EP1646777B1 - Verfahren und vorrichtung zur steuerung einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zur steuerung einer brennkraftmaschine Download PDF

Info

Publication number
EP1646777B1
EP1646777B1 EP04738673A EP04738673A EP1646777B1 EP 1646777 B1 EP1646777 B1 EP 1646777B1 EP 04738673 A EP04738673 A EP 04738673A EP 04738673 A EP04738673 A EP 04738673A EP 1646777 B1 EP1646777 B1 EP 1646777B1
Authority
EP
European Patent Office
Prior art keywords
variable
fuel
amount
air
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04738673A
Other languages
English (en)
French (fr)
Other versions
EP1646777A1 (de
Inventor
Andreas Michalske
Thomas Zein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1646777A1 publication Critical patent/EP1646777A1/de
Application granted granted Critical
Publication of EP1646777B1 publication Critical patent/EP1646777B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1479Using a comparator with variable reference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine according to the preambles of the independent claims.
  • a correction unit calculates a correction value for the correction of a pump characteristic field on the basis of the fuel quantity to be injected and various input signals such as, for example, the air quantity and a lambda signal.
  • the correction device the fuel quantity to be injected and the actually injected fuel quantity are compared and, depending on this comparison, the pump map is corrected such that the defined relationship between the fuel quantity to be injected and the control signal for the fuel pump is restored. It is further provided that, starting from a humidity signal, a correction signal for correcting the air quantity is specified.
  • the desired amount of fuel QKW is limited to a maximum allowable amount of fuel through a minimum selection. This limited amount of fuel then serves as fuel to be injected.
  • a method and a device for controlling an internal combustion engine is known from the unpublished DE 102 21376 known. There, a method and a device for controlling an internal combustion engine is described in which, based on operating parameters, a lambda value of the exhaust gas is determined. This is compared with the actual lambda value and, based on the comparison, a correction value for the correction of a fuel quantity or an air quantity signal is calculated.
  • a first variable characterizing the actually injected fuel quantity is determined from the sensor signal of a lambda sensor and an air mass sensor and compared with a second variable characterizing the desired fuel quantity to be injected. Based on this comparison, a first correction value for the correction of a fuel quantity and / or a second correction value for the correction of an air quantity is specified.
  • the actual amount of fuel injected would have to correspond to the desired amount of fuel. Due to tolerances and / or aging effects, the case occurs that the desired fuel quantity deviates from the actually injected fuel quantity. If now the amount of air metered to the internal combustion engine is controlled and / or regulated as a function of the desired amount of fuel to be injected, a faulty amount of air is set. A control depending on the actually injected amount of fuel is not readily possible because it is difficult to detect. By measuring the lambda value of the exhaust gas and the amount of air supplied to the internal combustion engine, the actual injected fuel quantity can be calculated and compared with the desired amount of fuel to be injected. Based on the deviation of these two signals results in a correction value.
  • the correction value can now be intervened on the air system. This is done, for example, such that the fuel amount value supplied to the air system is corrected with the corresponding correction value. Furthermore, it can be provided that directly the amount of air is corrected accordingly.
  • the lambda signals or other quantities characterizing the fuel quantity can also be used directly.
  • intervention is made directly in the fuel metering system in such a way that a quantity of fuel quantity is corrected by means of the correction value until the amount of fuel to be injected and the fuel quantity actually injected coincide.
  • a direct correction of the amount of fuel is problematic because such a correction can lead to an increase in quantity.
  • the direct intervention of the quantity corrects arbitrarily large deviations or acts in the entire engine operating range.
  • the correction value acts on the amount of fuel and / or on the amount of air.
  • the correction value which acts on the amount of fuel, limited to a maximum value.
  • the entire error is compensated by means of a direct intervention. If this is not possible, the remaining error is compensated by means of an indirect intervention.
  • the direct intervention affects the amount of fuel and the indirect intervention affects the amount of air.
  • the quantity error corresponding to the deviation between the actual and the desired fuel quantity is proportionately compensated for via a direct intervention in the metering and an adaptation to the air mass to the remaining quantity error.
  • the type of intervention is dependent on the engine operating state. This is realized, for example, in that the limit and thus the proportion of the direct intervention is specified as a function of operating conditions and is thus continuously adjusted. In this case, preferably the rotational speed and / or a variable characterizing the load of the internal combustion engine are used as operating parameters.
  • the first and / or the second correction value be adapted. That is to say, in states in which the correction values can be determined, the correction values are stored in one or more characteristic fields depending on the operating state of the internal combustion engine or quantities are determined and stored which can be used to calculate the correction values according to a mathematical method. In states in which the correction values can not be determined, the stored correction values or the stored variables are used.
  • the cylinders of the internal combustion engine are divided into at least two groups, and that different second correction values are specified for the different groups. This means that the mean quantity error of the two groups is corrected by a fuel quantity intervention. The remaining and / or the individual errors of the individual groups are compensated by an indirect intervention.
  • the correction takes place by means of a fuel quantity intervention up to a certain error.
  • an additional correction by means of an air quantity intervention takes place.
  • FIG. 1 is a fuel quantity control designated 100. This is dependent on various input variables, such as the speed of the internal combustion engine and a signal FP, which characterizes the driver's desire, a desired amount of fuel to be injected MES. This is also referred to below as the second size.
  • This signal regarding the desired amount of fuel to be injected passes through a node 105 to a fuel quantity actuator 110.
  • the fuel quantity actuator 110 determines the time and the end and thus the duration of the fuel metering. Preferably, this is designed as a solenoid valve or as a piezoelectric actuator, which is preferably arranged in an injector, an injection nozzle, or another actuator.
  • An air quantity control 200 supplies an air quantity signal MLS on the basis of various input variables, such as the engine speed N and a quantity MES characterizing the quantity of fuel to be injected.
  • the output signal of the quantity control 100 is preferably used.
  • an air quantity actuator 210 is acted upon via a node 205.
  • the air quantity actuator 210 sets the appropriate amount of air. This is preferably an actuator for influencing the amount of recirculated exhaust gas in the form of an exhaust gas recirculation controller, a throttle valve, which influences the amount of air supplied to the internal combustion engine, and / or a supercharger.
  • a fuel quantity calculation 120 determines, based on various input variables, a quantity MEI which characterizes the actually injected fuel quantity, which is also referred to below as the first quantity.
  • the fuel quantity calculation processes, in particular, a signal L, which characterizes the oxygen concentration in the exhaust gas, and a signal MLI, which characterizes the air quantity supplied to the internal combustion engine.
  • the two signals are preferably provided by sensors, in particular a lambda probe and an air mass meter. Alternatively, these signals can also be determined on the basis of other variables.
  • Input variables can be taken into account by the fuel quantity control, the air flow control and the fuel quantity calculation yet other input variables.
  • the first and the second quantities MES and MEI arrive at a node 125 with different signs.
  • the output point DME of the node indicates the deviation between the actually injected fuel quantity and the desired quantity of fuel to be injected.
  • This signal DME with respect to the injection quantity error passes via an integrator 130 and a limiter 132 to a first characteristic map 134.
  • the output QME of the first characteristic field is applied to the second input of the connection point 105.
  • the limiter 132 in turn supplies the integrator 130 with a signal. Both the limiter 132 and the map 134 are different Operating characteristics, such as the speed N of the internal combustion engine and other variables supplied.
  • the signal DME with respect to the injection amount error passes through a filter 140 and a sign inverter 142 to a second map 144, whose output QML of the second input of the node 205 is applied.
  • the second map 144 also different signals with respect to various operating characteristics such as the rotational speed N are supplied.
  • the integrator 130 and the limiter 132 act as integral controllers with output limiting and anti-windup function. That is, the injection quantity error is integrated by the integrator 130. Upon reaching the limit value of the limiter 132, the integrator is stopped, this is indicated by the connection between the limiter and the integrator 130. Once the limit value of the limiter 132 is reached, the output of the limiter remains at the value achieved.
  • the limiting value of the limiter 132, to which the output signal of the integrator 130 is limited, according to the invention in one embodiment depending on the operating condition of the internal combustion engine can be predetermined.
  • the limiting value is preferably predefined as a function of the rotational speed N of the internal combustion engine and / or further operating parameters.
  • the output of limiter 132 is the amount of error that is to be compensated for by direct intervention on the amount of fuel. This is adapted in the subsequent first map 134. This means, if a specific operating point of the internal combustion engine is reached, which is preferably defined by the rotational speed and the load, then based on the comparison between the first and the second variable, the injection quantity error is determined and integrated and limited. The value thus determined is then stored in the map 134 depending on the operating point.
  • the injection amount error will not be completely corrected via the fuel metering. Accordingly, the input signal of the integrator remains nonzero, i. the injection quantity error is not equal to zero. This remaining injection quantity error is compensated by the amount of air.
  • the signs of the two interventions differ, this is ensured by the inverted 142.
  • the filter 140 which is preferably realized as a low-pass filter, the dynamics of the air branch can be applied independently of the fuel quantity measurement.
  • the air flow branch has a dynamically slower behavior so that the learning of the fuel quantity correction is not unnecessarily affected.
  • the correction quantities QME for the quantity of fuel to be injected and QML for the amount of air are calculated and stored in the maps 134 and 144 depending on the respective operating point, i. learned. If the first variable MEI does not exist, this is the case, for example, if the lambda signal does not provide reliable values, the values stored in the maps 134 and 144 are used to correct the fuel quantity and / or the air quantity.
  • FIG. 2 a further embodiment of the procedure according to the invention is shown.
  • This procedure is provided in particular for special so-called V-engines, which essentially consist of two in-line engines which have a common crankshaft.
  • this embodiment is not limited to such engines, it is generally applicable to internal combustion engines, in which the cylinders of the internal combustion engine are assigned to different banks / groups, wherein each of the banks / groups is assigned in each case an actuating element for influencing the amount of air.
  • the approach is also applicable to a larger number of banks.
  • the procedure can also be used if each cylinder is assigned an actuating element for influencing the amount of air.
  • the quantity calculation for the first bank is the same as in FIG. 1 designated.
  • the quantity calculation for the second bank is designated 320.
  • the first variable associated with the first bank is hereinafter referred to as MEIL and the first variable associated with the second bank is designated MEIR.
  • the node 125 of the first bank corresponds to the node 325 of the second bank.
  • the quantity error of the first bank is denoted by DMEL and the quantity error of the second bank by DMER.
  • the first bank elements 140, 142, 144 and 205 are labeled 340, 342, 344 and 305 at the second bank. The operation of these elements corresponds to the operation of the corresponding elements of the FIG. 1 ,
  • the integrator 130 is supplied with the output of a divider 350, which processes the output of the link 160.
  • the node 160 is supplied with the injection quantity error of the first bank DMEL and the injection amount error of the second bank DMER. This means that the integrator is supplied with the mean value of the two injection quantity errors of the two different banks. It is understood that the input signals of the quantity calculation 120 or 320 are provided by different sensors that are assigned to the individual banks.
  • the procedure of FIG. 1 is essentially transferred to one of the banks, ie the individual elements are designed twice.
  • the correction of the amount of fuel is uniform for both banks. This is necessary because a different correction would cause interference with other controls.
  • the limit is reached during the fuel quantity correction, the remaining bank-specific residual errors are compensated via the air volume interventions. The same applies if different injection quantity errors occur for the different banks. In this case, the average error is compensated by the fuel quantity intervention, and the bank-individual residual errors are additionally compensated by the air volume interventions.
  • FIG. 3 another embodiment is shown. It essentially corresponds to the functionality of the embodiment 2, but requires less overhead on computer runtime and storage space requirements.
  • Elements described are designated by corresponding reference numerals.
  • the injection quantity error DMEL of the first bank arrives at a connection point 410 and at a connection point 420. Accordingly, the injection quantity error of the second bank DMER likewise reaches the two connection points 410 and 420.
  • the connection point 410 the sum of the two signals and, in the connection point 420, the difference between the two formed two signals.
  • the output signals of the connection points 410 and 420 are divided by two.
  • the filter 140 is thus supplied with the mean value of the two injection quantity errors of the two banks.
  • the filter 340 is supplied with the deviation from the mean value.
  • a filter 430 and on the other the two nodes 440 and 450 applied.
  • the filter is preferably designed as a factor member. Accordingly, the output of the map 344, the two nodes 440 and 450 are applied.
  • the output signal of the filter 430 reaches the limiter 132.
  • the signal QMLL is present at the output of the connection point 440 and the signal QMLR is present at the output of the connection point 450.
  • the three correction terms QME, QMLL and QMLR are determined by suitable adaptive linkage with suitable sign choice. That is, the elements 430 and 132 are predeterminable depending on the operating point.
  • the two interventions on the air quantity are symmetrical with respect to the mean with the opposite sign.
  • the maps 144 and / or 344 may alternatively be configured as any learning functions.
  • the correction takes place via a uniform intervention on the fuel quantity for all cylinders.
  • the correction by means of the intervention on the air quantity takes place individually for different groups of cylinders. It can be provided that the correction takes place for individual cylinders or common to several cylinders.
  • the number of correction values preferably corresponds to the number of air mass meters and / or the number of control elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Es werden eine Vorrichtung und ein Verfahren zur Steuerung einer Brennkraftmaschine, beschrieben. Ausgehend von Betriebskenngrössen wird eine erste Grösse, die die tatsächlich eingespritzte Kraftstoffmenge charakterisiert, und eine zweite Grösse, die die gewünschte einzuspritzende Kraftstoffmenge charakterisiert, ermittelt. Die erste Grösse wird mit der zweiten Grösse verglichen. Ausgehend von diesem Vergleich ist ein erster Korrekturwert zur Korrektur einer Kraftstoffmenge und ein zweiter Korrekturwert zur Korrektur einer Luftmenge vorgebbar. Der erste Korrekturwert wird auf einen Maximalwert begrenzt.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.
  • Aus der DE 198 31 748 ist ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine bekannt. Eine Korrektureinheit berechnet ausgehend von der einzuspritzenden Kraftstoffmenge und verschiedenen Eingangssignalen wie beispielsweise der Luftmenge und einem Lambdasignal ein Korrekturwert zur Korrektur eines Pumpenkennfeldes. In der Korrektureinrichtung wird die einzuspritzende Kraftstoffmenge und die tatsächlich eingespritzte Kraftstoffmenge verglichen und abhängig von diesem Vergleich das Pumpenkennfeld derart.korrigiert, dass die definierte Beziehung zwischen der einzuspritzenden Kraftstoffmenge und dem Steuersignal für die Kraftstoffpumpe wiederhergestellt wird. Ferner ist vorgesehen, dass ausgehend von einem Feuchtesignal ein Korrektursignal zur Korrektur der Luftmenge vorgegeben wird. Die gewünschte Kraftstoffmenge QKW wird auf eine höchst zulässige Kraftstoffmenge über eine Minimalauswahl begrenzt. Diese begrenzte Kraftstoffmenge dient dann als einzuspritzende Kraftstoffmenge.
  • Ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine ist aus der nicht vorveröffentlichten DE 102 21376 bekannt. Dort wird ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine beschrieben, bei dem ausgehend von Betriebskenngrößen ein Lambdawert des Abgases bestimmt wird. Dieser wird mit dem tatsächlichen Lambdawert verglichen und ausgehend von dem Vergleich wird ein Korrekturwert zur Korrektur eines Kraftstoffmengen- bzw. eines Luftmengensignals gerechnet.
  • Im Wesentlichen wird hier aus dem Sensorsignal eines Lambdasensors und eines Luftmassensensors eine die tatsächlich eingespritzte Kraftstoffmenge charakterisierende erste Größe bestimmt und mit einer die gewünschte einzuspritzende Kraftstoffmenge charakterisierenden zweiten Größe verglichen. Ausgehend von diesem Vergleich wird ein erster Korrekturwert zur Korrektur einer Kraftstoffmenge und/oder ein zweiter Korrekturwert zur Korrektur einer Luftmenge vorgegeben.
  • Bei einem idealen fehlerfreien System müsste die tatsächlich eingespritzte Kraftstoffmenge der gewünschten Kraftstoffmenge entsprechen. Auf Grund von Toleranzen und/oder Alterungseffekten tritt der Fall ein, dass die gewünschte Kraftstoffmenge von der tatsächlich eingespritzten Kraftstoffmenge abweicht. Wird nun die der Brennkraftmaschine zugemessene Luftmenge abhängig von der gewünschten einzuspritzenden Kraftstoffmenge gesteuert und/oder geregelt, wird eine fehlerhafte Luftmenge eingestellt. Eine Steuerung abhängig von der tatsächlich eingespritzten Kraftstoffmenge ist nicht ohne weiteres möglich, da diese nur schwer erfassbar ist. Durch die Messung des Lambdawertes des Abgases und der der Brennkraftmaschine zugeführten Luftmenge kann die tatsächlich eingespritzte Kraftstoffmenge berechnet und mit der gewünschten einzuspritzenden Kraftstoffmenge verglichen werden. Ausgehend von der Abweichung dieser beiden Signale ergibt sich ein Korrekturwert. Mit diesem Korrekturwert kann nun auf das Luftsystem eingegriffen werden. Dies erfolgt beispielsweise derart, dass der Kraftstoffmengenwert, der dem Luftsystem zugeführt wird, mit dem entsprechenden Korrekturwert korrigiert wird. Des weiteren kann vorgesehen sein, dass direkt die Luftmenge entsprechend korrigiert wird. Alternativ zur Berechnung der Kraftstoffmenge können auch direkt die Lambdasignale oder andere Größen, die die Kraftstoffmenge charakterisieren, verwendet werden.
  • Alternativ kann auch vorgesehen sein, dass direkt in das Kraftstoffzumess-System derart eingegriffen wird, dass eine Kraftstoffmengengröße mittels des Korrekturwerts derart korrigiert wird, bis die einzuspritzende und die tatsächlich eingespritzte Kraftstoffmenge übereinstimmen. Eine solche direkte Korrektur der Kraftstoffmenge ist problematisch, da eine solche Korrektur zu einer Mengenerhöhung führen kann. Aus Sicherheitsgründen ist es daher nicht erwünscht, dass der direkte Mengeneingriff beliebig große Abweichungen korrigiert oder im gesamten Motorbetriebsbereich wirkt.
  • Diese Einschränkungen bestehen beim indirekten Eingriff, beispielsweise über die Luftsteuerung mittels einer Abgasrückführung, nicht. Da hinsichtlich der Emissionen der indirekte Eingriff gleichwertig oder besser ist, wird üblicherweise ein indirekter Eingriff auf die Luftmenge bevorzugt.
  • Erfindungsgemäß wurde erkannt, dass Fehler der Einspritzmenge sich unter Umständen negativ auf das Fahrverhalten auswirken können.
  • Erfindungsgemäß ist deshalb vorgesehen, dass der Korrekturwert auf die Kraftstoffmenge und/oder auf die Luftmenge einwirkt. Dabei wird der Korrekturwert, der auf die Kraftstoffmenge einwirkt, auf einen Maximalwert begrenzt. Mittels dieser Vorgehensweise können sowohl Auswirkungen auf die Abgasemissionen, als auch auf das Fahrverhalten kompensiert werden. Bei einer bevorzugten Ausführungsform ist vorgesehen, dass der gesamte Fehler mittels eines direkten Eingriffs kompensiert wird. Ist dies nicht möglich, so wird der verbleibende Fehler mittels eines indirekten Eingriffs kompensiert. Der direkte Eingriff wirkt auf die Kraftstoffmenge und der indirekte Eingriff wirkt auf die Luftmenge.
  • Erfindungsgemäß wird der Mengenfehler der der Abweichung zwischen der tatsächlichen und der gewünschten Kraftstoffmenge entspricht, anteilig über einen direkten Eingriff in die Zumessung und eine Anpassung an die Luftmasse an den verbleibenden Mengenfehler kompensiert.
  • Besonders vorteilhaft ist es, wenn die Art des Eingriffes abhängig vom Motorbetriebszustand erfolgt. Dies ist beispielsweise dadurch realisiert, dass die Begrenzung und damit der Anteil des direkten Eingriffs abhängig von Betriebszustäriden vorgegeben wird und damit kontinuierlich verstellt wird. Als Betriebskenngrößen werden dabei vorzugsweise die Drehzahl und /oder eine die Last der Brennkraftmaschine charakterisierende Größe verwendet.
  • Vorzugsweise ist vorgesehen, dass der erste und/oder der zweite Korrekturwert adaptiert werden. Das heißt in Zuständen, in denen die Korrekturwerte ermittelt werden können, werden die Korrekturwerte abhängig vom Betriebszustand der Brennkraftmaschine in einem oder mehreren Kennfeldern abgelegt oder es werden Größen ermittelt und abgespeichert, die zur Berechnung der Korrekturwerte gemäß eines mathematischen Verfahrens verwendet werden können. In Zuständen, in denen die Korrekturwerte nicht ermittelt werden können, werden die abgespeicherten Korrekturwerte oder die abgespeicherten Größen verwendet.
  • Bei einer besonders vorteilhaften Ausgestaltung ist vorgesehen, dass die Zylinder der Brennkraftmaschine in wenigstens zwei Gruppen aufgeteilt sind, und dass für die unterschiedlichen Gruppen unterschiedliche zweite Korrekturwerte vorgegeben werden. Dies bedeutet, der mittlere Mengenfehler der beiden Gruppen wird durch einen Kraftstoffmengeneingriff korrigiert. Die verbleibenden und/oder die individuellen Fehler der einzelnen Gruppen werden über einen indirekten Eingriff kompensiert.
  • Vorzugsweise ist vorgesehen, dass bis zu einem bestimmten Fehler die Korrektur mittels eines Kraftstoffmengeneingriffs erfolgt. Bei größeren und/oder unsymmetrischen Fehlern erfolgt zusätzlich eine Korrektur mittels eines Luftmengeneingriffs.
  • Zeichnung
  • Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert.
  • Es zeigen
  • Figur 1
    ein Blockdiagramm der erfindungsgemäßen Vorrichtung,
    Figur 2
    und
    Figur3
    jeweils eine Ausgestaltung für eine Brennkraftmaschine, bei der die Zylinder der Brennkraftmaschine in wenigstens zwei Gruppen aufgeteilt sind.
  • Im Folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel der einzuspritzenden Kraftstoffmenge beschrieben. An Stelle der Kraftstoffmenge können auch andere Größen, die die Kraftstoffmenge charakterisieren, verwendet werden. Insbesondere können Momentengrößen, Kraftstoffvolumen und/oder die Ansteuerdauer entsprechender Stellglieder verwendet werden.
  • In Figur 1 ist eine Kraftstoffmengensteuerung mit 100 bezeichnet. Diese gibt abhängig von verschiedenen Eingangsgrößen, wie beispielsweise der Drehzahl der Brennkraftmaschine und einem Signal FP, das den Fahrerwunsch charakterisiert, eine gewünschte einzuspritzende Kraftstoffmenge MES vor. Diese wird im Folgenden auch als zweite Größe bezeichnet. Dieses Signal bezüglich der gewünschten einzuspritzenden Kraftstoffmenge gelangt über einen Verknüpfungspunkt 105 zu einem Kraftstoffmengenstellglied 110. Das Kraftstoffmengenstellglied 110 bestimmt den Zeitpunkt und das Ende und damit die Dauer der Kraftstoffzumessung. Vorzugsweise ist dieses als Magnetventil oder als Piezoaktor ausgebildet, der vorzugsweise in einem Injektor, einer Einspritzdüse, oder einem sonstigen Stellglied angeordnet ist.
  • Eine Luftmengensteuerung 200 liefert ausgehend von verschiedenen Eingangsgrößen, wie beispielsweise der Drehzahl N der Brennkraftmaschine und einer die einzuspritzende Kraftstoffmenge charakterisierenden Größe MES ein Luftmengensignal MLS. Als Eingangsgröße für die einzuspritzende Kraftstoffmenge wird vorzugsweise das Ausgangssignal der Mengensteuerung 100 verwendet. Mit dem Ausgangssignal MLS der Luftmengensteuerung 200 wird über einen Verknüpfungspunkt 205 ein Luftmengenstellglied 210 beaufschlagt. Abhängig von dem Signal MLS bezüglich der gewünschten Frischluftmenge stellt das Luftmengenstellglied 210 die entsprechende Luftmenge ein. Hierbei handelt es sich bevorzugt um ein Stellglied zur Beeinflussung der rückgeführten Abgasmenge in Form eines Abgasrückführstellers, einer Drosselklappe, die die der Brennkraftmaschine zugeführte Luftmenge beeinflusst, und/oder einen Lader.
  • Eine Kraftstoffmengenberechnung 120 bestimmt ausgehend von verschiedenen Eingangsgrößen eine die tatsächlich eingespritzte Kraftstoffmenge charakterisierende Größe MEI, die im Folgenden auch als erste Größe bezeichnet wird. Als Eingangsgröße verarbeitet die Kraftstoffmengenberechnung insbesondere ein Signal L, das die Sauerstoffkonzentration im Abgas charakterisiert und ein Signal MLI, das die der Brennkraftmaschine zugeführte Luftmenge charakterisiert. Die beiden Signale werden vorzugsweise von Sensoren, insbesondere einer Lambdasonde und einem Luftmassenmesser, bereitgestellt. Alternativ können diese Signale auch ausgehend von anderen Größen bestimmt werden.
  • Neben den in Figur 1 dargestellten Eingangsgrößen können von der Kraftstoffmengensteuerung, der Luftmengensteuerung und der Kraftstoffmengenberechnung noch weitere Eingangsgrößen berücksichtigt werden.
  • Die erste und die zweite Größe MES und MEI gelangen mit unterschiedlichen Vorzeichen zu einem Verknüpfungspunkt 125. Das Ausgangssignal DME des Verknüpfungspunktes gibt die Abweichung zwischen der tatsächlich eingespritzten Kraftstoffmenge und der gewünschten einzuspritzenden Kraftstoffmenge an. Dieses Signal DME bezüglich des Einspritzmengenfehlers gelangt über einen Integrator 130 und einen Begrenzer 132 zu einem ersten Kennfeld 134. Mit dem Ausgangssignal QME des ersten Kennfeldes wird der zweite Eingang des Verknüpfungspunktes 105 beaufschlagt. Der Begrenzer 132 beaufschlagt wiederum den Integrator 130 mit einem Signal. Sowohl dem Begrenzer 132, als auch dem Kennfeld 134 werden verschiedene Betriebskenngrößen, wie beispielsweise die Drehzahl N der Brennkraftmaschine und weitere Größen zugeführt.
  • Ferner gelangt das Signal DME bezüglich des Einspritzmengenfehlers über einen Filter 140 und einen Vorzeichen-Invertierer 142 zu einem zweiten Kennfeld 144, mit dessen Ausgangssignal QML der zweite Eingang des Verknüpfungspunktes 205 beaufschlagt wird. Dem zweiten Kennfeld 144 werden ebenfalls verschiedene Signale bezüglich verschiedener Betriebskenngrößen wie beispielsweise der Drehzahl N zugeführt.
  • Der Integrator 130 und der Begrenzer 132 wirken als Integralregler mit Ausgangsgrößenbegrenzung und Anti-Windup-Funktion. Dies bedeutet, der Einspritzmengenfehler wird von dem Integrator 130 aufintegriert. Bei Erreichen des Begrenzungswertes des Begrenzers 132 wird der Integrator angehalten, dies wird durch die Verbindung zwischen dem Begrenzer und dem Integrator 130 angedeutet. Sobald der Begrenzungswert des Begrenzers 132 erreicht wird, bleibt das Ausgangssignal des Begrenzers auf dem erreichten Wert.
  • Der Begrenzungswert des Begrenzers 132, auf den das Ausgangssignal des Integrators 130 begrenzt wird, ist erfindungsgemäß bei einer Ausgestaltung abhängig vom Betriebszustand der Brennkraftmaschine vorgebbar. Vorzugsweise wird der Begrenzungswert abhängig von der Drehzahl N der Brennkraftmaschine und/oder weiteren Betriebskenngrößen vorgegeben.
  • Das Ausgangssignal des Begrenzers 132 ist derjenige Mengenfehler, der durch einen direkten Eingriff auf die Kraftstoffmenge kompensiert werden soll. Dieser wird in dem nachfolgenden ersten Kennfeld 134 adaptiert. Dies bedeutet, wird ein bestimmter Betriebspunkt der Brennkraftmaschine erreicht, der vorzugsweise durch die Drehzahl und die Last definiert ist, so wird ausgehend von dem Vergleich zwischen der ersten und der zweiten Größe der Einspritzmengenfehler ermittelt und aufintegriert sowie begrenzt. Der so ermittelte Wert wird dann abhängig vom Betriebspunkt in dem Kennfeld 134 abgespeichert.
  • Erfindungsgemäß ist nun vorgesehen, dass nur in bestimmten Betriebsbereichen eine Korrektur der Kraftstoffmenge erfolgen soll. Dies wird dadurch gewährleistet, dass in den anderen Betriebsbereichen, in denen keine Kraftstoffmengenkorrektur erfolgen soll, der Begrenzungswert auf Null gesetzt wird. In den übrigen Betriebspunkten wird die Kraftstoffzumessung und damit das Fahrverhalten adaptiert. In den übrigen Betriebspunkten oder in Betriebspunkten, in denen der Begrenzer aktiv ist, d.h. der Fehler durch die Kraftstoffmengenkorrektur nicht vollständig korrigiert werden kann, erfolgt zusätzlich eine Korrektur der Luftmenge. D.h., es wird entweder lediglich die Kraftstoffmenge korrigiert oder lediglich die Luftmenge oder es werden beide Mengen korrigiert.
  • Dies bedeutet, dass für unterschiedliche Betriebspunkte die Begrenzung kontinuierlich verstellt werden kann. Der verbleibende Mengenfehler wird dabei automatisch über die Luftmenge kompensiert.
  • Falls der Integrator die Begrenzung erreicht, wird der Einspritzmengenfehler nicht vollständig über die Kraftstoffzumessung korrigiert. Dementsprechend bleibt das Eingangssignal des Integrators ungleich Null, d.h. der Einspritzmengenfehler ist ungleich Null. Dieser verbleibende Einspritzmengenfehler wird über die Luftmenge kompensiert. Die Vorzeichen der beiden Eingriffe unterscheiden sich dabei, dies wird durch den Invertierter 142 gewährleistet. Über den Filter 140, der vorzugsweise als Tiefpassfilter realisiert ist, lässt sich die Dynamik des Luftzweiges unabhängig von der Kraftstoffmengenzumessung applizieren. Vorzugsweise weist der Luftmengenzweig ein dynamisch langsameres Verhalten auf, damit das Lernen der Kraftstoffmengenkorrektur nicht unnötig beeinflusst wird.
  • In Betriebspunkten, in denen die erste Größe MEI bekannt ist, werden die Korrekturwerte QME für die einzuspritzende Kraftstoffinenge und QML für die Luftmenge berechnet und abhängig vom jeweiligen Betriebspunkt in den Kennfeldern 134 und 144 abgespeichert, d.h. gelernt. Liegt die erste Größe MEI nicht vor, dies ist beispielsweise dann der Fall, wenn das Lambdasignal keine zuverlässigen Werte liefert, werden die in den Kennfeldern 134 und 144 abgespeicherten Wert zur Korrektur der Kraftstoffmenge und/oder der Luftmenge verwendet.
  • Anstelle der Kennfelder 134 und 144 können auch andere Lernfunktionen oder adaptive Verfahren eingesetzt werden.
  • In der Figur 2 ist eine weitere Ausgestaltung der erfindungsgemäßen Vorgehensweise dargestellt. Diese Vorgehensweise ist insbesondere für spezielle sogenannte V-Motoren vorgesehen, die im Wesentlichen aus zwei Reihenmotoren bestehen, welche eine gemeinsame Kurbelwelle besitzen. Diese Ausführungsform ist aber nicht nur auf solche Motoren beschränkt, sie ist generell bei Brennkraftmaschinen einsetzbar, bei denen die Zylinder der Brennkraftmaschine unterschiedlichen Bänken/Gruppen zugeordnet sind, wobei jeder der Bänke/Gruppen jeweils ein Stellelement zur Beeinflussung der Luftmenge zugeordnet ist.
    Ferner ist die Vorgehensweise auch auf eine größere Anzahl von Bänken anwendbar. Insbesondere ist die Vorgehensweise auch einsetzbar, wenn jedem Zylinder ein Stellelement zur Beeinflussung der Luftmenge zugeordnet ist.
  • Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Im Wesentlichen unterscheidet sich die Ausgestaltung der Figur 2 von der Figur 1 darin, dass zwei Mengenberechnungen 120 für die tatsächlich eingespritzte Kraftstoffmenge vorgesehen sind. Die Mengenberechnung für die erste Bank ist entsprechend wie in Figur 1 bezeichnet. Die Mengenberechnung für die zweite Bank ist mit 320 bezeichnet. Die erste Größe, die der ersten Bank zugeordnet ist, wird im Folgenden als MEIL und die erste Größe, die der zweiten Bank zugeordnet ist, mit MEIR bezeichnet. Der Verknüpfungspunkt 125 der ersten Bank entspricht dem Verknüpfungspunkt 325 der zweiten Bank. Der Mengenfehler der ersten Bank ist mit DMEL und der Mengenfehler der zweiten Bank mit DMER bezeichnet. Die Elemente 140, 142, 144 und 205 der ersten Bank sind bei der zweiten Bank mit 340, 342, 344 und 305 bezeichnet. Die Funktionsweise dieser Elemente entspricht der Funktionsweise der entsprechenden Elemente der Figur 1.
  • Dem Integrator 130 wird das Ausgangssignal einer Divisionseinrichtung 350 zugeleitet, die das Ausgangssignal der Verknüpfung 160 verarbeitet. Dem Verknüpfungspunkt 160 werden der Einspritzmengenfehler der ersten Bank DMEL und der Einspritzmengenfehler der zweiten Bank DMER zugeführt. D.h. dem Integrator wird der Mittelwert der beiden Einspritzmengenfehler der beiden unterschiedlichen Bänke zugeleitet. Dabei ist selbstverständlich, dass die Eingangssignale der Mengenberechnung 120 bzw. 320 durch unterschiedliche Sensoren, die den einzelnen Bänken zugeordnet sind, bereitgestellt werden.
  • Erfindungsgemäß ist nun vorgesehen, dass die Vorgehensweise der Figur 1 im Wesentlichen auf eine der Bänke übertragen wird, d.h. die Einzelelemente doppelt ausgelegt werden. Dabei erfolgt die Korrektur der Kraftstoffmenge einheitlich für beide Bänke. Dies ist erforderlich, da eine unterschiedliche Korrektur zu Störungen mit anderen Regelungen oder Steuerungen führen würde. Wird bei der KraftstofFmengenkorrektur die Begrenzung erreicht, so werden die verbleibenden bankindividuellen Restfehler über die Luftmengeneingriffe kompensiert. Entsprechendes gilt, wenn unterschiedliche Einspritzmengenfehler für die unterschiedlichen Bänke auftreten. In diesem Fall wird der mittlere Fehler durch den Kraftstoffmengeneingriff kompensiert, und die bankindividuellen Restfehler werden zusätzlich durch die Luftmengeneingriffe kompensiert.
  • In der Figur 3 ist eine weitere Ausführungsform dargestellt. Sie entspricht im Wesentlichen von der Funktionalität der Ausführungsfigur 2, erfordert aber einen geringeren Aufwand an Rechnerlaufzeit und an Speicherplatzbedarf. Bereits in Figur 2 und 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Der Einspritzmengenfehler DMEL der ersten Bank gelangt zu einem Verknüpfungspunkt 410 und zu einem Verknüpfungspunkt 420. Entsprechend gelangt der Einspritzmengenfehler der zweiten Bank DMER ebenfalls zu den beiden Verknüpfungspunkten 410 und 420. Im Verknüpfungspunkt 410 wird die Summe der beiden Signale und im Verknüpfungspunkt 420 die Differenz der beiden Signale gebildet. In den anschließenden Divisionseinrichtungen 415 bzw. 425 werden die Ausgangssignale der Verknüpfungspunkte 410 bzw. 420 durch zwei dividiert. Dem Filter 140 wird somit der Mittelwert der beiden Einspritzmengenfehler der beiden Bänke zugeführt. Dem Filter 340 wird die Abweichung vom Mittelwert zugeführt. Mit dem Ausgangssignal des Kennfeldes 144 wird zum einen ein Filter 430 und zum anderen die beiden Verknüpfungspunkte 440 und 450 beaufschlagt. Der Filter ist vorzugsweise als Faktorglied ausgebildet. Entsprechend werden von dem Ausgangssignal des Kennfeldes 344 die beiden Verknüpfungspunkte 440 und 450 beaufschlagt. Das Ausgangssignal des Filters 430 gelangt zu dem Begrenzer 132. Am Ausgang des Verknüpfungspunktes 440 liegt das Signal QMLL und an dem Ausgang des Verknüpfungspunktes 450 das Signal QMLR an.
  • Erfindungsgemäß werden bei dieser Ausführungsform der Mittelwert und die halbe Differenz, d.h. die Abweichung vom Mittelwert der Einzelfehler in den Kennfeldern 144 bzw. 344 gelernt. Aus diesen Größen werden die drei Korrekturterme QME, QMLL und QMLR durch geeignete adaptive Verknüpfung mit geeigneter Vorzeichenwahl bestimmt. Das heißt die Elemente 430 und 132 sind abhängig vom Betriebspunkt vorgebbar. Dabei sind die beiden Eingriffe auf die Luftmenge symmetrisch bezüglich des Mittelwerts mit umgekehrten Vorzeichen. Die Kennfelder 144 und/oder 344 können alternativ auch als beliebige Lernfunktionen ausgebildet sein.
  • Zum Lernen des Mittelwerts wird kein Integrator, sondern ein Tiefpassfilter 140 verwendet. Aus diesem Grund wird der Mengenfehler nie vollständig über den Eingriff auf die Kraftstoffmenge kompensiert. Es wirkt also stets gleichzeitig ein Eingriff auf die Luftmenge. Das Übertragungsverhalten des Filters 430 ist ebenso wie die Werte der Begrenzungen des Begrenzers 132 abhängig vom Betriebszustand vorgebbar.
  • Bei den Ausführungsformen der Figuren 2 und 3 erfolgt die Korrektur über einen einheitlichen Eingriff auf die Kraftstoffmenge für alle Zylinder. Die Korrektur mittels des Eingriffs auf die Luftmenge erfolgt individuell für verschiedene Gruppen von Zylindern. Dabei kann vorgesehen sein, dass die Korrektur für einzelne Zylinder erfolgt oder für mehrere Zylinder gemeinsam. Vorzugsweise entspricht die Anzahl der Korrekturwerte der Anzahl der Luftmassenmesser und/oder der Anzahl der Stellelemente.

Claims (7)

  1. Verfahren zur Steuerung einer Brennkraftmaschine, bei dem ausgehend von Betriebskenngrößen eine erste Größe, die die tatsächlich eingespritzte Kraftstoffmenge charakterisiert, und eine zweite Größe, die gewünschte einzuspritzende Kraftstoffmenge charakterisiert, ermittelt werden, die erste Größe mit der zweiten Größe verglichen wird, dass ausgehend von dem Vergleich der ersten Größe mit der zweiten Größe ein erster Korrekturwert zur Korrektur einer Kraftstoffmenge vorgegeben wird, dass ausgehend von dem Vergleich der ersten Größe mit der zweiten Größe ein zweiter Korrekturwert zur Korrektur einer Luftmenge vorgegeben wird und dass der erste Korrekturwert auf einen Maximalwert begrenzt wird.
  2. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste und/oder der zweite Korrekturwert adaptiert werden.
  3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Maximalwert abhängig von Betriebskenngrößen vorgebbar ist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste und/oder der zweite Korrekturwert abhängig von Betriebskenngrößen abgespeichert wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Korrekturwert zeitlich gegenüber dem ersten Korrekturwert verzögert wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zylinder der Brennkraftmaschine in wenigstens zwei Gruppen aufgeteilt sind, und dass für die unterschiedlichen Gruppen unterschiedliche zweite Korrekturwerte vorgegeben werden.
  7. Vorrichtung zur Steuerung einer Brennkraftmaschine, mit Mitteln, die ausgehend von Betriebskenngrößen eine erste Größe, die die tatsächlich eingespritzte Kraftstoffmenge charakterisiert, und eine zweite Größe, die die gewünschte einzuspritzende Kraftstoffmenge charakterisiert, ermitteln, ausgehend von dem Vergleich der ersten Größe mit der zweiten Größe ein ersten Korrekturwert zur Korrektur einer Kraftstoffmenge vorgeben, ausgehend von dem Vergleich der ersten Größe mit der zweiten Größe ein zweiten Korrekturwert zur Korrektur einer Luftmenge vorgeben und die den ersten Korrekturwert auf einen Maximalwert begrenzen.
EP04738673A 2003-07-10 2004-06-12 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine Expired - Fee Related EP1646777B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10331159A DE10331159A1 (de) 2003-07-10 2003-07-10 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
PCT/DE2004/001221 WO2005008048A1 (de) 2003-07-10 2004-06-12 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1646777A1 EP1646777A1 (de) 2006-04-19
EP1646777B1 true EP1646777B1 (de) 2008-10-08

Family

ID=33546951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738673A Expired - Fee Related EP1646777B1 (de) 2003-07-10 2004-06-12 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Country Status (6)

Country Link
US (1) US7320309B2 (de)
EP (1) EP1646777B1 (de)
JP (1) JP2007506896A (de)
CN (1) CN100538052C (de)
DE (2) DE10331159A1 (de)
WO (1) WO2005008048A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047350A1 (de) * 2005-10-04 2007-04-05 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102006033869B3 (de) 2006-07-21 2008-01-31 Siemens Ag Verfahren und Vorrichtung zur Diagnose der zylinderselektiven Ungleichverteilung eines Kraftstoff-Luftgemisches, das den Zylindern eines Verbrennungsmotors zugeführt wird
EP2159777A3 (de) 2008-05-30 2016-05-04 HERE Global B.V. Datenfilterung zur Identifizierung von Orten potentiell gefährlicher Bedingungen zum Fahrzeugbetrieb und deren Verwendung
DE102010031323A1 (de) 2009-09-21 2011-03-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102012204353A1 (de) * 2012-03-20 2013-09-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung von Gas-Sensoren
DE102013204049A1 (de) 2013-03-08 2014-09-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung des Lambda-Wertes mit einer Breitband-Lambda-Sonde einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102013216156A1 (de) * 2013-08-14 2015-02-19 Robert Bosch Gmbh Vereinfachung des elektrischen Systems von Brennstoffzellen durch Verarmung der Kathodenversorgung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725954A (en) * 1984-03-23 1988-02-16 Nippondenso Co., Ltd. Apparatus and method for controlling fuel supply to internal combustion engine
JP3510021B2 (ja) * 1995-09-29 2004-03-22 松下電器産業株式会社 内燃機関の空燃比制御装置
US5931138A (en) * 1996-02-23 1999-08-03 Nissan Motor Co., Ltd. Engine torque control apparatus
DE19831748B4 (de) * 1998-07-15 2009-07-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP3487192B2 (ja) * 1998-09-03 2004-01-13 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP3610839B2 (ja) * 1999-09-27 2005-01-19 株式会社デンソー 内燃機関の空燃比制御装置
JP2001107779A (ja) * 1999-10-07 2001-04-17 Toyota Motor Corp 内燃機関の空燃比制御装置
DE10105704C2 (de) * 2001-02-08 2003-02-27 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine
JP3876722B2 (ja) * 2001-06-28 2007-02-07 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
DE10154151A1 (de) * 2001-11-03 2003-05-15 Daimler Chrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine mit Abgasturbolader und Abgasrückführungseinrichtung
ITTO20020143A1 (it) * 2002-02-19 2003-08-19 Fiat Ricerche Metodo e dispositivo di controllo dell'iniezione in un motore a combustione interna, in particolare un motore diesel provvisto di un impiant
DE10221376B4 (de) 2002-05-14 2013-05-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Also Published As

Publication number Publication date
CN1802495A (zh) 2006-07-12
US20070062504A1 (en) 2007-03-22
EP1646777A1 (de) 2006-04-19
DE10331159A1 (de) 2005-01-27
WO2005008048A1 (de) 2005-01-27
US7320309B2 (en) 2008-01-22
DE502004008217D1 (de) 2008-11-20
CN100538052C (zh) 2009-09-09
JP2007506896A (ja) 2007-03-22

Similar Documents

Publication Publication Date Title
DE19945618B4 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
DE3408215C2 (de)
EP1303693B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE3408223C2 (de)
DE102008054690B4 (de) Verfahren und Vorrichtung zur Kalibrierung von Teileinspritzungen in einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE4207541B4 (de) System zur Steuerung einer Brennkraftmaschine
DE2633617A1 (de) Verfahren und vorrichtung zur bestimmung von einstellgroessen bei einer kraftstoffmaschine
DE102008043165A1 (de) Verfahren und Vorrichtung zur Kalibrierung der Voreinspritzmenge einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE2924649A1 (de) Regelungssystem zur regelung des luft/brennstoff-verhaeltnisses einer verbrennungskraftmaschine
WO2010057738A1 (de) Vorrichtung zum betreiben einer brennkraftmaschine
WO1999008071A1 (de) Verfahren und vorrichtung zur korrektur von toleranzen eines geberrades
EP0151768A2 (de) Kraftstoff-Luft-Gemischzumesssystem für eine Brennkraftmaschine
DE102005012950B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3925877C2 (de) Verfahren und Einrichtung zur Steuerung der Kraftstoffzumessung bei einer Dieselbrennkraftmaschine
DE3725521C2 (de)
EP1646777B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE4335560C2 (de) Regler für das Kraftstoff-Luft-Verhältnis bei einer Brennkraftmaschine
DE102008006327A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE10339251B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE4322319C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1741910A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0757168A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO2003006810A1 (de) Verfahren zum zylinderindividuellen abgleich der einspirtzmenge bei brennkraftmaschinen
DE4322270B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102006044771A1 (de) Verfahren und Steuergerät zur Bestimmung eines Fehlers einer Einspritzmenge eines mit einer Ansteuerdauer angesteuerten Einspritzstellgliedes eines Verbrennungsmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070410

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004008217

Country of ref document: DE

Date of ref document: 20081120

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090709

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160628

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160810

Year of fee payment: 13

Ref country code: IT

Payment date: 20160621

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004008217

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170612

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170612