EP1654913B1 - Ballast pour au moins une lampe a decharge a haute pression, procede pour faire fonctionner une telle lampe et systeme d'eclairage comprenant une telle lampe - Google Patents

Ballast pour au moins une lampe a decharge a haute pression, procede pour faire fonctionner une telle lampe et systeme d'eclairage comprenant une telle lampe Download PDF

Info

Publication number
EP1654913B1
EP1654913B1 EP04738920A EP04738920A EP1654913B1 EP 1654913 B1 EP1654913 B1 EP 1654913B1 EP 04738920 A EP04738920 A EP 04738920A EP 04738920 A EP04738920 A EP 04738920A EP 1654913 B1 EP1654913 B1 EP 1654913B1
Authority
EP
European Patent Office
Prior art keywords
pressure discharge
voltage
discharge lamp
converter
class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04738920A
Other languages
German (de)
English (en)
Other versions
EP1654913A1 (fr
Inventor
Bernhard Siessegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP1654913A1 publication Critical patent/EP1654913A1/fr
Application granted granted Critical
Publication of EP1654913B1 publication Critical patent/EP1654913B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc

Definitions

  • the invention relates to a ballast for at least one high-pressure discharge lamp according to the preamble of patent claim 1 and an operating method for at least one high-pressure discharge lamp and a lighting system.
  • ballast is for example in the European patent application EP 0 386 990 A2 disclosed.
  • This document describes a ballast, which allows the operation of a metal halide high-pressure discharge lamp with a frequency-modulated voltage, which may be formed, among other things, substantially sinusoidal and whose carrier frequency is in the range of 20 kilohertz to 80 kilohertz.
  • the ballast is designed in two stages. It consists essentially of a boost converter with a downstream inverter, which acts on the lamp with an alternating current.
  • the ignition device consists essentially of a built-up of several diodes and capacitors cascade circuit for voltage multiplication.
  • the FR 2 674 723 discloses a circuit arrangement for operating a high-pressure discharge lamp, in particular a vehicle headlamp. This circuit arrangement enables the operation of the high-pressure discharge lamp with a reduced number of high-voltage-carrying components.
  • the ballast according to the invention for operating at least one high-pressure discharge lamp has a voltage converter for generating a substantially sinusoidal alternating current, which is designed according to the invention as a class E converter.
  • a class E converter is here a converter according to the publication " Class E - A New Class of High-Efficiency Tuned Single-Ended Switching Power Amplifiers "by Nathan O. Sokal and Alan D. Sokal in the IEEE Journal of Solid-State Circuits, Vol. SC-10, No. 3, June 1975 Understood.
  • the basic scheme of such a class E-converter is in FIG. 20 displayed.
  • a largely sinusoidal alternating current for the at least one high-pressure discharge lamp can be generated in a simple manner. It requires no complex bridge circuits with two or more electronic switches and their control required.
  • the operation of the at least one high-pressure discharge lamp with a substantially sinusoidal alternating current has the advantage that it has no or only a very small harmonic content and therefore no acoustic resonances are excited in the discharge medium of the high-pressure discharge lamp when the frequency of the alternating current is outside the acoustic resonances , Due to the very low harmonic content of the largely sinusoidal alternating current, the effort in the radio interference suppression of the ballast is also low.
  • the sinusoidal lamp current allows a stable, in particular flicker-free lamp operation.
  • the operation of the high-pressure discharge lamp with an alternating current of high frequency of preferably greater than 100 kilohertz allows miniaturization of the ballast according to the invention, so that it can be accommodated in the lamp base.
  • the ignition of the gas discharge in the high-pressure discharge lamp is problematic because the inductance of the ignition transformer is on the order of the lamp impedance and is no longer negligible. It is known in such a case to ignite the gas discharge by means of a pulse ignition device via an auxiliary electrode of the high-pressure discharge lamp, as for example in the European published patent application EP-A 0 868 833 disclosed.
  • the inductance of the secondary winding of the ignition transformer no longer forms a parasitic element, but a functional part of the designed as a class E converter voltage converter and not only during the ignition phase of the high pressure discharge lamp, but during the entire lamp operation.
  • the ballast according to the invention is particularly well suited to the operation of low-pressure discharge lamps, such as high-pressure discharge lamps in motor vehicle headlights or in projection applications, the electrical power between 25 watts and 35 watts, and in particular of high pressure discharge lamps comparatively low burning voltage of less than or equal to 100 volts, or even less than or equal to 50 volts, as with mercury-free metal halide high pressure discharge lamps for power vehicle headlights.
  • the ballasts of these lamps are operated on the vehicle electrical system voltage of the motor vehicle.
  • the voltage load of the controllable switch of the invention designed as a class E converter voltage converter can be kept correspondingly low during operation of the aforementioned high-pressure discharge lamps with low burning voltage, although at a duty cycle of 0.5 of the controllable switch about 3.6 times the value reaches the input voltage of the voltage converter.
  • the inventively designed as a class E converter voltage converter of the ballast according to the invention is supplied with a DC voltage and advantageously has the features described below.
  • an inductance and the switching path of a controllable switch are connected between the DC voltage inputs of this voltage converter or between its positive DC voltage input and the ground potential.
  • Antiparallel to the switching path of this switch a diode is arranged. Anti-parallel means that the diode is reverse-connected with respect to the direct current provided by the DC voltage source at the DC input of the class E converter.
  • a parallel circuit to the capacitance is designed as a series resonant circuit, to which the load to be operated is coupled.
  • the series resonant circuit consists in the simplest case of a coil and a capacitor.
  • the aforementioned inductance at the DC voltage input of the voltage converter is preferably dimensioned such that it operates as a constant current source and the current flowing in the closed state over the switching path of the controllable switch or in the open state via the capacitance current from a direct current and a sinusoidal alternating current, of the Series resonant circuit is generated, composed.
  • the controllable switch is preferably switched with a clock frequency which is greater than the resonance frequency of the series resonant circuit to ensure that no voltage is applied to the controllable switch during the switching operations and the switching losses of the switch are correspondingly low.
  • the antiparallel arranged diode prevents a negative voltage builds up over the switching path of the controllable switch of the class E converter.
  • the ballast according to the invention preferably also comprises an ignition device for igniting the gas discharge in the high-pressure discharge lamp.
  • This ignition device can be arranged in the same housing as all other components of the ballast or spatially separated, for example, in the lamp base of the high-pressure discharge lamp.
  • the ignition device is advantageously coupled to its power supply to an inductor, preferably to the operating during lamp operation as a constant current source inductance of the class E converter.
  • This inductance of the class E converter is advantageously designed for this purpose as an autotransformer, in particular if a high supply voltage is required for the ignition device.
  • the ignition device is designed as a pulse ignition device, often referred to in the literature as overlay ignition device.
  • the pulse ignition device has a compact construction and can therefore easily into the lamp base of the high pressure discharge lamp to get integrated.
  • the secondary winding of the ignition transformer of the pulse ignition device can be formed as part of the series resonant circuit of the class E converter. The inductance of the aforementioned secondary winding is thus also utilized for the series resonant circuit of the class E converter.
  • the capacitance of the class E converter connected in parallel to the switching path of the controllable switch and the capacitance of the series resonant circuit keep the ignition voltage pulses away from the switch of the class E converter, because they can be regarded as short-circuiting for the ignition voltage pulses.
  • a voltage-limiting component can additionally be used in parallel with the switch or in parallel with the series connection of secondary winding of the ignition transformer and lamp.
  • a voltage-limiting component for example, a Zener diode, a suppressor diode or a gas-filled surge arrester can be used.
  • the ignition device can also be designed as a DC voltage ignition device or as a resonance ignition device.
  • Gleichtheseszündvorraum is advantageously used for very high operating frequencies of the class E converter and also has the advantage that it can be coupled during the ignition phase of the high pressure discharge lamp to the capacitance of the series resonant circuit of the class E converter.
  • the electrical connections of the at least one high-pressure discharge lamp can be arranged directly in the series resonant circuit of the class E converter or can be inductively coupled to the aforementioned series resonant circuit by means of a transformer.
  • a transformer By means of this transformer, an impedance matching of the high pressure discharge lamp can be made to the class E converter and also a galvanic isolation between the high pressure discharge lamp and the class E converter can be achieved.
  • any DC voltage source can be used, for example, in the case of a motor vehicle headlight high-pressure discharge lamp, the battery or the alternator of a motor vehicle.
  • the converter designed as a class E converter is preceded by a step-up converter in order to supply the Class E converter with a stable DC input voltage and regulate the electrical power consumption of the high-pressure discharge lamp via the regulation of the DC input voltage of the class E converter can.
  • the DC voltage supply of the class E converter obtained, for example, by rectification of the AC line voltage
  • a boost converter and a buck converter for stabilizing the supply voltage of the class E converter can be used.
  • the power consumption of the high-pressure discharge lamp is advantageously regulated via the height of the supply voltage of the class E converter, in order to ensure the formation of a stable discharge arc.
  • the components of the ionizable filling of the high pressure discharge lamp evaporate.
  • the high pressure discharge lamp can be operated in this way with significantly increased power during the transition phase.
  • an adaptation of the class E converter to the changing during the different phases of operation impedance of the high pressure discharge lamp is achieved become.
  • a power control of the high-pressure discharge lamp is also possible via the switching frequency or the duty cycle of the controllable switch of the class E converter.
  • the switching frequency and the duty cycle should be selected such that no voltage is applied to the controllable switch of the class E converter during the switching operations.
  • the switch of the class-E converter is advantageously switched such that a resonance-elevated voltage is provided at the inductance, which is arranged at the DC input becomes.
  • This resonance-boosted voltage can advantageously be used to supply the ignition device.
  • the ballast according to the invention makes it possible with simple means to generate a largely sinusoidal alternating lamp current.
  • the lamp is operated with a substantially sinusoidal alternating current whose frequency is slightly above the resonant frequency of the series resonant circuit of the class E converter.
  • the components of the series resonant circuit of the class E converter are preferably matched to the geometry of the discharge vessel and the distance of the electrodes of the high pressure discharge lamp, that the resonance frequency of the series resonant circuit of the class E converter is in a frequency range, free of acoustic resonances of the high pressure discharge lamp is.
  • the resonant frequency lies in a frequency window that is either above the acoustic resonances or located between two adjacent acoustic resonances. This ensures that no acoustic resonances are excited in the high-pressure discharge lamp, because the switching frequency of the class E converter is slightly above the resonant frequency during stationary lamp operation. As a result, a frequency modulation of the lamp current is not necessarily required.
  • the discharge vessel is cylindrical at least in the region of the gas discharge.
  • the aspect ratio that is, the ratio of electrode spacing and inner diameter of the cylindrical portion of the discharge vessel, is preferably greater than 0.86, and more preferably greater than 2. This shifts the longitudinal acoustic resonance to a low frequency and provides sufficiently wide frequency ranges that are free from acoustic resonances.
  • FIG. 1 schematically shows the circuit diagram of the ballast according to the first embodiment of the invention.
  • This ballast has a DC input with two DC voltage terminals which are connected to the voltage output of a DC voltage source 100.
  • the positive DC voltage connection is connected via an inductance 101 and the switching path of a controllable switch 102 to the negative DC voltage connection or to the internal circuit ground potential.
  • a diode 103 is connected.
  • a capacitor 104 is connected in a parallel circuit to the capacitor 104.
  • the capacitor 105 and the secondary winding 106 b of a transformer 106 are arranged.
  • the capacitor 105 and the secondary winding 106b form a series resonant circuit.
  • electrical connections for a high-pressure discharge lamp LP1 are arranged, so that when the lamp LP1 is connected, its discharge path is connected serially in the series resonant circuit.
  • an ignition device 107 is provided which has an ignition transformer 106 with a primary winding 106a and a secondary winding 106b.
  • the required ignition voltage is provided at the electrode of the high-pressure discharge lamp connected to the secondary winding 106b.
  • the ignition device 107 may be formed, for example, as a pulse ignition device.
  • FIG. 2 illustrated second embodiment of the ballast according to the invention differs from the first embodiment in that the high-pressure discharge lamp LP2 is not directly connected in the series resonant circuit of the class E converter, but is coupled via a transformer 208 to the aforementioned series resonant circuit.
  • the transformer 208 with primary winding 208a and secondary winding 208b serves to match the impedance of the lamp LP2 to the class E converter and to electrically isolate the lamp LP2 from the class E converter. Due to the impedance matching, it is also possible to operate high-pressure discharge lamps, which have an operating voltage that deviates greatly from the supply voltage of the class E converter, on the class E converter.
  • the arrangement and function of the components 200, 201, 202, 203, 204 and 205 corresponds to the arrangement and function of the components 100, 101, 102, 103, 104 and 105 of the first embodiment.
  • the ignition device 207 may also be formed as a pulse ignition device. It has an ignition transformer 206 with a primary winding 206a and a secondary winding 206b, wherein the secondary winding 206b is connected together with the high-pressure discharge lamp LP2 in the secondary circuit of the transformer 208. The connected to the secondary winding 206b electrode of the high pressure discharge lamp LP2 is applied during the ignition phase with high voltage pulses.
  • the transmission ratio of the transformer 208 and the value of the capacitance 205 and the inductance of the secondary winding 206b of the ignition transformer 206 must be taken into account.
  • the transformer 208 may be used for impedance matching in different ways in the circuit according to the FIG. 1 are inserted to get to the second embodiment.
  • the primary winding 208a of the transformer 208 may be inserted at the node between the capacitor 105 and the secondary winding 106b and the node between the capacitor 104 and the high pressure discharge lamp LP1, as in FIG FIG. 2 is shown.
  • the primary winding 208a of the transformer 208 may be inserted at the node between the secondary winding 106b and the high pressure discharge lamp LP1 and the node between the capacitor 104 and the high pressure discharge lamp LP1 (not shown). In the latter case, the transformer 208 may contribute to an increase in the ignition voltage.
  • FIG. 3 illustrated third embodiment of the ballast according to the invention is largely identical to the first embodiment.
  • the only difference between the two embodiments is in the voltage supply of the igniter 307.
  • the igniter 307 is powered by the class E converter.
  • a voltage input of the ignition device 307 is connected to the node between the inductance 301, the controllable switch 302 and capacitor 304 and the other voltage input connected to the ground potential or to the negative DC input of the class E converter.
  • Illustrated fourth embodiment of the ballast according to the invention differs from the third Ausunmgsbeispiel only by the use of an autotransformer 401 instead of the inductor 301.
  • the autotransformer has only one winding with two winding sections 401a and 401b.
  • the first winding section 401a is connected in the class E converter and performs the same function as the inductance 301 of the third embodiment.
  • the second winding section 401b is connected to a voltage input of the ignition device 407 and serves to supply voltage to the ignition device 407.
  • the center tap between the two winding sections 401a, 401b is connected to the node between the switch 402, the cathode of the diode 403 and the capacitor 404.
  • the other voltage input of the ignition device is connected to the ground potential or to the negative DC voltage connection of the DC voltage source 400.
  • the arrangement and function of the components 400, 402, 403, 404, 405, 406, 406a, 406b and LP4 are identical to the arrangement and function of the corresponding components 300, 302, 303, 304, 305, 306, 306a, 306b and LP3 of the third embodiment.
  • a symmetrical voltage doubler circuit or a cascade circuit for supplying power to the ignition device may be connected in front of the ignition device if the voltage generated by the class E converter is insufficient.
  • Illustrated fifth exemplary embodiment of the ballast according to the invention is largely identical to the fourth embodiment. It shows in contrast to the fourth embodiment details of a pulse ignition device and has an additional capacitor 511, which is connected in parallel with the DC input of the class E converter. The capacitor 511 substantially prevents a current from being fed back to the DC power source 500 from the autotransformer 501.
  • the primary winding 501a of the autotransformer 501 and the capacitor 504 form a series resonant circuit because the circuit is interrupted in parallel with the capacitor 504 consisting of the components 505, 506b and LP5 due to the non-conductive discharge path of the high-pressure discharge lamp LP5 , Since the voltage across the capacitor 504 during the ignition phase of the high-pressure discharge lamp LP5 in the blocking phase of the switch 502 can become greater than the supply voltage, there may be a temporary reversal of the current flow in the inductor 501a.
  • the Impulszündvorraum consists of the ignition transformer 506, the ignition capacitor 507, the spark gap 508, the resistor 509 and the rectifier diode 510th
  • the voltage input of the pulse igniter is via the winding 501b of the autotransformer with the node between the switch 502, the diode 503 and the capacitor 504th connected.
  • the other voltage input, that is, the node between the ignition capacitor and the primary winding 506a of the ignition transformer 506 is connected to the ground potential or to the negative DC voltage terminal of the DC voltage source 500.
  • the arrangement and function of the components 500, 501, 501a, 501b, 502, 503, 504, 505, 506, 506a, 506b and LP5 agrees with the arrangement and function of the corresponding components 400, 401, 401a, 401b, 402, 403 , 404, 405, 406, 406a, 406b and LP4 of the fourth embodiment.
  • the ignition capacitor 507 is charged by means of the DC voltage source and the autotransformer 501 via the diode 510 and the resistor 509 to the breakdown voltage of the spark gap 508.
  • the capacitor 507 Upon reaching the breakdown voltage, the capacitor 507 discharges intermittently across the spark gap 508, the discharge current flowing through the primary winding 506a of the ignition transformer 506. Due to the high gear ratio In the secondary winding 506b high-voltage pulses are induced for the electrode of the high-pressure discharge lamp LP5 which is connected to the secondary winding 506b and lead to the ignition of the gas discharge in the lamp LP5. During steady state lamp operation, the firing capacitor 507 is not charged sufficiently to initiate a spark gap 508 breakthrough.
  • FIG. 6 illustrated sixth embodiment of the ballast according to the invention is identical to the fifth embodiment.
  • the arrangement and function of the components 600, 601, 601a, 601b, 602, 603, 604, 605, 606, 606a, 606b, 607, 608, 609, 610, 611 and LP6 are identical to the corresponding components 500, 501, 501a, 501b, 502, 503, 504, 505, 506, 506a, 506b, 507, 508, 509, 510, 511 and LP5 of the fifth embodiment.
  • the sixth exemplary embodiment shows details of the controllable switch 602.
  • the controllable switch 602 is embodied here as a field-effect transistor, in particular as a MOSFET.
  • the antiparallel to its switching path connected diode 603 is already integrated as a body diode in the MOSFET 602 here.
  • the MOSFET 602 has a parasitic capacitance 612, which results from the internal structure of the MOSFET in parallel with the drain-source path and at sufficiently high switching frequencies of the field effect transistor 602, that is, when operating the high-pressure discharge lamp LP6 with an alternating current of sufficiently high frequency.
  • the capacitor 604 can be used or must be taken into account in the dimensioning of the capacitor 604.
  • the gate terminal of the field effect transistor 602 is connected to a control circuit 613 which serves to control the switching operations of the transistor 602.
  • Table 1 shows the dimensioning of the individual components of the circuit arrangement according to the sixth exemplary embodiment of the invention.
  • a DC voltage of 120 volts is provided by the DC power source 600 at the voltage input of the class E converter.
  • the field effect transistor 602 is controlled by the control circuit 613 with a switching frequency of about 87 kilohertz and a Duty cycle of 0.5 switched.
  • the ignition capacitor 607 is charged to the breakdown voltage of the spark gap 608 via the diode 610 and the resistor 609.
  • the firing capacitor 607 Upon reaching the breakdown voltage of the spark gap 608, the firing capacitor 607 is discharged intermittently via the primary winding 606a of the ignition transformer 606 and in its secondary winding 606b high voltage pulses of up to 40000 volts are induced to ignite the gas discharge in the high pressure discharge lamp.
  • the gas discharge is carried mainly by the xenon in the ionizable filling.
  • the other filling components, the metal halides evaporate and contribute to the discharge and the emission of light.
  • the supply voltage of 120 volts provided by the DC power source 600 is continuously reduced to a value of 70 volts so as to set the desired lamp power.
  • the LP6 lamp is operated at increased power to ensure the fastest possible transition to steady-state lamp operation.
  • the switching frequency of the field effect transistor 602 is increased from approximately 87 kilohertz to approximately 360 kilohertz.
  • the voltage drop across the ignition capacitor 607 no longer reaches the breakdown voltage of the spark gap 608.
  • the secondary winding 606 of the ignition transformer 606b serves as resonance inductance 606b of the series resonant circuit of the class E converter after completion of the ignition phase.
  • the high-pressure discharge lamp LP6 is a mercury-free metal halide high-pressure discharge lamp with an electrical power consumption of 30 watts and a burning voltage of about 30 volts. It serves as a motor vehicle headlight bulb.
  • the DC voltage source 600 includes a step-up converter whose voltage output forms the DC output of the DC voltage source 600 and which supplies the supply voltage generated for the class E converter from the vehicle electrical system voltage of the motor vehicle.
  • FIG. 7 Illustrated seventh embodiment is largely identical to that in FIG. 2 illustrated second embodiment of the ballast according to the invention.
  • the seventh embodiment also shows details of the pulse ignition device and the controllable switch.
  • the controllable switch is designed here as a field-effect transistor, in particular as a MOSFET 1602. It is controlled by the control circuit 1613.
  • the inductance at the positive DC voltage terminal of the DC voltage source 1600 is formed as autotransformer 1601 and connected in parallel to the DC voltage output of the DC voltage source 1600, a capacitor 1661 comparatively high capacity to prevent repercussions of the autotransformer 1601 on the DC voltage source 1600, as already in the fifth embodiment with reference to the corresponding Component 511 and the FIG. 5 was explained.
  • the first winding section 1601a of the autotransformer 1601 is connected in the class E converter, so that the positive DC voltage terminal of the DC voltage source 1600 via the first winding section 1601 a and the drain-source path of the field effect transistor 1602 with the negative DC voltage terminal of the DC voltage source 1600 and connected to the ground potential.
  • the second winding section 1602b of the autotransformer 1602 serves to supply power to the pulse ignition device. Antiparallel to the switching path, that is, to the drain-source path, the transistor 1602, a diode 1603 is connected, which is integrated here as a so-called body diode of the transistor 1602 in the transistor 1602.
  • a capacitor 1604 is connected, in the dimensioning of the parasitic capacitance 1612 of the transistor 1602 is taken into account, as already in the sixth embodiment with reference to the transistor 602 and the FIG. 6 was explained.
  • the parallel circuit to the capacitor 1604 consisting of the capacitance 1605 and the primary winding 1614a of the transformer 1614 is designed as a series resonant circuit.
  • the secondary winding 1614b of the transformer 1614 supplies the connected thereto from the secondary winding 1606b of the ignition transformer 1606 and the high pressure discharge lamp LP16, or the electrical connections of the Hochdmckentladungslanipe, existing circuit with energy.
  • the second winding section 1601b of the autotransformer 1601 is connected to the node between the source terminal of the transistor 1602, the cathode of the diode 1603 and the capacitor 1604 and the capacitor 1605.
  • the ignition capacitor 1607 is charged via the diode 1610 and the resistor 1609 to the breakdown voltage of the spark gap 1608 connected in parallel to the ignition capacitor 1607.
  • the ignition capacitor 1607 discharges intermittently across the primary winding 1606a of the ignition transformer 1606.
  • high-voltage pulses for igniting the gas discharge in the high-pressure discharge lamp are induced in the secondary winding 1606b of the ignition transformer 1606.
  • the node between the firing capacitor 1607 and the primary winding 1606a of the ignition transformer 1606 is connected to the ground potential and to the negative terminal of the DC voltage source 1600, respectively.
  • the transformer 1614 is for impedance matching of the high pressure discharge lamp LP16 to the class E converter and for galvanic isolation from the class E converter.
  • the transformer 1614 can also be designed as an autotransformer, if a galvanic isolation is not required. A dimensioning of the components used is given in Table 2.
  • a DC voltage of 80 volts is provided by the DC power source 1600 at the voltage input of the class E converter.
  • the field effect transistor 1602 is switched by the control circuit 1613 with a switching frequency of approximately 59 kilohertz and a duty cycle of 0.5.
  • the ignition capacitor 1607 is charged to the breakdown voltage of the spark gap 1608 via the diode 1610 and the resistor 1609.
  • the firing capacitor 1607 Upon reaching the breakdown voltage of the spark gap 1608, the firing capacitor 1607 is discharged intermittently across the primary winding 1606a of the ignition transformer 1606 and high voltage pulses in its secondary winding 1606b of up to 40000 volts for igniting the gas discharge in the high pressure discharge lamp.
  • the gas discharge is carried mainly by the xenon in the ionizable filling.
  • the other filling components, the metal halides evaporate and contribute to the discharge and the emission of light.
  • the supply voltage of 80 volts provided by the DC power source 1600 is continuously reduced to a value of 40 volts so as to adjust the desired lamp power.
  • the electrical properties, in particular the impedance of the high-pressure discharge lamp LP16 change considerably during the transition from the ignition phase to the stationary operating state.
  • the LP16 lamp is operated at increased power to ensure the fastest possible transition to steady-state lamp operation.
  • the switching frequency of the field effect transistor 1602 is increased from approximately 59 kilohertz to approximately 215 kilohertz.
  • the voltage drop across the ignition capacitor 1607 no longer reaches the breakdown voltage of the spark gap 1608.
  • the high-pressure discharge lamp LP 16 is a mercury-free metal halide high-pressure discharge lamp with an electrical power consumption of 30 watts and a burning voltage of about 30 volts, as already described in the sixth exemplary embodiment. It serves as a motor vehicle headlight bulb.
  • the DC voltage source 1600 includes a step-up converter whose voltage output forms the DC voltage output of the DC voltage source 1600 and which generates the supply voltage for the class E converter from the vehicle electrical system voltage of the motor vehicle.
  • the step-up converter can be dispensed with if the vehicle electrical system voltage is sufficiently high or if the transformer 1614 is suitably dimensioned.
  • FIG. 8 is as a curve A, the timing of the during the ignition phase of the high pressure discharge lamp LP6 from the control circuit 1613 to the gate of Transistor 1602 supplied substantially rectangular control voltage and curve B as the time course of the voltage drop across the switching path, that is, the drain-source path of the transistor 1602 shown.
  • the zero level of the two voltage curves is indicated in each case by the number 1 or 2 with an adjoining horizontal arrow.
  • the voltage across the drain-source path reaches a maximum value of 216 volts.
  • Transistor 1602 is turned on and off only while the voltage drop across the drain-source path is zero.
  • the duty cycle of the control voltage for the gate of the transistor 1602 is 0.5.
  • the switching frequency of the transistor 1602 is 59 kilohertz.
  • the stationary operating state, after completion of the ignition phase of the high pressure discharge lamp LP6 is in FIG. 9 shown.
  • the curve C shows the time profile of the supplied by the control circuit 1613 to the gate of the transistor 1602, substantially rectangular control voltage.
  • the drain-source path of transistor 1602 is electrically conductive while the gate control voltage of transistor 1602 is greater than zero volts.
  • the duty cycle of the control voltage is 0.5.
  • the switching frequency of the transistor 1602 is 215 kilohertz.
  • the curve F shows the corresponding temporal voltage curve over the drain-source path of the transistor 1602.
  • the zero levels of the two voltage waveforms are indicated by the numeral 1 and 2, respectively, with a trailing horizontal arrow.
  • the curve D shows the time profile of the lamp current and the curve E the time profile of the voltage across the discharge path of the high pressure discharge lamp LP6.
  • the zero levels of curves D and E are indicated by the numeral 3 with the trailing horizontal arrow.
  • the lamp current D and the lamp voltage E are in a very good approximation sinusoidal.
  • the rms value of the lamp current is 932 mA and the rms value of the lamp voltage, that is, the burning voltage of the lamp LP6, is 32.7 volts.
  • Lamp current D and lamp voltage E are in phase and their frequency is 215 kilohertz.
  • FIGS. 10 to 17 Further embodiments of the ballast according to the invention are in the FIGS. 10 to 17 shown.
  • the embodiments according to the FIGS. 10 to 16 differ essentially only by the ignition device.
  • FIG. 10 illustrated eighth embodiment of the ballast according to the invention is largely identical to the first embodiment of the invention.
  • the arrangement and function of the components 700, 701, 702, 703 and 704 of the eighth embodiment correspond to the arrangement and function of the components 100, 101, 102, 103 and 104 of the first embodiment.
  • the diode 703 is designed as a Zener diode, wherein the breakdown voltage is chosen to be smaller than the maximum permissible voltage of the switch 702 and greater than the voltage occurring during operation at the switch 702. It serves as an overvoltage protection for the switch 702 during the onset of the lamp current.
  • Connected in parallel with the capacitor 704 is a series resonant circuit consisting of the capacitance 705 and the inductance 706.
  • the electrical connections of the high pressure discharge lamp LP7 are also connected.
  • the ignition device is designed here as Gleichwoodszündvorraum 707.
  • the DC output of the ignitor 707 is connected either directly in parallel with the resonant capacitance 705 or in parallel with the series connection of one or both components 701 and 706 with the resonant capacitance 705, as in FIG FIG. 10 indicated by dashed lines.
  • a DC voltage is superimposed on the capacitor 705 or via the aforementioned series connection, which leads to the ignition of the gas discharge in the high-pressure discharge lamp LP7. After ignition of the gas discharge, the ignition device is deactivated.
  • Illustrated ninth embodiment of the ballast according to the invention is identical to the eighth embodiment of the invention. Specifically, the arrangement and function of the components 800, 801, 802, 803, 804, 805 and 806 of the ninth embodiment correspond to the arrangement and function of the respective components 700, 701, 702, 703, 704, 705 and 706 of the eighth embodiment.
  • the ninth embodiment shows details of the DC ignition ignition direction.
  • the DC voltage ignition device comprises a controllable switch 809, a transformer 808 with primary winding 808a and oppositely wound secondary winding 808b and a diode 807. This ignition device is fed by the DC voltage source 800.
  • the primary winding 808 a and the switching path of the switch 809 are connected in a circuit connected to the DC voltage terminals of the DC voltage source 800.
  • the serially arranged secondary winding 808b and diode 807 are connected in parallel with the resonant capacitance 805 of the series resonant circuit of the class E converter.
  • This ignition device operates essentially on the principle of a flyback converter.
  • the switch 809 is clocked at high frequency.
  • the secondary winding 808b is dimensioned to have a very large inductance, so that due to its high reactance in operation, after ignition of the gas discharge in the lamp, no appreciable current flows through it. If this dimensioning rule for the secondary winding 808b can not be fulfilled, an asymmetry of the lamp current caused by the diode 807 can be determined by means of the in FIG. 22 mapped Zener diode 810 whose Zener voltage is higher than the voltage applied during the lamp operation (after completion of the ignition phase) across the capacitor 805 voltage. As a result, no appreciable current flows through the secondary winding 808b during stationary lamp operation (after completion of the ignition phase). In all other details, the circuits are in accordance with the Figures 11 and 22 match.
  • Illustrated tenth embodiment of the ballast according to the invention is identical to the eighth embodiment of the invention. Specifically, the arrangement and function of the components 900, 901, 902, 903, 904, 905 and 906 of the tenth embodiment correspond to the arrangement and function of the respective components 700, 701, 702, 703, 704, 705 and 706 of the eighth embodiment.
  • the tenth embodiment shows details of the DC voltage ignition device.
  • the DC voltage ignition device comprises a controllable switch 909, a transformer 908 with primary winding 908a and a co-wound secondary winding 908b and a diode 907. This ignition device is fed by the DC voltage source 900.
  • the primary winding 908 a and the switching path of the switch 909 are connected in a circuit connected to the DC voltage terminals of the DC voltage source 900.
  • the serially arranged secondary winding 908b and diode 907 are connected in parallel with the series connection of the resonance capacitance 905 and the resonance inductance 906 of the series resonant circuit of the class E converter.
  • This ignition device operates during the ignition phase of the high pressure discharge lamp LP9 essentially according to the principle of a forward converter.
  • current flowing through the primary winding 908a of the transformer 908 induces an induction voltage in the co-wound secondary winding 908b.
  • Induction voltage in secondary winding 908b drives a charging current into resonant capacitance 905 via diode 907 and resonant inductor 906.
  • Resonant inductor 906 serves to limit the charging current of resonant capacitance 905 during the firing phase of high pressure discharge lamp LP9.
  • Resonant capacitance 905 becomes high during the firing phase of high pressure discharge lamp LP9 charged to the required ignition voltage.
  • the secondary winding 908b is dimensioned to have a very large inductance, so that due to its high reactance in operation, after ignition of the gas discharge in the lamp, no appreciable current flows through it.
  • Zener diode 910 can be prevented whose Zener voltage is higher than that during lamp operation (after Termination of the ignition phase) across the capacitor 905 and the resonance inductance 906 pending voltage. As a result, no appreciable current flows through the secondary winding 908b during stationary lamp operation (after completion of the ignition phase).
  • the circuits are in accordance with the Figures 12 and 23 match.
  • FIGS. 13 to 16 show embodiments of the ballast according to the invention with a resonance ignition device.
  • FIG. 13 illustrated eleventh embodiment of the ballast according to the invention is largely identical to the first embodiment of the invention.
  • the arrangement and function of the components 1000, 1001, 1002, 1003 and 1004 of the eleventh embodiment correspond to the arrangement and function of the components 100, 101, 102, 103 and 104 of the first embodiment.
  • Connected in parallel with the capacitor 1004 is a series resonant circuit consisting of the capacitances 1005, 1007 and the inductance 1006.
  • the ignition device is designed here as a resonance ignition device.
  • the capacitance 1007 is connected in parallel with the discharge path of the high-pressure discharge lamp LP10.
  • the switch 1002 is clocked at a frequency near the resonant frequency of the series resonant circuit 1005, 1006, 1007 of the class E converter, so that the required ignition voltage for the high pressure discharge lamp LP 10 is provided to the capacitor 1007 by resonant overshoot.
  • the switch 1002 is clocked at a frequency above the resonant frequency of the series resonant circuit consisting of the components 1005 and 1006, since after ignition of the gas discharge, the capacitance 1007 is short-circuited by the discharge path of the high pressure discharge lamp LP 10 ,
  • FIG. 14 illustrated twelfth embodiment of the ballast according to the invention is almost identical to the eleventh embodiment.
  • the arrangement and function of the components 1100, 1101, 1102, 1103, 1104, 1105 and 1106 of the twelfth embodiment correspond to the arrangement and function of the respective components 1000, 1001, 1002, 1003, 1004, 1005 and 1006 of the eleventh embodiment.
  • the series resonant circuit of the class E converter instead of the additional capacitance 1007 has an additional inductance 1107 which is connected in parallel to the discharge path of the high-pressure discharge lamp LP11.
  • the switch 1102 is clocked at frequency near the resonant frequency of the series resonant circuit 1105, 1106, 1107 of the class E converter, so that the required ignition voltage for the high pressure discharge lamp LP11 is provided by the resonant overshoot at the inductor 1107.
  • the switch 1102 is clocked at a frequency above the resonance frequency of the series resonant circuit consisting of the components 1105 and 1106.
  • FIG. 15 illustrated thirteenth embodiment of the ballast according to the invention is almost identical to the eleventh embodiment.
  • the arrangement and function of the components 1200, 1201, 1202, 1203, 1204, 1205, 1206 and 1207 of the thirteenth embodiment correspond to the arrangement and function of the corresponding components 1000, 1001, 1002, 1003, 1004, 1005, 1006 and 1007 of FIG Eleventh embodiment.
  • the diode 1203 may be formed as a Zener diode to ensure overvoltage protection for the switch 1202.
  • the resonant circuit components 1206 and 1207 are excited by an external AC power source 1208 and not by the DC power source of the class E converter.
  • FIG. 16 illustrated fourteenth embodiment of the ballast according to the invention is almost identical to the twelfth embodiment.
  • the arrangement and function of the components 1300, 1301, 1302, 1303, 1304, 1305, 1306 and 1307 of the fourteenth embodiment correspond to the arrangement and the function of the corresponding components 1100, 1101, 1102, 1103, 1104, 1105, 1106 and 1107 of the twelfth embodiment.
  • the resonant circuit components 1306 and 1307 are excited during the ignition phase of the high-pressure discharge lamp LP 13 by an external AC voltage source 1308 and not by the DC voltage source of the class E converter.
  • FIG. 17 is schematically shown the circuit diagram of the ballast according to the fifteenth embodiment of the invention.
  • This ballast has a DC input with two DC voltage terminals connected to the voltage output of a DC voltage source 1400.
  • the positive DC voltage terminal is connected via the primary winding 1401 b of a transformer 1401 and the switching path of a controllable switch 1402 to the negative DC voltage terminal or to the internal circuit ground potential.
  • a diode 1403 is connected.
  • Parallel to the switching path of the switch 1402 and also in parallel with the diode 1403, a capacitor 1404 is connected.
  • the capacitor 1405 and the inductance 1406 are arranged.
  • the capacitor 1405 and the inductor 1406 form a series resonant circuit.
  • electrical connections for a high-pressure discharge lamp LP14 are arranged, so that when the lamp LP14 is connected, its discharge path is connected serially in the series resonant circuit.
  • an auxiliary voltage is generated which can be used, for example, to supply power to the control circuit of the switch 1402 or to supply power to one of the ignition devices described above.
  • FIG. 18 a preferred embodiment of a high-pressure discharge lamp is shown, which is operated with the ballast according to the invention.
  • This lamp is a mercury-free high-pressure discharge lamp with a power consumption of 25 watts to 35 watts, which is intended for use in a motor vehicle headlight.
  • the discharge vessel 1 of this lamp has a tubular, cylindrical central portion 10, which consists of sapphire.
  • the open ends of the section 10 are each through a ceramic plug 11 and 12 closed from polycrystalline alumina.
  • the inner diameter of the circular cylindrical portion 10 is 1.5 millimeters.
  • two electrodes 2, 3 are arranged so that their discharge-side ends protrude into the interior of the central, cylindrical portion 10 and have a spacing of 4.2 millimeters.
  • the ionizable filling enclosed in the discharge vessel 1 consists of xenon with a cold filling pressure of 5000 hectopascal and a total of 4 milligrams of the iodides of sodium, dysprosium, holmium, thulium and thallium.
  • the electrodes 2 and 3 are each connected via a power supply 4 or 5 with an electrical connection 16 or 17 of the lamp cap 15.
  • the discharge vessel 1 is surrounded by a translucent outer bulb 14.
  • the acoustic resonance frequencies of the high-pressure discharge lamp can be calculated.
  • the fundamental frequency of the longitudinal acoustic resonance is 70 kilohertz.
  • the fundamental frequency of the azimuthal acoustic resonance is 230 kilohertz and the fundamental frequency of the radial acoustic resonance is 476 kilohertz. This means that the fundamental frequency of the aforementioned acoustic resonances in the discharge space would each be excited by an alternating current with a frequency that is half as large as that of the aforementioned resonances.
  • the acoustic resonances are far apart. Between each of the aforementioned acoustic resonances is a resonance-free frequency range, in which a stable lamp operation without frequency modulation of the lamp AC current is possible.
  • the switching frequencies of the MOSFET switch and AC frequencies of 360 kilohertz or 215 kilohertz disclosed in the sixth and seventh embodiments of the ballast according to the invention are thus in a resonance-free frequency range.
  • FIG. 19 shows the in FIG. 18 Pictured high-pressure discharge lamp with a arranged in the lamp base 15 circuitry 18.
  • This circuit 18 includes either the complete ballast of the high pressure discharge lamp including ignition device or only the ignition device of the high pressure discharge lamp.
  • FIG. 20 the construction of a class E-converter according to the prior art is shown.
  • the structure and function of this class E converter are on the Pages 271 to 273 of the book "Power electronics: converters, applications, and design” by the authors Ned Mohan, Tore M. Undeland and William P. Robbins, second edition 1995, John Wiley & Sons, Inc. described.
  • This class E converter has a DC input with two DC voltage terminals connected to the voltage output of a DC voltage source 1500.
  • the positive DC voltage connection is connected via an inductance 1501 and the switching path of a controllable switch 1502 to the negative DC voltage connection or to the internal circuit ground potential.
  • a diode 1503 is connected.
  • Parallel to the switching path of the switch 1502 and also in parallel with the diode 1503, a capacitor 1504 is connected.
  • the capacitor 1505 and the inductor 1506 are arranged.
  • the capacitor 1505 and the inductor 1506 are dimensioned so that the parallel circuit is a series resonant circuit.
  • the load RL is connected in series in the series resonant circuit.
  • the protective diodes P6KE440 mentioned in Tables 1 and 2 can also be dispensed with.
  • FIG. 21 is schematically illustrated the circuit diagram of the ballast according to the sixteenth embodiment of the invention.
  • This ballast has a DC input with two DC voltage terminals +, - connected to the voltage output of a DC voltage source.
  • the DC voltage source generates an input voltage of 42 volts for the class E converter on capacitor C4 connected in parallel with the voltage input of the class E converter.
  • the positive DC voltage connection is via a first Winding portion of the autotransformer L2 and the switching path of the controllable field effect transistor T to the negative DC voltage terminal or connected to the internal circuit ground potential.
  • the antiparallel to the switching path of the transistor T switched body diode of the MOSFET transistor T assumes the function of the diode 1503 of in FIG. 20 pictured class e-converter.
  • a capacitor C2 Parallel to the switching path of the transistor T and also in parallel with its body diode, a capacitor C2 is connected. In a parallel circuit to the capacitor C2, the capacitor C5 and the primary winding n1 of a transformer Tr1 are arranged.
  • the transformer Tr1 is for impedance matching of the lamp La to the class E convector.
  • the secondary winding n2 of the transformer Tr1 is connected in series with the capacitor C1, the secondary winding of the ignition transformer L1, the discharge path of the high-pressure discharge lamp La and the resistor R3.
  • a suppressor diode D5 Parallel to the series circuit consisting of the secondary winding of the ignition transformer L1 and the discharge path of the lamp La, a suppressor diode D5, for example a transil diode, is connected, which serves to limit the voltage.
  • the pulse ignition device consisting of the diode D2, the resistor R2, the spark gap FS, the ignition capacitor C3 and the ignition transformer L1.
  • the ignition capacitor C3 is connected in parallel with the series circuit consisting of the spark gap FS and the primary winding L1b of the ignition transformer L1.
  • the voltage drop across the ignition capacitor C3 is monitored by the control circuit of the transistor T by means of the voltage divider resistors R4, R5.
  • the control circuit of the transistor T also monitors the lamp current by means of the resistor R3.
  • the control circuit of the transistor T consists of a logic part and driver circuits for the transistor T. In Table 3, a dimensioning of the components of the sixteenth embodiment is given.
  • the lamp La is a mercury-free metal halide high-pressure discharge lamp with a discharge vessel made of quartz glass, which has an electrical power consumption of about 35 watts and a burning voltage of about 45 volts.
  • This mercury-free metal halide high-pressure discharge lamp is by means of the class E converter operated with an AC voltage whose frequency is above the acoustic resonances of the lamp.
  • the class E converter is powered by the DC power source with an input voltage of 42 volts.
  • the transistor T is operated by means of the control circuit with a switching frequency of 230 kilohertz. That is, the control circuit of the transistor T reduces the switching frequency of the transistor T from a value slightly above 230 kilohertz slowly until the required breakdown voltage of the spark gap FS has built up on the ignition capacitor C3, which means of the voltage divider R4, R5 from the control circuit of Transistor T is detected.
  • the ignition capacitor C3 discharges via the primary winding L1b of the ignition transformer L1.
  • High-voltage pulses for igniting the gas discharge in the high-pressure discharge lamp La are generated in the secondary winding of the ignition transformer L1.
  • a current flows through the discharge path of the high-pressure discharge lamp La.
  • This lamp current is detected by means of the resistor R3 from the control circuit of the transistor T and the switching frequency of the transistor T is then increased abruptly to a value of 925 kilohertz.
  • the so-called power start of the lamp La during which the lamp La is operated with about three times the rated power to achieve a rapid evaporation of the metal halides.
  • the switching frequency of the transistor T is increased to the steady state final value of 955 kilohertz to operate the lamp La at a power close to its rated power of 35 watts.
  • the voltage drop across the resistor R3, which is proportional to the lamp current, is monitored by means of the control device of the transistor T. If this falls below a predetermined value, this is interpreted by the control circuit as a extinction of the lamp La and it is automatically set again the switching frequency of the transistor T to a value of about 230 kilohertz to re-initiate the ignition phase of the lamp La.
  • the extinction of the lamp La can also be detected by means of the voltage divider resistors R4, R5 by a voltage increase at the ignition capacitor C3.
  • the ignition of the lamp La can also be detected by means of the voltage divider resistors R4, R5 in that the voltage drop across the ignition capacitor C3 remains well below the breakdown voltage of the spark gap FS over an extended period of time, for example 100 ms or 10 period lengths.
  • the capacitor 1504 or the respective capacitors 104, 204, 304, 404, 504, 604, 1604, 704, 804, 904, 1004, 1104, 1204, 1304, 1404 and C2 of the embodiments described above may be configured as capacitors with variable capacitance.
  • the capacity can either be changed continuously between a minimum and maximum value, or switched between a few discrete, for example two, values.
  • a high efficiency can be ensured despite a change in the lamp resistance, for example caused by the ignition of the gas discharge in the lamp or the evaporation of the metal halides in the discharge vessel of the lamp, with only a small variation of the switching frequency is required.
  • adjusting the resonant circuit by adjusting the capacitance of the capacitor 1004 or 1104 to a first value during ignition and switching to a second value after the ignition of the lamp is advantageous.
  • This can be realized, for example, by designing the capacitor 1004 or 1104 as a parallel connection of two capacitors, one of which is activated or deactivated by means of a switching means.
  • the ignition device 107 may include a pulse source providing one or a series of voltage pulses for igniting the gas discharge in the high pressure discharge lamp. This may also contain any AC voltage source, the longer lasting AC voltage instead of the pulse source provides.
  • the frequency of this AC voltage is set so high that the capacitors 104, 105 and 204, 205 and 304, 305 and 404, 405 have a very low reactance at this frequency and can be regarded as a short circuit.
  • Parallel to one of the two aforementioned capacitors or to both capacitors may be connected to the voltage limiting a suppressor diode, especially if the very low reactance can not be guaranteed.
  • FIG. 24 shows an embodiment of the class E converter with a DC ignition in analogy to the embodiment of the FIG. 10 ,
  • the class E converter is constituted by the components L200, S100, D100, C200, L100 and C100 having the same function as the corresponding components 701, 702, 703, 704, 705 and 706 in FIG FIG. 10 to have.
  • a piezo transformer PT is connected in parallel with the switch S100, which generates the high voltage for charging the capacitor C100 by means of the voltage doubler consisting of the diodes D700 and D800.
  • the Zener diode D900 prevents a one-sided short circuit of the L100 and C100 resonant circuit during operation, and has the same function as the Zener diode 910 in FIG FIG. 23 , Thus, a single half-circuit switch S100 suffices for ignition and for operation of the high-pressure discharge lamp La. For example, by the according to the FIG. 23 required to generate the ignition voltage switch 909 can be saved. Due to the input capacitance of the piezo transformer PT, this can take over the function of the capacitor C200 partially or completely. The shutdown of the high voltage generation is done by changing the switching frequency of S100. It is sufficient a small change in the switching frequency, since piezotransformers have very narrow band resonances due to their high quality.
  • the ballast according to the invention is preferably used for operating a high-pressure discharge lamp for motor vehicle headlights, in particular a metal halide high-pressure discharge lamp with a translucent discharge vessel made of ceramic, as in FIGS. 18 and 19 shown as well as for example in the German patent application DE 102 42 740 or a metal halide high-pressure discharge lamp with a translucent quartz glass discharge vessel, as described, for example, in the patent application DE 103 12 290 is disclosed.
  • Table 1 Dimensioning of the components according to the sixth embodiment of the invention module dimensioning Autotransformer 601 ETD29, N67 Primary winding 601a 49 turns, 300 ⁇ H Secondary winding 601 b 131 turns Field effect transistor 602 with integrated IRF830, International Rectifier Diode 603 Capacity 604 4.7 nF, 600V Capacity 605 1.5 nF, 1500V Transformer 606 150 ⁇ H, Primary winding 606a 1 turn Secondary winding 606b 40 turns Ignition capacitor 607 70 nF, 1000V Spark gap 608 800V, EPCOS FS08X-1JM Resistance 609 110 kOhm, 0.5W Diode 610 1500 V, two US1M in series, parallel to every US1M two P6KE440 in series Capacity 611 11 ⁇ F, electrolytic capacitor 10 ⁇ F / 100 V parallel to 1 ⁇ F / 630 V.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Claims (32)

  1. Ballast pour faire fonctionner au moins une lampe à décharge à haute pression, dans lequel le ballast comprend un convertisseur de tension pour produire un courant alternatif sensiblement sinusoïdal, dans lequel le convertisseur de tension est constitué en convertisseur de classe E qui a des entrées (+, -) de tension continue, caractérisé en ce qu'une inductance ( 101 ) et la section de commutation d'un moyen ( 102 ) de commutation pouvant être commandé sont montées entre les entrées de tension continue et une diode est montée en opposition à la section de commutation du moyen ( 102 ) de commutation et une capacité ( 104 ) est montée en parallèle à la section de commutation du moyen ( 102 ) de commutation ainsi qu'en parallèle à la diode ( 103 ), l'inductance ( 101 ) ayant des dimensions telles qu'elle sert de source de courant constant et il est prévu un circuit constitué en circuit ( 105, 106b ) de résonance série en parallèle à la capacité (104), circuit auquel la lampe ( LP1 ) à décharge à haute pression à faire fonctionner est couplée, dans lequel le courant passant à l'état fermé par la section de commutation du moyen ( 102 ) de commutation ou à l'état ouvert par la capacité (104) se compose d'un courant continu et d'un courant alternatif sinusoïdal produit par le circuit ( 105, 106b ) de résonance série.
  2. Ballast suivant la revendication 1, caractérisé en ce que
    - l'entrée ( + ) de tension continue est reliée par l'inductance ( 101 ) et par la section de commutation du moyen (102) de commutation à l'entrée ( - ) négative de tension continue ou au potentiel de masse, et
    - il est prévu des bornes électriques pour au moins une lampe ( LP1 ) à décharge à haute pression, qui sont couplées au circuit ( 105, 106b ) de résonance série.
  3. Ballast suivant la revendication 1 ou 2, caractérisé en ce que le ballast a un dispositif ( 107 ) d'amorçage pour amorcer une décharge dans un gaz dans la lampe ( LP1 ) à décharge à haute pression.
  4. Ballast suivant la revendication 3, caractérisé en ce que le dispositif ( 107 ) d'amorçage est couplé, pour son alimentation en tension, à une inductance ( 301 ) du convertisseur de classe E.
  5. Ballast suivant la revendication 3, caractérisé en ce que le dispositif d'amorçage est constitué en dispositif ( 107 ) d'amorçage à impulsion.
  6. Ballast suivant la revendication 3, caractérisé en ce que le dispositif d'amorçage est constitué en dispositif ( 707 ) d'amorçage à tension continue.
  7. Ballast suivant la revendication 3, caractérisé en ce que le dispositif d'amorçage est constitué en dispositif d'amorçage par résonance.
  8. Ballast suivant la revendication 3, caractérisé en ce que le dispositif d'amorçage comporte un transformateur ( PT ) piézoélectrique.
  9. Ballast suivant la revendication 8, caractérisé en ce que l'entrée ou le côté primaire du transformateur ( PT ) piézoélectrique est monté en parallèle au commutateur ( S100 ) du convertisseur de classe E.
  10. ballant suivant la revendication 4, caractérisé en ce que l'inductance est constituée en autotransformateur ( 401 ).
  11. Ballast suivant la revendication 5, caractérisé en ce que l'enroulement ( 306b ) secondaire du transformateur ( 306 ) d'amorçage du dispositif ( 307 ) d'amorçage à impulsion fait partie d'un circuit de résonance série du convertisseur de classe E.
  12. ballant suivant la revendication 6, caractérisé en ce que le dispositif ( 707 ) d'amorçage à tension continue est couplé à une capacité ( 705 ) d'un circuit de résonance série du convertisseur de classe E.
  13. ballant suivant la revendication 1 ou 2, caractérisé en ce qu'il est prévu un transformateur ( 208 ) pour l'adaptation de l'impédance de la au moins une lampe ( LP2 ) à décharge à haute pression.
  14. procédé pour faire fonctionner au moins une lampe à décharge à haute pression par un courant alternatif sensiblement sinusoïdal, dans lequel ce courant alternatif est produit au moyen d'un convertisseur de classe E, caractérisé en ce qu'on monte, entre les entrées de tension continue du convertisseur, une inductance ( 101 ) et la section de commutation d'un moyen ( 102 ) de commutation pouvant être commandé et on monte une diode ( 103 ) en opposition à la section de commutation du moyen ( 102 ) de commutation et on monte, en parallèle à la section de commutation du moyen ( 102 ) de commutation ainsi qu'en parallèle à la diode ( 103 ), une capacité ( 104 ), l'inductance ( 101 ) fonctionnant en source de courant constant et on prévoit un circuit en parallèle à la capacité ( 104 ) et constitué sous la forme d'un circuit ( 105, 106b ) de résonance série, auquel la lampe ( LP1 ) à décharge à haute pression à faire fonctionner est couplée, dans lequel le courant passant à l'état fermé par la section de commutation du moyen (102) de commutation ou à l'état ouvert par la capacité (104) se compose d'un courant continu et d'un courant alternatif sinusoïdal produit par le circuit ( 105, 106b ) de résonance série.
  15. procédé suivant la revendication 14, caractérisé en ce que la fréquence du courant alternatif sensiblement sinusoïdal est dans une plage de fréquences qui est exempte de résonances acoustiques de la lampe à décharge à haute pression.
  16. Procédé suivant la revendication 14, caractérisé en ce que la lampe à décharge à haute pression fonctionne à une puissance électrique comprise entre 25 watt et 35 watt.
  17. Procédé suivant la revendication 14 ou 15, caractérisé en ce que la au moins une lampe à décharge à haute pression fonctionne, après que l'amorçage de la décharge dans un gaz a été effectué, pendant le fonctionnement stationnaire de la lampe à une tension de décharge inférieure ou égale à 100 volt.
  18. Procédé suivant la revendication 14, caractérisé en ce que, pour l'amorçage d'une décharge dans un gaz dans la au moins une lampe à décharge à haute pression, on produit des impulsions d'amorçage de haute tension pour la au moins une lampe à décharge à haute pression à l'aide d'un dispositif d'amorçage à impulsion qui est couplé à une inductance du convertisseur de classe E.
  19. Procédé suivant la revendication 14, caractérisé en ce que, pendant la phase d'amorçage de la au moins une lampe à décharge à haute pression, on monte le moyen de commutation du convertisseur de classe E, de façon à disposer d'une tension surélevée par résonance sur l'inductance qui est montée sur l'entrée de tension continue du convertisseur de classe E.
  20. Procédé suivant la revendication 14, caractérisé en ce qu'on règle la puissance absorbée de la au moins une lampe à décharge à haute pression en modifiant la tension d'alimentation du convertisseur de classe E.
  21. Procédé suivant la revendication 14, caractérisé en ce qu'on règle la puissance absorbée de la au moins une lampe à décharge à haute pression en modifiant la fréquence de commutation du moyen de commutation du convertisseur de classe E.
  22. Procédé suivant la revendication 14, caractérisé en ce que la fréquence de commutation du commutateur du convertisseur de classe E est plus petite avant le claquage de la section de décharge de la lampe à décharge à haute pression que pendant le fonctionnement stationnaire de la lampe.
  23. Système d'éclairage ayant une lampe à décharge à haute pression et un ballast suivant l'une ou plusieurs des revendications 1 à 13 pour faire fonctionner la lampe à décharge à haute pression, dans lequel la lampe à décharge à haute pression a une enceinte de décharge ayant des électrodes ( 2, 3 ) qui y sont disposées et un remplissage ionisable pour la production d'une décharge dans un gaz.
  24. Système d'éclairage suivant la revendication 23, caractérisé en ce que l'inductance ( 106b ) et la capacité ( 105 ) du circuit de résonance série du convertisseur de classe E sont adaptées à la distance entre les électrodes ( 2, 3 ) et à la géométrie de l'enceinte ( 1 ) de décharge, de façon à ce que la fréquence de résonance du circuit de résonance série se trouve dans une plage de fréquences qui est exempte de résonances acoustiques de la lampe à décharge à haute pression.
  25. Système d'éclairage suivant la revendication 24, caractérisé en ce que l'enceinte (1) de décharge a une géométrie cylindrique, au moins dans la partie de la décharge dans un gaz.
  26. Système d'éclairage suivant la revendication 23 ou 24, caractérisé en ce que le ballast a un dispositif d'amorçage pour amorcer une décharge dans un gaz dans la lampe à décharge à haute pression.
  27. Système d'éclairage suivant la revendication 26, caractérisé en ce que le dispositif d'amorçage est constitué en dispositif d'amorçage à impulsion, l'enroulement secondaire du transformateur d'amorçage du dispositif d'amorçage étant monté dans le convertisseur de classe E.
  28. Système d'éclairage suivant la revendication 26 ou 27, caractérisé en ce que le dispositif d'amorçage est monté dans le culot de la lampe à décharge à haute pression.
  29. Système d'éclairage suivant la revendication 23, caractérisé en ce que le ballast est monté dans le culot de la lampe à décharge à haute pression.
  30. Système d'éclairage suivant la revendication 23, caractérisé en ce que la puissance nominale de la lampe à décharge à haute pression a une valeur allant de 25 watt à 35 watt.
  31. Système d'éclairage suivant la revendication 23, caractérisé en ce que la tension de décharge de la lampe à décharge à haute pression est inférieure ou égale à 100 volt.
  32. Système d'éclairage suivant l'une ou plusieurs des revendications 23 à 31, caractérisé en ce que le système d'éclairage est un phare de véhicule automobile.
EP04738920A 2003-07-23 2004-07-23 Ballast pour au moins une lampe a decharge a haute pression, procede pour faire fonctionner une telle lampe et systeme d'eclairage comprenant une telle lampe Expired - Lifetime EP1654913B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10333729A DE10333729A1 (de) 2003-07-23 2003-07-23 Vorschaltgerät für mindestens eine Hochdruckentladungslampe, Betriebsverfahren und Beleuchtungssytem für eine Hochdruckentladungslampe
PCT/DE2004/001644 WO2005011339A1 (fr) 2003-07-23 2004-07-23 Ballast pour au moins une lampe a decharge a haute pression, procede pour faire fonctionner une telle lampe et systeme d'eclairage comprenant une telle lampe

Publications (2)

Publication Number Publication Date
EP1654913A1 EP1654913A1 (fr) 2006-05-10
EP1654913B1 true EP1654913B1 (fr) 2009-08-26

Family

ID=34088797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738920A Expired - Lifetime EP1654913B1 (fr) 2003-07-23 2004-07-23 Ballast pour au moins une lampe a decharge a haute pression, procede pour faire fonctionner une telle lampe et systeme d'eclairage comprenant une telle lampe

Country Status (10)

Country Link
US (1) US7880399B2 (fr)
EP (1) EP1654913B1 (fr)
JP (1) JP2006528411A (fr)
KR (1) KR20060033807A (fr)
CN (2) CN1857037A (fr)
AT (1) ATE441313T1 (fr)
CA (1) CA2533263A1 (fr)
DE (2) DE10333729A1 (fr)
TW (1) TW200517016A (fr)
WO (1) WO2005011339A1 (fr)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333740A1 (de) * 2003-07-23 2005-02-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Betriebsverfahren für eine Hochdruckentladungslampe
DE102004031944A1 (de) * 2004-06-30 2006-01-19 Deutsche Thomson-Brandt Gmbh Stromversorgung für eine Metalldampflampe
DE102004052299A1 (de) * 2004-10-27 2006-05-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Zündvorrichtung für eine Hochdruckentlandungslampe und Hochdruckentladungslampe mit Zündvorrichtung sowie Betriebsverfahren für eine Hochdruckentladungslampe
TW200635187A (en) * 2005-03-24 2006-10-01 Delta Electronics Inc Converter with power factor correction and DC-DC conversion function
WO2006108644A1 (fr) * 2005-04-14 2006-10-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dispositif et procede de fonctionnement d'une lampe a decharge haute pression
JP2008536275A (ja) * 2005-04-14 2008-09-04 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 高圧放電ランプの作動又は点灯用の装置、ランプベース、及び、そのような装置を備えたライティングシステム、並びに、高圧放電ランプの作動用の方法
US7778514B2 (en) * 2005-07-15 2010-08-17 International Broadband Electric Communications, Inc. Coupling of communications signals to a power line
DE102007017338A1 (de) * 2007-02-13 2008-08-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Zündtransformator für eine Entladungslampe
US20080266849A1 (en) * 2007-04-30 2008-10-30 Nielson Lyman O Fluorescent lighting conversion to led lighting using a power converter
US7880396B2 (en) * 2007-06-14 2011-02-01 Seiko Epson Corporation Projector device employing ballast with flyback converter
US9415150B2 (en) * 2007-11-09 2016-08-16 Baxter Healthcare S.A. Balanced flow dialysis machine
JP2011505659A (ja) * 2007-11-29 2011-02-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ガス放電ランプを点火する方法及び点火装置
TW200931799A (en) * 2008-01-07 2009-07-16 Midas Wei Trading Co Ltd High-voltage lamp-lighting-up piezoelectric oscillator
JP2011513903A (ja) * 2008-02-25 2011-04-28 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング ランプの点灯電圧を発生させるための装置および方法
DE102009020849A1 (de) * 2009-05-12 2010-11-18 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung zum Betreiben einer Niederdruck-Gasentladungslampe und entsprechendes Verfahren
US8274234B1 (en) * 2009-12-08 2012-09-25 Universal Lighting Technologies, Inc. Dimming ballast with parallel lamp operation
WO2011070843A1 (fr) * 2009-12-10 2011-06-16 シャープ株式会社 Dispositif d'onduleur, dispositif d'éclairage d'appareil d'affichage le comportant et appareil d'affichage
WO2011074309A1 (fr) * 2009-12-15 2011-06-23 シャープ株式会社 Dispositif onduleur, dispositif d'éclairage pour écran équipé de ce dernier, et écran
JPWO2011148711A1 (ja) * 2010-05-27 2013-07-25 京セラ株式会社 増幅回路ならびにそれを用いた送信装置および通信装置
US20140167635A1 (en) * 2010-09-22 2014-06-19 Joachim Mühlschlegel Method for Starting a High-Pressure Discharge Lamp
DE102011076333A1 (de) * 2011-05-24 2012-11-29 Osram Ag Schaltungsanordnung und Verfahren zum Betreiben mindestens einer Hochdruckentladungslampe
TWI434051B (zh) 2011-08-31 2014-04-11 Ind Tech Res Inst 高照度氣體放電燈管之額定功率判斷方法
US10117295B2 (en) 2013-01-24 2018-10-30 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
US9137866B2 (en) 2011-12-12 2015-09-15 Cree, Inc. Emergency lighting conversion for LED strings
US9871404B2 (en) 2011-12-12 2018-01-16 Cree, Inc. Emergency lighting devices with LED strings
US9167675B2 (en) * 2012-06-22 2015-10-20 Sergio Alejandro Ortiz-Gavin High frequency programmable pulse generator lighting apparatus, systems and methods
CN102833928A (zh) * 2012-09-19 2012-12-19 中山大学 一种解决高压钠灯高频驱动声谐振问题的方法
EP2713488B1 (fr) * 2012-09-28 2020-04-15 OSRAM GmbH Convertisseur électronique et système d'éclairage associé et procédé de fonctionnement d'un convertisseur électronique
US9439249B2 (en) 2013-01-24 2016-09-06 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
US10104723B2 (en) * 2013-01-24 2018-10-16 Cree, Inc. Solid-state lighting apparatus with filament imitation for use with florescent ballasts
US10045406B2 (en) 2013-01-24 2018-08-07 Cree, Inc. Solid-state lighting apparatus for use with fluorescent ballasts
DE102013107088A1 (de) * 2013-07-05 2015-01-08 Endress + Hauser Gmbh + Co. Kg Schaltungsanordnung zum Schutz von mindestens einem Bauteil eines Zweidrahtstromkreises
KR101659183B1 (ko) * 2014-07-11 2016-09-22 삼성전기주식회사 무선 전력 송신 장치 및 무선 전력 송신 시스템
CN105472854B (zh) * 2014-08-07 2018-12-18 长春理工大学 一种电容谐振充电式高气压气体放电灯的点火装置
WO2018039807A1 (fr) * 2016-08-31 2018-03-08 Selfrag Ag Procédé permettant de faire fonctionner un système de génération d'impulsions haute tension
CN106655870B (zh) * 2016-11-01 2018-12-28 南京航空航天大学 一种脉冲电压优化的脉冲电源电路
CN109526128B (zh) * 2018-11-20 2020-10-16 福建睿能科技股份有限公司 一种驱动电路及开关电源
CN113179021B (zh) * 2021-04-28 2022-07-01 中国民航大学 基于Flyback-Class E变换器的两开关交直流LED驱动装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043875A1 (fr) * 1994-08-30 1997-11-20 SLS INDUSTRIES, INC., doing business as Scientific Lighting Solutions Processeur d'energie pour lampes a iodures metalliques

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3327030A1 (de) * 1983-07-27 1985-02-07 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung zum betrieb von hochdruckgasentladungslampen
GB8625329D0 (en) 1986-10-22 1986-11-26 Valor Int Ltd Control gear for gas discharge lighting
JPH0762986B2 (ja) * 1987-01-14 1995-07-05 株式会社日立製作所 受光装置
US5121034A (en) 1989-03-08 1992-06-09 General Electric Company Acoustic resonance operation of xenon-metal halide lamps
FR2674723A1 (fr) * 1991-03-29 1992-10-02 Valeo Vision Circuit d'alimentation pour une charge electrique comme une lampe a decharge, notamment pour projecteur de vehicule et projecteur de vehicule utilisant un tel circuit.
FR2698515B1 (fr) 1992-11-20 1995-01-06 Valeo Vision Dispositif d'alimentation de lampes à décharge notamment pour projecteur de véhicule.
DE19548003A1 (de) * 1995-12-21 1997-06-26 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zur Erzeugung von Impulsspannungsfolgen, insbesondere für den Betrieb von dielektrisch behinderten Entladungen
US6008589A (en) * 1996-03-05 1999-12-28 California Institute Of Technology Single-switch, high power factor, ac-to-ac power converters
DE19644115A1 (de) 1996-10-23 1998-04-30 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb einer Hochdruckentladungslampe sowie Beleuchtungssystem mit einer Hochdruckentladungslampe und einem Betriebsgerät für die Hochdruckentladungslampe
US5789871A (en) * 1997-07-09 1998-08-04 Massachusetts Institute Of Technology Series-capacitor electronic ballast
EP0927506B1 (fr) 1997-07-22 2001-10-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Systeme d'eclairage comprenant une lampe a decharge a barriere dielectrique et un circuit pour produire des sequences d'impulsions
DE19909530A1 (de) * 1999-03-04 2001-01-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb mindestens einer Hochdruckentladungslampe und Betriebsverfahren
CN1127886C (zh) * 2001-02-21 2003-11-12 刘双喜 高频驱动气体放电灯电源
DE10233400A1 (de) * 2002-07-23 2004-02-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb von Entladungslampen
US7221103B2 (en) * 2003-07-23 2007-05-22 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Circuit for operating high-pressure discharge lamps

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043875A1 (fr) * 1994-08-30 1997-11-20 SLS INDUSTRIES, INC., doing business as Scientific Lighting Solutions Processeur d'energie pour lampes a iodures metalliques

Also Published As

Publication number Publication date
CA2533263A1 (fr) 2005-02-03
WO2005011339A1 (fr) 2005-02-03
TW200517016A (en) 2005-05-16
KR20060033807A (ko) 2006-04-19
ATE441313T1 (de) 2009-09-15
CN1857037A (zh) 2006-11-01
EP1654913A1 (fr) 2006-05-10
JP2006528411A (ja) 2006-12-14
DE502004009973D1 (de) 2009-10-08
CN1857038B (zh) 2010-10-20
US7880399B2 (en) 2011-02-01
US20070138972A1 (en) 2007-06-21
DE10333729A1 (de) 2005-03-10
CN1857038A (zh) 2006-11-01

Similar Documents

Publication Publication Date Title
EP1654913B1 (fr) Ballast pour au moins une lampe a decharge a haute pression, procede pour faire fonctionner une telle lampe et systeme d'eclairage comprenant une telle lampe
EP0868833B1 (fr) Lampe a decharge haute pression a electrode auxiliaire d'amor age, ainsi que circuit et procede pour son fonctionnement
EP1741320B1 (fr) Montage et procede pour faire fonctionner des lampes a decharge haute pression
DE60225425T2 (de) Elektronisch dimmbare ballastschaltung für eine hochintensitätsentladungslampe
DE60006046T2 (de) Vorschaltgerät für Starkstromgasentladungslampe
DE69902379T2 (de) Vorschaltgerät mit helligkeitssteuerung und regelverfahren für lampen unter verwendung eines frequenzgeregelten streufeldtransformators
DE3881025T2 (de) Schaltung fuer eine hochleistungslampe mit starker entladung.
DE3905715A1 (de) Verfahren und ballastschaltung zum betreiben einer gasentladungslampe
WO1988009108A1 (fr) Circuit pour faire fonctionner une lampe luminescente a gaz sur une source de courant continu
EP0264765A2 (fr) Disposition de circuit pour la mise en oeuvre de lampe à incandescence halogène basse tension
DE3829388A1 (de) Schaltungsanordnung zum betrieb einer last
DE19849738C2 (de) Impulsgenerator
EP1054579A2 (fr) Circuit, système électrique associé ainsi que lampe à décharge avec un tel circuit et son procédé d'alimentation
WO2008071547A1 (fr) Dispositif d'allumage pour une lampe à décharge à haute pression et lampe à décharge à haute pression avec dispositif d'allumage
EP1869954A1 (fr) Dispositif pour faire fonctionner ou allumer une lampe a decharge a haute pression, culot de lampe et systeme d'eclairage presentant un tel dispositif et procede pour faire fonctionner une lampe a decharge a haute pression
EP1181844A1 (fr) Procede et ballaste servant a alimenter un emetteur de rayonnement u.v. basse pression
WO2006053529A1 (fr) Circuit pour faire fonctionner une lampe a decharge a haute pression
WO2005011338A1 (fr) Circuit pour faire fonctionner des lampes a decharge a haute pression
EP2127495B1 (fr) Montage et procédé d'adaptation de puissance de lampes à décharge haute pression
DE112005000771T5 (de) Entladungslampen-Schaltvorrichtung
DE102004039222B4 (de) Entladungslampenansteuerschaltung
EP0794695B1 (fr) Circuit pour alimenter une lampe à décharge à hautepression
DE60117764T2 (de) Zündvorrichtung mit störkapazitätsunterdrücker
DE102004039414B4 (de) Entladungslampenansteuerschaltung
DE3013805A1 (de) Schaltung zum starten und stabilisieren einer bogenentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061026

RTI1 Title (correction)

Free format text: BALLAST FOR AT LEAST ONE HIGH PRESSURE DISCHARGE LAMP, METHOD FOR OPERATING SAID LAMP AND LIGHTING SYSTEM COMPRISING SAID LAMP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004009973

Country of ref document: DE

Date of ref document: 20091008

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091207

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091127

BERE Be: lapsed

Owner name: OSRAM G.M.B.H.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110801

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110720

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004009973

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100723

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004009973

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004009973

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140721

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009973

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202