EP1618336B1 - Porenbrenner mit siliziumkarbid-porenkörper - Google Patents

Porenbrenner mit siliziumkarbid-porenkörper Download PDF

Info

Publication number
EP1618336B1
EP1618336B1 EP04727529A EP04727529A EP1618336B1 EP 1618336 B1 EP1618336 B1 EP 1618336B1 EP 04727529 A EP04727529 A EP 04727529A EP 04727529 A EP04727529 A EP 04727529A EP 1618336 B1 EP1618336 B1 EP 1618336B1
Authority
EP
European Patent Office
Prior art keywords
fabric
burner
porous
porous burner
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04727529A
Other languages
English (en)
French (fr)
Other versions
EP1618336A1 (de
Inventor
Michael Hoetger
Walter Thiele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004006824A external-priority patent/DE102004006824B4/de
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP1618336A1 publication Critical patent/EP1618336A1/de
Application granted granted Critical
Publication of EP1618336B1 publication Critical patent/EP1618336B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/006Flameless combustion stabilised within a bed of porous heat-resistant material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/145Radiant burners using screens or perforated plates combustion being stabilised at a screen or a perforated plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/104Grids, e.g. honeycomb grids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic
    • F23D2212/105Particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14582Special features of gas burners with outlets consisting of layers of spherical particles

Definitions

  • the invention relates to a pore burner for burning a fuel-air mixture for producing a hot flue gas, comprising a housing in which a pore material of porous, high temperature resistant silicon carbide (SiC) is provided for combustion.
  • SiC silicon carbide
  • Such a pore burner is used, for example, to pressurize a steam superheater with a hot flue gas stream.
  • the steam generated in the steam superheater has high temperatures and is under high pressure.
  • the stored energy in the steam can then be harnessed in the form of mechanical or electrical energy, for. B. by relaxation in an expansion machine to drive a generator.
  • the hotter the steam and the higher the pressure the better the efficiency of such machines. Accordingly, it is necessary that the flue gas flow has the highest possible temperatures. Typical temperatures are in the range between 850 ° C and 1400 ° C.
  • the pore burners for generating a hot flue gas stream differ in particular from a pure radiant burner, in which only the radiant heat of the burner is used and the resulting flue gas is withdrawn as a by-product via a chimney or an exhaust pipe.
  • Such radiant burners are, for example, artificial log fires or radiant burners for drying varnishes.
  • the radiant heat of a pore burner can be used, the essential However, the proportion of energy transferred to the steam generator comes from the flue gas.
  • a pore burner for burning a fuel / oxidizer mixture.
  • the pore burner is filled with spherical packing.
  • the size of the resulting pores is determined by the size of the packing.
  • the known pore burner is designed so that an excessively high temperature in the reaction space is avoided by an additional cooling gas.
  • a pore burner containing porous material having spatially contiguous cavities formed by a package of refractory wire, foil or sheet material is known. In these cavities, a defined flame zone is formed. The material is not suitable for high temperatures.
  • a highly porous burner mat which consists of metallic or ceramic fibers which are welded together in irregular structures.
  • the mat is provided with holes through which the gas flows. It creates areas of different flow velocities, through which an irregular flame carpet is created, which stands out from the surface of the mat.
  • US 4,895,513 discloses a pore burner in which the pore body consists of a felt of silicon carbide fibers.
  • the object is achieved in that the carbon fabric has an ordered, regular structure.
  • the invention is based on the finding that the properties of a pore burner can be influenced if the pore structure can be produced in a targeted manner. Interweaving the hard and brittle material silicon carbide is not possible. However, by siliciding a suitably shaped carbon fabric, it is possible to create a suitably designed SiC fabric structure.
  • the siliconized tissue is inexpensive to produce. It withstands mechanical and thermal loads very well.
  • the mesh size and planar shape of the fabric is also individually customizable as its size and outline, so that when using such materials as a porous body for pore burner, an optimization of the burner properties is possible.
  • the silicon carbide fabric has a shape deviating from a plane surface. Then, a plurality of tissue pieces can be stacked on each other. In this way, without additional spacers or the like, a three-dimensional arrangement is provided, with which the pore burner can be filled.
  • the tissue can be wavy shaped. However, other forms are possible, such as a cross-section sawtooth or box-shaped profile. In order to obtain a small pore size, then on the one hand, the tissue parameters can be kept small and on the other hand, the waveform of a plurality of small waves are assembled.
  • the tissue may consist of completely silicided fibers. However, for some applications, it may also be useful for the tissue to be partially silicided and to contain a core of pure carbon.
  • the ordered structures are designed so that zones of different porosity form.
  • the porous body of the burner may be formed in two or more zones of different pore size.
  • the inlet-side part of the porous body then has a smaller pore size than the outlet-side pore body.
  • the flame forms in the coarse-pored zone, while in the fine-pored zone, a mixture and preheating of the fuel-air mixture take place.
  • the pore size can by the selected tissues and their arrangement, such as. B. stacking, be designed particularly well.
  • the fine-pored part is made of conventional pore-forming materials, while the coarsely porous part consists of siliconized carbon fabric.
  • the material of the fine-pored part is preferably poorly conductive, so that heat transfer from the combustion zone into the premixing zone is avoided. In this way, a flashback of the flames is prevented.
  • the axes of curvature of the waves of a piece of fabric may lie in one plane and the pieces of fabric may be arranged one above the other such that the projections of the wave normals are perpendicular to one another on such a plane defined by the axes of curvature.
  • the wave normal then each form an angle of about 45 ° to the flow direction of the flue gas.
  • a wave normal is here the vertical on a wavefront. It lies in the plane defined by the axes of curvature.
  • the pore structure is formed from stacked wavy SiC mats. The individual levels are arranged at an angle of about 90 ° rotated against each other. This arrangement is particularly favorable for the combustion behavior of the burner.
  • the structure thus flowed through is called a static mixer.
  • the fuel and the combustion air are mixed together so that the fuel is particularly low in emissions and completely burned.
  • the housing of the burner is provided with an insulating layer. This avoids undesirable convective heat transfer through the housing into the periphery of the burner.
  • the housing wall can be traversed by a cooling medium, which is either discharged separately into the environment or mixed with the hot flue gas in the outlet of the burner.
  • a pore burner 10 is shown.
  • the pore burner consists of a housing 12, in which a fuel gas-air mixture is introduced.
  • the flow direction of the inflowing gas is shown by the arrows 14.
  • a plurality of pieces of fabric 16 are stacked on each other.
  • the pores are smaller and in a second zone 20, the pores are larger.
  • the porous material of the first zone 18 is not shown.
  • oxidation takes place in the pores without proper flame formation.
  • This creates hot Flue gas which is in Fig. 1 is represented by arrows 22.
  • the flue gas is used to heat a steam generator. It is possible to arrange the steam generator within the radiation field of the porous burner 10, so that not only the heat transmitted through the flue gas, but also the radiant heat is used.
  • the tissue pieces 16 are in Fig. 2 again shown in detail. They consist of a substantially rectangular, net-like fabric. A plurality of these pieces of fabric 16 are stacked. Each piece of fabric 16 is curved in a wave shape about a curvature axis 37. The tissue pieces are stacked on each other so that the mountains 24 and valleys 26 of the curvatures are always alternately offset by 90 degrees. This is in Fig. 3 seen. For example, the fabric piece 30 is offset by 90 degrees on the fabric piece 28.
  • the pore burner is completely filled with the tissue pieces 16. This creates a pore structure that allows a particularly good, uniform flame development. The pore body is traversed by the fuel / air mixture parallel to the planes of the individual fabric layers and in the direction of the bisector 34 of the angle of rotation between the wave normal 35 and the wave normal 39 of the layers.
  • the pore burner 10 has a rectangular cross section and is therefore also filled with rectangular pieces of fabric 16. If the pore burner 10 has a different shaped cross-section, of course, the shape of the tissue pieces is adjusted accordingly.
  • the housing 12 of the pore burner is flowed through by a coolant.
  • the cooling air is in this case separately in a cooling channel 38 ( Figure 4 ) of the housing 12 and is mixed at the outlet 40 with the flue gas.
  • the size of the tissue pockets 32, the radii of curvature of the troughs and mountains and the number of curvatures per piece of tissue can influence the pore size.
  • the pieces of tissue are made of silicon carbide.
  • Silicon carbide is a carbide ceramic material and as such is not weavable.
  • a carbon fabric is used, which is brought into the appropriate form and then siliconized.
  • Different processes are suitable for siliciding.
  • molten silicon infiltrates a porous substrate of carbon fiber reinforced carbon (C / C) and reacts directly with the carbon of the matrix to form SiC.
  • C / C carbon fiber reinforced carbon
  • the silicated tissue pieces 16 are stiff after this process and can be used in the burner without further change in shape.
  • the material is high temperature resistant.
  • the production process for planar SiC structures is inexpensive compared to spongy ceramic bodies and the mechanical and thermal capacity is much higher than ceramic sponges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Ceramic Products (AREA)
  • Woven Fabrics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Ein Porenbrenner (10) zum Verbrennen eines Brennstoff-Luft-Gemisches zur Erzeugungeines heißen Rauchgases (22), enthaltend ein Gehäuse (12), in welchem ein Porenmaterial (16) aus porösem, hochtemperaturfestem Siliziumkarbid (SiC) für eine Verbrennung vorgesehen ist, ist dadurch gekennzeichnet, dass der Porenkörper siliziertes Kohlenstoffgewebe umfasst, welches eine geordnete, regelmäßige Struktur aufweist. Das Gewebe (16) aus Siliziutnkarbid kann eine von einer Planfläche abweichende Form, zum Beispiel eine Wellenform, aufweisen und eine Mehrzahl von Gewebestücken (28, 30) kann aufeinander geschichtet sein.

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen Porenbrenner zum Verbrennen eines Brennstoff-Luft-Gemisches zur Erzeugung eines heißen Rauchgases, enthaltend ein Gehäuse, in welchem ein Porenmaterial aus porösem, hochtemperaturfestem Siliziumkarbid (SiC) für eine Verbrennung vorgesehen ist.
  • Ein solcher Porenbrenner wird zum Beispiel eingesetzt, um einen Dampfüberhitzer mit einem heißen Rauchgasstrom zu beaufschlagen. Der in dem Dampfüberhitzer entstehende Dampf hat hohe Temperaturen und steht unter starkem Druck. Die in dem Dampf gespeicherte Energie kann dann in Form von mechanischer bzw. elektrischer Energie nutzbar gemacht werden, z. B. durch Entspannung in einer Expansionsmaschine zum Antrieb eines Generators. Je heißer der Dampf und je höher der Druck, um so besser ist der Wirkungsgrad solcher Maschinen. Entsprechend ist es erforderlich, dass der Rauchgasstrom möglichst hohe Temperaturen aufweist. Typische Temperaturen liegen im Bereich zwischen 850°C und 1400°C.
  • Die Porenbrenner zur Erzeugung eines heißen Rauchgasstroms unterscheiden sich insbesondere von einem reinen Strahlungsbrenner, bei dem nur die Strahlungswärme des Brenners genutzt wird und das entstehende Rauchgas als Nebenprodukt über einen Kamin oder ein Abluftrohr abgezogen wird. Solche Strahlungsbrenner sind zum Beispiel künstliche Kaminfeuer oder Strahlungsbrenner zum Trocknen von Lackierungen. Zwar kann auch die Strahlungswärme eines Porenbrenner genutzt werden, der wesentliche Anteil der auf den Dampferzeuger übertragenen Energie kommt jedoch aus dem Rauchgas.
  • Sand der Technik
  • Aus der DE 19939951 C2 ist ein Porenbrenner zur Verbrennung eines Brennstoff/Oxidationsmittelgemisches bekannt. Der Porenbrenner ist mit kugelförmigen Füllkörpern gefüllt. Die Größe der entstehenden Poren ist durch die Größe der Füllkörper bestimmt. Der bekannte Porenbrenner ist so ausgelegt, dass durch ein zusätzliches Kühlgas eine zu hohe Temperatur im Reaktionsraum vermieden wird.
  • Aus der DE 195 27 583 C2 ist ein Porenbrenner bekannt, der poröses Material enthält, welches räumlich zusammenhängende Hohlräume aufweist, die von einer Packung aus hitzebeständigem Draht- Folien- oder Blechmaterial gebildet sind. In diesen Hohlräumen bildet sich eine definierte Flammenzone. Das Material ist für hohe Temperaturen nicht geeignet.
  • Es sind weiterhin Porenbrenner bekannt, die mit einer Keramik gefüllt sind, die eine Vielzahl von Hohlräumen aufweisen, z. B. aus der US 5,890,886 . Es sind auch andere Schaumkeramiken, Metallschäume oder -schwämme bekannt, z. B. aus der DE 196 21 638 A1 . Diese Schäume oder Schwämme weisen den Nachteil auf, dass sie teuer in der Herstellung sind. Außerdem sind sie sehr empfindlich gegenüber mechanischen und thermischen Belastungen. Sie reißen oder platzen bei übermäßiger Belastung, was zu verminderter Leistungsfähigkeit und vermehrtem Schadstoffausstoß führt.
  • Aus der DE 198 47 042 A1 ist eine hochporöse Brennermatte bekannt, die aus metallischen oder keramischen Fasern besteht, welche in unregelmäßigen Strukturen miteinander verschweißt sind. Die Matte ist mit Löchern versehen, durch welche das Gas strömt. Es entstehen Bereiche unterschiedlicher Strömungsgeschwindigkeiten, durch welche ein unregelmäßiger Flammenteppich entsteht, der von der Oberfläche der Matte abhebt.
  • US 4 895 513 offenbart eine Porenbrenner in dem der Porenkörper aus einem Filz aus Siliziumkarbidfasern besteht.
  • Offenbarung der Erfindung
  • Es ist Aufgabe der Erfindung, einen Porenbrenner zu schaffen, der eine gleichmäßige Verbrennung aufweist und dessen Porenstruktur direkt im Herstellungsprozess beeinflussbar ist.
  • Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass das Kohlenstoffgewebe eine geordnete, regelmäßige Struktur aufweist. Die Erfindung basiert auf der Erkenntnis, dass sich die Eigenschaften eines Porenbrenners beeinflussen lassen, wenn die Porenstruktur gezielt herstellbar ist. Ein Verweben des harten und spröden Materials Siliziumkarbid ist nicht möglich. Durch Silizieren eines geeignet geformten Kohlenstoffgewebes ist es jedoch möglich, eine entsprechend gestaltete Gewebestruktur aus SiC zu schaffen. Das silizierte Gewebe ist kostengünstig herstellbar. Es hält mechanischen und thermischen Belastungen sehr gut stand. Die Maschenweite und flächige Form des Gewebes ist ebenso individuell anpassbar wie dessen Größe und Umrisse, so dass bei Verwendung derartiger Materialien als Porenkörper für Porenbrenners eine Optimierung der Brennereigenschaften möglich ist.
  • In einer Ausgestaltung der Erfindung weist das Gewebe aus Siliziumkarbid eine von einer Planfläche abweichende Form auf. Dann kann eine Mehrzahl von Gewebestücken aufeinander geschichtet werden. Auf diese Weise wird ohne zusätzliche Abstandshalter oder dergleichen eine dreidimensionale Anordnung geschaffen, mit welcher der Porenbrenner füllbar ist.
  • Das Gewebe kann wellenförmig geformt sein. Es sind aber auch andere Formen möglich, wie ein im Querschnitt sägezahnförmiges oder kastenförmiges Profil. Um eine kleine Porengröße zu erhalten, können dann zum einen die Gewebeparameter klein gehalten werden und zum anderen die Wellenform aus einer Vielzahl von kleinen Wellen zusammengesetzt werden.
  • Das Gewebe kann aus vollständig silizierten Fasern bestehen. Für einige Anwendungen kann es aber auch sinnvoll sein, dass das Gewebe teilsiliziert ist, und einen Kern aus reinem Kohlenstoff enthält.
  • In einer besonders bevorzugten Ausgestaltung der Erfindung die geordneten Strukturen so ausgelegt sind, dass sich Zonen unterschiedlicher Porösität ausbilden. Dabei kann der poröse Körper des Brenners in zwei oder mehr Zonen unterschiedlicher Porengröße ausgebildet sein. Der einlassseitige Teil des porösen Körpers weist dann eine kleinere Porengröße als der auslassseitige Porenkörper auf. Bei dieser Ausgestaltung bildet sich die Flamme in der grobporigen Zone, während in der feinporigen Zone eine Mischung und Vorheizung des Brennstoff-Luft-gemischs stattfinden. Dies führt zu besonders niedrigem Schadstoffgehalt des Rauchgases bei Verbrennung der üblichen Brennstoffe, wie Erdgas, Benzin oder dergleichen. Die Porengröße kann durch die ausgewählten Gewebe und deren Anordnung, wie z. B. Stapelung, besonders gut gestaltet werden.
  • In einer alternativen Ausgestaltung der Erfindung ist der feinporige Teil aus herkömmlichen Poren bildenden Werkstoffen hergestellt, während der grobporige Teil aus siliziertem Kohlenstoffgewebe besteht. Der Werkstoff des feinporigen Teils ist vorzugsweise schlecht leitend, so dass ein Wärmeübergang aus der Verbrennungszone in die Vormischzone vermieden wird. Auf diese Weise wird einem Rückschlagen der Flammen vorgebeugt.
  • Die Krümmungsachsen der Wellen eines Gewebestücks können in einer Ebene liegen und die Gewebestücke derart übereinander angeordnet sein, daß die Projektionen der Wellennormalen auf eine solche durch die Krümmungsachsen definierte Ebene senkrecht zueinander verlaufen. Vorzugsweise bilden die Wellennormalen dann jeweils einen Winkel von etwa 45° zur Strömungsrichtung des Rauchgases. Eine Wellennormale ist hier die Senkrechte auf einer Wellenfront. Sie liegt in der durch die Krümmungsachsen definierten Ebene. Bei dieser Ausgestaltung der Erfindung wird die Porenstruktur aus gestapelten wellenförmigen SiC-Matten gebildet. Dabei sind die einzelnen Ebenen mit einem Winkel von etwa 90° gegeneinander verdreht angeordnet. Diese Anordnung ist für das Verbrennungsverhalten des Brenners besonders günstig. Die so durchströmte Struktur wird als statischer Mischer bezeichnet. Der Brennstoff und die Verbrennungsluft werden dabei so miteinander vermengt, dass der Kraftstoff besonders schadstoffarm und vollständig verbrannt wird.
  • Vorzugsweise ist das Gehäuse des Brenners mit einer isolierenden Schicht versehen. So wird ein ungewünschter konvektiver Wärmeübergang durch das Gehäuse in die Peripherie des Brenners vermieden.
  • Alternativ kann die Gehäusewandung von einem Kühlmedium durchströmt sein, das entweder getrennt in die Umwelt abgeführt oder mit dem heißen Rauchgas im Auslassbereich des Brenners vermischt wird.
  • Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. Ein Ausführungsbeispiel ist nachstehend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
  • Kurze Beschreibung der Zeichnungen
  • Fig.1
    ist eine schematische Darstellung eines Porenbrenners
    Fig.2
    zeigt einen Ausschnitt aus einem wellenförmig geformten Gewebestück aus Siliziumkarbid
    Fig.3
    ist Schnitt durch einen schematisch dargestellten Porenbrenner
    Fig.4
    ist eine Schnitt entlang der Linie A-A in Fig. 3 und zeigt den Auslass eines Porenbrenners
    Beschreibung des Ausführungsbeispiels
  • In Fig.1 ist schematisch ein Porenbrenner 10 dargestellt. Der Porenbrenner besteht aus einem Gehäuse 12, in welches ein Brenngas-Luftgemisch eingeleitet wird. Die Strömungsrichtung des einströmenden Gases ist durch die Pfeile 14 dargestellt. In dem Gehäuse 12 sind eine Vielzahl von Gewebestücken 16 aufeinander geschichtet. In einer ersten Zone 18 sind die Poren kleiner und in einer zweiten Zone 20 sind die Poren größer. Das poröse Material der ersten Zone 18 ist nicht dargestellt. In der zweiten Zone erfolgt eine Oxidation in den Poren ohne echte Flammenausbildung. Dabei entsteht heißes Rauchgas, welches in Fig. 1 durch Pfeile 22 repräsentiert wird. Das Rauchgas wird genutzt, um einen Dampferzeuger zu heizen. Dabei besteht die Möglichkeit, den Dampferzeuger innerhalb des Strahlungsfeldes des Porenbrenners 10 anzuordnen, so dass nicht nur die durch das Rauchgas übertragene Wärme, sondern zusätzlich auch die Strahlungswärme genutzt wird.
  • Die Gewebestücke 16 sind in Fig. 2 nochmals im Detail dargestellt. Sie bestehen aus einem im wesentlichen rechteckigen, netzartigen Gewebe. Eine Vielzahl dieser Gewebestücke 16 ist übereinander geschichtet. Jedes Gewebestück 16 ist wellenförmig um eine Krümmungsachse 37 gebogen. Die Gewebestücke werden so aufeinander geschichtet, dass die Berge 24 und Täler 26 der Krümmungen immer abwechselnd um 90 Grad versetzt aufeinander liegen. Dies ist in Fig. 3 ersichtlich. So liegt zum Beispiel das Gewebestück 30 um 90 Grad versetzt auf dem Gewebestück 28 auf. Der Porenbrenner wird vollständig mit den Gewebestücken 16 aufgefüllt. Dadurch bildet sich ein Porenstruktur, die eine besonders gute, gleichmäßige Flammenentwicklung erlaubt. Der Porenkörper wird vom Brennstoff/Luftgemisch parallel zu den Ebenen der einzelnen Gewebe-Schichten und in Richtung der Winkelhalbierenden 34 des Verdrehwinkels zwischen den Wellennormalen 35 und der Wellennormalen 39 der Schichten durchströmt.
  • Im vorliegenden Fall hat der Porenbrenner 10 einen rechteckigen Querschnitt und ist daher auch mit rechteckigen Gewebestücken 16 gefüllt. Hat der Porenbrenner 10 einen anders geformten Querschnitt, wird selbstverständlich auch die Form der Gewebestücke entsprechend angepasst.
  • Weiterhin wird das Gehäuse 12 des Porenbrenners von einem Kühlmittel durchströmt. Die Kühlluft wird in diesem Fall gesondert in einen Kühlkanal 38 (Fig.4) des Gehäuses 12 eingespeist und wird am Auslass 40 mit dem Rauchgas vermischt.
  • Durch die Größe der Gewebemaschen 32, die Krümmungsradien der Wellentäler und - Berge und die Anzahl der Krümmungen pro Gewebestück kann die Porengröße beeinflusst werden. Im vorliegenden Ausführungsbeispiel ist die Porengröße in der Zone 18 (Fig.1) kleiner und in Zone 20 größer.
  • Die Gewebestücke bestehen aus Siliziumkarbid. Siliziumkarbid ist ein carbidischer Keramik-Werkstoff und als solcher nicht verwebbar. Zur Herstellung derartiger Gewebe wird daher ein Kohlenstoffgewebe verwendet, welches in die geeignete Form gebracht und dann siliziert wird. Zum Silizieren eignen sich verschiedene Prozesse. Beim Flüssigsilizierverfahren wird schmelzflüssiges Silizium ein poröses Substrat aus Kohlenstofffaser verstärktem Kohlenstoff (C/C) infiltriert und mit dem Kohlenstoff der Matrix direkt zu SiC reagiert. Das Verfahren ist bekannt und zum Beispiel im Internet unter htto://www.fz-iuelich.de/iwv/iwvl/index.php?index=8 beschrieben und braucht daher nicht näher erläutert werden.
  • Die silizierten Gewebestücke 16 sind nach diesem Vorgang steif und können in den Brenner ohne weitere Formveränderung eingesetzt werden. Das Material ist hochtemperaturfest. Das Herstellungsverfahren für flächige SiC-Strukturen ist verglichen mit schwammartigen Keramikkörpern kostengünstig und die mechanische und thermische Belastbarkeit ist gegenüber Keramikschwämmen wesentlich höher.

Claims (8)

  1. Porenbrenner (10) zum Verbrennen eines Brennstoff-Luft-Gemisches zur Erzeugung eines heißen Rauchgases (22), enthaltend ein Gehäuse (12), in welchem ein Porenmaterial (16) aus porösem, hochtemperaturfestem Siliziumkarbid (SiC) für eine Verbrennung vorgesehen ist, der Porenkörper siliziertes Kohlenstoffgewebe umfasst, dadurch gekennzeichnet, dass das Kohlenstoffgewebe eine geordnete, regelmäßige Struktur aufweist.
  2. Porenbrenner (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Gewebe (16) aus Siliziumkarbid eine von einer Planfläche abweichende Form aufweist und eine Mehrzahl von Gewebestücken (28, 30) aufeinander geschichtet sind.
  3. Porenbrenner (10) nach Anspruch 2, dadurch gekennzeichnet, dass das Gewebe (16) wellenförmig geformt ist.
  4. Porenbrenner (10) nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass das Gewebe (16) aus vollständig silizierten Fasern besteht.
  5. Porenbrenner (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Gewebe teilsiliziert ist, und einen Kern aus reinem Kohlenstoff enthält.
  6. Porenbrenner (10) nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die geordneten Strukturen so ausgelegt sind, dass sich Zonen unterschiedlicher Porösität ausbilden.
  7. Porenbrenner (10) nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß die Krümmungsachsen der Wellen eines Gewebestücks in einer Ebene liegen und die Gewebestücke derart übereinander angeordnet sind, daß die Projektionen der Wellennormalen auf eine solche durch die Krümmungsachsen definierte Ebene senkrecht zueinander verlaufen.
  8. Porenbrenner nach Anspruch 7, dadurch gekennzeichnet, daß die Wellennormalen jeweils einen Winkel von etwa 45° zur Strömungsrichtung des Rauchgases bilden.
EP04727529A 2003-04-18 2004-04-15 Porenbrenner mit siliziumkarbid-porenkörper Expired - Lifetime EP1618336B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10317857 2003-04-18
DE102004006824A DE102004006824B4 (de) 2003-04-18 2004-02-11 Porenbrenner mit Siliziumkarbid-Porenkörper
PCT/EP2004/003968 WO2004092646A1 (de) 2003-04-16 2004-04-15 Porenbrenner mit siliziumkarbid-porenkörper

Publications (2)

Publication Number Publication Date
EP1618336A1 EP1618336A1 (de) 2006-01-25
EP1618336B1 true EP1618336B1 (de) 2011-06-29

Family

ID=33300846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04727529A Expired - Lifetime EP1618336B1 (de) 2003-04-18 2004-04-15 Porenbrenner mit siliziumkarbid-porenkörper

Country Status (4)

Country Link
US (1) US20060035190A1 (de)
EP (1) EP1618336B1 (de)
JP (1) JP2006523815A (de)
WO (1) WO2004092646A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216430A1 (de) * 2014-08-19 2016-02-25 Schunk Kohlenstofftechnik Gmbh Porenkörper, insbesondere zur Verwendung als Verbrennungszone eines Porenbrenners, sowie Porenbrenner mit einem derartigen Porenkörper

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044494B3 (de) * 2005-09-16 2007-03-08 Wenzel, Lothar Vorrichtung zur Beseitigung von schädlichen Bestandteilen aus Abgasen von Brennkraftmaschinen
KR101077517B1 (ko) * 2006-05-16 2011-10-27 에스엠에스 지마크 악티엔게젤샤프트 액상 금속 이송 용기를 예열하기 위한 가열 장치
TWI450439B (zh) 2009-10-22 2014-08-21 Atomic Energy Council 應用於高溫燃料電池之多孔性介質燃燒器
CN102287819B (zh) * 2011-07-01 2012-12-12 中国计量学院 一种燃用低热值气体燃料的多孔介质燃烧器
US10571124B2 (en) 2013-02-14 2020-02-25 Clearsign Combustion Corporation Selectable dilution low NOx burner
EP2956720A4 (de) 2013-02-14 2016-12-14 Clearsign Comb Corp Startverfahren und mechanismus für einen brenner mit perforiertem flammenhalter
CN105339539B (zh) * 2013-07-02 2018-07-06 贝卡尔特燃烧技术股份有限公司 气体预混燃烧器
JP2019507861A (ja) * 2016-03-10 2019-03-22 シーラス ヒート テクノロジー カンパニー エルエルシーSelas Heat Technology Company Llc 高強度ガス燃焼式赤外線放射器
KR101688894B1 (ko) * 2016-08-08 2016-12-23 주식회사 지엔티엔에스 고온 연소촉매를 이용한 버너
CN110425536B (zh) * 2019-08-06 2020-11-10 东北大学 一种角型多孔介质燃烧器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155142A (en) * 1961-02-13 1964-11-03 Minnesota Mining & Mfg Radiant gas burner
US3726633A (en) * 1970-11-30 1973-04-10 Thermo Electron Corp Low pollutant-high thermal efficiency burner
JPS62216981A (ja) * 1986-03-15 1987-09-24 イビデン株式会社 炭化珪素質複合材料の製造方法
US5633081A (en) * 1986-03-24 1997-05-27 Ensci Inc. Coated porous substrates
US4895513A (en) * 1987-08-06 1990-01-23 Br Laboratories, Inc. Heat resistant combustion element
US5026273A (en) * 1988-07-15 1991-06-25 W. R. Grace & Co.-Conn. High temperature combuster
US5346389A (en) * 1989-02-24 1994-09-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
DE29611022U1 (de) * 1995-06-22 1996-08-14 Vaillant Joh Gmbh & Co Vollvormischender atmosphärischer Strahlungsbrenner
US5720933A (en) * 1996-03-11 1998-02-24 Srinivasan; Makuteswara Process for preparing ceramic fibers
DE19621638C2 (de) * 1996-05-30 2002-06-27 Fraunhofer Ges Forschung Offenzellige Schaumkeramik mit hoher Festigkeit und Verfahren zu deren Herstellung
US5989013A (en) * 1997-01-28 1999-11-23 Alliedsignal Composites Inc. Reverberatory screen for a radiant burner
US5890886A (en) * 1997-07-21 1999-04-06 Sulzer Chemtech Ag Burner for heating systems
JP3466103B2 (ja) * 1999-03-16 2003-11-10 松下電器産業株式会社 触媒燃焼装置
DE10114903A1 (de) * 2001-03-26 2002-10-17 Invent Gmbh Entwicklung Neuer Technologien Brenner für ein Gas/Luft-Gemisch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216430A1 (de) * 2014-08-19 2016-02-25 Schunk Kohlenstofftechnik Gmbh Porenkörper, insbesondere zur Verwendung als Verbrennungszone eines Porenbrenners, sowie Porenbrenner mit einem derartigen Porenkörper

Also Published As

Publication number Publication date
EP1618336A1 (de) 2006-01-25
US20060035190A1 (en) 2006-02-16
WO2004092646A1 (de) 2004-10-28
JP2006523815A (ja) 2006-10-19

Similar Documents

Publication Publication Date Title
EP1618336B1 (de) Porenbrenner mit siliziumkarbid-porenkörper
EP0070905A1 (de) Keramische brennerplatte und verfahren zu ihrer herstellung
EP2641022B1 (de) Verbrennungsverfahren und membrane mit kühler flammenwurzel
DE102005038395A1 (de) Brennkammerkühlung mit geneigten segmentierten Flächen
DE2740581A1 (de) Fliessbett
DE102004006824B4 (de) Porenbrenner mit Siliziumkarbid-Porenkörper
WO2001058212A1 (de) Elektrisches heizelement und verfahren zu seiner herstellung
DE10233340B4 (de) Porenbrenner sowie Gargerät, enthaltend mindestens einen Porenbrenner
DE3026324C2 (de) Ofen für einen Betrieb mit gesteuerter Atmosphäre
DE3806044A1 (de) Feuerraumwand
DE19543430C2 (de) Zweischichtstein und Verfahren zu seiner Herstellung
EP1235642B1 (de) Autothermer reformierungsreaktor
DE2940230A1 (de) Verfahren zur verbesserung des waermedaemmvermoegens von daemmstoffen, die ueberwiegend oder ausschliesslich aus anorganischen materialien bestehen
EP0107243B1 (de) Liegender Gitterbesatz für Kammern regenerativ beheizter Öfen
DE3139749C2 (de) Vorrichtung mit einer Hochtemperatur-Verbrennungszone und mit einer Anzahl von Speicher-Wärmetauschern
EP1508761A1 (de) Hitzeschildstein zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine
EP1701092A1 (de) Brennerfläche für einen Strahlungsbrenner
DE934228C (de) Feuerfester Regenerativofen, insbesondere zur Erzeugung von Heizgas
DE229293C (de)
WO2009087126A2 (de) Plattenförmiger keramischer wärmestrahlkörper eines infrarot-flächenstrahlers
DE3609893A1 (de) Winderhitzer mit innenliegender brennkammer fuer einen hochofen
WO1998050733A1 (de) Gasbrenner
DE102019209126A1 (de) Temperaturwechselbeständiges Bauelement für Anwendungen mit hoher thermomechanischer Belastung sowie Verfahren zu seiner Herstellung
DE10253016B3 (de) Vorrichtung zur flächenhaften Gaseinmischung in einen Strahlungszug
EP4334644A1 (de) Wasserstoffbefeuertes brennkammersystem, verfahren und anlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SGL CARBON SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012652

Country of ref document: DE

Effective date: 20110825

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

26N No opposition filed

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012652

Country of ref document: DE

Effective date: 20120330

BERE Be: lapsed

Owner name: SGL CARBON SE

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012652

Country of ref document: DE

Owner name: SGL CARBON SE, DE

Free format text: FORMER OWNER: SGL CARBON SE, 65203 WIESBADEN, DE

Effective date: 20121022

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012652

Country of ref document: DE

Owner name: SGL CARBON SE, DE

Free format text: FORMER OWNER: SGL CARBON AG, 65203 WIESBADEN, DE

Effective date: 20110704

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120415

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120415

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012652

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111010

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 514902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121101