DE10331159A1 - Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine - Google Patents

Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine Download PDF

Info

Publication number
DE10331159A1
DE10331159A1 DE10331159A DE10331159A DE10331159A1 DE 10331159 A1 DE10331159 A1 DE 10331159A1 DE 10331159 A DE10331159 A DE 10331159A DE 10331159 A DE10331159 A DE 10331159A DE 10331159 A1 DE10331159 A1 DE 10331159A1
Authority
DE
Germany
Prior art keywords
fuel
correction
internal combustion
combustion engine
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10331159A
Other languages
English (en)
Inventor
Andreas Michalske
Thomas Zein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE10331159A priority Critical patent/DE10331159A1/de
Priority to US10/563,267 priority patent/US7320309B2/en
Priority to PCT/DE2004/001221 priority patent/WO2005008048A1/de
Priority to EP04738673A priority patent/EP1646777B1/de
Priority to CNB2004800160541A priority patent/CN100538052C/zh
Priority to JP2006517944A priority patent/JP2007506896A/ja
Priority to DE502004008217T priority patent/DE502004008217D1/de
Publication of DE10331159A1 publication Critical patent/DE10331159A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/32Air-fuel ratio control in a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1479Using a comparator with variable reference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Es werden eine Vorrichtung und ein Verfahren zur Steuerung einer Brennkraftmaschine beschrieben. Ausgehend von Betriebskenngrößen wird eine erste Größe, die die tatsächlich eingespritzte Kraftstoffmenge charakterisiert, und eine zweite Größe, die die gewünschte einzuspritzende Kraftstoffmenge charakterisiert, ermittelt. Die erste Größe wird mit der zweiten Größe verglichen. Ausgehend von diesem Vergleich ist ein erster Korrekturwert zur Korrektur einer Kraftstoffmenge und ein zweiter Korrekturwert zur Korrektur einer Luftmenge vorgebbar. Der erste Korrekturwert wird auf einen Maximalwert begrenzt.

Description

  • Stand der Technik
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.
  • Ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine ist aus der nicht vorveröffentlichten DE 102 21 376 bekannt. Dort wird ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine beschrieben, bei dem ausgehend von Betriebskenngrößen ein Lambdawert des Abgases bestimmt wird. Dieser wird mit dem tatsächlichen Lambdawert verglichen und ausgehend von dem Vergleich wird ein Korrekturwert zur Korrektur eines Kraftstoffmengen- bzw. eines Luftmengensignals gerechnet.
  • Im Wesentlichen wird hier aus dem Sensorsignal eines Lambdasensors und eines Luftmassensensors eine die tatsächlich eingespritzte Kraftstoffmenge charakterisierende erste Größe bestimmt und mit einer die gewünschte einzuspritzende Kraftstoffmenge charakterisierenden zweiten Größe verglichen. Ausgehend von diesem Vergleich wird ein erster Korrekturwert zur Korrektur einer Kraftstoffmenge und/oder ein zweiter Korrekturwert zur Korrektur einer Luftmenge vorgegeben.
  • Bei einem idealen fehlerfreien System müsste die tatsächlich eingespritzte Kraftstoffmenge der gewünschten Kraftstoffmenge entsprechen. Auf Grund von Toleranzen und/oder Alterungseffekten tritt der Fall ein, dass die gewünschte Kraftstoffmenge von der tatsächlich eingespritzten Kraftstoffmenge abweicht. Wird nun die der Brennkraftmaschine zugemessene Luftmenge abhängig von der gewünschten einzuspritzenden Kraftstoffmenge gesteuert und/oder geregelt, wird eine fehlerhafte Luftmenge eingestellt. Eine Steuerung abhängig von der tatsächlich eingespritzten Kraftstoffmenge ist nicht ohne weiteres möglich, da diese nur schwer erfassbar ist. Durch die Messung des Lambdawertes des Abgases und der der Brennkraftmaschine zugeführten Luftmenge kann die tatsächlich eingespritzte Kraftstoffmenge berechnet und mit der gewünschten einzuspritzenden Kraftstoffmenge verglichen werden. Ausgehend von der Abweichung dieser beiden Signale ergibt sich ein Korrekturwert. Mit diesem Korrekturwert kann nun auf das Luftsystem eingegriffen werden. Dies erfolgt beispielsweise derart, dass der Kraftstoffmengenwert, der dem Luftsystem zugeführt wird, mit dem entsprechenden Korrekturwert korrigiert wird. Des weiteren kann vorgesehen sein, dass direkt die Luftmenge entsprechend korrigiert wird. Alternativ zur Berechnung der Kraftstoffmenge können auch direkt die Lambdasignale oder andere Größen, die die Kraftstoffmenge charakterisieren, verwendet werden.
  • Alternativ kann auch vorgesehen sein, dass direkt in das Kraftstoffzumess-System derart eingegriffen wird, dass eine Kraftstoffmengengröße mittels des Korrekturwerts derart korrigiert wird, bis die einzuspritzende und die tatsächlich eingespritzte Kraftstoffmenge übereinstimmen. Eine solche direkte Korrektur der Kraftstoffmenge ist problematisch, da eine solche Korrektur zu einer Mengenerhöhung führen kann. Aus Sicherheitsgründen ist es daher nicht erwünscht, dass der direkte Mengeneingriff beliebig große Abweichungen korrigiert oder im gesamten Motorbetriebsbereich wirkt.
  • Diese Einschränkungen bestehen beim indirekten Eingriff, beispielsweise über die Luftsteuerung mittels einer Abgasrückführung, nicht. Da hinsichtlich der Emissionen der indirekte Eingriff gleichwertig oder besser ist, wird üblicherweise ein indirekter Eingriff auf die Luftmenge bevorzugt.
  • Erfindungsgemäß wurde erkannt, dass Fehler der Einspritzmenge sich unter Umständen negativ auf das Fahrverhalten auswirken können.
  • Erfindungsgemäß ist deshalb vorgesehen, dass der Korrekturwert auf die Kraftstoffmenge und/oder auf die Luftmenge einwirkt. Dabei wird der Korrekturwert, der auf die Kraftstoffmenge einwirkt, auf einen Maximalwert begrenzt. Mittels dieser Vorgehensweise können sowohl Auswirkungen auf die Abgasemissionen, als auch auf das Fahrverhalten kompensiert werden. Bei einer bevorzugten Ausführungsform ist vorgesehen, dass der gesamte Fehler mittels eines direkten Eingriffs kompensiert wird. Ist dies nicht möglich, so wird der verbleibende Fehler mittels eines indirekten Eingriffs kompensiert. Der direkte Eingriff wirkt auf die Kraftstoffmenge und der indirekte Eingriff wirkt auf die Luftmenge.
  • Erfindungsgemäß wird der Mengenfehler der der Abweichung zwischen der tatsächlichen und der gewünschten Kraftstoffmenge entspricht, anteilig über einen direkten Eingriff in die Zumessung und eine Anpassung an die Luftmasse an den verbleibenden Mengenfehler kompensiert.
  • Besonders vorteilhaft ist es, wenn die Art des Eingriffes abhängig vom Motorbetriebszustand erfolgt. Dies ist beispielsweise dadurch realisiert, dass die Begrenzung und damit der Anteil des direkten Eingriffs abhängig von Betriebszuständen vorgegeben wird und damit kontinuierlich verstellt wird. Als Betriebskenngrößen werden dabei vorzugsweise die Drehzahl und/oder eine die Last der Brennkraftmaschine charakterisierende Größe verwendet.
  • Vorzugsweise ist vorgesehen, dass der erste und/oder der zweite Korrekturwert adaptiert werden. Das heißt in Zuständen, in denen die Korrekturwerte ermitelt werden können, werden die Korrekturwerte abhängig vom Betriebszustand der Brennkraftmaschine in einem oder mehreren Kennfeldern abgelegt oder es werden Größen ermittelt und abgespeichert, die zur Berechnung der Korrekturwerte gemäß eines mathematischen Verfahrens verwendet werden können. In Zuständen, in denen die Korrekturwerte nicht ermittelt werden können, werden die abgespeicherten Korrekturwerte oder die abgespeicherten Größen verwendet.
  • Bei einer besonders vorteilhaften Ausgestaltung ist vorgesehen, dass die Zylinder der Brennkraftmaschine in wenigstens zwei Gruppen aufgeteilt sind, und dass für die unterschiedlichen Gruppen unterschiedliche zweite Korrekturwerte vorgegeben werden. Dies bedeutet, der mittlere Mengenfehler der beiden Gruppen wird durch einen Kraftstoffmengeneingriff korrigiert. Die verbleibenden und/oder die individuellen Fehler der einzelnen Gruppen werden über einen indirekten Eingriff kompensiert.
  • Vorzugsweise ist vorgesehen, dass bis zu einem bestimmten Fehler die Korrektur mittels eines Kraftstoffmengeneingriffs erfolgt. Bei größeren und/oder unsymmetrischen Fehlern erfolgt zusätzlich eine Korrektur mittels eines Luftmengeneingriffs.
  • Zeichnung
  • Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert.
  • Es zeigen
  • 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung,
  • 2 und 3 jeweils eine Ausgestaltung für eine Brennkraftmaschine, bei der die Zylinder der Brennkraftmaschine in wenigstens zwei Gruppen aufgeteilt sind.
  • Im Folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel der einzuspritzenden Kraftstoffmenge beschrieben. An Stelle der Kraftstoffmenge können auch andere Größen, die die Kraftstoffmenge charakterisieren, verwendet werden. Insbesondere können Momentengrößen, Kraftstoffvolumen und/oder die Ansteuerdauer entsprechender Stellglieder verwendet werden.
  • In 1 ist eine Kraftstoffmengensteuerung mit 100 bezeichnet. Diese gibt abhängig von verschiedenen Eingangsgrößen, wie beispielsweise der Drehzahl der Brennkraftmaschine und einem Signal FP, das den Fahrerwunsch charakterisiert, eine gewünschte einzuspritzende Kraftstoffmenge MES vor. Diese wird im Folgenden auch als zweite Größe bezeichnet. Dieses Signal bezuglich der gewünschten einzuspritzenden Kraftstoffmenge gelangt über einen Verknupfüngspunkt 105 zu einem Kraftstoffmengenstellglied 110. Das Kraftstoffmengenstellglied 110 bestimmt den Zeitpunkt und das Ende und damit die Dauer der Kraftstoffzumessung. Vorzugsweise ist dieses als Magnetventil oder als Piezoaktor ausgebildet, der vorzugsweise in einem Injektor, einer Einspritzdüse, oder einem sonstigen Stellglied angeordnet ist.
  • Eine Luftmengensteuerung 200 liefert ausgehend von verschiedenen Eingangsgrößen, wie beispielsweise der Drehzahl N der Brennkraftmaschine und einer die einzuspritzende Kraftstoffmenge charakterisierenden Größe MES ein Luftmengensignal MLS. Als Eingangsgröße für die einzuspritzende Kraftstoffmenge wird vorzugsweise das Ausgangssignal der Mengensteuerung 100 verwendet. Mit dem Ausgangssignal MLS der Luftmengensteuerung 200 wird über einen Verknupfungspunkt 205 ein Luftmengenstellglied 210 beaufschlagt. Abhängig von dem Signal MLS bezüglich der gewünschten Frischluftmenge stellt das Luftmengenstellglied 210 die entsprechende Luftmenge ein. Hierbei handelt es sich bevorzugt um ein Stellglied zur Beeinflussung der rückgeführten Abgasmenge in Form eines Abgasrückführstellers, einer Drosselklappe, die die der Brennkraftmaschine zugeführte Luftmenge beeinflusst, und/oder einen Lader.
  • Eine Kraftstoffmengenberechnung 120 bestimmt ausgehend von verschiedenen Eingangsgrößen eine die tatsächlich eingespritzte Kraftstoffmenge charakterisierende Größe MEI, die im Folgenden auch als erste Größe bezeichnet wird. Als Eingangsgröße verarbeitet die Kraftstoffmengenberechnung insbesondere ein Signal L, das die Sauerstoffkonzentration im Abgas charakterisiert und ein Signal MLI, das die der Brennkraftmaschine zugeführte Luftmenge charakterisiert. Die beiden Signale werden vorzugsweise von Sensoren, insbesondere einer Lambdasonde und einem Luftmassenmesser, bereitgestellt. Alternativ können diese Signale auch ausgehend von anderen Größen bestimmt werden.
  • Neben den in 1 dargestellten Eingangsgrößen können von der Kraftstoffmengensteuerung, der Luftmengensteuerung und der Kraftstoffmengenberechnung noch weitere Eingangsgrößen berücksichtigt werden.
  • Die erste und die zweite Größe MES und MEI gelangen mit unterschiedlichen Vorzeichen zu einem Verknüpfungspunkt 125. Das Ausgangssignal DME des Verknupfungspunktes gibt die Abweichung zwischen der tatsächlich eingespritzten Kraftstoffmenge und der gewünschten einzuspritzenden Kraftstoffmenge an. Dieses Signal DME bezuglich des Einspritzmengenfehlers gelangt über einen Integrator 130 und einen Begrenzer 132 zu einem ersten Kennfeld 134. Mit dem Ausgangssignal QME des ersten Kennfeldes wird der zweite Eingang des Verknüpfungspunktes 105 beaufschlagt. Der Begrenzer 132 beaufschlagt wiederum den Integrator 130 mit einem Signal. Sowohl dein Begrenzer 132, als auch dem Kennfeld 134 werden verschiedene Betriebskenngrößen, wie beispielsweise die Drehzahl N der Brennkraftmaschine und weitere Größen zugeführt.
  • Ferner gelangt das Signal DME bezuglich des Einspritzmengenfehlers über einen Filter 140 und einen Vorzeichen-Invertierer 142 zu einem zweiten Kennfeld 144, mit dessen Ausgangssignal QML der zweite Eingang des Verknupfungspunktes 205 beaufschlagt wird. Dem zweiten Kennfeld 144 werden ebenfalls verschiedene Signale bezuglich verschiedener Betriebskenngrößen wie beispielsweise der Drehzahl N zugeführt.
  • Der Integrator 130 und der Begrenzer 132 wirken als Integralregler mit Ausgangsgrößenbegrenzung und Anti-Windup-Funktion. Dies bedeutet, der Einspritzmengenfehler wird von dem Integrator 130 aufintegriert. Bei Erreichen des Begrenzungswertes des Begrenzers 132 wird der Integrator angehalten, dies wird durch die Verbindung zwischen dem Begrenzer und dem Integrator 130 angedeutet. Sobald der Begrenzungswert des Begrenzers 132 erreicht wird, bleibt das Ausgangssignal des Begrenzers auf dem erreichten Wert.
  • Der Begrenzungswert des Begrenzers 132, auf den das Ausgangssignal des Integrators 130 begrenzt wird, ist erfindungsgemäß bei einer Ausgestaltung abhängig vom Betriebszustand der Brennkraftmaschine vorgebbar. Vorzugsweise wird der Begrenzungswert abhängig von der Drehzahl N der Brennkraftmaschine und/oder weiteren Betriebskenngrößen vorgegeben.
  • Das Ausgangssignal des Begrenzers 132 ist derjenige Mengenfehler, der durch einen direkten Eingriff auf die Kraftstoffmenge kompensiert werden soll. Dieser wird in dem nachfolgenden ersten Kennfeld 134 adaptiert. Dies bedeutet, wird ein bestimmter Betriebspunkt der Brennkraftmaschine erreicht, der vorzugsweise durch die Drehzahl und die Last definiert ist, so wird ausgehend von dem Vergleich zwischen der ersten und der zweiten Größe der Einspritzmengenfehler ermittelt und aufintegriert sowie begrenzt. Der so ermittelte Wert wird dann abhängig vom Betriebspunkt in dem Kennfeld 134 abgespeichert.
  • Erfindungsgemäß ist nun vorgesehen, dass nur in bestimmten Betriebsbereichen eine Korrektur der Kraftstoffmenge erfolgen soll. Dies wird dadurch gewährleistet, dass in den anderen Betriebsbereichen, in denen keine Kraftstoffmengenkorrektur erfolgen soll, der Begrenzungswert auf Null gesetzt wird. In den übrigen Betriebspunkten wird die Kraftstoffzumessung und damit das Fahrverhalten adaptiert. In den übrigen Betriebspunkten oder in Betriebspunkten, in denen der Begrenzer aktiv ist, d.h. der Fehler durch die Kraftstoffmengenkorrektur nicht vollständig korrigiert werden kann, erfolgt zusätzlich eine Korrektur der Luftmenge. D.h.; es wird entweder lediglich die Kraftstoffmenge korrigiert oder lediglich die Luftmenge oder es werden beide Mengen korrigiert.
  • Dies bedeutet, dass für unterschiedliche Betriebspunkte die Begrenzung kontinuierlich verstellt werden kann. Der verbleibende Mengenfehler wird dabei automatisch über die Lufmenge kompensiert.
  • Falls der Integrator die Begrenzung erreicht, wird der Einspritzmengenfehler nicht vollständig über die Kraftstoffzumessung korrigiert. Dementsprechend bleibt das Eingangssignal des Integrators ungleich Null, d.h. der Einspritzmengenfehler ist ungleich Null. Dieser verbleibende Einspritzmengenfehler wird über die Luftmenge kompensiert. Die Vorzeichen der beiden Eingriffe unterscheiden sich dabei, dies wird durch den Invertierter 142 gewährleistet. Über den Filter 140, der vorzugsweise als Tiefpassfilter realisiert ist, lässt sich die Dynamik des Luftzweiges unabhängig von der Kraftstoffmengenzumessung applizieren. Vorzugsweise weist der Luftmengenzweig ein dynamisch langsameres Verhalten auf, damit das Lernen der Kraftstoffmengenkorrektur nicht unnötig beeinflusst wird.
  • In Betriebspunkten, in denen die erste Größe MEI bekannt ist, werden die Korrekturwerte QME für die einzuspritzende Kraftstoffmenge und QML für die Luftmenge berechnet und abhängig vom jeweiligen Betriebspunkt in den Kennfeldern 134 und 144 abgespeichert, d.h. gelernt. Liegt die erste Größe MEI nicht vor, dies ist beispielsweise dann der Fall, wenn das Lambdasignal keine zuverlässigen Werte liefert, werden die in den Kennfeldern 134 und 144 abgespeicherten Wert zur Korrektur der Kraftstoffmenge und/oder der Luftmenge verwendet.
  • Anstelle der Kennfelder 134 und 144 können auch andere Lernfunktionen oder adaptive Verfahren eingesetzt werden.
  • In der 2 ist eine weitere Ausgestaltung der erfindungsgemäßen Vorgehensweise dargestellt. Diese Vorgehensweise ist insbesondere für spezielle sogenannte V-Motoren vorgesehen, die im Wesentlichen aus zwei Reihenmotoren bestehen, welche eine gemeinsame Kurbelwelle besitzen. Diese Ausführungsform ist aber nicht nur auf solche Motoren beschränkt, sie ist generell bei Brennkraftmaschinen einsetzbar, bei denen die Zylinder der Brennkraftmaschine unterschiedlichen Bänken/Gruppen zugeordnet sind, wobei jeder der Bänke/Gruppen jeweils ein Stellelement zur Beeinflussung der Lufmenge zugeordnet ist.
  • Ferner ist die Vorgehensweise auch auf eine größere Anzahl von Bänken anwendbar. Insbesondere ist die Vorgehensweise auch einsetzbar, wenn jedem Zylinder ein Stellelement zur Beeinflussung der Luftmenge zugeordnet ist.
  • Bereits in 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Im Wesentlichen unterscheidet sich die Ausgestaltung der 2 von der 1 darin, dass zwei Mengenberechnungen 120 für die tatsächlich eingespritzte Kraftstoffmenge vorgesehen sind. Die Mengenberechnung für die erste Bank ist entsprechend wie in 1 bezeichnet. Die Mengenberechnung für die zweite Bank ist mit 320 bezeichnet. Die erste Größe, die der ersten Bank zugeordnet ist, wird im Folgenden als MEIL und die erste Größe, die der zweiten Bank zugeordnet ist, mit MEIR bezeichnet. Der Verknupfungspunkt 125 der ersten Bank entspricht dem Verknupfungspunkt 325 der zweiten Bank. Der Mengenfehler der ersten Bank ist mit DMEL und der Mengenfehler der zweiten Bank mit DMER bezeichnet. Die Elemente 140, 142, 144 und 205 der ersten Bank sind bei der zweiten Bank mit 340, 342, 344 und 305 bezeichnet. Die Funktionsweise dieser Elemente entspricht der Funktionsweise der entsprechenden Elemente der 1.
  • Dem Integrator 130 wird das Ausgangssignal einer Divisionseinrichtung 350 zugeleitet, die das Ausgangssignal der Verknupfung 160 verarbeitet. Dem Verknupfungspunkt 160 werden der Einspritzmengenfehler der ersten Bank DMEL und der Einspritzmengenfehler der zweiten Bank DMER zugeführt. D.h. dem Integrator wird der Mittelwert der beiden Einspritzmengenfehler der beiden unterschiedlichen Bänke zugeleitet. Dabei ist selbstverständlich, dass die Eingangssignale der Mengenberechnung 120 bzw. 320 durch unterschiedliche Sensoren, die den einzelnen Bänken zugeordnet sind, bereitgestellt werden.
  • Erfindungsgemäß ist nun vorgesehen, dass die Vorgehensweise der 1 im Wesentlichen auf eine der Bänke übertragen wird, d.h. die Einzelelemente doppelt ausgelegt werden. Dabei erfolgt die Korrektur der Kraftstoffmenge einheitlich für beide Bänke. Dies ist erforderlich, da eine unterschiedliche Korrektur zu Störungen mit anderen Regelungen oder Steuerungen führen würde. Wird bei der Kraftstoffmengenkorrektur die Begrenzung erreicht, so werden die verbleibenden bankindividuellen Restfehler über die Luftmengeneingriffe kompensiert. Entsprechendes gilt, wenn unterschiedliche Einspritzmengenfehler für die unterschiedlichen Bänke auftreten. In diesem Fall wird der mittlere Fehler durch den Kraftstoffmengeneingriff kompensiert, und die bankindividuellen Restfehler werden zusätzlich durch die Luftmengeneingriffe kompensiert.
  • In der 3 ist eine weitere Ausführungsform dargestellt. Sie entspricht im Wesentlichen von der Funktionalität der Ausführungsfigur 2, erfordert aber einen geringeren Aufwand an Rechnerlaufzeit und an Speicherplatzbedarf. Bereits in 2 und 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Der Einspritzmengenfehler DMEL der ersten Bank gelangt zu einem Verknupfungspunkt 410 und zu einem Verknupfungspunkt 420. Entsprechend gelangt der Einspritzmengenfehler der zweiten Bank DMER ebenfalls zu den beiden Verknupfungspunkten 410 und 420. Im Verknupfungspunkt 410 wird die Summe der beiden Signale und im Verknüpfungspunkt 420 die Differenz der beiden Signale gebildet. In den anschließenden Divisionseinrichtungen 415 bzw. 425 werden die Ausgangssignale der Verknupfungspunkte 410 bzw. 420 durch zwei dividiert. Dem Filter 140 wird somit der Mittelwert der beiden Einspritzmengenfehler der beiden Bänke zugeführt. Dem Filter 340 wird die Abweichung vom Mittelwert zugeführt. Mit dem Ausgangssignal des Kennfeldes 144 wird zum einen ein Filter 430 und zum anderen die beiden Verknupfungspunkte 440 und 450 beaufschlagt. Der Filter ist vorzugsweise als Faktorglied ausgebildet. Entsprechend werden von dem Ausgangssignal des Kennfeldes 344 die beiden Verknupfungspunkte 440 und 450 beaufschlagt. Das usgangssignal des Filters 430 gelangt zu dem Begrenzer 132. Am Ausgang des Verknupfungspunktes 440 liegt das Signal QMLL und an dem Ausgang des Verknupfungspunktes 450 das Signal QMLR an.
  • Erfindungsgemäß werden bei dieser Ausführungsform der Mittelwert und die halbe Differenz, d.h. die Abweichung vom Mittelwert der Einzelfehler in den Kennfeldern 144 bzw. 344 gelernt. Aus diesen Größen werden die drei Korrekturterme QME, QMLL und QMLR durch geeignete adaptive Verknüpfung mit geeigneter Vorzeichenwahl bestimmt. Das heißt die Elemente 430 und 132 sind abhängig vom Betriebspunkt vorgebbar. Dabei sind die beiden Eingriffe auf die Luftmenge symmetrisch bezüglich des Mittelwerts mit umgekehrten Vorzeichen. Die Kennfelder 144 und/oder 344 können alternativ auch als beliebige Lernfunktionen ausgebildet sein.
  • Zum Lernen des Mittelwerts wird kein Integrator, sondern ein Tiefpassfilter 140 verwendet. Aus diesem Grund wird der Mengenfehler nie vollständig über den Eingriff auf die Kraftstoffmenge kompensiert. Es wirkt also stets gleichzeitig ein Eingriff auf die Luftmenge. Das Übertragungsverhalten des Filters 430 ist ebenso wie die Werte der Begrenzungen des Begrenzers 132 abhängig vom Betriebszustand vorgebbar.
  • Bei den Ausführungsformen der 2 und 3 erfolgt die Korrektur über einen einheitlichen Eingriff auf die Kraftstoffmenge für alle Zylinder. Die Korrektur mittels des Eingriffs auf die Luftmenge erfolgt individuell für verschiedene Gruppen von Zylindern. Dabei kann vorgesehen sein, dass die Korrektur für einzelne Zylinder erfolgt oder für mehrere Zylinder gemeinsam. Vorzugsweise entspricht die Anzahl der Korrekturwerte der Anzahl der Luftmassenmesser und/oder der Anzahl der Stellelemente.

Claims (7)

  1. Verfahren zur Steuerung einer Brennkraftmaschine, bei dem ausgehend von Betriebskenngrößen eine erste Größe, die die tatsächlich eingespritzte Kraftstoffmenge charakterisiert, und eine zweite Größe, die gewünschte einzuspritzende Kraftstoffmenge charakterisiert, ermittelt werden, wobei die erste Größe mit der zweiten Größe verglichen und ausgehend von diesem Vergleich ein erster Korrekturwert zur Korrektur einer Kraftstoffmenge und ein zweiter Korrekturwert zur Korrektur einer Luftmenge vorgebbar ist, wobei der erste Korrekturwert auf einen Maximalwert begrenzt wird.
  2. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste und/oder der zweite Korrekturwert adaptiert werden.
  3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Maximalwert abhängig von Betriebskenngrößen vorgebbar ist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste und/oder der zweite Korrekturwert abhängig von Betriebskenngrößen abgespeichert wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Korrekturwert zeitlich gegenüber dem ersten Korrekturwert verzögert wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zylinder der Brennkrafmaschine in wenigstens zwei Gruppen aufgeteilt sind, und dass für die unterschiedlichen Gruppen unterschiedliche zweite Korrekturwerte vorgegeben werden.
  7. Vorrichtung zur Steuerung einer Brennkraftmaschine, mit Mitteln, die ausgehend von Betriebskenngrößen eine erste Größe, die die tatsächlich eingespritzte Kraftstoffmenge charakterisiert, und eine zweite Größe, die die gewünschte einzuspritzende Kraftstoffmenge charakterisiert, ermitteln, und die die erste Größe mit der zweite Größe vergleichen und ausgehend von diesem Vergleich einen ersten Korrekturwert zur Korrektur einer Kraftstoffmenge und einen zweiten Korrekturwert zur Korrektur einer Luftmenge vorgeben, wobei Begrenzungsmittel vorgesehen sind, die den ersten Korrekturwert auf einen Maximalwert begrenzen.
DE10331159A 2003-07-10 2003-07-10 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine Withdrawn DE10331159A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE10331159A DE10331159A1 (de) 2003-07-10 2003-07-10 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US10/563,267 US7320309B2 (en) 2003-07-10 2004-06-12 Method and device for controlling an internal combustion engine
PCT/DE2004/001221 WO2005008048A1 (de) 2003-07-10 2004-06-12 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP04738673A EP1646777B1 (de) 2003-07-10 2004-06-12 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
CNB2004800160541A CN100538052C (zh) 2003-07-10 2004-06-12 控制内燃机的方法和装置
JP2006517944A JP2007506896A (ja) 2003-07-10 2004-06-12 内燃機関の制御方法および内燃機関の制御装置
DE502004008217T DE502004008217D1 (de) 2003-07-10 2004-06-12 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10331159A DE10331159A1 (de) 2003-07-10 2003-07-10 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
DE10331159A1 true DE10331159A1 (de) 2005-01-27

Family

ID=33546951

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10331159A Withdrawn DE10331159A1 (de) 2003-07-10 2003-07-10 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE502004008217T Active DE502004008217D1 (de) 2003-07-10 2004-06-12 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502004008217T Active DE502004008217D1 (de) 2003-07-10 2004-06-12 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Country Status (6)

Country Link
US (1) US7320309B2 (de)
EP (1) EP1646777B1 (de)
JP (1) JP2007506896A (de)
CN (1) CN100538052C (de)
DE (2) DE10331159A1 (de)
WO (1) WO2005008048A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006033869B3 (de) * 2006-07-21 2008-01-31 Siemens Ag Verfahren und Vorrichtung zur Diagnose der zylinderselektiven Ungleichverteilung eines Kraftstoff-Luftgemisches, das den Zylindern eines Verbrennungsmotors zugeführt wird
DE102010031323A1 (de) 2009-09-21 2011-03-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013204049A1 (de) 2013-03-08 2014-09-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung des Lambda-Wertes mit einer Breitband-Lambda-Sonde einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047350A1 (de) * 2005-10-04 2007-04-05 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2159777A3 (de) 2008-05-30 2016-05-04 HERE Global B.V. Datenfilterung zur Identifizierung von Orten potentiell gefährlicher Bedingungen zum Fahrzeugbetrieb und deren Verwendung
DE102012204353A1 (de) * 2012-03-20 2013-09-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung von Gas-Sensoren
DE102013216156A1 (de) * 2013-08-14 2015-02-19 Robert Bosch Gmbh Vereinfachung des elektrischen Systems von Brennstoffzellen durch Verarmung der Kathodenversorgung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725954A (en) * 1984-03-23 1988-02-16 Nippondenso Co., Ltd. Apparatus and method for controlling fuel supply to internal combustion engine
JP3510021B2 (ja) * 1995-09-29 2004-03-22 松下電器産業株式会社 内燃機関の空燃比制御装置
US5931138A (en) 1996-02-23 1999-08-03 Nissan Motor Co., Ltd. Engine torque control apparatus
DE19831748B4 (de) * 1998-07-15 2009-07-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP3487192B2 (ja) * 1998-09-03 2004-01-13 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP3610839B2 (ja) * 1999-09-27 2005-01-19 株式会社デンソー 内燃機関の空燃比制御装置
JP2001107779A (ja) * 1999-10-07 2001-04-17 Toyota Motor Corp 内燃機関の空燃比制御装置
DE10105704C2 (de) * 2001-02-08 2003-02-27 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine
JP3876722B2 (ja) 2001-06-28 2007-02-07 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
DE10154151A1 (de) * 2001-11-03 2003-05-15 Daimler Chrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine mit Abgasturbolader und Abgasrückführungseinrichtung
ITTO20020143A1 (it) * 2002-02-19 2003-08-19 Fiat Ricerche Metodo e dispositivo di controllo dell'iniezione in un motore a combustione interna, in particolare un motore diesel provvisto di un impiant
DE10221376B4 (de) 2002-05-14 2013-05-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006033869B3 (de) * 2006-07-21 2008-01-31 Siemens Ag Verfahren und Vorrichtung zur Diagnose der zylinderselektiven Ungleichverteilung eines Kraftstoff-Luftgemisches, das den Zylindern eines Verbrennungsmotors zugeführt wird
US8103430B2 (en) 2006-07-21 2012-01-24 Continental Automotive Gmbh Method and device for the diagnosis of the cylinder-selective uneven distribution of a fuel-air mixture fed to the cylinders of an internal combustion engine
DE102010031323A1 (de) 2009-09-21 2011-03-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013204049A1 (de) 2013-03-08 2014-09-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung des Lambda-Wertes mit einer Breitband-Lambda-Sonde einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
US9874495B2 (en) 2013-03-08 2018-01-23 Robert Bosch Gmbh Method and device for determining the lambda value with a broadband lambda sensor of an internal combustion engine, particularly of a motor vehicle

Also Published As

Publication number Publication date
DE502004008217D1 (de) 2008-11-20
WO2005008048A1 (de) 2005-01-27
JP2007506896A (ja) 2007-03-22
US20070062504A1 (en) 2007-03-22
CN100538052C (zh) 2009-09-09
US7320309B2 (en) 2008-01-22
EP1646777B1 (de) 2008-10-08
EP1646777A1 (de) 2006-04-19
CN1802495A (zh) 2006-07-12

Similar Documents

Publication Publication Date Title
DE19945618B4 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
DE2633617C2 (de) Verfahren und Vorrichtung zur Bestimmung von Einstellgrößen bei einer Brennkraftmaschine, insbesondere der Dauer von Kraftstoffeinspritzimpulsen, des Zündwinkels, der Abgasrückführrate
DE4001616C2 (de) Verfahren und Vorrichtung zur Kraftstoffmengenregelung für eine Brennkraftmaschine mit Katalysator
DE4207541B4 (de) System zur Steuerung einer Brennkraftmaschine
DE102006026390A1 (de) Elektronische Steuereinrichtung zur Steuerung der Brennkraftmaschine in einem Kraftfahrzeug
DE102008043165A1 (de) Verfahren und Vorrichtung zur Kalibrierung der Voreinspritzmenge einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE102006056326A1 (de) Verfahren zur Erkennung eines fehlerhaften Betriebszustandes bei einer Zylinderabschaltung einer Brennkraftmaschine
WO2007098780A1 (de) Verfahren zur regelung des kraftstoff-luft-gemisches bei einer verbrennungsmashine
WO2010057738A1 (de) Vorrichtung zum betreiben einer brennkraftmaschine
DE2924649A1 (de) Regelungssystem zur regelung des luft/brennstoff-verhaeltnisses einer verbrennungskraftmaschine
DE102008054690A1 (de) Verfahren und Vorrichtung zur Kalibrierung von Teileinspritzungen in einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
EP1215388B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3914536C2 (de) Verfahren und Vorrichtung zur Diagnose von Stellgliedern bei der Regelung und/oder Steuerung von Betriebsparametern in Verbindung der Leerlaufregelung und der Tankentlüftung bei Brennkraftmaschinen
DE102005012950B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3725521C2 (de)
EP1646777B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102008006327A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
WO2009143858A1 (de) Verfahren zur regelung eines einspritzvorgangs einer verbrennungskraftmaschine, steuergerät für eine verbrennungskraftmaschine und eine verbrennungskraftmaschine
DE102011077698B4 (de) Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
EP0757168B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10339251B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE4322319C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3248745A1 (de) Regelsystem fuer eine brennkraftmaschine
EP1741910A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1409865A1 (de) Verfahren zum zylinderindividuellen abgleich der einspirtzmenge bei brennkraftmaschinen

Legal Events

Date Code Title Description
8141 Disposal/no request for examination