenberg Carl Fa Regelventil
DE4416039C1 (de) * 1994-05-06 1995-08-31 Freudenberg Carl Fa Regelventil
DE4431711A1 (de) * 1994-09-06 1996-03-07 Bosch Gmbh Robert Vorrichtung zur Regelung der Leerlaufdrehzahl einer Brennkraftmaschine
DE19724584A1 (de) 1997-06-11 1998-12-17 Bayer Ag Verfahren zur Herstellung von 3,3-Dimethylbuttersäure
DE10222919B4 (de) * 2002-05-24 2007-12-20 Man Nutzfahrzeuge Ag Zweistufig aufgeladene Brennkraftmaschine
US7010918B2 (en) * 2003-06-17 2006-03-14 Daimlerchrysler Ag Internal combustion engine with motor brake

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005028830A1 *

Also Published As

Publication number Publication date
JP2007504383A (ja) 2007-03-01
US7347048B2 (en) 2008-03-25
WO2005028830A1 (fr) 2005-03-31
US20060174620A1 (en) 2006-08-10
DE10339857A1 (de) 2005-03-24

Similar Documents

Publication Publication Date Title
EP1658423A1 (fr) Moteur a combustion interne comportant un systeme de frein moteur
DE3526532C2 (fr)
DE102010021449B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor
DE3326133C2 (fr)
DE102009048125B4 (de) Wastegate-Anordnung für eine Turbine, Turbine für einen Abgasturbolader, Abgasturbolader für ein Kraftfahrzeug und Verfahren zum Betreiben eines Abgasturboladers
EP2151569B1 (fr) Dispositif d'extraction d'un flux partiel de gaz d'échappement et moteur à combustion interne en étant équipé
EP2412955A1 (fr) Procédé de freinage moteur
EP2208875B1 (fr) Dispositif de soupape et moteur à combustion interne.
EP1881162B1 (fr) Turbocompresseur pour moteur à combustion interne
DE10253693A1 (de) Abgasturbolader
DE3032218A1 (de) Kolbenbrennkraftmaschine mit einem abgasturbolader
EP2825745B1 (fr) Turbocompresseur à gaz d'échappement présentant une soupape de décharge de gaz d'échappement et une soupape de surpression
WO2011050874A2 (fr) Dispositif directeur pour un turbocompresseur à géométrie de turbine variable et turbocompresseur pour un moteur à combustion interne
DE3246855C2 (de) Aufladungssteuereinrichtung für Verbrennungsmotoren
DE3439999C1 (de) Viertakt-Brennkraftmaschine mit zwei Abgasturboladern
DE19824476B4 (de) Otto-Brennkraftmaschine mit einem Abgasturbolader und Verfahren zum Betrieb einer solchen Brennkraftmaschine
EP1433937A1 (fr) Turbocompresseur avec la dérivation integrée dans le carter et méthode de fabrication
DE112013004989T5 (de) Ventilanordnung mit Zylinder, der Durchgangsbohrungen aufweist
EP3009629B1 (fr) Procédé et dispositif de réglage d'une pression de charge dans un moteur à combustion avec un compresseur à ondes de pression
DE102011115206A1 (de) Abgasturbolader für eine Brennkraftmaschine
WO2011032534A1 (fr) Machine à ondes de pression gazodynamique
DE19623970C2 (de) Aufgeladener Verbrennungsmotor mit einer Abgasrückführungsleitung
AT507802B1 (de) Verfahren zur leistungsmodulation bei motorischen blockheizkraftwerken
EP3314104B1 (fr) Procédé et dispositif de fonctionnement d'un dispositif d'entraînement, dispositif d'entraînement, véhicule à moteur
DE10051325B4 (de) Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17P Request for examination filed

Effective date: 20060214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

18W Application withdrawn

Effective date: 20060509