EP1630411B1 - Verfahren zum Prüfen von Düsen von Verbrennungsmotoren - Google Patents

Verfahren zum Prüfen von Düsen von Verbrennungsmotoren Download PDF

Info

Publication number
EP1630411B1
EP1630411B1 EP05012702A EP05012702A EP1630411B1 EP 1630411 B1 EP1630411 B1 EP 1630411B1 EP 05012702 A EP05012702 A EP 05012702A EP 05012702 A EP05012702 A EP 05012702A EP 1630411 B1 EP1630411 B1 EP 1630411B1
Authority
EP
European Patent Office
Prior art keywords
nozzles
surface pressure
pressure sensor
piston cooling
pressure sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05012702A
Other languages
English (en)
French (fr)
Other versions
EP1630411B8 (de
EP1630411A1 (de
Inventor
Michael Nagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Krause GmbH
Original Assignee
Johann A Krause Maschinenfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johann A Krause Maschinenfabrik GmbH filed Critical Johann A Krause Maschinenfabrik GmbH
Priority to PL05012702T priority Critical patent/PL1630411T3/pl
Publication of EP1630411A1 publication Critical patent/EP1630411A1/de
Application granted granted Critical
Publication of EP1630411B1 publication Critical patent/EP1630411B1/de
Publication of EP1630411B8 publication Critical patent/EP1630411B8/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus

Definitions

  • the invention relates to a method for testing nozzles of internal combustion engines according to the preamble of claim 1.
  • Internal combustion engines are usually equipped with fuel injectors.
  • Modern internal combustion engines in particular high-performance engines, furthermore have piston cooling nozzles which inject oil against the underside of the pistons, in particular into cooling channels or supply channels emanating from the underside of the pistons.
  • These types of nozzles not only have to produce a jet of a certain geometry, in particular a certain cross-section, but the jet must also have a precisely defined direction so that the oil of the piston cooling nozzles reaches the respective cooling channel or supply channel at the bottom of each piston. Consequently, when testing both injection nozzles and piston cooling nozzles, it is particularly important to determine the jet geometry and the jet direction.
  • the invention has the object to provide a method by which nozzles of internal combustion engines, in particular injectors and piston cooling nozzles, at least with respect to their beam direction, preferably also the beam geometry, can be easily and reliably tested.
  • each nozzle in particular of each injection nozzle or piston cooling nozzle, is carried out with a directed to at least one pressure sensor fluid jet.
  • the direction of the fluid jet emerging from the nozzle to be tested can be determined with the at least one pressure sensor because, due to a predetermined positioning of the at least one pressure sensor, a signal is generated by the same only when the respective pressure sensor is hit. If the pressure sensor is hit only partially by the air jet emerging from the respective nozzle, this results in an attenuated signal, which also allows conclusions to be drawn about a deviating beam direction from the given direction. It is also possible to draw conclusions about the beam geometry from the intensity of the pressure signal picked up by the pressure sensor.
  • a surface pressure sensor is used, which may also be formed from an array or grid of several individual pressure sensors. Consequently, if only one surface pressure sensor is mentioned below, this includes an array or grid of several pressure sensors.
  • the pressure of the fluid jet emerging from the nozzle to be tested can be determined in a predetermined surface area, namely, it can be scanned.
  • the test method according to the invention thus determines the point at which the test beam from the nozzle to be tested impinges on the area scanned by the surface pressure sensor (test surface).
  • the beam geometry of the test beam can be detected by the size and shape of the surface on which the fluid jet emerging from the nozzle generates a pressure signal on the surface pressure sensor.
  • the pressure signal is three-dimensional image of the surface pressure sensor, the pressure value spatially displayed on a perpendicular to the test area.
  • the pressure sensors in particular surface pressure sensors, a pressure over the preferably entire surface area of a respective cylinder bore (in the case of testing the Kolbenkühldüse) in the engine block or (in the case of testing the injector) to determine a combustion chamber in the cylinder head.
  • the largest possible surface area is available for testing the jet direction and preferably also the jet geometry of the fluid jet of the injection nozzle or piston cooling nozzle used for testing.
  • the pressure over the entire cross-sectional area of the cylinder bore in the engine block or the combustion chamber in the region of the contact surface of the cylinder head on the engine block can be determined. As a result, a maximum meaningful examination of the direction and the geometry of the injection jet of injection nozzles and the cooling jet of piston cooling nozzles is possible.
  • the surface pressure sensor assigned to each piston cooling nozzle or cylinder bore is fastened to the side of the engine block facing the cylinder head above the respective cylinder bore during the test of the piston cooling nozzles. It is preferably tested simultaneously all the piston cooling nozzles of the internal combustion engine. Accordingly, in a six-cylinder internal combustion engine with one piston cooling nozzle per cylinder, six surface pressure sensors would be presently secured over the respective cylinder bore. To simplify the test, it is possible to attach all or only one group of surface pressure sensors to a common carrier, so that all or at least a plurality of surface pressure sensors can be attached to the engine block simultaneously and in the correct relative position to one another and also removed again. The surface pressure sensors are acted upon by the end of the test beam extending through each cylinder bore on the side of the engine block opposite the piston cooling nozzle.
  • each injector In the examination of injectors is provided to assign each injector a surface pressure sensor, which is arranged on the plant side of the cylinder head on the engine block. The surface pressure sensor is then located in front of the combustion chamber, where it has the largest cross-section, because usually the surface of the combustion chamber on the plant side of the cylinder head on the engine block is greatest. It is also for each injector or each cylinder a separate surface pressure sensor assigned. If appropriate, the surface pressure sensors may be all or only partially associated with a common carrier.
  • the respective surface pressure sensor the entire opening of the combustion chamber on the contact side of the cylinder head on the engine block or the entire cylinder bore in the engine block.
  • the injection nozzles or piston cooling nozzles are preferably continuously pressurized with compressed air during the test and at least the location and the pressure of the compressed air jet emerging from the nozzles, and preferably also the pressure distribution across the cross section of the compressed air jet, are determined by the surface pressure sensors. This ensures a meaningful test of both piston cooling nozzles and injectors with regard to their function, the accuracy of the nozzle bore and above all the correct installation of the piston cooling nozzles in the engine block or injectors in the cylinder head.
  • the compressed air allows a contamination-free cold test, without falsifying the test or measurement result in an incomprehensible manner.
  • a continuous compressed air jet is generated by the piston cooling nozzles or injection nozzles.
  • the measurement can take place continuously over a certain period of time, and meaningful, namely stable measurement results over a certain period of time, can be achieved by recording the measurement result over time of the surface pressure sensors. If, during the test, there is no constant measurement result over at least a certain period of time, this indicates that the measuring device has errors. In this way, it can be seen that a test result which would indicate incorrect nozzles or a wrong installation of the same is not usable, because the test device and / or a measuring computer for the evaluation of the test result are faulty.
  • compressed air at room temperature is used to test both the piston cooling nozzles and the injectors.
  • the inventive method is characterized by the lowest possible consumption costs.
  • air at a pressure of 1 to 5 bar, preferably 2 to 3 bar for testing both the injection nozzles and the piston cooling nozzles.
  • Even air with such pressure is available in the usual compressed air supply network, so that in this respect, the process is inexpensive to carry out. Due to the use of area sensors or an array or grid of a multiplicity of pressure sensors, air with a pressure of between 1 and 5 bar, in particular 2 to 3 bar, is sufficient for testing the piston cooling nozzles and injection nozzles in order to use the pressure sensors used, in particular surface pressure sensors. obtain meaningful measurement results.
  • the air pressure may be at the lower limit of said pressure range, when the distance of the nozzle to be tested to the surface pressure sensor is relatively small, as is the case for example in the examination of injectors in the cylinder head. If the distance of the piston cooling nozzles to the surface pressure sensor is greater, especially in long-stroke internal combustion engines, air with a pressure in the upper range of the specified ranges can be used to test the piston cooling nozzles.
  • each cylinder 12 or each pair of adjacent cylinders 12 of the internal combustion engine is associated with a piston cooling nozzle 10.
  • six piston cooling nozzles 10 are thus present. These are tested simultaneously, in the functional test before the complete assembly of the internal combustion engine, in particular when the pistons 11 are not yet mounted in the cylinder bores 13 of the engine block 14.
  • This has in the interior via a preferably annular cooling channel 15.
  • This is arranged in the upper region of the piston 11, namely surrounds about a part of the combustion chamber forming combustion chamber recess 16 which from a top 17th of the piston 11 goes out.
  • the supply of the cooling channel 15 with cooling liquid, in particular oil, is effected by a mostly vertical, rectilinear supply channel 18.
  • the supply channel 18 is open in the region of the underside 19 of the piston 11 and opens with its upper end at a point in the cooling channel 15 (FIG ).
  • the piston cooling nozzle 10 is fixed to a lower side of the engine block 14.
  • the piston cooling nozzle 10 may be configured to include a central coolant supply member 20 that is supplied with oil from the oil pan from the crankcase. Then, the piston cooling nozzle 10 is screwed to the coolant supply part 20 under the engine block 14. From the coolant supply part 20 branches off in the embodiment shown two opposite pipe sections 21, which are guided to the underside of adjacent cylinder 12. With a piston cooling nozzle 10, two pistons 11 in different cylinder bores 13 are then simultaneously, but separately, supplied with cooling fluid, in particular oil.
  • Each tube section 21 of the piston cooling nozzle 10 is shaped so that a nozzle-like cooling nozzle end 22 projects from below into the respective cylinder 12, in such a way that coolant is ejected eccentrically vertically upward from the cooling nozzle end 22 in the direction parallel to the cylinder center axis 23 under the piston 11 , This takes place in such a way that the coolant jet emerging from the cooling nozzle end 22 of the piston cooling nozzle 10 is directed precisely into the coolant supply channel 18, also running parallel to the cylinder central axis 23, for cooling liquid 15.
  • the assembly of the piston cooling nozzle 10 under the engine block 14 must then be such that the emerging from the cooling nozzle end 22 cooling oil from below into the feed channel 18 in the piston 11.
  • the oil jet must also have a geometry, in particular a beam cross-section, which is matched to the diameter of the feed channel 18, so that at least a majority of the cooling oil, which is injected from the cooling nozzle end 22 from below against the piston 11, passes into the feed channel 18 ,
  • the piston cooling nozzle can also be designed so that it supplies only a single piston 11 with cooling oil. Then, a separate piston cooling nozzle is provided for each piston 11 or cylinder.
  • the positioning and preferably also the geometry or the cross section of the coolant jet is tested in the cold test prior to assembly of the internal combustion engine, in particular in the case of the piston 11 not yet used in the engine block 14.
  • all piston cooling nozzles 10 of the internal combustion engine are fed simultaneously and continuously with a pressurized fluid.
  • the fluid then exits through each end of the cooling nozzle 22 and flows through each cylinder bore 13 in the engine block 14 of the internal combustion engine from bottom to top.
  • a fluid is preferably compressed air into consideration.
  • the pressure of the air is 1 to 5 bar, preferably 2 to 3 bar. Specifically, the pressure of the air is about 21 ⁇ 2 bar. It is used such air having an ambient temperature. The air is therefore neither cooled to the ambient temperature nor heated.
  • Such compressed air can be taken from a usually existing pressure medium network.
  • the examination of the position of each test air jet and in particular its geometry, especially its cross-section, takes place in a preferred embodiment of the invention by a surface pressure sensor.
  • the prevailing pressure is determined at least qualitatively, preferably also quantitatively, at each point of the surface pressure sensor.
  • the surface pressure sensor can also be formed from a grid or array of many individual pressure sensors, which uniformly scan the pressure measuring surface thus formed over a certain area due to a uniform grid-like distribution. This makes it possible to determine the location at which the beam impinges on the measuring surface of the surface pressure sensor or the grid of a plurality of identical pressure sensors with the test fluid, in particular compressed air jet.
  • the surface pressure sensor can be used to determine the cross section of the test beam, in particular test air jet, with which it impinges on the measuring surface of the surface pressure sensor, from which conclusions can be drawn about the beam geometry of the test beam or the test air jet.
  • Each of the identical surface pressure sensors 24 is dimensioned so that it covers a cylinder bore 13 of the engine block 14 over the entire surface, preferably with a circumferential overlap of the cylinder head 28 facing top 25 of the engine block 14.
  • the surface pressure sensor 24 is located on the cooling nozzle end Due to the complete coverage of the top of the cylinder bore 13 by the surface pressure sensor 24, this can detect the pressure of emerging from the respective cooling nozzle end 22 and upward test air jet in the entire region of the cylinder bore 13.
  • Each individual cylinder bore 13 associated surface pressure sensor 24 is releasably secured to perform the method according to the invention on the respective cylinder bore 13 on the upper side 25 of the engine block 14.
  • the purpose of a fastening device not shown in the figure, which is designed so that it can be easily attached to the top 25 of the engine block 24 and just as easy to solve this again.
  • a surface pressure sensor 24 covering this over the entire surface of the cylinder block 14 is attached to the top 25 of the engine block 14 above each cylinder bore 13.
  • the surface pressure sensors 24 may be fastened together or individually to the top 25 of the engine block 14 for performing the test. All surface pressure sensors 24 are permanently provided with leading to a preferably single, common test computer test leads. If appropriate, the energy supply of the surface pressure sensors 24 can also take place via this. All cooling nozzles 10 are now subjected to a test fluid, in particular compressed air. For this purpose, the coolant supply part 20 of each piston cooling nozzle 10 is preferably connected to a compressed air supply.
  • the respective compressed air or educationsstrahl on the surface pressure sensor 24 preferably the underside of the same, impinges, it can also be determined whether the digitiz povertystrahl is mounted correctly. Furthermore, the pressure with which the test air jet impinges on the surface pressure sensor 24 can be determined. It can be concluded from this whether the piston cooling nozzle 10, in particular the cooling nozzle end 22 forming an outlet of the test compressed air from the piston cooling nozzle 10, is produced correctly. In addition, the shape and size of the surface with which the test air jet impinges on the surface pressure sensor 24, the geometry of the same can be determined.
  • FIG. 3 illustrates the use of the method according to the invention for testing injection nozzles 26 in the cold test.
  • the test is carried out after all injectors 26 and all spark plugs 27 are mounted in the cylinder head 28 of the internal combustion engine.
  • the upper side 25 of the engine block 14 facing bottom 29 of the cylinder head 28 is thereby still freely accessible.
  • the injectors 26 are not yet connected to fuel supply lines.
  • the spark plugs 27 need not yet be connected to ignition wires of the ignition system.
  • injectors 26 are simultaneously tested in a functional test. Accordingly, the injectors 26 are not supplied with fuel for testing, but with a test fluid, in particular compressed air, and at room temperatures at a pressure between 1 and 5 bar, preferably 2 to 3 bar.
  • the compressed air can come from a standard compressed air supply.
  • a surface pressure sensor 30 arranged in the region of each combustion chamber 31 on the underside 29 of the cylinder head 28 is likewise used.
  • the surface pressure sensor 30 may be configured and operate like the above-described surface pressure sensor 24. In this respect, reference is made to the statements in connection with the examination of piston cooling nozzles 10 described with reference to FIGS. 1 and 2.
  • a surface pressure sensor 30 is arranged below each of the bottom 29 of the cylinder head 28 located combustion chamber 31, a surface pressure sensor 30 is arranged.
  • the surface pressure sensor 30 is dimensioned so that it completely covers the respective combustion chamber 31, preferably circumferentially overlapping an edge region of the underside 29 of the cylinder head 28 about the combustion chamber 31.
  • the surface pressure sensors 30, which are preferably identical to one another, are connected to the lower side 29 of the cylinder head 28 individually or jointly or in groups by a fastening device (not shown).
  • a fastening device not shown.
  • the injectors 26 mounted in the cylinder head 28 are tested in a cold test before the cylinder head 28 is connected to the engine block 14.
  • a separate surface pressure sensor 30 is fixed from the still freely accessible underside 29 forth below each combustion chamber 31. Either all or groups of several surface pressure sensors 30 are arranged together, ie simultaneously, under the underside 29 of the cylinder head 28 or the surface pressure sensors 30 are fastened individually one after the other. In this case, each surface pressure sensor 30 closes a combustion chamber 31.
  • the injectors 26 are checked simultaneously. For this purpose, each injector 26 continuously supplied during the testing process, so uninterrupted, with compressed air.
  • the compressed air emerging from each injection nozzle 26 forms a test air jet which impinges on the respective surface pressure sensor 30 opposite the injection nozzle 26.
  • the surface pressure sensor 30 measures the emerging from the injector 26 compressed air or educaticianstrahl. In this way, the surface pressure sensor 30 can firstly determine the location of the impact of the test air jet. On the other hand, the pressure with which the test air jet impinges on the surface pressure sensor 30 and the shape and dimension of the test air jet are determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Prüfen von Düsen von Verbrennungsmotoren gemäß dem Oberbegriff des Anspruchs 1.
  • Verbrennungsmotoren sind üblicherweise mit Einspritzdüsen für Brennstoff ausgerüstet. Modernere Verbrennungsmotoren, insbesondere Hochleistungsmotoren, weisen darüber hinaus Kolbenkühldüsen auf, die Öl gegen die Unterseite der Kolben, insbesondere in von der Unterseite der Kolben ausgehende Kühlkanäle bzw. Zuführkanäle, spritzen. Diese Arten von Düsen müssen nicht nur einen Strahl mit einer bestimmten Geometrie, insbesondere bestimmten Querschnitt, erzeugen, vielmehr muss der Strahl auch eine genau festgelegte Richtung aufweisen, damit das Öl der Kolbenkühldüsen in den jeweiligen Kühlkanal bzw. Zuführkanal an der Unterseite jedes Kolbens gelangt. Demzufolge kommt es bei der Prüfung von sowohl Einspritzdüsen als auch Kolbenkühldüsen darauf an, vor allem die Strahlgeometrie und die Strahlrichtung zu ermitteln.
  • Es ist bislang bekannt, insbesondere Einspritzdüsen nach der Montage im Zylinderkopf zu prüfen, und zwar bevor der Zylinderkopf auf dem Motorblock montiert ist. Hierbei wird nur die Funktion der Einspritzdüsen in einem Funktionstest geprüft. Daraus lässt sich lediglich ableiten, ob die Einspritzdüse in Ordnung ist oder nicht. Die Strahlgeometrie und insbesondere die Strahlrichtung lassen sich bei dieser bekannten Prüfung aber nicht ermitteln. Gleiches gilt für Kolbenkühldüsen. Bei diesen ist es besonders wichtig, die Strahlrichtung zu prüfen, damit gewährleistet ist, dass der aus den Kolbenkühldüsen austretende Ölstrahl bei montiertem Verbrennungsmotor auch die richtige Stelle an der Unterseite des jeweiligen Kolbens, insbesondere dem Kolbenkühlkanal bzw. Zuführkanal, trifft. Ein solches Verfahren ist aus DE 2 532 132 A1 bekannt.
  • Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zu schaffen, womit Düsen von Verbrennungsmotoren, insbesondere Einspritzdüsen und Kolbenkühldüsen, mindestens hinsichtlich ihrer Strahlrichtung, vorzugsweise auch der Strahlgeometrie, einfach und zuverlässig geprüft werden können.
  • Ein Verfahren zur Lösung dieser Aufgabe weist die Merkmale des Anspruchs 1 auf. Demnach erfolgt die Prüfung jeder Düse, insbesondere jeder Einspritzdüse oder Kolbenkühldüse, mit einem auf wenigstens einen Drucksensor gerichteten Fluidstrahl. Mit dem mindestens einen Drucksensor lässt sich die Richtung des aus der zu prüfenden Düse austretenden Fluidstrahls ermitteln, weil aufgrund einer vorgegebenen Positionierung des mindestens einen Drucksensors von demselben nur dann ein Signal erzeugt wird, wenn der jeweiligen Drucksensor getroffen wird. Wird der Drucksensor nur teilweise vom aus der jeweiligen Düse austretenden Luftstrahl getroffen, ergibt das ein abgeschwächtes Signal, das auch Rückschlüsse auf eine von der vorgegebenen Richtung abweichende Strahlrichtung zulässt. Von der Intensität des vom Drucksensor aufgenommenen Drucksignals sind außerdem Rückschlüsse auf die Strahlgeometrie möglich.
  • Gemäß einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens wird ein Flächendrucksensor verwendet, der auch aus einem Array oder Raster mehrerer einzelner Drucksensoren gebildet sein kann. Wenn demzufolge im Folgenden nur von einem Flächendrucksensor die Rede ist, schließt das ein Array oder Raster mehrerer Drucksensoren ein.
  • Vom jeweiligen Flächendrucksensor lässt sich in einem vorgegebenen Flächenbereich der Druck des aus der zu prüfenden Düse austretenden Fluidstrahls ermitteln, und zwar abscannen. Das erfindungsgemäße Prüfverfahren stellt somit die Stelle fest, an der der Prüfstrahl aus der zu prüfenden Düse auf die vom Flächendrucksensor abgescannte Fläche (Prüffläche) auftrifft. Dadurch sind exakte Aussagen über die Richtung des aus der zu prüfenden Düse austretenden Fluid- bzw. Prüfstrahls möglich. Die Strahlgeometrie des Prüfstrahls ist erfassbar durch die Größe und Gestalt der Fläche, auf der der aus der Düse austretende Fluidstrahl auf dem Flächendrucksensor ein Drucksignal erzeugt. Das Drucksignal ist vom Flächendrucksensor dreidimensional abbildbar, wobei der Druckwert räumlich auf einer Senkrechten zur Prüffläche abgebildet wird. Dadurch ist eine Druckverteilung des Prüfstrahls über den Querschnitt im Bereich der Prüffläche, nämlich der Ebene des Flächendrucksensors, ermittelbar.
  • Es ist des Weiteren vorgesehen, mit den Drucksensoren, insbesondere Flächendrucksensoren, einen Druck über den vorzugsweise gesamten Flächenbereich einer jeweiligen Zylinderbohrung (im Falle der Prüfung der Kolbenkühldüse) im Motorblock oder (im Falle der Prüfung der Einspritzdüse) einen Brennraum im Zylinderkopf zu ermitteln. Auf diese Weise steht ein größtmöglicher Flächenbereich zur Prüfung der Strahlrichtung und vorzugsweise auch der Strahlgeometrie des zur Prüfung dienenden Fluidstrahls der Einspritzdüse oder Kolbenkühldüse zur Verfügung. Es kann praktisch der Druck über den gesamten Querschnittsbereich der Zylinderbohrung im Motorblock bzw. des Brennraums im Bereich der Anlagefläche des Zylinderkopfs am Motorblock ermittelt werden. Dadurch ist eine maximal aussagekräftige Prüfung der Richtung und der Geometrie des Einspritzstrahls von Einspritzdüsen und des Kühlstrahls von Kolbenkühldüsen möglich.
  • Gemäß einer weiteren Ausgestaltung der Erfindung ist vorgesehen, zur Prüfung von Kolbenkühldüsen den jeder Kolbenkühldüse bzw. Zylinderbohrung zugeordneten Flächendrucksensor an der zum Zylinderkopf weisenden Seite des Motorblocks über der jeweiligen Zylinderbohrung während der Prüfung der Kolbenkühldüsen zu befestigen. Es werden vorzugsweise gleichzeitig alle Kolbenkühldüsen des Verbrennungsmotors getestet. Bei einem sechszylindrigen Verbrennungsmotor mit einer Kolbenkühldüse pro Zylinder wären demzufolge sechs Flächendrucksensoren über der jeweiligen Zylinderbohrung momentan zu befestigen. Zur Vereinfachung der Prüfung ist es möglich, alle oder nur eine Gruppe von Flächendrucksensoren an einem gemeinsamen Träger zu befestigen, so dass alle oder mindestens mehrere Flächendrucksensoren gleichzeitig und in der richtigen Relativlage zueinander mit einem Vorgang am Motorblock befestigt und auch wieder abgenommen werden können. Die Flächendrucksensoren werden vom Ende des durch jeweils die gesamte Zylinderbohrung sich erstreckenden Prüfstrahls auf derjenigen Seite des Motorblocks, die der Kolbenkühldüse gegenüberliegt, beaufschlagt.
  • Bei der Prüfung von Einspritzdüsen ist vorgesehen, jeder Einspritzdüse einen Flächendrucksensor zuzuordnen, der auf der Anlageseite des Zylinderkopfs am Motorblock angeordnet wird. Der Flächendrucksensor befindet sich dann vor dem Brennraum, und zwar dort, wo dieser den größten Querschnitt aufweist, weil üblicherweise die Fläche des Brennraums an der Anlageseite des Zylinderkopfs am Motorblock am größten ist. Es ist auch hierfür jeder Einspritzdüse bzw. jedem Zylinder ein eigener Flächendrucksensor zuzuordnen. Die Flächendrucksensoren können gegebenenfalls alle oder nur zum Teil einem gemeinsamen Träger zugeordnet sein.
  • Gemäß einer bevorzugten Ausgestaltung des Verfahrens wird vom jeweiligen Flächendrucksensor die gesamte Öffnung des Brennraums an der Anlageseite des Zylinderkopfs am Motorblock bzw. die gesamte Zylinderbohrung im Motorblock abgedeckt. Dadurch kann vom jeweiligen Flächendrucksensor ein größtmöglicher Flächenbereich der Zylinderbohrung oder des Brennraums hinsichtlich des Auftreffens und des Querschnitts des zum Prüfen der jeweiligen Düse aus derselben austretenden Prüfstrahls ermittelt werden.
  • Die Einspritzdüsen bzw. Kolbenkühldüsen werden während der Prüfung vorzugsweise kontinuierlich mit Druckluft beaufschlagt und es wird von den Flächendrucksensoren mindestens der Ort und der Druck des aus den Düsen austretenden Druckluftstrahls, vorzugsweise auch die Druckverteilung über den Querschnitt des Druckluftstrahls, ermittelt. Dadurch ist eine aussagekräftige Prüfung sowohl von Kolbenkühldüsen als auch Einspritzdüsen hinsichtlich ihrer Funktion, der Richtigkeit der Düsenbohrung und vor allem der korrekten Montage der Kolbenkühldüsen im Motorblock bzw. Einspritzdüsen im Zylinderkopf, gewährleistet. Die Druckluft ermöglicht einen verschmutzungsfreien Kalttest, ohne das Prüf- oder Messergebnis in einer nicht nachvollziehbaren Weise zu verfälschen.
  • Während der vorzugsweise gesamten Prüfdauer wird ein kontinuierlicher Druckluftstrahl von den Kolbenkühldüsen bzw. Einspritzdüsen erzeugt. Dadurch kann die Messung über einen bestimmten Zeitraum kontinuierlich erfolgen und durch die zeitliche Aufzeichnung des Messergebnisses der Flächendrucksensoren aussagekräftige, nämlich über einen gewissen Zeitraum stabile Messergebnisse erzielt werden. Sollte sich während der Prüfung kein über mindestens einen gewissen Zeitraum konstantes Messergebnis zeigen, lässt das Rückschlüsse auf Fehler der Messeinrichtung zu. Auf diese Weise wird erkennbar, dass ein Prüfergebnis, das auf nicht ordnungsgemäße Düsen oder einen falschen Einbau derselben hindeuten würde, nicht verwertbar ist, weil die Prüfeinrichtung und/oder ein Messrechner zur Auswertung des Prüfergebnisses fehlerhaft sind.
  • Gemäß einer bevorzugten Ausgestaltung des Verfahrens wird zur Prüfung sowohl der Kolbenkühldüsen als auch der Einspritzdüsen Druckluft mit Raumtemperatur verwendet. Dadurch kann zur Prüfung Druckluft aus dem üblicherweise vorhandenen Druckluftnetz verwendet werden, ohne dass diese Druckluft in irgendeiner Weise behandelt werden muss. Das erfindungsgemäße Verfahren kommt dadurch mit geringstmöglichen Verbrauchskosten aus.
  • Weiterhin ist vorgesehen, zur Prüfung sowohl der Einspritzdüsen als auch der Kolbenkühldüsen Luft mit einem Druck von 1 bis 5 bar, vorzugsweise 2 bis 3 bar, zu verwenden. Auch Luft mit einem solchen Druck steht im üblichen Druckluftversorgungsnetz zur Verfügung, so dass auch insofern das Verfahren kostengünstig durchführbar ist. Aufgrund der Verwendung von Flächensensoren oder einem Array bzw. Raster aus einer Vielzahl von Drucksensoren reicht zur Prüfung der Kolbenkühldüsen und Einspritzdüsen Luft mit einem Druck zwischen 1 und 5 bar, insbesondere 2 bis 3 bar, aus, um mittels der verwendeten Drucksensoren, insbesondere Flächendrucksensoren, aussagekräftige Messergebnisse zu erhalten. Der Luftdruck kann an der unteren Grenze der genannten Druckspanne liegen, wenn der Abstand der zu prüfenden Düse zum Flächendrucksensor verhältnismäßig klein ist, wie dies beispielsweise bei der Prüfung von Einspritzdüsen im Zylinderkopf der Fall ist. Wenn der Abstand der Kolbenkühldüsen zum Flächendrucksensor größer ist, insbesondere bei langhubigen Verbrennungsmotoren, kann zum Prüfen der Kolbenkühldüsen Luft mit einem Druck im oberen Bereich der angegebenen Spannen verwendet werden.
  • Zwei bevorzugte Ausführungsbeispiele der Erfindung werden nachfolgend unter Bezugnahme auf die Zeichnung näher erläutert. In dieser zeigen:
  • Fig. 1
    einen schematischen Vertikalschnitt durch einen Kolben mit einem Kolbenkühlkanal,
    Fig. 2
    eine schematische Ansicht eines Teils eines Zylinderkopfs im Bereich einer Zylinderbohrung mit einer dieser zugeordneten Kolbenkühldüse, und
    Fig. 3
    eine schematische Ansicht eines Teils eines Zylinderkopfs im Bereich einer Einspritzdüse.
  • Anhand der Fig. 1 und 2 wird das erfindungsgemäße Verfahren im Zusammenhang mit der Prüfung von Kolbenkühldüsen 10 von Verbrennungsmotoren erläutert. Jedem Zylinder 12 oder jeweils einem Paar nebeneinanderliegender Zylinder 12 des Verbrennungsmotors ist eine Kolbenkühldüse 10 zugeordnet. Bei einem sechszylindrigen Verbrennungsmotor sind somit sechs Kolbenkühldüsen 10 vorhanden. Diese werden gleichzeitig geprüft, und zwar im Funktionstest vor der vollständigen Montage des Verbrennungsmotors, wenn insbesondere die Kolben 11 noch nicht in den Zylinderbohrungen 13 des Motorblocks 14 montiert sind.
  • Die Fig. 1 zeigt einen Längsschnitt durch den Kolben 11. Dieser verfügt im Inneren über einen vorzugsweise ringförmigen Kühlkanal 15. Dieser ist im oberen Bereich des Kolbens 11 angeordnet, umgibt nämlich etwa eine einen Teil des Brennraums bildende Brennraumvertiefung 16, die von einer Oberseite 17 des Kolbens 11 ausgeht. An der Stelle des Kühlkanals 15 können auch Kühlschlangen oder komplexere Kühlräume (bei gebauten Kolben) vorgesehen sein. Die Versorgung des Kühlkanals 15 mit Kühlflüssigkeit, insbesondere Öl, erfolgt durch einen meist senkrechten, geradlinigen Zuführkanal 18. Der Zuführkanal 18 ist im Bereich der Unterseite 19 des Kolbens 11 offen und mündet mit seinem oberen Ende an einer Stelle im Kühlkanal 15 (Fig. 1).
  • Die Kolbenkühldüse 10 ist an einer Unterseite des Motorblocks 14 befestigt. Die Kolbenkühldüse 10 kann so ausgebildet sein, dass sie ein mittiges Kühlmittelzufuhrteil 20 aufweist, das aus dem Kurbelgehäuse mit Öl aus der Ölwanne versorgt wird. Dann ist die Kolbenkühldüse 10 mit dem Kühlmittelzufuhrteil 20 unter dem Motorblock 14 angeschraubt. Vom Kühlmittelzufuhrteil 20 zweigen im gezeigten Ausführungsbeispiel zwei gegenüberliegende Rohrabschnitte 21 ab, die zur Unterseite benachbarter Zylinder 12 geführt sind. Mit einer Kolbenkühldüse 10 werden dann gleichzeitig, aber separat, zwei Kolben 11 in unterschiedlichen Zylinderbohrungen 13 mit Kühlflüssigkeit, insbesondere Öl, versorgt. Jeder Rohrabschnitt 21 der Kolbenkühldüse 10 ist so geformt, dass ein düsenartiges Kühldüsenende 22 von unten in den jeweiligen Zylinder 12 ragt, und zwar so, dass aus dem Kühldüsenende 22 Kühlmittel in Richtung parallel zur Zylindermittelachse 23 außermittig senkrecht nach oben unter den Kolben 11 gespritzt wird. Dies geschieht derart, dass der aus dem Kühldüsenende 22 der Kolbenkühldüse 10 austretende Kühlmittelstrahl genau in den ebenfalls parallel zur Zylindermittelachse 23 verlaufenden Zuführkanal 18 für Kühlflüssigkeit zum Kühlkanal 15 gerichtet ist. Die Montage der Kolbenkühldüse 10 unter dem Motorblock 14 muss dann so erfolgen, dass das aus dem Kühldüsenende 22 austretende Kühlöl von unten in den Zuführkanal 18 im Kolben 11 trifft. Der Ölstrahl muss außerdem eine Geometrie, insbesondere einen Strahlquerschnitt, aufweisen, die auf den Durchmesser des Zuführkanals 18 abgestimmt ist, so dass mindestens ein Großteil des Kühlöls, das aus dem Kühldüsenende 22 von unten gegen den Kolben 11 gespritzt wird, in den Zuführkanal 18 gelangt. Alternativ kann die Kolbenkühldüse auch so ausgebildet sein, dass sie nur einen einzigen Kolben 11 mit Kühlöl versorgt. Dann ist für jeden Kolben 11 bzw. Zylinder eine eigene Kolbenkühldüse vorgesehen.
  • Nach dem erfindungsgemäßen Verfahren wird vor der Montage des Verbrennungsmotors, insbesondere bei im Motorblock 14 noch nicht eingesetzten Kolben 11, im Kalttest die Positionierung und vorzugsweise auch die Geometrie bzw. der Querschnitt des Kühlmittelstrahls geprüft. Während dieser Prüfung werden alle Kolbenkühldüsen 10 des Verbrennungsmotors gleichzeitig und kontinuierlich mit einem unter Druck stehenden Fluid gespeist. Das Fluid tritt dann durch jedes Kühldüsenende 22 aus und durchströmt dabei jede Zylinderbohrung 13 im Motorblock 14 des Verbrennungsmotors von unten nach oben. Als Fluid kommt vorzugsweise Druckluft in Betracht. Der Druck der Luft beträgt dabei 1 bis 5 bar, vorzugsweise 2 bis 3 bar. Konkret liegt der Druck der Luft bei etwa 2½ bar. Es wird solche Luft verwendet, die eine Umgebungstemperatur aufweist. Die Luft ist also weder gegenüber der Umgebungstemperatur abgekühlt noch erwärmt. Solche Druckluft kann aus einem üblicherweise vorhandenen Druckmittelnetz entnommen werden.
  • Die Prüfung der Position jedes Prüfluftstrahls und insbesondere auch seiner Geometrie, vor allem seines Querschnitts, erfolgt bei einer bevorzugten Ausgestaltung der Erfindung durch einen Flächendrucksensor. Dadurch wird an jeder Stelle des Flächendrucksensors der herrschende Druck mindestens qualitativ, vorzugsweise auch quantitativ, ermittelt. Der Flächendrucksensor kann auch gebildet sein aus einem Raster bzw. Array vieler einzelner Drucksensoren, die aufgrund einer gleichmäßigen rasterartigen Verteilung über eine bestimmte Fläche die so gebildete Druckmessfläche gleichmäßig abscannen. Dadurch lässt sich der Ort bestimmen, an dem der Strahl mit dem Prüffluid, insbesondere Druckluftstrahl, auf die Messfläche des Flächendrucksensors oder dem Raster mehrerer gleicher Drucksensoren auftrifft. Außerdem lässt sich durch den Flächendrucksensor der Querschnitt des Prüfstrahls, insbesondere Prüfluftstrahls, mit dem er auf die Messfläche des Flächendrucksensors auftrifft, ermitteln, woraus Rückschlüsse auf die Strahlgeometrie des Prüfstrahls bzw. des Prüfluftstrahls möglich sind.
  • Jeder der untereinander gleichen Flächendrucksensoren 24 ist so bemessen, dass er jeweils eine Zylinderbohrung 13 des Motorblocks 14 vollflächig überdeckt, und zwar vorzugsweise mit einer umlaufenden Überlappung der zum Zylinderkopf 28 weisenden Oberseite 25 des Motorblocks 14. Damit befindet sich der Flächendrucksensor 24 auf der dem Kühldüsenende 22 gegenüberliegenden Seite der Zylinderbohrung 13. Durch die vollständige Abdeckung der Oberseite der Zylinderbohrung 13 durch den Flächendrucksensor 24 kann dieser den Druck des aus dem jeweiligen Kühldüsenende 22 austretenden und nach oben gerichteten Prüfluftstrahl im gesamten Bereich der Zylinderbohrung 13 erfassen.
  • Jeder einzelne einer Zylinderbohrung 13 zugeordnete Flächendrucksensor 24 ist zur Durchführung des erfindungsgemäßen Verfahrens lösbar über der jeweiligen Zylinderbohrung 13 auf der Oberseite 25 des Motorblocks 14 befestigbar. Dazu dient eine in der Figur nicht gezeigte Befestigungseinrichtung, die so ausgebildet ist, dass sie sich einfach auf der Oberseite 25 des Motorblocks 24 befestigen und genauso einfach hiervon wieder lösen lässt. Alternativ ist es denkbar, die Befestigungseinrichtung so auszubilden, dass sie alle gleich ausgebildeten Flächendrucksensoren 24, die den in einer Reihe im Motorblock 14 angeordneten Zylinderbohrungen 13 zuzuordnen sind, gleichzeitig auf der Oberseite 25 des Motorblocks 14 lösbar arretiert. Auf diese Weise werden durch einen einzigen Montagevorgang alle Flächendrucksensoren 24 für eine Reihe der Zylinderbohrungen 13 im Motorblock 14 gleichzeitig positionsgerecht über der jeweiligen Zylinderbohrung 13 fixiert. Nach der Prüfung können so auch gleichzeitig alle Flächendrucksensoren 24 gemeinsam von der Oberseite 25 des Motorblocks 14 gelöst werden.
  • Das erfindungsgemäße Verfahren zum vorzugsweise gleichzeitigen Prüfen aller Kolbenkühldüsen 10 eines Verbrennungsmotors im Kalttest läuft wie folgt ab:
  • Nachdem alle Kolbenkühldüsen 10 an der Unterseite des Motorblocks 14 montiert sind, aber sich noch keine Zylinder 12 in den Zylinderbohrungen 13 des Motorblocks 14 befinden, wird an der Oberseite 25 des Motorblocks 14 über jeder Zylinderbohrung 13 ein diese vollflächig überdeckender Flächendrucksensor 24 befestigt. Die Flächendrucksensoren 24 können zusammen oder einzeln an der Oberseite 25 des Motorblocks 14 zur Durchführung der Prüfung befestigt werden. Alle Flächendrucksensoren 24 sind dauerhaft mit zu einem vorzugsweise einzigen, gemeinsamen Prüfrechner führenden Prüfleitungen versehen. Hierüber kann gegebenenfalls auch die Energieversorgung der Flächendrucksensoren 24 erfolgen. Alle Kühldüsen 10 werden nun mit einem Prüffluid, insbesondere Druckluft, beaufschlagt. Dazu wird vorzugsweise das Kühlmittelzufuhrteil 20 jeder Kolbenkühldüse 10 an eine Druckluftversorgung angeschlossen.
  • Nachdem der Druckluftaustritt aus der Druckluftversorgung freigegeben worden ist, strömt zum Prüfen dienende Druckluft aus den Kühldüsenenden 22 der Kolbenkühldüsen 10 aus. Bei intakten und richtig montierten Kolbenkühldüsen 10 strömt aus den Kühldüsenenden 22 ein dünner Druckluftstrahl parallel zur Zylindermittelachse 23 in Richtung zu den Flächendrucksensoren 24 an der Oberseite 25 des Motorblocks 14. Der jeweiligen Flächendrucksensor 24 ermittelt nun die Stelle, an der der Prüfluftstrahl auf den Flächendrucksensor 24 auftrifft.
  • Anhand der Stelle, an der der jeweilige Druckluft- bzw. Prüfluftstrahl auf den Flächendrucksensor 24, vorzugsweise die Unterseite desselben, auftrifft, kann auch festgestellt werden, ob der Prüfluftstrahl richtig montiert ist. Weiterhin kann der Druck ermittelt werden, mit dem der Prüfluftstrahl auf den Flächendrucksensor 24 auftrifft. Daraus lässt sich schließen, ob die Kolbenkühldüse 10, insbesondere das einen Austritt der Prüfdruckluft aus der Kolbenkühldüse 10 bildende Kühldüsenende 22, ordnungsgemäß hergestellt ist. Außerdem kann durch die Gestalt und die Größe der Fläche, womit der Prüfluftstrahl auf den Flächendrucksensor 24 auftrifft, die Geometrie desselben festgestellt werden.
  • Die Fig. 3 veranschaulicht den Einsatz des erfindungsgemäßen Verfahrens zum Prüfen von Einspritzdüsen 26 im Kalttest. Die Prüfung erfolgt, nachdem alle Einspritzdüsen 26 und alle Zündkerzen 27 im Zylinderkopf 28 des Verbrennungsmotors montiert sind. Dabei ist der Zylinderkopf 28 mit den Einspritzdüsen 26 und den Zündkerzen 27 aber noch nicht auf dem Motorblock 14 aufgesetzt. Die zur Oberseite 25 des Motorblocks 14 weisende Unterseite 29 des Zylinderkopfs 28 ist dadurch noch frei zugänglich. Vorzugsweise sind die Einspritzdüsen 26 noch nicht an Brennstoffzufuhrleitungen angeschlossen. Auch die Zündkerzen 27 brauchen noch nicht an Zündleitungen des Zündsystems angeschlossen zu sein.
  • Es werden alle Einspritzdüsen 26 gleichzeitig in einem Funktionstest geprüft. Demzufolge werden zur Prüfung die Einspritzdüsen 26 nicht mit Brennstoff versorgt, sondern mit einem Prüffluid, insbesondere Druckluft, und das bei Raumtemperaturen mit einem Druck zwischen 1 und 5 bar, vorzugsweise 2 bis 3 bar. Die Druckluft kann aus einer üblichen Druckluftversorgung stammen.
  • Zur Prüfung der Einspritzdüsen 26 wird ebenfalls ein im Bereich eines jeden Brennraums 31 an der Unterseite 29 des Zylinderkopfs 28 angeordneter Flächendrucksensor 30 verwendet. Der Flächendrucksensor 30 kann wie der zuvor beschriebene Flächendrucksensor 24 ausgebildet sein und arbeiten. Es wird insoweit auf die Ausführungen im Zusammenhang mit der anhand der Fig. 1 und 2 beschriebenen Prüfung von Kolbenkühldüsen 10 Bezug genommen.
  • Unter jedem an der Unterseite 29 des Zylinderkopfs 28 sich befindenden Brennraum 31 ist ein Flächendrucksensor 30 angeordnet. Der Flächendrucksensor 30 ist so bemessen, dass er den jeweiligen Brennraum 31 vollständig abdeckt, vorzugsweise umlaufend einen Randbereich der Unterseite 29 des Zylinderkopfs 28 um den Brennraum 31 überlappt.
  • Auch die Flächendrucksensoren 30, die vorzugsweise untereinander alle gleich sind, sind durch eine nicht gezeigte Befestigungseinrichtung einzeln oder gemeinsam bzw. in Gruppen lösbar mit der Unterseite 29 des Zylinderkopfs 28 verbunden. Beim Prüfen der Einspritzdüsen 26 wird im Prinzip genauso vorgegangen wie beim Prüfen der Kolbenkühldüsen 10.
  • Die in den Zylinderkopf 28 montierten Einspritzdüsen 26 werden im Kalttest geprüft, bevor der Zylinderkopf 28 mit dem Motorblock 14 verbunden ist. Dazu wird von der noch frei zugänglichen Unterseite 29 her unter jedem Brennraum 31 ein eigener Flächendrucksensor 30 fixiert. Entweder werden alle oder Gruppen mehrerer Flächendrucksensoren 30 zusammen, also gleichzeitig, unter der Unterseite 29 des Zylinderkopfs 28 angeordnet oder es werden die Flächendrucksensoren 30 einzeln nach und nach hierunter befestigt. Dabei verschließt jeder Flächendrucksensor 30 einen Brennraum 31.
  • Die Einspritzdüsen 26 werden gleichzeitig geprüft. Dazu wird jede Einspritzdüse 26 während des Prüfvorgangs fortlaufend, also ununterbrochen, mit Druckluft versorgt. Die aus jeder Einspritzdüse 26 austretende Druckluft bildet einen Prüfluftstrahl, der auf den jeweiligen der Einspritzdüse 26 gegenüberliegenden Flächendrucksensor 30 auftrifft. Der Flächendrucksensor 30 misst dabei den aus der Einspritzdüse 26 austretenden Druckluft- bzw. Prüfluftstrahl. Hierdurch kann der Flächendrucksensor 30 zum einen den Ort des Auftreffens des Prüfluftstrahls ermitteln. Zum anderen werden ermittelt der Druck, womit der Prüfluftstrahl auf den Flächendrucksensor 30 auftrifft und die Gestalt sowie Abmessung des Prüfluftstrahls.
  • Bezugszeichenliste:
  • 10
    Kolbenkühldüse
    11
    Kolben
    12
    Zylinder
    13
    Zylinderbohrung
    14
    Motorblock
    15
    Kühlkanal
    16
    Brennraumvertiefung
    17
    Oberseite
    18
    Zuführkanal
    19
    Unterseite
    20
    Kühlmittelzufuhrteil
    21
    Rohrabschnitt
    22
    Kühldüsenende
    23
    Zylindermittelachse
    24
    Flächendrucksensor
    25
    Oberseite
    26
    Einspritzdüse
    27
    Zündkerze
    28
    Zylinderkopf
    29
    Unterseite
    30
    Flächendrucksensor
    31
    Brennraum

Claims (10)

  1. Verfahren zum Prüfen von Düsen von Verbrennungsmotoren, wobei vor der vollständigen Montage des jeweiligen Verbrennungsmotors die Düsen montiert und insbesondere auf richtige Montage und/oder Funktion geprüft werden, dadurch gekennzeichnet, dass die Prüfung jeder Düse mit einem auf wenigstens einen Drucksensor gerichteten Fluidstrahl erfolgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Druck in einem definierten Flächenbereich erfasst wird, insbesondere ein Flächendrucksensor (24, 30) oder ein einen Flächendrucksensor (24, 30) bildendes Array bzw. Raster mehrerer einzelner Drucksensoren verwendet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Druck über den Flächenbereich einer jeweiligen Zylinderbohrung (13) im Motorblock (14) und/ oder im Brennraum (31) eines Zylinderkopfs (28) mit vorzugsweise den Flächendrucksensoren (24, 30) ermittelt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Prüfung von Kolbenkühldüsen (10) die Drucksensoren, insbesondere Flächendrucksensoren (24), an der zum Zylinderkopf (28) weisenden Seite des Motorblocks (14) über der jeweiligen Zylinderbohrung (13) lösbar befestigt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Prüfung von Einspritzdüsen (26) die Drucksensoren, insbesondere die Flächendrucksensoren (30), auf der Anlageseite des Zylinderkopfs (28) am Motorblock (14) vor bzw. unter dem jeweiligen Brennraum (31) am Zylinderkopf (28) lösbar angeordnet werden.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vom Flächendrucksensor (24, 30) die vorzugsweise gesamte Öffnung des Brennraums (31) des Zylinderkopfs (28) bzw. die gesamte Zylinderbohrung (13) im Motorblock (14) abgedeckt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kolbenkühldüsen (10) bzw. die Einspritzdüsen (26) zur Prüfung mit Druckluft beaufschlagt werden, und von den Drucksensoren, insbesondere den Flächendrucksensoren (24, 30) der Ort, der Druck und/oder die Geometrie des aus den Kolbenkühldüsen (10) bzw. der Einspritzdüsen (26) austretenden Druckluftstrahls ermittelt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während der Prüfung, vorzugsweise während der gesamten Dauer der Prüfung, ein kontinuierlicher, ununterbrochener Druckluftstrahl von den Kolbenkühldüsen (10) bzw. den Einspritzdüsen (26) erzeugt wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Prüfung der Kolbenkühldüsen (10) bzw. der Einspritzdüsen (26) Druckluft mit etwa Raumtemperatur verwendet wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Prüfung der Kolbenkühldüsen (10) bzw. der Einspritzdüsen (26) Luft mit einem Druck von 1 bis 5 bar, vorzugsweise 2 bis 3 bar, verwendet wird.
EP05012702A 2004-08-20 2005-06-14 Verfahren zum Prüfen von Düsen von Verbrennungsmotoren Not-in-force EP1630411B8 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05012702T PL1630411T3 (pl) 2004-08-20 2005-06-14 Sposób badania dysz silników spalinowych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004040729 2004-08-20
DE102004043141A DE102004043141A1 (de) 2004-08-20 2004-09-07 Verfahren zum Prüfen von Düsen von Verbrennungsmotoren

Publications (3)

Publication Number Publication Date
EP1630411A1 EP1630411A1 (de) 2006-03-01
EP1630411B1 true EP1630411B1 (de) 2006-11-22
EP1630411B8 EP1630411B8 (de) 2007-01-17

Family

ID=34937416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05012702A Not-in-force EP1630411B8 (de) 2004-08-20 2005-06-14 Verfahren zum Prüfen von Düsen von Verbrennungsmotoren

Country Status (5)

Country Link
EP (1) EP1630411B8 (de)
AT (1) ATE346233T1 (de)
DE (2) DE102004043141A1 (de)
ES (1) ES2277311T3 (de)
PL (1) PL1630411T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370377A (zh) * 2016-08-30 2017-02-01 菏泽海诺知识产权服务有限公司 一种消防用洒水喷头抗水冲击性能自动试验装置
CN106813918B (zh) * 2017-03-15 2023-12-29 机科发展科技股份有限公司 活塞冷却喷嘴自动测量装置
CN115791003B (zh) * 2023-01-10 2023-04-14 西安成立航空制造有限公司 一种用于飞机发动机燃油喷嘴检测设备及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2532132A1 (de) * 1975-07-18 1977-02-03 Kloeckner Humboldt Deutz Ag Kuehloelversorgung der kolben von hubkolben-brennkraftmaschinen
DD201176A1 (de) * 1981-12-02 1983-07-06 Hans Standhardt Spritzoelkuehlung von kolben fuer hubkolbenbrennkraftmaschinen
JPS60104205A (ja) * 1983-11-10 1985-06-08 Nippon Denso Co Ltd 噴射体の形状測定方法及びその装置
JP2700570B2 (ja) * 1988-11-07 1998-01-21 株式会社ゼクセル 噴霧特性の検査方法
JP3388847B2 (ja) * 1993-12-20 2003-03-24 ケミカルグラウト株式会社 ノズルの検査方法及び装置
DE19611613C2 (de) * 1996-03-23 1999-11-11 Bosch Gmbh Robert Verfahren zur opto-elektronischen Geometrieermittlung von Bohrungen, insbesondere von Einspritzbohrungen an Kraftstoffeinspritzventilen für Brennkraftmaschinen
US5753806A (en) * 1996-10-30 1998-05-19 Southwest Research Institute Apparatus and method for determining the distribution and flow rate characteristics of an injection nozzle
DE19746045C1 (de) * 1997-10-17 1999-09-23 Jenoptik Jena Gmbh Einrichtung zur Kontrolle eines Sprühstrahles

Also Published As

Publication number Publication date
DE102004043141A1 (de) 2006-02-23
EP1630411B8 (de) 2007-01-17
ES2277311T3 (es) 2007-07-01
PL1630411T3 (pl) 2007-05-31
DE502005000200D1 (de) 2007-01-04
EP1630411A1 (de) 2006-03-01
ATE346233T1 (de) 2006-12-15

Similar Documents

Publication Publication Date Title
EP2390491B1 (de) Vorrichtung zum Einspritzen von Brennstoff in einen Brennraum
EP1630411B1 (de) Verfahren zum Prüfen von Düsen von Verbrennungsmotoren
DE19942370A1 (de) Einspritzdüse für Brennkraftmaschinen mit einer Ringnut in der Düsennadel
DE19962987A1 (de) Kolbenmotor
DE19629308C1 (de) Zylinderkopfhaube für eine Brennkraftmaschine
DE102009021471A1 (de) Verfahren zur Herstellung eines Gehäuseteils einer Brennkraftmaschine und Messgerät zur Messung der Dichtigkeit oder Durchgängigkeit von mindestens einem darin angeordneten Kühlmittelkanal
EP1527276B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE3415780A1 (de) Kraftstoffeinspritzsystem
DE10026323A1 (de) Brennstoffeinspritzsystem
DE102016004584B4 (de) Verfahren zur Bearbeitung eines Einspritzventils zum Einspritzen von Kraftstoff in einen Verbrennungsmotor
DE102020117008A1 (de) Verbrennungsmotor für ein Kraftfahrzeug und Vorkammer-Zündkerze
DE19909164A1 (de) Meßadapter für Mehrlochdüse
EP0921286B1 (de) Direkteinspritzende Brennkraftmaschine
DE102008044056A1 (de) Kraftstoffeinspritzvorrichtung
DE102008044242A1 (de) Brennkraftmaschine
DE4001475C2 (de) Meßeinrichtung zur Erfassung des Drucks im Brennraum einer Brennkraftmaschine
DE1576009A1 (de) Verfahren zur Kraftstoffaufbereitung in Mehrzylinder-Einspritzbrennkraftmaschinen und nach dem Verfahren arbeitende Maschinen
WO2007068015A2 (de) Vorrichtung zur messung des zylinderinnendrucks von brennkraftmaschinen
DE4230374C2 (de) Zylinderkopfdichtung für eine Verbrennungskraftmaschine
DE3542786A1 (de) Kraftstoff-verteilerleitung
EP0632274A1 (de) Anordnung und Einbausetz zur Messung der Geschwindigkeit einer in einem Zylinder eines Motors rotierenden Luftströmung
DE102008044243A1 (de) Brennkraftmaschine
DE102006004543A1 (de) Verfahren und Vorrichtung zur Bestimmung der Sprühleistung von Düsen, insbesondere von Common-Rail-Injektoren für Brennkraftmaschinen
DE835671C (de) Einspritzvorrichtung fuer Brennkraftmaschinen
DE102005004492B4 (de) Vorrichtung und Verfahren zur Messung des Zylinderdrucks eines Verbrennungsmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THYSSENKRUPP KRAUSE GMBH

REF Corresponds to:

Ref document number: 502005000200

Country of ref document: DE

Date of ref document: 20070104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070222

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: THYSSENKRUPP KRAUSE GMBH

Effective date: 20070103

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070213

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070322

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPOT

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070423

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E001279

Country of ref document: HU

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2277311

Country of ref document: ES

Kind code of ref document: T3

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20070823

BERE Be: lapsed

Owner name: JOHANN A. KRAUSE MASCHINENFABRIK G.M.B.H.

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080612

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20080522

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20080613

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20080825

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070614

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090615

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090615

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120626

Year of fee payment: 8

Ref country code: DE

Payment date: 20120622

Year of fee payment: 8

Ref country code: CZ

Payment date: 20120606

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120622

Year of fee payment: 8

Ref country code: FR

Payment date: 20120705

Year of fee payment: 8

Ref country code: PL

Payment date: 20120524

Year of fee payment: 8

Ref country code: SE

Payment date: 20120621

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120627

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090614

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130614

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130615

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005000200

Country of ref document: DE

Effective date: 20140101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130614

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140707

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130614

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130615