EP1741910A1 - Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine - Google Patents

Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine Download PDF

Info

Publication number
EP1741910A1
EP1741910A1 EP06116340A EP06116340A EP1741910A1 EP 1741910 A1 EP1741910 A1 EP 1741910A1 EP 06116340 A EP06116340 A EP 06116340A EP 06116340 A EP06116340 A EP 06116340A EP 1741910 A1 EP1741910 A1 EP 1741910A1
Authority
EP
European Patent Office
Prior art keywords
values
internal combustion
combustion engine
controller
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06116340A
Other languages
English (en)
French (fr)
Inventor
Peter Skala
Horst Wagner
Ruediger Fehrmann
Joerg Rath
Thomas Farr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1741910A1 publication Critical patent/EP1741910A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine according to the preambles of the independent claims.
  • a method and a device for quantity compensation control in an internal combustion engine are known from DE 33 36 028 known. There, based on a speed signal, a setpoint and an actual value are formed for each cylinder. The individual cylinders are each assigned a controller which, based on the comparison between a cylinder-specific actual value and a common setpoint, predefines a control variable for controlling a quantity-determining actuator. This regulation regulates a variable characterizing the combustion to a common desired value. This achieves equality, the torques provided by the individual cylinders. In particular, rotational speed values and / or torques and / or lambda signals which are assigned to the respective cylinder are considered as variables characterizing the combustion.
  • the controllers associated with the individual cylinders have at least integral behavior.
  • the integral parts are preferably initialized with a fixed value, in particular with the value 0. Starting from this starting value, the integrator values are then determined during operation.
  • the quantity compensation control only reaches its full effectiveness after a short delay time. This results in restarting the engine to quantity errors in the individual cylinders. These quantity errors can cause increased exhaust emissions or
  • learning values are determined on the basis of the output variables of the controller and used for the precontrol of the controllers results in improved fuel metering and thus significantly reduced emissions. This is the case in particular in operating states in which the quantity compensation control is not active or has not yet determined any manipulated variables.
  • pre-control values are determined on the basis of the manipulated variable of the quantity compensation control, which are then used in all operating states for pilot control of the fuel quantity.
  • cylinder-specific learning values are determined and stored as a function of the operating state.
  • the precontrol values are then determined, which are superimposed on the output variables of the controllers in an additive and / or multiplicative manner. In the simplest embodiment, the learned values are taken over directly as pre-control values.
  • the precontrol values and / or variables, on the basis of which the pilot control values are determined are also used to correct an injector amount compensation function.
  • the learning values are used to correct the injector balance and to precontrol the quantity compensation control.
  • the controllers which are assigned to the individual cylinders work together in the sense of a quantity compensation control.
  • the regulators regulate the fuel quantity injected into the individual cylinders to a common value. Since the fuel quantity is often not available as the actual value, a substitute value is used as the actual value.
  • This substitute value such as speed values and / or torques and / or lambda values, are recorded for each cylinder and adjusted to a common value.
  • an injection quantity is preferably used. In this case, the learned values can be used directly as pre-control values.
  • FIG. 1 shows a block diagram of the device according to the invention
  • FIG. 2 shows a flowchart for clarifying the procedure according to the invention.
  • Fig. 1 the procedure of the invention is illustrated by a block diagram.
  • an actuating element is shown that affects the power output of the internal combustion engine.
  • This is preferably a solenoid valve or a piezoelectric actuator, which influences the amount of fuel to be injected and / or the start of injection.
  • 105 denotes a speed sensor.
  • the speed sensor acts on a setpoint input 110 and an actual value input 115 with a speed signal.
  • the actual value input 115 and the setpoint input 110 act on a first connection point 120 and a second connection point 130. From the connection points 120 and 130, the signal respectively reaches a controller 125 or 135.
  • the controllers 125 and 135 provide a manipulated variable. In particular, these are the fuel quantity to be injected into the respective cylinder.
  • a pilot control 162 and 172 At the input of the node 142 or 152 is the output of a pilot control 162 and 172. At the input of the node 144 and 154 is the output of a Injektormengenaus GmbHsfunktion 164 or 174.
  • the adaptation 160 processes the output variables of the controllers 125 and 135, respectively.
  • each controller 100 is shown.
  • the invention can also be designed such that each controller and thus each cylinder is assigned an actuating element.
  • a first and a second controller are shown.
  • each cylinder of the internal combustion engine is associated with a controller and an actuating element. This means that it is a regulator and an actuator for each cylinder present or one or more controllers form the control signals for the individual cylinders associated adjusting elements.
  • the setpoint input 110 determines, based on the speed N, a setpoint value S for the controllers.
  • the actual value specification 115 determines for each controller, i. H. For each cylinder, a cylinder-individual actual value I. Based on control errors determined in the connection points 120 and 130, the controllers 125 and 135 determine the manipulated variables.
  • the determination of the actual values, the desired values and the regulation by the regulators 125 and 135 is designed such that the torque delivered by the internal combustion engine is the same for the individual cylinders, ie. H. Each cylinder of the internal combustion engine contributes the same torque to the total torque.
  • the scheme is such that all cylinders the same amount of fuel is metered. The control is such that all cylinders are made equal in magnitude to characterize the combustion.
  • the procedure is described below using the example of a cylinder.
  • the procedure can be extended to any number of cylinders.
  • the conversion 140 determines, based on the manipulated variable, the actuation period for the actuator.
  • the control element is designed as a piezoelectric actuator or as a solenoid valve whose drive duration determines the injected fuel quantity.
  • this drive time is corrected by the injector force compensation function 164.
  • This correction compensates deviations of the individual control elements of the various cylinders.
  • the actuator is associated with a memory element, are stored on the data that characterize the actuator.
  • correction values are stored with which the actuation period is to be corrected.
  • a storage element is arranged on the adjusting element, in which only correction values for a few operating points are stored.
  • the injector amount compensation function 164 calculates a correction map for all operating points based on these few operating points. The correction values are selected such that all adjusting elements of the internal combustion engine, for the same control signal, in particular the same control duration, meter the same amount of fuel.
  • This correction value is used to correct the drive signal at node 144.
  • the correction in node 144 is preferably additive. It can also be done multiplicatively.
  • the operating points are preferably defined by the amount of fuel to be injected and the rail pressure. In addition, other operating parameters, such as the speed and / or temperature values, can also be taken into account.
  • the manipulated variable in the junction point 142 is superimposed on a precontrol value which corresponds to the output signal of the precontrol 162.
  • a precontrol value which corresponds to the output signal of the precontrol 162.
  • an additive and / or a multiplicative link takes place in the connection point 142.
  • the precontrol values with which the precontrol takes place are stored in a suitable memory as a function of the operating point in the precontrol 162.
  • the operating points are preferably defined by the fuel quantity to be injected and the rail pressure.
  • other operating parameters such as the speed and / or temperature values, can also be taken into account.
  • the adaptation 160 determines learning values as a function of the operating point. These learning values are then stored in the feedforward control 162 as a function of the operating point and used for precontrol. It is particularly advantageous if the injector amount compensation function uses the same learning values for correcting the stored correction values. This can be realized by supplying the learning values to the precontrol 162 and the injector amount compensation function 164 and storing them in each case. Furthermore, this can be realized in that the pilot control 162 and the injector amount compensation function 164 access a common memory in which the learning values are stored.
  • the Injektormengenaus Dermatatospinal 164 and the feedforward 162 does not correct at the same time with the same correction values or pre-control, since in this case the quantity error would be doubly compensated. While the feedforward control 162 pre-controls the learned values, the injector equalization function 164 validates its values with those determined by the adaptation 160.
  • the adaptation determines learning values which be used for feedforward control of the flow compensation scheme. These learning values characterize the deviation of the individual control elements or of the individual burns in the respective cylinder and correspond to a correction amount which is necessary to achieve an equalization of the cylinders. These correction amounts are stored for each cylinder and the respective operating point in the feedforward control 162. If the operating point is present, the output signal of the controller is corrected with this correction quantity. This correction is also possible in operating states in which no quantity compensation regulation takes place. Even in operating states in which no quantity compensation regulation takes place, the fuel quantity is corrected.
  • FIG. 2 shows the determination of the correction values by adaptation 160 in detail.
  • a start 210 in a step 220, it is checked whether predefinable operating states of the internal combustion engine and / or ambient conditions are given, for example, whether a predetermined engine speed, a predetermined ambient temperature, or a desired transmission ratio exist. Furthermore, it is checked whether predetermined stationary cylinder control values are realized. These operating states or environmental states are also referred to as "learning area" for reasons described below. If this is not the case, a return to a node 215 takes place and the check takes place in this loop until the operating conditions and / or ambient conditions are reached. If this is the case, it is checked in a step 230 whether learning values have already been stored. If there are no learning values, in step 240 the correction, also referred to as learning, takes place and the learned learning values are stored. Then, return to step 215 and the procedure starts again.
  • predefinable operating states of the internal combustion engine and / or ambient conditions for example, whether a predetermined
  • step 250 it is checked in step 250 whether the amount of these learning values lies within predefinable threshold values. If this is not the case, an error, such as a defective injector or misfire, is detected in step 260. If this condition is met, then in step 270 the learning value determined in this way is stored as a new learning value. Further, an error is detected when allowable learning limits are reached, that is, the learned quantity correction is too large or too small.
  • the learned values of the quantity compensation control are stored as a function of the operating point and used for precontrol in the quantity compensation control. In contrast to initialization, these values are available not only when starting the internal combustion engine, but in all operating states. As a result, a more accurate fuel metering is possible even in operating states in which the quantity compensation system is not available.

Abstract

Es werden eine Vorrichtung und ein Verfahren zur Steuerung einer Brennkraftmaschine beschrieben, bei der jedem Zylinder der Brennkraftmaschine ein Regler zugeordnet ist, die eine die Verbrennung charakterisierende Größe, auf einen gemeinsamen Sollwert einregeln. Ausgehend von den Ausgangsgrößen der Regler werden Lemwerte ermittelt und zur Vorsteuerung der Regler verwendet.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.
  • Ein Verfahren und eine Vorrichtung zur Mengenausgleichsregelung bei einer Brennkraftmaschine sind aus der DE 33 36 028 bekannt. Dort wird ausgehend von einem Drehzahlsignal ein Soll- und ein Istwert für jeden Zylinder gebildet. Den einzelnen Zylindern ist jeweils ein Regler zugeordnet, der ausgehend von dem Vergleich zwischen einem zylinderindividuellen Istwert und einem gemeinsamen Sollwert eine Stellgröße zur Ansteuerung eines mengenbestimmenden Stellgliedes vorgibt. Diese Regelung regelt eine die Verbrennung charakterisierende Größe auf einen gemeinsamen Sollwert ein. Dadurch wird eine Gleichstellung, der von den einzelnen Zylindern bereitgestellten Drehmomente, erreicht. Als die Verbrennung charakterisierende Größe wird insbesondere Drehzahlwerte und/oder Drehmomente und/oder Lambda-Signal, die dem jeweiligen Zylinder zugeordnet werden, angesehen.
  • Die den einzelnen Zylindern zugeordneten Regler weisen wenigstens integrales Verhalten auf. Beim Motorstart werden die Integralanteile vorzugsweise mit einem festen Wert insbesondere mit dem Wert 0 initialisiert. Ausgehend von diesem Startwert werden dann im Betrieb die Integratorwerte bestimmt. Dies führt dazu, dass beim Start der Brennkraftmaschine die Mengenausgleichsregelung erst nach einer kurzen Verzögerungszeit ihre volle Wirksamkeit erlangt. Dies führt beim Neustart der Brennkraftmaschine zu Mengenfehlern bei den einzelnen Zylindern. Diese Mengenfehler können erhöhte Abgasemissionen bzw.
  • Komforteinbussen zur Folge haben. Ferner treten in Betriebszuständen, in denen die Mengenausgleichsregelung nicht aktiv ist Mengenfehler auf.
  • Dadurch dass ausgehend von den Ausgangsgrößen der Regler Lernwerte ermittelt und zur Vorsteuerung der Regler verwendet werden, ergibt sich eine verbesserte Kraftstoffzumessung und damit deutlich reduzierte Emissionen. Dies ist insbesondere in Betriebszustände der Fall, in denen die Mengenausgleichsregelung nicht aktiv ist, oder noch keine Stellgrößen ermittelt hat. In Betriebszuständen, in denen die Mengenausgleichsregelung aktiv ist, werden ausgehend von der Stellgröße der Mengenausgleichsregelung Vorsteuerwerte ermittelt, die dann in allen Betriebszuständen zur Vorsteuerung der Kraftstoffmenge verwendet werden. Ausgehend von der Stellgröße werden zylinderindividuelle Lernwerte ermittelt und abhängig vom Betriebszustand abgespeichert. Ausgehend von diesen Lernwerten werden dann die Vorsteuerwerte ermittelt, die den Ausgangsgrößen der Regler additiv und/oder multiplikativ überlagert werden. Bei der einfachsten Ausführungsform werden die Lernwerte direkt als Vorsteuerwerte übernommen.
  • Besonders vorteilhaft ist es, dass die Vorsteuerwerte und/oder Größen, ausgehend von denen die Vorsteuerwerte ermittelt werden auch zur Korrektur einer Injektormengenausgleichsfunktion verwendet werden. Das heißt die Lernwerte dienen zur Korrektur der Injektormengeausgleich und zur Vorsteuerung der Mengenausgleichsregelung.
  • Vorzugsweise arbeiten die Regler, die den einzelnen Zylindern zugeordnet sind, im Sinne einer Mengenausgleichsregelung zusammen. Das heißt die Regler regeln die in die einzelnen Zylinder eingespritzte Kraftstoffmenge auf einen gemeinsamen Wert ein. Da die Kraftstoffmenge als Istwert häufig nicht zur Verfügung steht, wird als Istwert ein Ersatzwert verwendet. Dieser Ersatzwert, wie beispielsweise Drehzahlwerte und/oder Drehmomente und/oder Lambdawerte werden für jeden Zylinder erfasst und auf einen gemeinsamen Wert eingeregelt. Als Stellgröße wird vorzugsweise eine Einspritzmenge verwendet. In diesem Fall können die Lernwerte unmittelbar als Vorsteuerwerte verwendet werden.
  • Ferner ist vorteilhaft, dass ausgehend von den Lernwerten mit geringem Aufwand Fehler erkannt werden.
  • Zeichnung
  • Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Es zeigen die Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung und Figur2 ein Flussdiagramm zur Verdeutlichung der erfindungsgemäßen Vorgehensweise.
  • Beschreibung des Ausführungsbeispiele
  • In Fig. 1 ist die erfindungsgemäße Vorgehensweise anhand eines Blockdiagrammes dargestellt. Mit 100 ist ein Stellelement dargestellt, dass die Leistungsabgabe der Brennkraftmaschine beeinflusst. Hierbei handelt es sich vorzugsweise um ein Magnetventil oder einen Piezosteller, der die einzuspritzende Kraftstoffmenge und/oder den Einspritzbeginn beeinflusst. Mit 105 ist ein Drehzahlsensor bezeichnet. Der Drehzahlsensor beaufschlagt eine Sollwertvorgabe 110 und eine Istwertvorgabe 115 mit einem Drehzahlsignal. Die Istwertvorgabe 115 und die Sollwertvorgabe 110 beaufschlagt einen ersten Verknüpfungspunkt 120 sowie einen zweiten Verknüpfungspunkt 130. Von den Verknüpfungspunkten 120 und 130 gelangt das Signal jeweils zu einem Regler 125 bzw. 135. Die Regler 125 bzw. 135 stellen eine Stellgröße zur Verfügung. Insbesondere handelt es sich hierbei um die in den jeweiligen Zylinder einzuspritzenden Kraftstoffmenge.
  • Am Eingang des Verknüpfungspunktes 142 bzw. 152 liegt das Ausgangssignal einer Vorsteuerung 162 bzw. 172. Am Eingang des Verknüpfungspunktes 144 bzw. 154 liegt das Ausgangssignal einer Injektormengenausgleichsfunktion 164 bzw. 174. Die Vorsteuerung 162 bzw. 172 und/oder die Injektormengenausgleichsfunktion 164 bzw. 174 werden von einer Adaption 160 bzw. 170 mit Signalen beaufschlagt. Der Adaption 160 bzw. 170 wird das Ausgangssignal des Verknüpfungspunktes 142 bzw. 152 zugeführt. Alternativ kann auch vorgesehen sein, dass die Adaption 160 die Ausgangsgrößen der Regler 125 bzw. 135 verarbeitet.
  • Fig. 1 ist lediglich ein Stellelement 100 dargestellt. Die Erfindung kann auch derart ausgestaltet sein, dass jedem Regler und damit jedem Zylinder ein Stellelement zugeordnet ist. In der Darstellung in Fig. 1 sind lediglich ein erster und ein zweiter Regler dargestellt. Üblicherweise ist jedem Zylinder der Brennkraftmaschine ein Regler und ein Stellelement zugeordnet. Das bedeutet, es ist für jeden Zylinder ein Regler und ein Stellelement vorhanden bzw. ein oder mehrere Regler bilden die Ansteuersignale für die den einzelnen Zylindern zugeordneten Stellelemente.
  • Die Sollwertvorgabe 110 bestimmt ausgehend von der Drehzahl N einen Sollwert S für die Regler. Die Istwertvorgabe 115 bestimmt für jeden Regler, d. h. für jeden Zylinder einen zylinderindividuellen Istwert I. Ausgehend von in den Verknüpfungspunkten 120 und 130 ermittelten Regelabweichungen bestimmen die Regler 125 und 135 die Stellgrößen.
  • Dabei ist die Bestimmung der Istwerte, der Sollwerte und die Regelung durch die Regler 125 und 135 derart ausgebildet, dass das von der Brennkraftmaschine abgegebene Drehmoment der einzelnen Zylinder gleichgestellt ist, d. h. jeder Zylinder der Brennkraftmaschine trägt das gleiche Drehmoment zum Gesamtdrehmoment bei. Bei einer anderen Ausgestaltung, die auch als Mengenausgleichsregelung bezeichnet wird, erfolgt die Regelung derart, dass allen Zylindern die gleiche Kraftstoffmenge zugemessen wird. Die Regelung erfolgt derart, dass alle Zylinder bezüglich einer Größe, die die Verbrennung charakterisiert, gleichgestellt werden.
  • Im folgenden wird die Vorgehensweise am Beispiel eines Zylinders beschrieben. Die Vorgehensweise kann auf beliebige Zylinderzahlen ausgedehnt werden.
    Die Umrechnung 140 ermittelt ausgehend von der Stellgröße die Ansteuerdauer für das Stellelement. Vorzugsweise ist das Stellelement als Piezoaktor oder als Magnetventil ausgebildet, dessen Ansteuerdauer die eingespritzte Kraftstoffmenge festlegt.
  • Im Verknüpfungspunkt 144 wird diese Ansteuerdauer von der Injektormengenausgleichsfunktion 164 korrigiert. Diese Korrektur gleicht Abweichungen der einzelnen Stellelemente der verschiedenen Zylinder aus. Hierzu ist dem Stellelement ein Speicherelement zugeordnet, auf dem Daten abgelegt sind, die das Stellelement charakterisieren. Vorzugsweise sind abhängig vom Betriebspunkt Korrekturwerte abgelegt, mit denen die Ansteuerdauer zu korrigieren ist. Bei einer bevorzugten Ausführungsform ist vorgesehen, dass auf dem Stellelement ein Speicherelement angeordnet ist, in dem lediglich Korrekturwerte für einige wenige Betriebspunkte abgelegt sind. Die Injektormengenausgleichsfunktion 164 berechnet ausgehend von diesen wenigen Betriebspunkten ein Korrekturkennfeld für alle Betriebspunkte. Die Korrekturwerte sind derart gewählt, dass alle Stellelemente der Brennkraftmaschine, beim gleichen Ansteuersignal, insbesondere der gleichen Ansteuerdauer, die gleiche Kraftstoffmenge zumessen.
  • Diese Korrekturwert dienen zur Korrektur des Ansteuersignals im Verknüpfungspunkt 144. Die Korrektur im Verknüpfungspunkt144 erfolgt vorzugsweise additiv. Sie kann aber auch multiplikativ erfolgen. Die Betriebspunkte sind vorzugsweise durch die einzuspritzende Kraftstoffmenge und den Raildruck defmiert. Ergänzend können auch noch weitere Betriebskenngrößen, wie beispielsweise die Drehzahl und/oder Temperaturwerte, berücksichtigt werden.
  • Besonders vorteilhaft ist es, wenn der Stellgröße im Verknüpfungspunkt 142 ein Vorsteuerwert, der dem Ausgangssignal der Vorsteuerung 162 entspricht, überlagert wird. Vorzugsweise erfolgt im Verknüpfungspunkt 142 eine additive und/oder eine multiplikative Verknüpfung. Die Vorsteuerwerte, mit denen die Vorsteuerung erfolgt, sind abhängig vom Betriebspunkt in der Vorsteuerung 162 in einem geeigneten Speicher abgelegt. Die Betriebspunkte sind vorzugsweise durch die einzuspritzende Kraftstoffmenge und den Raildruck definiert. Ergänzend können auch noch weitere Betriebskenngrößen, wie beispielsweise die Drehzahl und/oder Temperaturwerte, berücksichtigt werden.
  • Erfindungsgemäß ermittelt die Adaption 160 abhängig vom Betriebspunkt Lernwerte. Diese Lernwerte werden dann in der Vorsteuerung 162 abhängig von Betriebspunkt abgelegt und zur Vorsteuerung verwendet. Besonders vorteilhaft ist es, wenn die Injektormengenausgleichsfunktion die selben Lernwerte zur Korrektur der abgelegten Korrekturwerte verwendet. Dies kann dadurch realisiert sein, dass die Lernwerte der Vorsteuerung 162 und der Injektormengenausgleichsfunktion 164 zugeführt und jeweils abgespeichert werden. Ferner kann dies dadurch realisiert sein, dass die Vorsteuerung 162 und die Injektormengenausgleichsfunktion 164 auf einen gemeinsamen Speicher zugreifen, in dem die Lernwerte abgelegt sind.
  • Dabei ist vorgesehen, dass die Injektormengenausgleichsregelung 164 und die Vorsteuerung 162 nicht zur selben Zeit mit den gleichen Korrekturwerten korrigieren bzw. vorsteuern, da in diesem Fall der Mengenfehler doppelt kompensiert würde. Während die Vorsteuerung 162 mit den Lernwerten vorsteuert, validiert die Injektorausgleichsfunktion 164 seine Werte mit denen von der Adaption 160 ermittelten Werten.
  • Dies bedeutet ausgehend von der Stellgröße, das heißt von dem Ausgangssignal der Mengenausgleichsregelung durch die Regler 125 bestimmt die Adaption Lernwerte, die zur Vorsteuerung der Mengenausgleichsregelung verwendet werden. Diese Lernwerte kennzeichnen die Abweichung der einzelnen Stellelemente bzw. der einzelnen Verbrennungen in dem jeweiligen Zylinder und entsprechen einer Korrekturmenge, die nötig ist um eine Gleichstellung der Zylinder zu erzielen. Diese Korrekturmengen werden für jeden Zylinder und den jeweiligen Betriebspunkt in der Vorsteuerung 162 abgespeichert. Liegen der Betriebspunkt vor, so wird das Ausgangsignal der Regler mit dieser Korrekturmenge korrigiert. Diese Korrektur ist auch in Betriebszuständen möglich, in denen keine Mengenausgleichsregelung erfolgt. Auch in Betriebszuständen, in denen keine Mengenausgleichsregelung erfolgt, erfolgt eine Korrektur der Kraftstoffmenge.
  • Dadurch ist auch in Betriebszuständen, in denen keine Mengenausgleichsregelung möglich ist, wie beispielsweise bei der Regeneration eines Abgasnachbehandlungssystems, in instationären Betriebszuständen und/oder bei einer sog. homogenen Verbrennung, eine genaue Kraftstoffzumessung mit geringen Emissionen und verbessertem Komfort (Laufruhe) möglich.
  • In Figur 2 ist die Ermittlung der Korrekturwerte durch die Adaption 160 detailliert dargestellt. Zunächst wird nach einem Start 210 in einem Schritt 220 geprüft, ob vorgebbare Betriebszustände der Brennkraftmaschine und/oder Umgebungszustände gegeben sind, beispielsweise ob eine vorgegebene Drehzahl der Brennkraftmaschine, eine vorgegebene Umgebungstemperatur, oder eine erwünschte Getriebeübersetzung existieren. Ferner wird geprüft, ob vorgegebene stationäre Zylinderstellwerte realisiert sind. Diese Betriebszustände bzw. Umgebungszustände werden aus nachfolgend beschriebenen Gründen auch als "Lernbereich" bezeichnet. Wenn dies nicht der Fall ist, erfolgt ein Rücksprung zu einem Knotenpunkt 215 und die Überprüfung erfolgt in dieser Schleife so lange, bis die Betriebszustände und/oder Umgebungszustände erreicht sind. Wenn dies der Fall ist, wird in einem Schritt 230 geprüft, ob bereits Lernwerte gespeichert sind. Wenn keine Lernwerte vorhanden sind, erfolgt in Schritt 240 die auch als Lernen bezeichnete Korrektur und es werden die ermittelten Lernwerte gespeichert. Sodann erfolgt ein Rücksprung zu Schritt 215 und die Prozedur beginnt von Neuem.
  • Wenn dagegen bereits Lernwerte gespeichert sind, wird in Schritt 250 geprüft, ob der Betrag dieser Lernwerte innerhalb vorgebbarer Schwellwerte liegt. Ist dies nicht der Fall, wird in Schritt 260 auf einen Fehler, wie beispielsweise ein defekter Injektor oder auf Verbrennungsaussetzer, erkannt. Wenn diese Bedingung erfüllt ist, wird in Schritt 270 der auf diese Weise ermittelte Lernwert als neuer Lernwert gespeichert. Ferner wird ein Fehler erkannt, wenn zulässige Lerngrenzen erreicht werden, das heiß, dass die gelernten Mengenkorrektur ist zur groß bzw. zu klein.
  • Ausgehend von dem Lernwert können in einfacher Weise bestimmte Fehler erkannt werden. Weicht beispielsweise der Lernwert eines Zylinders deutlich ab, so wird diesem Zylinder bzw. dem entsprechenden Stellelement ein Fehler zugeordnet. Im stationären Betrieb, insbesondere wenn das Lernverfahren abgeschlossen ist, nehmen die Ausgangssignale der Regler 125 bzw. 135 nahezu den Wert Null an. Ist dies nicht der Fall, so wird bei dem entsprechen Zylinder ebenfalls auf Fehler erkannt.
  • Die Lernwerte der Mengenausgleichsregelung werden abhängig vom Betriebspunkt abgespeichert und zur Vorsteuerung bei der Mengenausgleichsregelung verwendet. Im Unterschied zu einer Initialisierung stehen diese Werte nicht nur beim Start der Brennkraftmaschine, sondern in allen Betriebszuständen zur Verfügung. Dadurch ist auch in Betriebszuständen, in denen die Mengenausgleichsregelung nicht zur Verfügung steht eine genauere Kraftstoffzumessung möglich.
  • Besonders vorteilhaft ist es, wenn die Lernwerte zur Diagnose herangezogen werden. Durch die Adaption 160 wird die unterschiedliche Drift der verschiedenen Injektoren über die Laufzeit gelernt. Damit ist eine einfache Diagnose der Injektoren durch Vergleich des ursprünglichen Werts (=0) mit dem eingelernten Wert möglich. Mit dem erfindungsgemäßen Verfahren werden die Lernwerte in allen Betriebspunkten ermittelt und abgespeichert. Daher stehen die Lernwerte in allen Betriebspunkten für die Diagnose zur Verfügung.

Claims (8)

  1. Verfahren zur Steuerung einer Brennkraftmaschine, bei der jedem Zylinder der Brennkraftmaschine ein Regler zugeordnet ist, die eine die Verbrennung charakterisierende Größe, auf einen gemeinsamen Sollwert einregeln, dadurch gekennzeichnet, dass ausgehend von den Ausgangsgrößen der Regler Lernwerte ermittelt und zur Vorsteuerung der Regler verwendet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ausgehend von den Lernwerten Vorsteuerwerte ermittelt werden, die den Ausgangsgrößen der Regler additiv und/oder multiplikativ überlagert werden..
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lernwerte zur Korrektur einer Injektormengenausgleichsfunktion verwendet werden.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Regler im Sinne einer Mengenausgleichsregelung zusammenarbeiten.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ausgehend von den Lernwerten Fehler erkannt werden.
  6. Verfahren nach Anspruch ein, dadurch gekennzeichnet, dass die Lernwerte abhängig vom Betriebspunkt abgespeichert werden.
  7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Betriebspunkt wenigstens durch eine Größe festgelegt ist, die die einzuspritzende Kraftstoffmenge charakterisiert.
  8. Vorrichtung zur Steuerung einer Brennkraftmaschine, bei der jedem Zylinder der Brennkraftmaschine ein Regler zugeordnet ist, die eine die Verbrennung charakterisierende Größe, auf einen gemeinsamen Sollwert einregeln, dadurch gekennzeichnet, dass Mittel vorgesehen sind, die ausgehend von den Ausgangsgrößen der Regler Lernwerte ermittelt und zur Vorsteuerung der Regler verwenden.
EP06116340A 2005-07-01 2006-06-29 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine Ceased EP1741910A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510030870 DE102005030870A1 (de) 2005-07-01 2005-07-01 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1741910A1 true EP1741910A1 (de) 2007-01-10

Family

ID=37102458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06116340A Ceased EP1741910A1 (de) 2005-07-01 2006-06-29 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Country Status (2)

Country Link
EP (1) EP1741910A1 (de)
DE (1) DE102005030870A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007085501A1 (de) * 2006-01-20 2007-08-02 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042104A1 (de) 2008-09-15 2010-03-18 Robert Bosch Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
DE102009045314A1 (de) 2009-10-02 2011-04-07 Robert Bosch Gmbh Verfahren zur Überwachung eines Betriebs eines Verbrennungsmotors
DE102011005981B4 (de) 2011-03-23 2022-06-02 Robert Bosch Gmbh Verfahren zum Bestimmen einer Veränderung einer Steuermenge eines Injektors einer Brennkraftmaschine
DE102012206781A1 (de) 2012-04-25 2013-10-31 Robert Bosch Gmbh Verfahren zur Steuerung einer Brennkraftmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126943A (en) * 1989-06-19 1992-06-30 Japan Electric Control Systems Co., Ltd. Learning-correcting method and apparatus and self-diagnosis method and apparatus in fuel supply control system of internal combustion engine
EP1229230A2 (de) * 2001-02-05 2002-08-07 Toyota Jidosha Kabushiki Kaisha Steuerapparat für einen Multizylinderverbrennungsmotor und Steuermethode dafür
EP1327764A2 (de) * 2002-01-15 2003-07-16 Denso Corporation Kraftstoffeinspritzsystem
EP1424475A2 (de) * 2002-11-28 2004-06-02 HONDA MOTOR CO., Ltd. Vorrichtung und Verfahren zur Steuerung des Luft-Kraftstoff-Verhältnisses einer Brennkraftmaschine
DE10338775A1 (de) * 2003-08-23 2005-03-17 Adam Opel Ag Diagnoseeinrichtung für einen Verbrennungsmotor
WO2005075806A1 (de) * 2004-02-09 2005-08-18 Siemens Aktiengesellschaft Verfahren zur gleichstellung der einspritzmengenunterschiede zwischen den zylindern einer brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126943A (en) * 1989-06-19 1992-06-30 Japan Electric Control Systems Co., Ltd. Learning-correcting method and apparatus and self-diagnosis method and apparatus in fuel supply control system of internal combustion engine
EP1229230A2 (de) * 2001-02-05 2002-08-07 Toyota Jidosha Kabushiki Kaisha Steuerapparat für einen Multizylinderverbrennungsmotor und Steuermethode dafür
EP1327764A2 (de) * 2002-01-15 2003-07-16 Denso Corporation Kraftstoffeinspritzsystem
EP1424475A2 (de) * 2002-11-28 2004-06-02 HONDA MOTOR CO., Ltd. Vorrichtung und Verfahren zur Steuerung des Luft-Kraftstoff-Verhältnisses einer Brennkraftmaschine
DE10338775A1 (de) * 2003-08-23 2005-03-17 Adam Opel Ag Diagnoseeinrichtung für einen Verbrennungsmotor
WO2005075806A1 (de) * 2004-02-09 2005-08-18 Siemens Aktiengesellschaft Verfahren zur gleichstellung der einspritzmengenunterschiede zwischen den zylindern einer brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007085501A1 (de) * 2006-01-20 2007-08-02 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Also Published As

Publication number Publication date
DE102005030870A1 (de) 2007-01-11

Similar Documents

Publication Publication Date Title
EP1716330B1 (de) Verfahren zur gleichstellung der einspritzmengenunterschiede zwischen den zylindern einer brennkraftmaschine
EP2297444B1 (de) Verfahren und vorrichtung zur druckwellenkompensation bei zeitlich aufeinander folgenden einspritzungen in einem einspritzsystem einer brennkraftmaschine
DE102014202101B4 (de) Abschwächung des fehlertrends zur verschlechterung von luft-kraftstoff-verhältnissensoren
WO2002006655A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
WO2005078263A1 (de) Verfahren zur zylindergleichstellung bezüglich der kraftstoff-einspritzmengen bei einer brennkraftmaschine
DE102005020686A1 (de) Verfahren zum Steuern einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE102007053406B3 (de) Verfahren und Vorrichtung zur Durchführung sowohl einer Adaption wie einer Diagnose bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
EP1802859A1 (de) Verfahren zum betreiben einer kraftstoffeinspritzanlage insbesondere eines kraftfahrzeugs
EP1979599A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP1664511A1 (de) Verfahren zur bestimmung der ansteuerspannung eines piezoelektrischen aktors eines einspritzventils
EP1741910A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10332608B3 (de) Verfahren zum Regeln einer Brennkraftmaschine sowie eine Vorrichtung zum Regeln einer Brennkraftmaschine
DE19931823B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102005047350A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102008005154B4 (de) Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit
DE10221337A1 (de) Verfahren und Vorrichtung zur Korrektur einer Kraftstoffmenge, die einer Brennkraftmaschine zugeführt wird
EP1646777B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP1672206B1 (de) Verfahren und Vorrichtung zur Motorsteuerung bei einem Kraftfahrzeug
DE102015200898B3 (de) Vorsteuerung eines Verbrennungsmotors
DE102015200565A1 (de) Verfahren und Einrichtung zum Adaptieren eines Bauteils einer Brennkraftmaschine
DE10311011B4 (de) Verfahren zum Erfassen eines individuellen Offsetwertes einer elektrischen Größe zum Ansteuern eines Einspritzventils einer Brennkraftmaschine
DE102019202004A1 (de) Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
EP1126150B1 (de) Verfahren und Vorrichtung zur Laufruheregelung einer Brennkraftmaschine
DE102004050761A1 (de) Verfahren zum Korrigieren des Einspritzventils wenigstens eines Injektors
DE19541927B4 (de) Verfahren und Vorrichtung zur Steuerung und/oder Regelung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070710

17Q First examination report despatched

Effective date: 20070809

AKX Designation fees paid

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20100527