EP1654443A1 - Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine - Google Patents

Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine

Info

Publication number
EP1654443A1
EP1654443A1 EP04763286A EP04763286A EP1654443A1 EP 1654443 A1 EP1654443 A1 EP 1654443A1 EP 04763286 A EP04763286 A EP 04763286A EP 04763286 A EP04763286 A EP 04763286A EP 1654443 A1 EP1654443 A1 EP 1654443A1
Authority
EP
European Patent Office
Prior art keywords
rotor
drive
designed
load element
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04763286A
Other languages
German (de)
English (en)
Other versions
EP1654443B1 (fr
Inventor
Antje Noack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP04763286A priority Critical patent/EP1654443B1/fr
Publication of EP1654443A1 publication Critical patent/EP1654443A1/fr
Application granted granted Critical
Publication of EP1654443B1 publication Critical patent/EP1654443B1/fr
Anticipated expiration legal-status Critical
Not-in-force legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/006Arrangements of brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/34Turning or inching gear

Definitions

  • the invention relates to a method for braking a rotor of a turbomachine and a rotating device for driving a rotor of a turbomachine according to the preamble of claim 6.
  • DE 524 329 discloses a device for slowly rotating a steam turbine shaft.
  • the excitation machine of the power generator coupled to the steam turbine shaft is operated as a motor during breaks in operation in order to drive the turbine shaft. Since the operation of the generator as a motor requires higher speeds than is necessary for the rotation during the breaks, a speed reduction gear is connected between the rotor shaft and the drive shaft of the exciter.
  • the oil store is used to hydrostatically lift the rotor during turning operation.
  • a draft of air can occur through the compressor, the combustion chamber and the turbine, which is referred to as a natural draft and is dependent on the weather conditions. This can be so large that during the shutdown program the rotor of the gas turbine continues to rotate despite the turning device being switched off.
  • the disadvantage here is that the control of the gas turbine that executes the shutdown program then does not automatically switch off the oil supply to the oil bearing because of the constant rotary movement of the rotor.
  • the automatic shutdown of the oil supply to the oil store would only take place when the speed monitoring sensor detects that the rotor is at a standstill. Fault messages from the controls are the result, which then require manual intervention.
  • To brake the rotor the oil supply must then be switched off manually, the rotor then rotating in the oil bearing without lubrication until it comes to a standstill. This can lead to wear and defects on the rotor and oil bearing.
  • the object of the invention is therefore to specify an inexpensive method for braking a rotor of a turbomachine, with which the rotational movement of the rotor caused by the draft is slowed down until the rotor stops. Furthermore, it is an object of the invention to provide a corresponding device.
  • the object related to the method is achieved by the features of claim 1 and the object directed to the device by the features of claim 6.
  • Advantageous refinements are specified in the subclaims.
  • the solution is based on the consideration that after the cooling phase has been completed to brake the rotor, the rotor can reverse the drive by means of the coupled drive shaft. drove drives.
  • the turning device which has already been designed and designed for the turning operation of the rotor, is operated inexpensively in reverse operation. Existing turbines that already have a rotating device can be converted inexpensively by minor additions or conversions.
  • the controller automatically performs the braking operation during the shutdown program after the turning operation and can then switch off the oil supply to the oil bearing after the rotor has come to a standstill. This prevents manual intervention in the shutdown program.
  • the drive is separated from the energy source and connected to a load element. Disconnecting the energy source ends the drive of the rotor and thus the rotating operation of the turbine.
  • the reverse operation of the drive can be carried out by connecting the load element to the drive.
  • the draft in the turbine maintains the rotary motion of the rotor. This transfers the rotary motion to the drive via the drive shaft.
  • the rotational energy is converted by the drive and then dissipated by means of a load element.
  • the load moment for the rotor increases, which slows the rotary movement of the rotor until it comes to a standstill.
  • the drive is advantageously designed as a hydraulic motor, which works in reverse operation as a hydraulic pump.
  • the drive is expediently designed as an electric motor, which operates in reverse operation as an electric generator.
  • the energy supply of the oil bearing can be switched off after the rotor has come to a standstill.
  • the drive is designed as a hydraulic motor, which works in reverse operation as a hydraulic pump and a throttle or a valve is provided as the load element, the liquid medium conveyed by the hydraulic motor in reverse operation can flow through a throttle or a valve.
  • a load element is therefore provided in the circuit of the medium, on which the flow energy of the conveyed medium dissipates.
  • the hydraulic motor is driven by the draft, which flows through the flow path of the turbine and thereby rotates the rotor.
  • the throttle or the valve is designed to be controllable, so that the required load torque can be set at any time to brake the rotor.
  • the load element is designed as an electrical consumer and the drive as an electric motor.
  • the rotational energy of the rotor is converted into an electric current by means of the electric motor, which works in reverse operation as an electric generator, and is released to the consumer.
  • the load of the consumer is dimensioned in such a way that the rotor starts rotating until it has come to a standstill. It is advantageous that the load element can be regulated.
  • the turbomachine is designed as a gas turbine.
  • the turbomachine is designed as a compressor.
  • FIG. 1 shows a schematic illustration of a turbomachine with a rotating device
  • FIG. 2 is a partial longitudinal section through a gas turbine.
  • FIG. 2 shows a gas turbine 1 in a partial longitudinal section. Inside, it has a rotor 3 which is rotatably mounted about an axis of rotation 2 and is also referred to as a turbine rotor or rotor shaft.
  • An intake housing 4, a compressor 5, a toroidal annular combustion chamber 6 with a plurality of coaxially arranged burners 7, a turbine 8 and the exhaust gas housing 9 follow one another along the rotor 3.
  • An annular compressor duct 10 is provided in the compressor 5 and tapers in cross-section in the direction of the annular combustion chamber 6.
  • a diffuser 11 is arranged, which is in flow connection with the annular combustion chamber 6.
  • the annular combustion chamber 6 forms a combustion chamber 12 for a mixture of a fuel and compressed air.
  • a hot gas duct 13 is in flow communication with the combustion chamber 12, the exhaust gas housing 9 being arranged downstream of the hot gas duct 13.
  • Blade rings are alternately arranged in the compressor duct 10 and in the hot gas duct 13.
  • a guide vane ring 15 formed from guide vanes 14 is followed in each case by a rotor blade ring 17 formed from rotor blades 16.
  • the stationary guide vanes 14 are connected to the stator 18, whereas the rotor blades 16 are attached to the rotor 3 by means of a turbine disk 19.
  • the rotor 3 is rotatably supported by means of an oil bearing 21.
  • the oil bearing 21 is fed in addition to a lubricating oil supply and additionally from a lifting oil supply, which serves to lift the rotor 3 hydrostatically during the rotating operation.
  • the compressor 5 draws air 21 through the intake housing 4 and compresses it in the compressor duct 10.
  • the air 21 provided at the end of the compressor 5 on the burner side is guided through the diffuser 11 to the burners 7, where it is mixed with a fuel. mixed.
  • the mixture is then burned to form a working fluid 20 in the combustion chamber 10. From there, the working fluid 20 flows into the hot gas duct 13.
  • the working fluid 20 relaxes in a pulse-transmitting manner on the guide vanes 16 arranged in the turbine 8 and on the running vanes 18, so that the rotor 3 is driven and with it a working machine coupled to it (not shown) .
  • FIG. 2 shows a hydraulic circuit diagram 35 of a rotary device 22.
  • An outlet P of the hydraulic unit 23 is connected to the inlet of a pressure reducing valve 24.
  • the output of the pressure reducing valve 24 is in flow connection with the input of a flow control valve 25, the output of which is connected to the input of a hydraulic motor 26.
  • the output of the hydraulic motor 26 is connected to the input of a pressure relief valve 27.
  • the outlet of the pressure relief valve 27 is in flow connection with the inlet T of the hydraulic unit 23.
  • a drive shaft 28 of the hydraulic motor 26 is connected to a rotor 30 of a turbomachine 31 via a gear 29.
  • the pressure reducing valve 24 and the pressure limiting valve 27 are each actuated electromagnetically.
  • the turbomachine 31 can be designed as a compressor or as a gas turbine 1.
  • the hydraulic unit 23 has a controllable hydraulic pump 32 which is driven by a motor 33.
  • the input of the hydraulic pump 32 is in flow connection with a hydraulic accumulator 34.
  • the output of the hydraulic pump 32 is designed as the output of the hydraulic unit 23.
  • the hydraulic circuit 35 is designed for three operating states: a rotating operation, a freewheeling operation and a braking operation.
  • a rotating operation When the turbomachine 31 is operating, the drive shaft 28 of the hydraulic motor 26 is not coupled to the rotor 30 of the turbomachine 31. Only when the turbomachine 31 is switched off is the drive shaft 28 coupled to the rotor 30.
  • the control of the fluid machine 31 starts the turning operation to cool it down.
  • the flow control valve 25 limits the flow rate of the hydraulic medium to a volume of max.
  • the turning mode is set to a predetermined limit value.
  • the drive shaft 28 remains connected to the rotor 30 via the gear 29.
  • the pressure reducing valve lowers the pressure of the hydraulic fluid to 10 bar.
  • the hydraulic motor 26 continues to be supplied with a sufficient amount of hydraulic medium without an effective drive torque being generated on the drive shaft 28.
  • the hydraulic motor 26 is thus decoupled from the hydraulic unit 23 as an energy source.
  • the pressure relief valve 27 remains set to 0 bar, so that there is no pressure loss in the hydraulic medium.
  • the rotor speed is reduced due to friction losses.
  • the drive shaft 28 of the hydraulic motor 26 is coupled to the rotor 30 of the turbomachine 31.
  • Pressure reducing valve 24 reduces the pressure in the hydraulic medium to 10 bar.
  • the pressure limiting valve 27 is now controlled in such a way that there is a steadily increasing pressure in the hydraulic medium.
  • the pressure relief valve 27 serves as a load element for the hydraulic motor 26 operated in reverse operation in the braking mode.
  • the hydraulic motor 26 is now driven by the rotation of the rotor 30, so that it works as a pump.
  • the hydraulic motor 26 further conveys the hydraulic medium to the pressure limiting valve 24, where pressure builds up in the hydraulic medium. This creates a load for the rotating rotor 30 that brakes and slows the rotation.
  • the desired braking torque is generated by closing the pressure limiting valve 27 in order to bring the rotor 30 to a standstill.
  • the control of the fluid machine 31 automatically switches off the supply of the oil bearing 21 of the rotor 3 at the end of the shutdown program.
  • the prevented oil supply creates friction in the oil bearing 21, which brakes the rotor 30 to a standstill. This also prevents the rotor 30 of the turbomachine 31 from being set into a rotational movement from standstill by the natural train.
  • the pressure limiting valve 24 can also be opened again in order to Relieve gate 26 and reduce the pressure in the hydraulic fluid.
  • the freewheeling operation can also be skipped, so that the turning operation is immediately followed by the braking operation.
  • the working machine can also be used as a brake, with a load element being connected instead of a payload.
  • the generator is short-circuited as a working machine, in which the internal resistance of the generator then serves as a load element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Supercharger (AREA)

Abstract

L'invention concerne un procédé de freinage d'un rotor (3, 30) d'une turbomachine (31) comportant un vireur (22) qui présente un mécanisme d'entraînement alimenté par une source d'énergie et est doté d'un arbre menant (28) auquel le rotor (3, 30) peut être couplé. Pendant une phase de refroidissement de la turbine (8), le rotor (3, 30) est entraîné par le mécanisme d'entraînement à l'aide de l'arbre menant (28) alors couplé. L'invention vise à obtenir un procédé de freinage d'un rotor (3, 30) d'une turbomachine (31), qui permette de ralentir la rotation du rotor (3, 30) due au courant d'air travsersant la turbine (8) jusqu'à l'arrêt du rotor (3, 30). Pour ce faire et au terme de la phase de refroidissement destinée à freiner le rotor (3, 30), ce dernier entraîne le mécanisme d'entraînement en marche inverse à l'aide de l'arbre menant (28) couplé.
EP04763286A 2003-08-13 2004-07-16 Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine Not-in-force EP1654443B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04763286A EP1654443B1 (fr) 2003-08-13 2004-07-16 Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03018376A EP1507068A1 (fr) 2003-08-13 2003-08-13 Procédé de freinage d'un rotor d'une turbomachine et un appareil de rotation pour entraíner le rotor d'une turbomachine
EP04763286A EP1654443B1 (fr) 2003-08-13 2004-07-16 Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine
PCT/EP2004/007945 WO2005019603A1 (fr) 2003-08-13 2004-07-16 Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine

Publications (2)

Publication Number Publication Date
EP1654443A1 true EP1654443A1 (fr) 2006-05-10
EP1654443B1 EP1654443B1 (fr) 2007-03-21

Family

ID=33560790

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03018376A Withdrawn EP1507068A1 (fr) 2003-08-13 2003-08-13 Procédé de freinage d'un rotor d'une turbomachine et un appareil de rotation pour entraíner le rotor d'une turbomachine
EP04763286A Not-in-force EP1654443B1 (fr) 2003-08-13 2004-07-16 Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03018376A Withdrawn EP1507068A1 (fr) 2003-08-13 2003-08-13 Procédé de freinage d'un rotor d'une turbomachine et un appareil de rotation pour entraíner le rotor d'une turbomachine

Country Status (6)

Country Link
US (1) US8641360B2 (fr)
EP (2) EP1507068A1 (fr)
CN (1) CN100543276C (fr)
DE (1) DE502004003297D1 (fr)
ES (1) ES2281820T3 (fr)
WO (1) WO2005019603A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101043B1 (fr) * 2008-03-11 2013-05-29 Siemens Aktiengesellschaft Procédé de chauffage d'une turbine à vapeur
EP2444624A1 (fr) * 2009-12-04 2012-04-25 Perkins Engines Company Limited Frein de turbocompresseur
DE102010054841A1 (de) * 2010-12-16 2012-06-21 Andreas Stihl Ag & Co. Kg Blasgerät mit einem elektrischen Antriebsmotor
EP2644841A1 (fr) 2012-03-29 2013-10-02 Alstom Technology Ltd Procédé de fonctionnement d'un moteur à turbine après l'arrêt de flamme
DE102012208762B4 (de) 2012-05-24 2022-05-05 Robert Bosch Gmbh Verfahren zum Abbremsen einer Strömungsmaschine mit einer Synchronmaschine
US20140069744A1 (en) * 2012-09-12 2014-03-13 General Electric Company System and method for supplying lube oil to a gas turbine
DE102012222637A1 (de) 2012-12-10 2014-06-12 Senvion Se Turnantrieb für eine Windenergieanlage und Verfahren zum Drehen der Rotorwelle einer Windenergieanlage
EP2757230A1 (fr) * 2013-01-16 2014-07-23 Alstom Technology Ltd Procédé pour la rotation d'un rotor de turbomachine et appareil de rotation pour appliquer ce procédé
CN105604997A (zh) * 2014-11-21 2016-05-25 北京中如技术有限公司 高速动平衡机液压系统的高压顶升液压系统
EP3103974A1 (fr) * 2015-06-09 2016-12-14 General Electric Technology GmbH Système d'engrenage de rotation de turbine
DE102015214270A1 (de) * 2015-07-28 2017-02-02 Siemens Aktiengesellschaft Turbinenanlage
WO2018075020A1 (fr) * 2016-10-19 2018-04-26 Halliburton Energy Services, Inc. Commande d'arrêt de combustion de moteur
US11022004B2 (en) 2017-03-31 2021-06-01 The Boeing Company Engine shaft integrated motor
US10378442B2 (en) 2017-03-31 2019-08-13 The Boeing Company Mechanical flywheel for bowed rotor mitigation
US10427632B2 (en) 2017-03-31 2019-10-01 The Boeing Company Bowed rotor nacelle cooling
US10753225B2 (en) * 2017-03-31 2020-08-25 The Boeing Company Engine turning motor via pneumatic or hydraulic motor
GB201720944D0 (en) * 2017-12-15 2018-01-31 Rolls Royce Plc Rotor bow management
CN114635760A (zh) * 2022-03-30 2022-06-17 岭澳核电有限公司 核电厂用汽轮机盘车控制系统和汽轮机盘车设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE431934C (de) * 1925-08-01 1926-07-19 Brown Boveri & Cie Akt Ges Einrichtung zur gleichmaessigen Waermeverteilung bei Dampfturbinenwellen
DE524329C (de) * 1928-08-31 1931-05-13 Siemens Schuckertwerke Akt Ges Einrichtung zum langsamen Drehen einer Dampfturbinenwelle
GB1050063A (fr) * 1963-08-19 1900-01-01
US3655293A (en) * 1970-08-11 1972-04-11 Sorvall Inc Ivan Variable and reversing hydraulic drive system for turbines
US4854120A (en) * 1986-09-26 1989-08-08 Cef Industries, Inc. Performance envelope extension method for a gas turbine engine
EP0908602B1 (fr) * 1997-10-06 2003-03-12 ALSTOM (Switzerland) Ltd Procédé de conduite d'une centrale à cycle combinée
US7387182B2 (en) * 2002-04-08 2008-06-17 Patrick Fleming Turbine generator regenerative braking system
JP5178400B2 (ja) * 2008-08-28 2013-04-10 株式会社東芝 洗濯乾燥機
JP5359225B2 (ja) * 2008-11-26 2013-12-04 日本精工株式会社 電動機、産業機械用モータ及び電気自動車用ホイールモータ
US8226522B2 (en) * 2008-12-29 2012-07-24 Hamilton Sundstrand Corporation Coupling for generator/starter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005019603A1 *

Also Published As

Publication number Publication date
EP1654443B1 (fr) 2007-03-21
WO2005019603A1 (fr) 2005-03-03
CN1833095A (zh) 2006-09-13
CN100543276C (zh) 2009-09-23
EP1507068A1 (fr) 2005-02-16
DE502004003297D1 (de) 2007-05-03
US8641360B2 (en) 2014-02-04
ES2281820T3 (es) 2007-10-01
US20110027061A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
EP1654443B1 (fr) Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine
DE602005000610T2 (de) Gasturbinenvorrichtung
DE602005001528T2 (de) Gasturbinentriebwerk
DE69930876T2 (de) Vorrichtung und verfahren zur leistungssteigerung einer turbine
EP1647675B1 (fr) Alimentation d'huile adéquate pour un système de réservoir d'huile pour un moteur d'aéronef
DE19824766C2 (de) Gasturbine sowie Verfahren zur Kühlung einer Turbinenstufe
DE69923716T2 (de) Hochdruckgasturbinenaggregat mit hochdruckkolbenkompressor
DE2721165A1 (de) Verfahren und vorrichtung fuer den luftstart eines turbofan-triebwerks
DE4106752A1 (de) Vorrichtung zum liefern von abzapfluft aus einem flugzeuggasturbinentriebwerk
DE112014004335T5 (de) Gasturbine, Gasturbinen-Steuergerät und Gasturbinen-Betriebsverfahren
WO2005090763A1 (fr) Compresseur, moteur a combustion interne comportant un compresseur et procede de fonctionnement d'un moteur a combustion interne
DE2805115A1 (de) Motorturboladereinrichtung
DE102020116235A1 (de) Regulierung des Brennstoffs für eine Turbine
DE2059314A1 (de) Integriertes Brennstoff-Steuersystem fuer einen Gasturbinenmotor
EP3712410A1 (fr) Système de pompage mécanique de carburant à la demande
DE112016001877T5 (de) Kompressorangetriebene ORC-Abwärmerückgewinnungseinheit und Steuerungsverfahren
DE2430525B2 (de) Brennstoffversorgungsanlage für Gasturbinentriebwerke
DE10238658A1 (de) Verdichter, insbesondere in einem Abgasturbolader für eine Brennkraftmaschine
WO2009000804A2 (fr) Turbocompresseur à gaz d'échappement
DE102008051980A1 (de) Luftversorgungsvorrichtung für eine Brennstoffzelle
DE69826227T2 (de) Betriebsweise für einen Strahlmotor
DE1056428B (de) Verfahren zum Regeln einer Brennkraftkolben-maschine mit Abgasturbolader
EP2002088B1 (fr) Turbine à gaz pour centrale thermique,, et procédé permettant de faire fonctionner une telle turbine à gaz
DE595658C (de) Brennkraftmaschine mit mindestens einer Abgasturbine zum Antriebe eines Ladegeblaeses
DE69109173T2 (de) Hochdruck-Zweiwellengasturbine mit Radialrotoren.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE ES GB IT LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004003297

Country of ref document: DE

Date of ref document: 20070503

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2281820

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130807

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131010

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140709

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150918

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150727

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140717

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150716

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004003297

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160716