EP1646777B1 - Method and device for controlling an internal combustion engine - Google Patents
Method and device for controlling an internal combustion engine Download PDFInfo
- Publication number
- EP1646777B1 EP1646777B1 EP04738673A EP04738673A EP1646777B1 EP 1646777 B1 EP1646777 B1 EP 1646777B1 EP 04738673 A EP04738673 A EP 04738673A EP 04738673 A EP04738673 A EP 04738673A EP 1646777 B1 EP1646777 B1 EP 1646777B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- variable
- fuel
- amount
- air
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000446 fuel Substances 0.000 claims abstract description 80
- 230000003111 delayed effect Effects 0.000 claims 1
- 238000012937 correction Methods 0.000 abstract description 45
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1405—Neural network control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1406—Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1456—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0614—Actual fuel mass or fuel injection amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/32—Air-fuel ratio control in a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
- F02D41/1479—Using a comparator with variable reference
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
- F02D41/1482—Integrator, i.e. variable slope
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1486—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
- F02D41/1487—Correcting the instantaneous control value
Definitions
- the invention relates to a method and a device for controlling an internal combustion engine according to the preambles of the independent claims.
- a correction unit calculates a correction value for the correction of a pump characteristic field on the basis of the fuel quantity to be injected and various input signals such as, for example, the air quantity and a lambda signal.
- the correction device the fuel quantity to be injected and the actually injected fuel quantity are compared and, depending on this comparison, the pump map is corrected such that the defined relationship between the fuel quantity to be injected and the control signal for the fuel pump is restored. It is further provided that, starting from a humidity signal, a correction signal for correcting the air quantity is specified.
- the desired amount of fuel QKW is limited to a maximum allowable amount of fuel through a minimum selection. This limited amount of fuel then serves as fuel to be injected.
- a method and a device for controlling an internal combustion engine is known from the unpublished DE 102 21376 known. There, a method and a device for controlling an internal combustion engine is described in which, based on operating parameters, a lambda value of the exhaust gas is determined. This is compared with the actual lambda value and, based on the comparison, a correction value for the correction of a fuel quantity or an air quantity signal is calculated.
- a first variable characterizing the actually injected fuel quantity is determined from the sensor signal of a lambda sensor and an air mass sensor and compared with a second variable characterizing the desired fuel quantity to be injected. Based on this comparison, a first correction value for the correction of a fuel quantity and / or a second correction value for the correction of an air quantity is specified.
- the actual amount of fuel injected would have to correspond to the desired amount of fuel. Due to tolerances and / or aging effects, the case occurs that the desired fuel quantity deviates from the actually injected fuel quantity. If now the amount of air metered to the internal combustion engine is controlled and / or regulated as a function of the desired amount of fuel to be injected, a faulty amount of air is set. A control depending on the actually injected amount of fuel is not readily possible because it is difficult to detect. By measuring the lambda value of the exhaust gas and the amount of air supplied to the internal combustion engine, the actual injected fuel quantity can be calculated and compared with the desired amount of fuel to be injected. Based on the deviation of these two signals results in a correction value.
- the correction value can now be intervened on the air system. This is done, for example, such that the fuel amount value supplied to the air system is corrected with the corresponding correction value. Furthermore, it can be provided that directly the amount of air is corrected accordingly.
- the lambda signals or other quantities characterizing the fuel quantity can also be used directly.
- intervention is made directly in the fuel metering system in such a way that a quantity of fuel quantity is corrected by means of the correction value until the amount of fuel to be injected and the fuel quantity actually injected coincide.
- a direct correction of the amount of fuel is problematic because such a correction can lead to an increase in quantity.
- the direct intervention of the quantity corrects arbitrarily large deviations or acts in the entire engine operating range.
- the correction value acts on the amount of fuel and / or on the amount of air.
- the correction value which acts on the amount of fuel, limited to a maximum value.
- the entire error is compensated by means of a direct intervention. If this is not possible, the remaining error is compensated by means of an indirect intervention.
- the direct intervention affects the amount of fuel and the indirect intervention affects the amount of air.
- the quantity error corresponding to the deviation between the actual and the desired fuel quantity is proportionately compensated for via a direct intervention in the metering and an adaptation to the air mass to the remaining quantity error.
- the type of intervention is dependent on the engine operating state. This is realized, for example, in that the limit and thus the proportion of the direct intervention is specified as a function of operating conditions and is thus continuously adjusted. In this case, preferably the rotational speed and / or a variable characterizing the load of the internal combustion engine are used as operating parameters.
- the first and / or the second correction value be adapted. That is to say, in states in which the correction values can be determined, the correction values are stored in one or more characteristic fields depending on the operating state of the internal combustion engine or quantities are determined and stored which can be used to calculate the correction values according to a mathematical method. In states in which the correction values can not be determined, the stored correction values or the stored variables are used.
- the cylinders of the internal combustion engine are divided into at least two groups, and that different second correction values are specified for the different groups. This means that the mean quantity error of the two groups is corrected by a fuel quantity intervention. The remaining and / or the individual errors of the individual groups are compensated by an indirect intervention.
- the correction takes place by means of a fuel quantity intervention up to a certain error.
- an additional correction by means of an air quantity intervention takes place.
- FIG. 1 is a fuel quantity control designated 100. This is dependent on various input variables, such as the speed of the internal combustion engine and a signal FP, which characterizes the driver's desire, a desired amount of fuel to be injected MES. This is also referred to below as the second size.
- This signal regarding the desired amount of fuel to be injected passes through a node 105 to a fuel quantity actuator 110.
- the fuel quantity actuator 110 determines the time and the end and thus the duration of the fuel metering. Preferably, this is designed as a solenoid valve or as a piezoelectric actuator, which is preferably arranged in an injector, an injection nozzle, or another actuator.
- An air quantity control 200 supplies an air quantity signal MLS on the basis of various input variables, such as the engine speed N and a quantity MES characterizing the quantity of fuel to be injected.
- the output signal of the quantity control 100 is preferably used.
- an air quantity actuator 210 is acted upon via a node 205.
- the air quantity actuator 210 sets the appropriate amount of air. This is preferably an actuator for influencing the amount of recirculated exhaust gas in the form of an exhaust gas recirculation controller, a throttle valve, which influences the amount of air supplied to the internal combustion engine, and / or a supercharger.
- a fuel quantity calculation 120 determines, based on various input variables, a quantity MEI which characterizes the actually injected fuel quantity, which is also referred to below as the first quantity.
- the fuel quantity calculation processes, in particular, a signal L, which characterizes the oxygen concentration in the exhaust gas, and a signal MLI, which characterizes the air quantity supplied to the internal combustion engine.
- the two signals are preferably provided by sensors, in particular a lambda probe and an air mass meter. Alternatively, these signals can also be determined on the basis of other variables.
- Input variables can be taken into account by the fuel quantity control, the air flow control and the fuel quantity calculation yet other input variables.
- the first and the second quantities MES and MEI arrive at a node 125 with different signs.
- the output point DME of the node indicates the deviation between the actually injected fuel quantity and the desired quantity of fuel to be injected.
- This signal DME with respect to the injection quantity error passes via an integrator 130 and a limiter 132 to a first characteristic map 134.
- the output QME of the first characteristic field is applied to the second input of the connection point 105.
- the limiter 132 in turn supplies the integrator 130 with a signal. Both the limiter 132 and the map 134 are different Operating characteristics, such as the speed N of the internal combustion engine and other variables supplied.
- the signal DME with respect to the injection amount error passes through a filter 140 and a sign inverter 142 to a second map 144, whose output QML of the second input of the node 205 is applied.
- the second map 144 also different signals with respect to various operating characteristics such as the rotational speed N are supplied.
- the integrator 130 and the limiter 132 act as integral controllers with output limiting and anti-windup function. That is, the injection quantity error is integrated by the integrator 130. Upon reaching the limit value of the limiter 132, the integrator is stopped, this is indicated by the connection between the limiter and the integrator 130. Once the limit value of the limiter 132 is reached, the output of the limiter remains at the value achieved.
- the limiting value of the limiter 132, to which the output signal of the integrator 130 is limited, according to the invention in one embodiment depending on the operating condition of the internal combustion engine can be predetermined.
- the limiting value is preferably predefined as a function of the rotational speed N of the internal combustion engine and / or further operating parameters.
- the output of limiter 132 is the amount of error that is to be compensated for by direct intervention on the amount of fuel. This is adapted in the subsequent first map 134. This means, if a specific operating point of the internal combustion engine is reached, which is preferably defined by the rotational speed and the load, then based on the comparison between the first and the second variable, the injection quantity error is determined and integrated and limited. The value thus determined is then stored in the map 134 depending on the operating point.
- the injection amount error will not be completely corrected via the fuel metering. Accordingly, the input signal of the integrator remains nonzero, i. the injection quantity error is not equal to zero. This remaining injection quantity error is compensated by the amount of air.
- the signs of the two interventions differ, this is ensured by the inverted 142.
- the filter 140 which is preferably realized as a low-pass filter, the dynamics of the air branch can be applied independently of the fuel quantity measurement.
- the air flow branch has a dynamically slower behavior so that the learning of the fuel quantity correction is not unnecessarily affected.
- the correction quantities QME for the quantity of fuel to be injected and QML for the amount of air are calculated and stored in the maps 134 and 144 depending on the respective operating point, i. learned. If the first variable MEI does not exist, this is the case, for example, if the lambda signal does not provide reliable values, the values stored in the maps 134 and 144 are used to correct the fuel quantity and / or the air quantity.
- FIG. 2 a further embodiment of the procedure according to the invention is shown.
- This procedure is provided in particular for special so-called V-engines, which essentially consist of two in-line engines which have a common crankshaft.
- this embodiment is not limited to such engines, it is generally applicable to internal combustion engines, in which the cylinders of the internal combustion engine are assigned to different banks / groups, wherein each of the banks / groups is assigned in each case an actuating element for influencing the amount of air.
- the approach is also applicable to a larger number of banks.
- the procedure can also be used if each cylinder is assigned an actuating element for influencing the amount of air.
- the quantity calculation for the first bank is the same as in FIG. 1 designated.
- the quantity calculation for the second bank is designated 320.
- the first variable associated with the first bank is hereinafter referred to as MEIL and the first variable associated with the second bank is designated MEIR.
- the node 125 of the first bank corresponds to the node 325 of the second bank.
- the quantity error of the first bank is denoted by DMEL and the quantity error of the second bank by DMER.
- the first bank elements 140, 142, 144 and 205 are labeled 340, 342, 344 and 305 at the second bank. The operation of these elements corresponds to the operation of the corresponding elements of the FIG. 1 ,
- the integrator 130 is supplied with the output of a divider 350, which processes the output of the link 160.
- the node 160 is supplied with the injection quantity error of the first bank DMEL and the injection amount error of the second bank DMER. This means that the integrator is supplied with the mean value of the two injection quantity errors of the two different banks. It is understood that the input signals of the quantity calculation 120 or 320 are provided by different sensors that are assigned to the individual banks.
- the procedure of FIG. 1 is essentially transferred to one of the banks, ie the individual elements are designed twice.
- the correction of the amount of fuel is uniform for both banks. This is necessary because a different correction would cause interference with other controls.
- the limit is reached during the fuel quantity correction, the remaining bank-specific residual errors are compensated via the air volume interventions. The same applies if different injection quantity errors occur for the different banks. In this case, the average error is compensated by the fuel quantity intervention, and the bank-individual residual errors are additionally compensated by the air volume interventions.
- FIG. 3 another embodiment is shown. It essentially corresponds to the functionality of the embodiment 2, but requires less overhead on computer runtime and storage space requirements.
- Elements described are designated by corresponding reference numerals.
- the injection quantity error DMEL of the first bank arrives at a connection point 410 and at a connection point 420. Accordingly, the injection quantity error of the second bank DMER likewise reaches the two connection points 410 and 420.
- the connection point 410 the sum of the two signals and, in the connection point 420, the difference between the two formed two signals.
- the output signals of the connection points 410 and 420 are divided by two.
- the filter 140 is thus supplied with the mean value of the two injection quantity errors of the two banks.
- the filter 340 is supplied with the deviation from the mean value.
- a filter 430 and on the other the two nodes 440 and 450 applied.
- the filter is preferably designed as a factor member. Accordingly, the output of the map 344, the two nodes 440 and 450 are applied.
- the output signal of the filter 430 reaches the limiter 132.
- the signal QMLL is present at the output of the connection point 440 and the signal QMLR is present at the output of the connection point 450.
- the three correction terms QME, QMLL and QMLR are determined by suitable adaptive linkage with suitable sign choice. That is, the elements 430 and 132 are predeterminable depending on the operating point.
- the two interventions on the air quantity are symmetrical with respect to the mean with the opposite sign.
- the maps 144 and / or 344 may alternatively be configured as any learning functions.
- the correction takes place via a uniform intervention on the fuel quantity for all cylinders.
- the correction by means of the intervention on the air quantity takes place individually for different groups of cylinders. It can be provided that the correction takes place for individual cylinders or common to several cylinders.
- the number of correction values preferably corresponds to the number of air mass meters and / or the number of control elements.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.The invention relates to a method and a device for controlling an internal combustion engine according to the preambles of the independent claims.
Aus der
Ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine ist aus der nicht vorveröffentlichten
Im Wesentlichen wird hier aus dem Sensorsignal eines Lambdasensors und eines Luftmassensensors eine die tatsächlich eingespritzte Kraftstoffmenge charakterisierende erste Größe bestimmt und mit einer die gewünschte einzuspritzende Kraftstoffmenge charakterisierenden zweiten Größe verglichen. Ausgehend von diesem Vergleich wird ein erster Korrekturwert zur Korrektur einer Kraftstoffmenge und/oder ein zweiter Korrekturwert zur Korrektur einer Luftmenge vorgegeben.In essence, a first variable characterizing the actually injected fuel quantity is determined from the sensor signal of a lambda sensor and an air mass sensor and compared with a second variable characterizing the desired fuel quantity to be injected. Based on this comparison, a first correction value for the correction of a fuel quantity and / or a second correction value for the correction of an air quantity is specified.
Bei einem idealen fehlerfreien System müsste die tatsächlich eingespritzte Kraftstoffmenge der gewünschten Kraftstoffmenge entsprechen. Auf Grund von Toleranzen und/oder Alterungseffekten tritt der Fall ein, dass die gewünschte Kraftstoffmenge von der tatsächlich eingespritzten Kraftstoffmenge abweicht. Wird nun die der Brennkraftmaschine zugemessene Luftmenge abhängig von der gewünschten einzuspritzenden Kraftstoffmenge gesteuert und/oder geregelt, wird eine fehlerhafte Luftmenge eingestellt. Eine Steuerung abhängig von der tatsächlich eingespritzten Kraftstoffmenge ist nicht ohne weiteres möglich, da diese nur schwer erfassbar ist. Durch die Messung des Lambdawertes des Abgases und der der Brennkraftmaschine zugeführten Luftmenge kann die tatsächlich eingespritzte Kraftstoffmenge berechnet und mit der gewünschten einzuspritzenden Kraftstoffmenge verglichen werden. Ausgehend von der Abweichung dieser beiden Signale ergibt sich ein Korrekturwert. Mit diesem Korrekturwert kann nun auf das Luftsystem eingegriffen werden. Dies erfolgt beispielsweise derart, dass der Kraftstoffmengenwert, der dem Luftsystem zugeführt wird, mit dem entsprechenden Korrekturwert korrigiert wird. Des weiteren kann vorgesehen sein, dass direkt die Luftmenge entsprechend korrigiert wird. Alternativ zur Berechnung der Kraftstoffmenge können auch direkt die Lambdasignale oder andere Größen, die die Kraftstoffmenge charakterisieren, verwendet werden.In an ideal error-free system, the actual amount of fuel injected would have to correspond to the desired amount of fuel. Due to tolerances and / or aging effects, the case occurs that the desired fuel quantity deviates from the actually injected fuel quantity. If now the amount of air metered to the internal combustion engine is controlled and / or regulated as a function of the desired amount of fuel to be injected, a faulty amount of air is set. A control depending on the actually injected amount of fuel is not readily possible because it is difficult to detect. By measuring the lambda value of the exhaust gas and the amount of air supplied to the internal combustion engine, the actual injected fuel quantity can be calculated and compared with the desired amount of fuel to be injected. Based on the deviation of these two signals results in a correction value. With this correction value can now be intervened on the air system. This is done, for example, such that the fuel amount value supplied to the air system is corrected with the corresponding correction value. Furthermore, it can be provided that directly the amount of air is corrected accordingly. As an alternative to calculating the fuel quantity, the lambda signals or other quantities characterizing the fuel quantity can also be used directly.
Alternativ kann auch vorgesehen sein, dass direkt in das Kraftstoffzumess-System derart eingegriffen wird, dass eine Kraftstoffmengengröße mittels des Korrekturwerts derart korrigiert wird, bis die einzuspritzende und die tatsächlich eingespritzte Kraftstoffmenge übereinstimmen. Eine solche direkte Korrektur der Kraftstoffmenge ist problematisch, da eine solche Korrektur zu einer Mengenerhöhung führen kann. Aus Sicherheitsgründen ist es daher nicht erwünscht, dass der direkte Mengeneingriff beliebig große Abweichungen korrigiert oder im gesamten Motorbetriebsbereich wirkt.Alternatively, it can also be provided that intervention is made directly in the fuel metering system in such a way that a quantity of fuel quantity is corrected by means of the correction value until the amount of fuel to be injected and the fuel quantity actually injected coincide. Such a direct correction of the amount of fuel is problematic because such a correction can lead to an increase in quantity. For safety reasons, therefore, it is not desirable that the direct intervention of the quantity corrects arbitrarily large deviations or acts in the entire engine operating range.
Diese Einschränkungen bestehen beim indirekten Eingriff, beispielsweise über die Luftsteuerung mittels einer Abgasrückführung, nicht. Da hinsichtlich der Emissionen der indirekte Eingriff gleichwertig oder besser ist, wird üblicherweise ein indirekter Eingriff auf die Luftmenge bevorzugt.These restrictions do not apply to indirect intervention, for example via the air control system by means of exhaust gas recirculation. Since emissions are equivalent or better than indirect intervention, indirect intervention on the amount of air is usually preferred.
Erfindungsgemäß wurde erkannt, dass Fehler der Einspritzmenge sich unter Umständen negativ auf das Fahrverhalten auswirken können.According to the invention, it has been recognized that errors in the injection quantity can possibly have a negative effect on the driving behavior.
Erfindungsgemäß ist deshalb vorgesehen, dass der Korrekturwert auf die Kraftstoffmenge und/oder auf die Luftmenge einwirkt. Dabei wird der Korrekturwert, der auf die Kraftstoffmenge einwirkt, auf einen Maximalwert begrenzt. Mittels dieser Vorgehensweise können sowohl Auswirkungen auf die Abgasemissionen, als auch auf das Fahrverhalten kompensiert werden. Bei einer bevorzugten Ausführungsform ist vorgesehen, dass der gesamte Fehler mittels eines direkten Eingriffs kompensiert wird. Ist dies nicht möglich, so wird der verbleibende Fehler mittels eines indirekten Eingriffs kompensiert. Der direkte Eingriff wirkt auf die Kraftstoffmenge und der indirekte Eingriff wirkt auf die Luftmenge.According to the invention it is therefore provided that the correction value acts on the amount of fuel and / or on the amount of air. In this case, the correction value, which acts on the amount of fuel, limited to a maximum value. By means of this procedure, both effects on the exhaust emissions and on the driving behavior can be compensated. In a preferred embodiment it is provided that the entire error is compensated by means of a direct intervention. If this is not possible, the remaining error is compensated by means of an indirect intervention. The direct intervention affects the amount of fuel and the indirect intervention affects the amount of air.
Erfindungsgemäß wird der Mengenfehler der der Abweichung zwischen der tatsächlichen und der gewünschten Kraftstoffmenge entspricht, anteilig über einen direkten Eingriff in die Zumessung und eine Anpassung an die Luftmasse an den verbleibenden Mengenfehler kompensiert.According to the invention, the quantity error corresponding to the deviation between the actual and the desired fuel quantity is proportionately compensated for via a direct intervention in the metering and an adaptation to the air mass to the remaining quantity error.
Besonders vorteilhaft ist es, wenn die Art des Eingriffes abhängig vom Motorbetriebszustand erfolgt. Dies ist beispielsweise dadurch realisiert, dass die Begrenzung und damit der Anteil des direkten Eingriffs abhängig von Betriebszustäriden vorgegeben wird und damit kontinuierlich verstellt wird. Als Betriebskenngrößen werden dabei vorzugsweise die Drehzahl und /oder eine die Last der Brennkraftmaschine charakterisierende Größe verwendet.It is particularly advantageous if the type of intervention is dependent on the engine operating state. This is realized, for example, in that the limit and thus the proportion of the direct intervention is specified as a function of operating conditions and is thus continuously adjusted. In this case, preferably the rotational speed and / or a variable characterizing the load of the internal combustion engine are used as operating parameters.
Vorzugsweise ist vorgesehen, dass der erste und/oder der zweite Korrekturwert adaptiert werden. Das heißt in Zuständen, in denen die Korrekturwerte ermittelt werden können, werden die Korrekturwerte abhängig vom Betriebszustand der Brennkraftmaschine in einem oder mehreren Kennfeldern abgelegt oder es werden Größen ermittelt und abgespeichert, die zur Berechnung der Korrekturwerte gemäß eines mathematischen Verfahrens verwendet werden können. In Zuständen, in denen die Korrekturwerte nicht ermittelt werden können, werden die abgespeicherten Korrekturwerte oder die abgespeicherten Größen verwendet.It is preferably provided that the first and / or the second correction value be adapted. That is to say, in states in which the correction values can be determined, the correction values are stored in one or more characteristic fields depending on the operating state of the internal combustion engine or quantities are determined and stored which can be used to calculate the correction values according to a mathematical method. In states in which the correction values can not be determined, the stored correction values or the stored variables are used.
Bei einer besonders vorteilhaften Ausgestaltung ist vorgesehen, dass die Zylinder der Brennkraftmaschine in wenigstens zwei Gruppen aufgeteilt sind, und dass für die unterschiedlichen Gruppen unterschiedliche zweite Korrekturwerte vorgegeben werden. Dies bedeutet, der mittlere Mengenfehler der beiden Gruppen wird durch einen Kraftstoffmengeneingriff korrigiert. Die verbleibenden und/oder die individuellen Fehler der einzelnen Gruppen werden über einen indirekten Eingriff kompensiert.In a particularly advantageous embodiment, it is provided that the cylinders of the internal combustion engine are divided into at least two groups, and that different second correction values are specified for the different groups. This means that the mean quantity error of the two groups is corrected by a fuel quantity intervention. The remaining and / or the individual errors of the individual groups are compensated by an indirect intervention.
Vorzugsweise ist vorgesehen, dass bis zu einem bestimmten Fehler die Korrektur mittels eines Kraftstoffmengeneingriffs erfolgt. Bei größeren und/oder unsymmetrischen Fehlern erfolgt zusätzlich eine Korrektur mittels eines Luftmengeneingriffs.It is preferably provided that the correction takes place by means of a fuel quantity intervention up to a certain error. In the case of larger and / or asymmetrical errors, an additional correction by means of an air quantity intervention takes place.
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert.The invention will be explained below with reference to the embodiments shown in the drawing.
Es zeigen
- Figur 1
- ein Blockdiagramm der erfindungsgemäßen Vorrichtung,
- Figur 2
- und
- Figur3
- jeweils eine Ausgestaltung für eine Brennkraftmaschine, bei der die Zylinder der Brennkraftmaschine in wenigstens zwei Gruppen aufgeteilt sind.
- FIG. 1
- a block diagram of the device according to the invention,
- FIG. 2
- and
- Figur3
- in each case an embodiment for an internal combustion engine, in which the cylinders of the internal combustion engine are divided into at least two groups.
Im Folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel der einzuspritzenden Kraftstoffmenge beschrieben. An Stelle der Kraftstoffmenge können auch andere Größen, die die Kraftstoffmenge charakterisieren, verwendet werden. Insbesondere können Momentengrößen, Kraftstoffvolumen und/oder die Ansteuerdauer entsprechender Stellglieder verwendet werden.The procedure according to the invention is described below using the example of the fuel quantity to be injected. Instead of the amount of fuel, other quantities that characterize the amount of fuel can be used. In particular, torque quantities, fuel volumes and / or the activation duration of corresponding actuators can be used.
In
Eine Luftmengensteuerung 200 liefert ausgehend von verschiedenen Eingangsgrößen, wie beispielsweise der Drehzahl N der Brennkraftmaschine und einer die einzuspritzende Kraftstoffmenge charakterisierenden Größe MES ein Luftmengensignal MLS. Als Eingangsgröße für die einzuspritzende Kraftstoffmenge wird vorzugsweise das Ausgangssignal der Mengensteuerung 100 verwendet. Mit dem Ausgangssignal MLS der Luftmengensteuerung 200 wird über einen Verknüpfungspunkt 205 ein Luftmengenstellglied 210 beaufschlagt. Abhängig von dem Signal MLS bezüglich der gewünschten Frischluftmenge stellt das Luftmengenstellglied 210 die entsprechende Luftmenge ein. Hierbei handelt es sich bevorzugt um ein Stellglied zur Beeinflussung der rückgeführten Abgasmenge in Form eines Abgasrückführstellers, einer Drosselklappe, die die der Brennkraftmaschine zugeführte Luftmenge beeinflusst, und/oder einen Lader.An
Eine Kraftstoffmengenberechnung 120 bestimmt ausgehend von verschiedenen Eingangsgrößen eine die tatsächlich eingespritzte Kraftstoffmenge charakterisierende Größe MEI, die im Folgenden auch als erste Größe bezeichnet wird. Als Eingangsgröße verarbeitet die Kraftstoffmengenberechnung insbesondere ein Signal L, das die Sauerstoffkonzentration im Abgas charakterisiert und ein Signal MLI, das die der Brennkraftmaschine zugeführte Luftmenge charakterisiert. Die beiden Signale werden vorzugsweise von Sensoren, insbesondere einer Lambdasonde und einem Luftmassenmesser, bereitgestellt. Alternativ können diese Signale auch ausgehend von anderen Größen bestimmt werden.A
Neben den in
Die erste und die zweite Größe MES und MEI gelangen mit unterschiedlichen Vorzeichen zu einem Verknüpfungspunkt 125. Das Ausgangssignal DME des Verknüpfungspunktes gibt die Abweichung zwischen der tatsächlich eingespritzten Kraftstoffmenge und der gewünschten einzuspritzenden Kraftstoffmenge an. Dieses Signal DME bezüglich des Einspritzmengenfehlers gelangt über einen Integrator 130 und einen Begrenzer 132 zu einem ersten Kennfeld 134. Mit dem Ausgangssignal QME des ersten Kennfeldes wird der zweite Eingang des Verknüpfungspunktes 105 beaufschlagt. Der Begrenzer 132 beaufschlagt wiederum den Integrator 130 mit einem Signal. Sowohl dem Begrenzer 132, als auch dem Kennfeld 134 werden verschiedene Betriebskenngrößen, wie beispielsweise die Drehzahl N der Brennkraftmaschine und weitere Größen zugeführt.The first and the second quantities MES and MEI arrive at a
Ferner gelangt das Signal DME bezüglich des Einspritzmengenfehlers über einen Filter 140 und einen Vorzeichen-Invertierer 142 zu einem zweiten Kennfeld 144, mit dessen Ausgangssignal QML der zweite Eingang des Verknüpfungspunktes 205 beaufschlagt wird. Dem zweiten Kennfeld 144 werden ebenfalls verschiedene Signale bezüglich verschiedener Betriebskenngrößen wie beispielsweise der Drehzahl N zugeführt.Furthermore, the signal DME with respect to the injection amount error passes through a
Der Integrator 130 und der Begrenzer 132 wirken als Integralregler mit Ausgangsgrößenbegrenzung und Anti-Windup-Funktion. Dies bedeutet, der Einspritzmengenfehler wird von dem Integrator 130 aufintegriert. Bei Erreichen des Begrenzungswertes des Begrenzers 132 wird der Integrator angehalten, dies wird durch die Verbindung zwischen dem Begrenzer und dem Integrator 130 angedeutet. Sobald der Begrenzungswert des Begrenzers 132 erreicht wird, bleibt das Ausgangssignal des Begrenzers auf dem erreichten Wert.The
Der Begrenzungswert des Begrenzers 132, auf den das Ausgangssignal des Integrators 130 begrenzt wird, ist erfindungsgemäß bei einer Ausgestaltung abhängig vom Betriebszustand der Brennkraftmaschine vorgebbar. Vorzugsweise wird der Begrenzungswert abhängig von der Drehzahl N der Brennkraftmaschine und/oder weiteren Betriebskenngrößen vorgegeben.The limiting value of the
Das Ausgangssignal des Begrenzers 132 ist derjenige Mengenfehler, der durch einen direkten Eingriff auf die Kraftstoffmenge kompensiert werden soll. Dieser wird in dem nachfolgenden ersten Kennfeld 134 adaptiert. Dies bedeutet, wird ein bestimmter Betriebspunkt der Brennkraftmaschine erreicht, der vorzugsweise durch die Drehzahl und die Last definiert ist, so wird ausgehend von dem Vergleich zwischen der ersten und der zweiten Größe der Einspritzmengenfehler ermittelt und aufintegriert sowie begrenzt. Der so ermittelte Wert wird dann abhängig vom Betriebspunkt in dem Kennfeld 134 abgespeichert.The output of
Erfindungsgemäß ist nun vorgesehen, dass nur in bestimmten Betriebsbereichen eine Korrektur der Kraftstoffmenge erfolgen soll. Dies wird dadurch gewährleistet, dass in den anderen Betriebsbereichen, in denen keine Kraftstoffmengenkorrektur erfolgen soll, der Begrenzungswert auf Null gesetzt wird. In den übrigen Betriebspunkten wird die Kraftstoffzumessung und damit das Fahrverhalten adaptiert. In den übrigen Betriebspunkten oder in Betriebspunkten, in denen der Begrenzer aktiv ist, d.h. der Fehler durch die Kraftstoffmengenkorrektur nicht vollständig korrigiert werden kann, erfolgt zusätzlich eine Korrektur der Luftmenge. D.h., es wird entweder lediglich die Kraftstoffmenge korrigiert oder lediglich die Luftmenge oder es werden beide Mengen korrigiert.According to the invention, it is now provided that a correction of the fuel quantity should take place only in certain operating ranges. This is ensured by the fact that in the other operating areas, in which no fuel quantity correction is to take place Limit value is set to zero. In the other operating points, the fuel metering and thus the driving behavior is adapted. In the other operating points or in operating points in which the limiter is active, ie the error can not be completely corrected by the fuel quantity correction, an additional correction of the amount of air. That is, it is either corrected only the amount of fuel or just the amount of air or both amounts are corrected.
Dies bedeutet, dass für unterschiedliche Betriebspunkte die Begrenzung kontinuierlich verstellt werden kann. Der verbleibende Mengenfehler wird dabei automatisch über die Luftmenge kompensiert.This means that the limit can be adjusted continuously for different operating points. The remaining quantity error is automatically compensated by the amount of air.
Falls der Integrator die Begrenzung erreicht, wird der Einspritzmengenfehler nicht vollständig über die Kraftstoffzumessung korrigiert. Dementsprechend bleibt das Eingangssignal des Integrators ungleich Null, d.h. der Einspritzmengenfehler ist ungleich Null. Dieser verbleibende Einspritzmengenfehler wird über die Luftmenge kompensiert. Die Vorzeichen der beiden Eingriffe unterscheiden sich dabei, dies wird durch den Invertierter 142 gewährleistet. Über den Filter 140, der vorzugsweise als Tiefpassfilter realisiert ist, lässt sich die Dynamik des Luftzweiges unabhängig von der Kraftstoffmengenzumessung applizieren. Vorzugsweise weist der Luftmengenzweig ein dynamisch langsameres Verhalten auf, damit das Lernen der Kraftstoffmengenkorrektur nicht unnötig beeinflusst wird.If the integrator reaches the limit, the injection amount error will not be completely corrected via the fuel metering. Accordingly, the input signal of the integrator remains nonzero, i. the injection quantity error is not equal to zero. This remaining injection quantity error is compensated by the amount of air. The signs of the two interventions differ, this is ensured by the inverted 142. Via the
In Betriebspunkten, in denen die erste Größe MEI bekannt ist, werden die Korrekturwerte QME für die einzuspritzende Kraftstoffinenge und QML für die Luftmenge berechnet und abhängig vom jeweiligen Betriebspunkt in den Kennfeldern 134 und 144 abgespeichert, d.h. gelernt. Liegt die erste Größe MEI nicht vor, dies ist beispielsweise dann der Fall, wenn das Lambdasignal keine zuverlässigen Werte liefert, werden die in den Kennfeldern 134 und 144 abgespeicherten Wert zur Korrektur der Kraftstoffmenge und/oder der Luftmenge verwendet.At operating points in which the first quantity MEI is known, the correction quantities QME for the quantity of fuel to be injected and QML for the amount of air are calculated and stored in the
Anstelle der Kennfelder 134 und 144 können auch andere Lernfunktionen oder adaptive Verfahren eingesetzt werden.Instead of the
In der
Ferner ist die Vorgehensweise auch auf eine größere Anzahl von Bänken anwendbar. Insbesondere ist die Vorgehensweise auch einsetzbar, wenn jedem Zylinder ein Stellelement zur Beeinflussung der Luftmenge zugeordnet ist.In the
Furthermore, the approach is also applicable to a larger number of banks. In particular, the procedure can also be used if each cylinder is assigned an actuating element for influencing the amount of air.
Bereits in
Dem Integrator 130 wird das Ausgangssignal einer Divisionseinrichtung 350 zugeleitet, die das Ausgangssignal der Verknüpfung 160 verarbeitet. Dem Verknüpfungspunkt 160 werden der Einspritzmengenfehler der ersten Bank DMEL und der Einspritzmengenfehler der zweiten Bank DMER zugeführt. D.h. dem Integrator wird der Mittelwert der beiden Einspritzmengenfehler der beiden unterschiedlichen Bänke zugeleitet. Dabei ist selbstverständlich, dass die Eingangssignale der Mengenberechnung 120 bzw. 320 durch unterschiedliche Sensoren, die den einzelnen Bänken zugeordnet sind, bereitgestellt werden.The
Erfindungsgemäß ist nun vorgesehen, dass die Vorgehensweise der
In der
Erfindungsgemäß werden bei dieser Ausführungsform der Mittelwert und die halbe Differenz, d.h. die Abweichung vom Mittelwert der Einzelfehler in den Kennfeldern 144 bzw. 344 gelernt. Aus diesen Größen werden die drei Korrekturterme QME, QMLL und QMLR durch geeignete adaptive Verknüpfung mit geeigneter Vorzeichenwahl bestimmt. Das heißt die Elemente 430 und 132 sind abhängig vom Betriebspunkt vorgebbar. Dabei sind die beiden Eingriffe auf die Luftmenge symmetrisch bezüglich des Mittelwerts mit umgekehrten Vorzeichen. Die Kennfelder 144 und/oder 344 können alternativ auch als beliebige Lernfunktionen ausgebildet sein.According to the invention, in this embodiment, the mean value and the half difference, ie the deviation from the mean value of the individual errors in the
Zum Lernen des Mittelwerts wird kein Integrator, sondern ein Tiefpassfilter 140 verwendet. Aus diesem Grund wird der Mengenfehler nie vollständig über den Eingriff auf die Kraftstoffmenge kompensiert. Es wirkt also stets gleichzeitig ein Eingriff auf die Luftmenge. Das Übertragungsverhalten des Filters 430 ist ebenso wie die Werte der Begrenzungen des Begrenzers 132 abhängig vom Betriebszustand vorgebbar.For learning the mean value, no integrator but a low-
Bei den Ausführungsformen der
Claims (7)
- Method for controlling an internal combustion engine, in which method a first variable, which characterizes the actually injected fuel quantity, and a second variable, which characterizes the desired fuel quantity to be injected, are determined on the basis of characteristic operating variables, and the first variable is compared with the second variable, with a first corrective value for correcting a fuel quantity being predefined on the basis of the comparison of the first variable with the second variable, with a second corrective value for correcting an air quantity being predefined on the basis of the comparison of the first variable with the second variable, and with the first corrective value being limited to a maximum value.
- Method according to one of the preceding claims, characterized in that the first and/or the second corrective value are adapted.
- Method according to one of the preceding claims, characterized in that the maximum value can be predefined as a function of characteristic operating variables.
- Method according to one of the preceding claims, characterized in that the first and/or the second corrective value is stored as a function of characteristic operating variables.
- Method according to one of the preceding claims, characterized in that the second corrective value is delayed in terms of time with respect to the first corrective value.
- Method according to one of the preceding claims, characterized in that the cylinders of the internal combustion engine are divided into at least two groups, and in that different second corrective values are predefined for the different groups.
- Device for controlling an internal combustion engine, having means which determine a first variable, which characterizes the actually injected fuel quantity, and a second variable, which characterizes the desired fuel quantity to be injected, on the basis of characteristic operating variables, predefine a first corrective value, for correcting a fuel quantity, on the basis of the comparison of the first variable with the second variable, predefine a second corrective value, for correcting an air quantity, on the basis of the comparison of the first variable with the second variable, and limit the first corrective value to a maximum value.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10331159A DE10331159A1 (en) | 2003-07-10 | 2003-07-10 | Controlling internal combustion engine, involves deriving fuel and air quantity correction values from comparison of actual and desired fuel quantities, limiting fuel correction value to maximum value |
PCT/DE2004/001221 WO2005008048A1 (en) | 2003-07-10 | 2004-06-12 | Method and device for controlling an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1646777A1 EP1646777A1 (en) | 2006-04-19 |
EP1646777B1 true EP1646777B1 (en) | 2008-10-08 |
Family
ID=33546951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04738673A Expired - Lifetime EP1646777B1 (en) | 2003-07-10 | 2004-06-12 | Method and device for controlling an internal combustion engine |
Country Status (6)
Country | Link |
---|---|
US (1) | US7320309B2 (en) |
EP (1) | EP1646777B1 (en) |
JP (1) | JP2007506896A (en) |
CN (1) | CN100538052C (en) |
DE (2) | DE10331159A1 (en) |
WO (1) | WO2005008048A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005047350A1 (en) * | 2005-10-04 | 2007-04-05 | Robert Bosch Gmbh | Method for controlling internal combustion engine, involves determination of actual variable based on lambda value which is compared to set-point variable whereby an error is identified when corrective value changes abruptly |
DE102006033869B3 (en) | 2006-07-21 | 2008-01-31 | Siemens Ag | Method and device for diagnosing the cylinder-selective unequal distribution of a fuel-air mixture, which is supplied to the cylinders of an internal combustion engine |
EP2159777A3 (en) | 2008-05-30 | 2016-05-04 | HERE Global B.V. | Data mining to identify locations of potentially hazardous conditions for vehicle operation and use thereof |
DE102010031323A1 (en) | 2009-09-21 | 2011-03-24 | Robert Bosch Gmbh | Technical system i.e. internal-combustion engine, controlling/regulating method for motor vehicle, involves dividing gross error for components e.g. actuators and/or models, of technical system |
DE102012204353A1 (en) * | 2012-03-20 | 2013-09-26 | Robert Bosch Gmbh | Method and device for monitoring gas sensors |
DE102013204049A1 (en) | 2013-03-08 | 2014-09-11 | Robert Bosch Gmbh | Method and device for determining the lambda value with a broadband lambda probe of an internal combustion engine, in particular of a motor vehicle |
DE102013216156A1 (en) | 2013-08-14 | 2015-02-19 | Robert Bosch Gmbh | Simplification of the electrical system of fuel cells by depletion of the cathode supply |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725954A (en) * | 1984-03-23 | 1988-02-16 | Nippondenso Co., Ltd. | Apparatus and method for controlling fuel supply to internal combustion engine |
JP3510021B2 (en) * | 1995-09-29 | 2004-03-22 | 松下電器産業株式会社 | Air-fuel ratio control device for internal combustion engine |
US5931138A (en) | 1996-02-23 | 1999-08-03 | Nissan Motor Co., Ltd. | Engine torque control apparatus |
DE19831748B4 (en) | 1998-07-15 | 2009-07-02 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
JP3487192B2 (en) * | 1998-09-03 | 2004-01-13 | トヨタ自動車株式会社 | Air-fuel ratio control device for internal combustion engine |
JP3610839B2 (en) * | 1999-09-27 | 2005-01-19 | 株式会社デンソー | Air-fuel ratio control device for internal combustion engine |
JP2001107779A (en) * | 1999-10-07 | 2001-04-17 | Toyota Motor Corp | Air-fuel ratio control device for internal combustion engine |
DE10105704C2 (en) * | 2001-02-08 | 2003-02-27 | Siemens Ag | Method for controlling an internal combustion engine |
JP3876722B2 (en) | 2001-06-28 | 2007-02-07 | トヨタ自動車株式会社 | Evaporative fuel processing device for internal combustion engine |
DE10154151A1 (en) * | 2001-11-03 | 2003-05-15 | Daimler Chrysler Ag | Process for operating an internal combustion engine with an exhaust gas turbocharger comprises producing and carrying out a boost pressure reduction mode |
ITTO20020143A1 (en) * | 2002-02-19 | 2003-08-19 | Fiat Ricerche | METHOD AND INJECTION CONTROL DEVICE IN AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR A DIESEL ENGINE EQUIPPED WITH A SYSTEM |
DE10221376B4 (en) | 2002-05-14 | 2013-05-23 | Robert Bosch Gmbh | Method and device for controlling an internal combustion engine |
-
2003
- 2003-07-10 DE DE10331159A patent/DE10331159A1/en not_active Withdrawn
-
2004
- 2004-06-12 WO PCT/DE2004/001221 patent/WO2005008048A1/en active Application Filing
- 2004-06-12 US US10/563,267 patent/US7320309B2/en not_active Expired - Fee Related
- 2004-06-12 CN CNB2004800160541A patent/CN100538052C/en not_active Expired - Fee Related
- 2004-06-12 JP JP2006517944A patent/JP2007506896A/en active Pending
- 2004-06-12 EP EP04738673A patent/EP1646777B1/en not_active Expired - Lifetime
- 2004-06-12 DE DE502004008217T patent/DE502004008217D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1646777A1 (en) | 2006-04-19 |
DE502004008217D1 (en) | 2008-11-20 |
US20070062504A1 (en) | 2007-03-22 |
CN1802495A (en) | 2006-07-12 |
US7320309B2 (en) | 2008-01-22 |
WO2005008048A1 (en) | 2005-01-27 |
DE10331159A1 (en) | 2005-01-27 |
CN100538052C (en) | 2009-09-09 |
JP2007506896A (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19945618B4 (en) | Method and device for controlling a fuel metering system of an internal combustion engine | |
DE3408215C2 (en) | ||
EP1303693B1 (en) | Method and device for controlling an internal combustion engine | |
DE3408223C2 (en) | ||
DE102008054690B4 (en) | Method and device for calibrating partial injections in an internal combustion engine, in particular a motor vehicle | |
DE102008043165B4 (en) | Method and device for calibrating the pre-injection quantity of an internal combustion engine, in particular a motor vehicle | |
DE2633617A1 (en) | METHOD AND DEVICE FOR DETERMINING SETTING SIZES IN A FUEL MACHINE | |
DE3929746A1 (en) | METHOD AND DEVICE FOR CONTROLLING AND REGULATING A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE | |
DE2924649A1 (en) | CONTROL SYSTEM FOR CONTROLLING THE AIR / FUEL RATIO OF AN INTERNAL COMBUSTION ENGINE | |
WO2010057738A1 (en) | Device for operating an internal combustion engine | |
EP0929794A1 (en) | Method and device for correcting margins of error of an indicating wheel | |
EP0151768B1 (en) | Measuring system for the fuel-air mixture of a combustion engine | |
DE4207541A1 (en) | Exhaust recirculation rate control system e.g. for turbo-diesel engines - includes simulator in loop determining amt. of air inducted in accordance with measured engine speed and injected fuel quantity | |
DE102005012950B4 (en) | Method and device for controlling an internal combustion engine | |
DE3925877C2 (en) | Method and device for controlling the fuel metering in a diesel internal combustion engine | |
EP1646777B1 (en) | Method and device for controlling an internal combustion engine | |
DE102008006327A1 (en) | Method for controlling an internal combustion engine | |
EP0757168B1 (en) | Method and apparatus for controlling an internal combustion engine | |
DE10339251B4 (en) | Method for operating an internal combustion engine | |
DE4322319C2 (en) | Method and device for controlling an internal combustion engine | |
EP1741910A1 (en) | Method and apparatus of controlling an internal combustion engine | |
EP1409865A1 (en) | Method for compensating injection quantity in each individual cylinder in internal combustion engines | |
DE4322270B4 (en) | Method and device for controlling an internal combustion engine | |
DE102006044771A1 (en) | Injected fuel actual amount variation determining method for road vehicle, involves injecting actual injected fuel amount and determining variation from comparison between reference amounts, which are formed by two of injection samples | |
DE102006032245B4 (en) | Adaptation method of an injection system of an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060210 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20070410 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502004008217 Country of ref document: DE Date of ref document: 20081120 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090709 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160628 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160621 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160810 Year of fee payment: 13 Ref country code: IT Payment date: 20160621 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004008217 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170612 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180103 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170612 |