EP1617157A2 - Cryostat avec cryorefroidisseur et échangeur de chaleur du type de fente à gas - Google Patents

Cryostat avec cryorefroidisseur et échangeur de chaleur du type de fente à gas Download PDF

Info

Publication number
EP1617157A2
EP1617157A2 EP05014932A EP05014932A EP1617157A2 EP 1617157 A2 EP1617157 A2 EP 1617157A2 EP 05014932 A EP05014932 A EP 05014932A EP 05014932 A EP05014932 A EP 05014932A EP 1617157 A2 EP1617157 A2 EP 1617157A2
Authority
EP
European Patent Office
Prior art keywords
cold
arrangement according
cryocooler
cryostat arrangement
cold head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05014932A
Other languages
German (de)
English (en)
Other versions
EP1617157A3 (fr
Inventor
Andreas Kraus
Beat Mraz
Johannes Bösel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin SAS
Original Assignee
Bruker Biospin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin SAS filed Critical Bruker Biospin SAS
Publication of EP1617157A2 publication Critical patent/EP1617157A2/fr
Publication of EP1617157A3 publication Critical patent/EP1617157A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Definitions

  • the invention relates to a Kryostatan extract for storing liquid helium, with an outer shell and a built-in helium container, wherein the helium container is connected to at least two suspension tubes with the outer shell and a neck tube containing the upper warm end with the outer shell and the lower cold end with the helium container is connected and in which a multi-stage cold head of a cryocooler is installed, wherein the outer shell, the helium container, the suspension tubes and the neck tube define an evacuated space, and wherein the helium container is further surrounded by at least one radiation shield, which with both the suspension tubes as is also thermally conductively connected to a contact surface on the neck tube of the helium container.
  • One way to integrate the cold head of a cryocooler in a Kryostatanssen is the example, two-stage cold head in a separate vacuum space (such as described in US5613367) or directly into the vacuum space of the cryostat (as described in US5563566) to install so that the first cold stage the cold head firmly connected to a radiation shield and the second stage cold over a fixed, rigid or flexible, thermal bridge or directly to the helium container thermally conductive.
  • the connection of the second cold stage to the helium container usually has a non-negligible thermal resistance and that vibrations of this cold stage can be transferred to the helium tank.
  • One way of avoiding these disadvantages is to insert the cold head into a neck tube which connects the outer vacuum envelope of the cryostat to the helium container and is correspondingly filled with helium gas, as described, for example, in document US2002 / 0002830A1.
  • the first cold stage of the two-stage cold head is again solidly contacted with a radiation shield, the second cold stage hangs freely in the helium atmosphere and liquefies directly evaporated helium.
  • vibrations of the second cold stage of the cold head of the cryocooler are not transmitted to the helium vessel when the cold head is directly installed in the neck tube connected to the helium vessel.
  • the first cold stage of the cold head and the radiation shield is usually a solid-state thermal bridge used. This thermal connection should be as soft as possible, in order to transmit as few vibrations as possible.
  • thin foil packages or strands braided into strands, each made of copper or aluminum, are used for this purpose. Such measures for vibration damping are described in numerous publications (eg in US5129232, US5331735, US5317879).
  • Object of the present invention is to propose a Kryostatan extract in which the thermal coupling between all cold stages of the cold head of a cryocooler and the Kryostatan immediately after the Kryostatan immediately.
  • This object is achieved in that between one or more cold stages of the cold head and one or more contact surfaces in the neck tube, which are each conductively connected to a radiation shield via a fixed, rigid or flexible, thermal bridge, in each case a gas gap, on the heat from respective radiation shield is passed into the corresponding cold stage of the cold head.
  • cryocooler is a pulse tube cooler, since pulse tube cooler can be operated with very low vibration.
  • cryocoolers e.g. Gifford-McMahon cooler to use.
  • helium can be liquefied at a temperature of 4.2 K or at a lower temperature at the coldest cold stage, since this offers a multitude of possible uses in the lowest temperature range.
  • the helium vaporizing within the cryostat is liquefied at the freezing stage in the neck tube and drips back into the helium container.
  • the helium loss and the refilling operations can be reduced or can be achieved at sufficiently large cooling capacity of the radiator, a loss-free operation.
  • the coldest cold stage of the cold head is not connected to the cryostat arrangement via a solid-state bridge, the transmission of vibrations of the cold stage to the helium container is completely prevented.
  • the tubes of the cold head are surrounded above the first cold stage and possibly also in the region of further cold stages with a heat insulation.
  • an undesirable heat input from the neck tube into the tubes of the cold head can be avoided or at least reduced.
  • the tubes above the first cold stage of the cold head have temperatures between room temperature and temperature of the first cold stage.
  • a special embodiment provides that the width of the gas gap can be set arbitrarily. In this way, if desired, the temperature of the radiation shield can be adjusted individually.
  • the colder heat transferring firmly connected to the cold stage of the cold head of the cryocooler surface above the warmer heat transfer surface is arranged, so that the prerequisite for the formation of a natural Gaskonvezzysströmung is given.
  • the warmer heat transfer surface is contacted with the neck tube of the helium container.
  • a development of this embodiment provides that the width of the gas gap can be increased so far that forms a natural convection in the gas gap.
  • a further embodiment of the cryostat arrangement according to the invention provides that the radiation shield or one of the radiation shields contains a container with liquid nitrogen, wherein the nitrogen is at least partially re-liquefied after evaporation because of the thermal connection of the radiation shield to the cold head of the cryocooler.
  • the radiation shield is not cooled directly by the cooler, but indirectly, via the evaporating nitrogen.
  • a, preferably electrical, heating is provided in or in contact with the nitrogen container to at an excess power of the cryocooler to keep the pressure in the nitrogen tank above the ambient pressure and constant.
  • a, preferably electrical, heating is provided in or in contact with the helium container.
  • the performance of the radiator is regulated by its operating frequency and / or the amount of working gas in the radiator.
  • cryostat arrangement contains a superconducting magnet arrangement, in particular if the superconducting magnet arrangement is part of an apparatus for nuclear magnetic resonance, in particular magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (NMR).
  • MRI magnetic resonance imaging
  • NMR magnetic resonance spectroscopy
  • FIG. 1 shows an embodiment of the inventive cryostat arrangement with an outer shell 1 and a helium container 2 installed therein.
  • the helium container is connected by suspension tubes 3 with the outer shell 1.
  • a neck tube 4 the upper warm end 5 is connected to the outer shell 1 and the lower cold end 6 with the helium container 2, a two-stage cold head 7 of a cryocooler is installed.
  • the helium container 2 is further surrounded by a radiation shield 8 , which is thermally conductively connected both to the suspension tubes 3 and to a contact surface 9 on the neck tube 4 of the helium container 2.
  • the cold head 7 is raised slightly so that a gas gap 13 exists between a cold surface 10 at the first cold stage 11 of the cold head 7 and the contact surface 9 in the neck tube 4, which is conductively connected to the radiation shield 8 via a fixed thermal bridge 12 , is conducted via the heat from the radiation shield 8 in the cold stage 11 of the cold head 7.
  • the heat transfer thus takes place via the thin gas gap 13, whereby a firm connection between the cold stage 11 of the cold head 7 and the radiation shield 8 is avoided.
  • the sunken on the radiation shield 8 heat Q ⁇ must be passed through the gas gap 13 of the width H to the cold head 7 of the cryocooler.
  • Q ⁇ ⁇ ⁇ H A ⁇ T with the mean thermal conductivity of the medium ⁇ ⁇ . the transmission area A and the temperature difference ⁇ T between the warm surface (contact surface 9) and the cold face 10. Since the thermal conductivity of helium gas is much lower than that of most solids such.
  • the temperature difference between the radiation shield 8 and the first cold stage 11 of the cold head 7 by raising the cold head is greater and thus increases the temperature of the radiation shield 8.
  • the temperature of Radiation shield 8 but not too high (and thus the heat on the helium container 2 does not rise), it is advantageous to keep the distance between the two surfaces 9, 10 as low as possible. On the other hand, can be over the width of the gas gap 13, if desired, adjust the shield temperature very easily.
  • FIGS. 2a and 2b each show a cold head 7 of a cryocooler of a cryostat arrangement according to the invention arranged in a neck tube 4. While FIG. 2 a shows a contact surface 9 with a smooth surface, FIG. 2 b shows an embodiment of the present invention in which the contact surface 9 has been enlarged by additional structures 14 . Such enlargement can be achieved for example by ribs or similar structures.
  • the cold head 7 In the region of the first cold stage, in which temperatures between room temperature and the temperature of the first cold stage 11 prevails, the cold head 7 is provided with an insulation 15 .
  • insulation may also be provided around the tubes of further cooling stages.
  • a further improvement can be achieved by additionally transferring heat in the gas gap 13 in addition to the heat conduction by convection.
  • Convection can be excited from the outside or occurs at sufficiently large gas gap 13 and temperature difference .DELTA.T by itself (free convection).
  • the colder surface 10 which is contacted with the cold head 7, above the warmer surface (contact surface 9), which is contacted with the radiation shield, is arranged.
  • Another advantage of the invention is reflected in the simpler structural design of the neck tube 4.
  • no bushings for screwing the contact surfaces 9 and 10 must be provided. Installation and removal of the cold head 7 can be carried out easily and quickly.
  • the first cold stage 11 of the cold head 7 of the cryocooler be thermally conductively connected via a gas gap 13 with a nitrogen tank 16 , so that evaporated nitrogen can be liquefied again.
  • the inventive cryostat arrangement of FIG. 3 shows a heater 18 arranged in the helium container 2 and a heater 19 in the nitrogen container 16.
  • the heaters 18, 19 serve to keep the pressure in the helium container 2 or in the nitrogen container 16 above the ambient pressure and constant .
  • the heaters 18, 19 may also be arranged outside the containers as long as there is thermal contact with the respective liquids.
  • the cryostat assembly according to the invention thus enables a coupling between the cold stages of the cold head 7 of the cryocooler and the cryostat, in which vibrations of the cold stages of the cold head 7 no longer reach measurable in the cryostat and yet a sufficiently good heat transfer is ensured.
  • the cryostat arrangement is therefore particularly suitable for cooling a magnet arrangement 20 which is part of a nuclear magnetic resonance apparatus, in particular magnetic resonance imaging (MRI) or magnetic resonance spectroscopy (NMR).
  • MRI magnetic resonance imaging
  • NMR magnetic resonance spectroscopy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
EP05014932A 2004-07-17 2005-07-09 Cryostat avec cryorefroidisseur et échangeur de chaleur du type de fente à gas Withdrawn EP1617157A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004034729A DE102004034729B4 (de) 2004-07-17 2004-07-17 Kryostatanordnung mit Kryokühler und Gasspaltwärmeübertrager

Publications (2)

Publication Number Publication Date
EP1617157A2 true EP1617157A2 (fr) 2006-01-18
EP1617157A3 EP1617157A3 (fr) 2012-05-30

Family

ID=35241092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05014932A Withdrawn EP1617157A3 (fr) 2004-07-17 2005-07-09 Cryostat avec cryorefroidisseur et échangeur de chaleur du type de fente à gas

Country Status (4)

Country Link
US (1) US20070051115A1 (fr)
EP (1) EP1617157A3 (fr)
JP (1) JP2006054444A (fr)
DE (1) DE102004034729B4 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019226437A3 (fr) * 2018-05-20 2020-01-02 Abeyatech, Llc Unité de stockage cryogénique

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194258A (ja) * 2006-01-17 2007-08-02 Hitachi Ltd 超伝導磁石装置
JP5833284B2 (ja) * 2006-03-17 2015-12-16 シーメンス ピーエルシー 冷却装置
GB2459316B (en) * 2008-09-22 2010-04-07 Oxford Instr Superconductivity Cryogenic cooling apparatus and method using a sleeve with heat transfer member
JP5674774B2 (ja) * 2009-06-18 2015-02-25 カール ツァイス マイクロスコーピー エルエルシー 冷却式荷電粒子システム及び方法
CN103077797B (zh) * 2013-01-06 2016-03-30 中国科学院电工研究所 用于头部成像的超导磁体系统
JP5969944B2 (ja) * 2013-03-27 2016-08-17 ジャパンスーパーコンダクタテクノロジー株式会社 クライオスタット
DE102014219849B3 (de) 2014-09-30 2015-12-10 Bruker Biospin Gmbh Kühlvorrichtung mit Kryostat und Kaltkopf mit verringerter mechanischer Kopplung
DE102015212314B3 (de) * 2015-07-01 2016-10-20 Bruker Biospin Gmbh Kryostat mit aktiver Halsrohrkühlung durch ein zweites Kryogen
DE102016218000B3 (de) 2016-09-20 2017-10-05 Bruker Biospin Gmbh Kryostatenanordnung mit einem Vakuumbehälter und einem zu kühlenden Objekt, mit evakuierbarem Hohlraum
EP3798625A4 (fr) * 2018-05-23 2022-03-23 Nippon Steel Corporation Appareil de génération de champ magnétique et procédé de magnétisation d'un appareil de génération de champ magnétique
JP7186132B2 (ja) * 2019-05-20 2022-12-08 住友重機械工業株式会社 極低温装置およびクライオスタット
DE102019209160B3 (de) * 2019-06-25 2020-10-08 Bruker Switzerland Ag Kryostatanordnung mit federndem, wärmeleitendem Verbindungselement
CN112402751A (zh) * 2020-09-04 2021-02-26 湖北贵族真空科技股份有限公司 热桥式液氧呼吸器
CN114637349B (zh) * 2022-03-04 2023-04-11 中国科学院电工研究所 一种液氦温区恒温装置及恒温控制方法
CN117048653B (zh) * 2023-10-12 2023-12-12 西南交通大学 一种用于超导磁悬浮列车的低温恒温装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129232A (en) 1991-06-03 1992-07-14 General Electric Company Vibration isolation of superconducting magnets
US5317879A (en) 1992-10-28 1994-06-07 General Electric Company Flexible thermal connection system between a cryogenic refrigerator and an mri superconducting magnet
US5331735A (en) 1993-04-28 1994-07-26 General Electric Company Method of forming a flexible connector
US5563566A (en) 1995-11-13 1996-10-08 General Electric Company Cryogen-cooled open MRI superconductive magnet
US5613367A (en) 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
US20020002830A1 (en) 2000-07-08 2002-01-10 Bruker Analytik Gmbh Circulating cryostat
WO2003036190A1 (fr) 2001-10-19 2003-05-01 Oxford Magnet Technology Ltd. Refrigerateur a tube pulse comportant une gaine d'isolation
WO2003036207A2 (fr) 2001-10-19 2003-05-01 Oxford Magnet Technology Ltd. Gaine pour refrigerateur a tube pulse

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821241B2 (ja) * 1990-06-08 1998-11-05 株式会社日立製作所 液化冷凍機付きクライオスタツト
US5461873A (en) * 1993-09-23 1995-10-31 Apd Cryogenics Inc. Means and apparatus for convectively cooling a superconducting magnet
DE19548273A1 (de) * 1995-12-22 1997-06-26 Spectrospin Ag NMR-Meßeinrichtung mit Pulsrohrkühler
GB2329700B (en) * 1997-09-30 2001-09-19 Oxford Magnet Tech Improvements in or relating to cryostat systems
US6376943B1 (en) * 1998-08-26 2002-04-23 American Superconductor Corporation Superconductor rotor cooling system
US6438966B1 (en) * 2001-06-13 2002-08-27 Applied Superconetics, Inc. Cryocooler interface sleeve
DE10137552C1 (de) * 2001-08-01 2003-01-30 Karlsruhe Forschzent Einrichtung mit einem Kryogenerator zur Rekondensation von tiefsiedenden Gasen des aus einem Flüssiggas-Behälter verdampfenden Gases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129232A (en) 1991-06-03 1992-07-14 General Electric Company Vibration isolation of superconducting magnets
US5317879A (en) 1992-10-28 1994-06-07 General Electric Company Flexible thermal connection system between a cryogenic refrigerator and an mri superconducting magnet
US5331735A (en) 1993-04-28 1994-07-26 General Electric Company Method of forming a flexible connector
US5563566A (en) 1995-11-13 1996-10-08 General Electric Company Cryogen-cooled open MRI superconductive magnet
US5613367A (en) 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
US20020002830A1 (en) 2000-07-08 2002-01-10 Bruker Analytik Gmbh Circulating cryostat
WO2003036190A1 (fr) 2001-10-19 2003-05-01 Oxford Magnet Technology Ltd. Refrigerateur a tube pulse comportant une gaine d'isolation
WO2003036207A2 (fr) 2001-10-19 2003-05-01 Oxford Magnet Technology Ltd. Gaine pour refrigerateur a tube pulse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019226437A3 (fr) * 2018-05-20 2020-01-02 Abeyatech, Llc Unité de stockage cryogénique
US11980182B2 (en) 2018-05-20 2024-05-14 Azenta Life Sciences, Inc. Cryogenic storage unit

Also Published As

Publication number Publication date
JP2006054444A (ja) 2006-02-23
DE102004034729A1 (de) 2006-02-16
US20070051115A1 (en) 2007-03-08
DE102004034729B4 (de) 2006-12-07
EP1617157A3 (fr) 2012-05-30

Similar Documents

Publication Publication Date Title
EP1617157A2 (fr) Cryostat avec cryorefroidisseur et échangeur de chaleur du type de fente à gas
EP1628109B1 (fr) Dispositif de cryostat
EP1736723B1 (fr) Dispositif de cryostat avec cryorefroidisseur
DE69838866T2 (de) Verbesserungen in oder mit Bezug auf Kryostatsystemen
EP1628089B1 (fr) Dispositif pour le réfrigération d'un dispositif cryostat
EP1655616B1 (fr) Spectromètre à RMN avec refroidissement par réfrigérateur
EP3296669B1 (fr) Ensemble cryostat doté d'un réservoir à vide et d'un objet à refroidir et doté d'un espace creux pouvant être vidé
DE102004053972B3 (de) NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
DE102005041383B4 (de) NMR-Apparatur mit gemeinsam gekühltem Probenkopf und Kryobehälter und Verfahren zum Betrieb derselben
DE10033410C1 (de) Kreislaufkryostat
EP1504458B1 (fr) Dispositif de supraconductivite comportant un aimant supraconducteur et une unite de refroidissement
DE102006020772B3 (de) Gekühlter NMR Probenkopf mit flexibler gekühlter Verbindungsleitung
DE112011100875T5 (de) Verfahren und Vorrichtung zum Regeln der Temperatur in einem auf tiefe Temperaturen gekühlten Kyrostaten unter Verwendung von stehendem und sich bewegendem Gas
DE102007013350B4 (de) Stromzuführung mit Hochtemperatursupraleitern für supraleitende Magnete in einem Kryostaten
DE19548273A1 (de) NMR-Meßeinrichtung mit Pulsrohrkühler
WO2008040609A1 (fr) Installation frigorifique comportant un élément de raccordement chaud et un élément de raccordement froid, ainsi qu'un tube échangeur de chaleur relié à ces éléments de raccordement
EP0878718A1 (fr) Dispositif de mesure pour la RMN avec tête de mesure refroidie
CH705269B1 (de) Kryostatanordnung.
EP2068103B1 (fr) Module de mesure destiné à la mesure rapide de composants électriques, électroniques et mécaniques à des températures cryogènes et dispositif de mesure doté d'un tel module de mesure
DE102014225481A1 (de) Kryostat mit einem ersten und einem zweiten Heliumtank, die zumindest in einem unteren Bereich flüssigkeitsdicht voneinander abgetrennt sind
DE10226498B4 (de) Kryostatenanordnung mit verbesserten Eigenschaften
DE102019209160B3 (de) Kryostatanordnung mit federndem, wärmeleitendem Verbindungselement
DE102009027429B4 (de) Verfahren zur Kühlung einer Kryostatenanordnung während des Transports, Kryostatenanordnung mit Transportkühleinheit und Transportcontainer zum Transportieren der Kryostatenanordnung
EP3611528A1 (fr) Dispositif cryostat pourvu de système de bobines magnétiques supraconducteur à ancrage thermique de la structure de fixation
EP1574777B1 (fr) Cryostat pour un système magnétique supraconducteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 19/00 20060101ALI20120425BHEP

Ipc: F25B 9/14 20060101AFI20120425BHEP

17P Request for examination filed

Effective date: 20121107

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

17Q First examination report despatched

Effective date: 20160225

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160707