EP1612290A1 - Procédé et installation pour la nitruration à l'aide de gaz d'un substrat et substrat obtenu. - Google Patents

Procédé et installation pour la nitruration à l'aide de gaz d'un substrat et substrat obtenu. Download PDF

Info

Publication number
EP1612290A1
EP1612290A1 EP05405366A EP05405366A EP1612290A1 EP 1612290 A1 EP1612290 A1 EP 1612290A1 EP 05405366 A EP05405366 A EP 05405366A EP 05405366 A EP05405366 A EP 05405366A EP 1612290 A1 EP1612290 A1 EP 1612290A1
Authority
EP
European Patent Office
Prior art keywords
gas
nitriding
process chamber
workpiece
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05405366A
Other languages
German (de)
English (en)
Inventor
Jürgen Dr. Crummenauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Metaplas GmbH
Original Assignee
Metaplas Ionon Oberflaechenveredelungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metaplas Ionon Oberflaechenveredelungstechnik GmbH filed Critical Metaplas Ionon Oberflaechenveredelungstechnik GmbH
Priority to EP05405366A priority Critical patent/EP1612290A1/fr
Publication of EP1612290A1 publication Critical patent/EP1612290A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the invention relates to a method for gas nitriding a surface of a workpiece, a gas nitriding apparatus for gas nitriding the workpiece according to a method according to the invention, and a workpiece having an upper surface layer comprising a diffusion layer with a hard layer according to the preamble of the independent claim of the respective category.
  • the object of the invention is therefore to provide a method and an apparatus for gas nitriding a workpiece, which allows a To treat the workpiece so that the workpiece receives a surface of the highest quality, which has in particular in terms of hardness and wear resistance significantly improved properties.
  • the invention thus relates to a method for gas nitriding a surface of a workpiece in a process chamber with gas supply means for supplying fluids, in particular gases into the process chamber, which method comprises the following method steps: introducing the workpiece into the process chamber and supplying a process gas into the process chamber Generation of a gas atmosphere. Heating the workpiece in the gas atmosphere during a heating phase to a predetermined equilibrium temperature and holding the workpiece during an equilibrium phase at the equilibrium temperature. Further increasing the temperature in the process chamber during a Reduzierphase to a predetermined process temperature, wherein the process chamber during the Reduzierphase a reducing gas is supplied under a predetermined reducing pressure, and then in an activation phase of the process chamber, an activation gas is supplied.
  • a predetermined activation pressure is set in the process chamber and activates the workpiece during a predetermined activation period at an activation temperature.
  • the workpiece is gas nitrided in a nitriding phase in a nitriding gas atmosphere with a nitriding gas at a given nitriding pressure to form a diffusion layer, and the workpiece is hardened after gas nitriding in a hardening phase to produce a hard surface layer at a predetermined hardening pressure
  • the temperature during the Hardening phase is varied according to a predetermined temperature scheme and the workpiece is cooled after the hardening phase during a cooling phase to a final temperature.
  • the reducing pressure of the reducing gas in the process chamber is thereby varied during the Reduzierphase according to a predetermined pressure scheme.
  • the Reduzier horridas of the reducing gas is varied in the process chamber according to a predetermined pressure scheme, which is referred to as "pressure pulses" in the context of this application.
  • pressure pulses the reduction pressure is varied, for example, alternately between a predetermined minimum reduction pressure and a maximum reduction pressure.
  • the higher one Pressure still prefers well below atmospheric pressure, eg at about 300 millibar (mbar) to 700 millibar, more specifically between 400mbar and 500mbar, and preferably at about 450mbar.
  • the lower pressure may, for example, be less than 300 mbar, in particular between 1 mbar and 100 mbar, and preferably about 50 mbar.
  • the pressure pulses according to the invention in the reduction phase it can be achieved that the reducing action of a reducing gas is increased during the reduction phase.
  • a reducing gas for example, hydrogen (H, H 2 ) can be formed from the ammonia, which as a reducing gas can have a reducing effect on the surface of the workpiece.
  • the pressure of the gases is alternately increased and decreased in the process chamber, the formation of the reducing gas, for example, hydrogen from ammonia, significantly favored, so that the reducing effect during the Reduzierphase is significantly improved.
  • the inventive method thus ensures that in the reduction phase by the pressure pulses always an optimal supply or an optimal mixture of reducing gas and nitriding gas, ie, for. of hydrogen and ammonia, is achieved in the process chamber, so that on the one hand, an optimal reduction of the surface of the workpiece takes place and on the other hand, a very uniform An-nitriding the surface of the workpiece is already achieved in the Reduzierphase.
  • a very long pulse periods for the pressure pulses e.g. Pulse periods of 10min, it is achieved that disturbing turbulence of the gases are largely avoided in the process chamber with good mixing of the gases, which favors an optimal and uniform process management in addition, especially but not only, the process of nitriding An.
  • the subsequent operations of gas nitriding are significantly influenced positively with hardening, that is, in particular in the nitration, in which in per se known
  • a diffusion layer is formed in the surface of the workpiece, the formation of the diffusion layer is significantly positively influenced.
  • the diffusion layer has a much higher homogeneity than the diffusion layers known from the prior art, as a result of which, inter alia, the hardness of the surface of the workpiece is drastically increased.
  • the hardness (HRC) of the surface of workpieces made of X40CrMoV51 (1.2344 steel) can be easily increased to values of 1200 HCR and higher.
  • the nitriding pressure of the nitriding gas in the process chamber is also varied during the nitriding phase according to a predetermined pressure scheme.
  • the nitriding pressure is varied alternately between a predetermined minimum nitriding pressure and a maximum nitriding pressure during the nitriding phase.
  • the pressure pulses may take place in analogy to the pressure pulses in the reducing phase, preferably in the rough vacuum between a higher pressure and a lower pressure, the higher pressure being e.g. at about 300 millibar (mbar) to 700 millibars, in particular between 400mbar and 500mbar, and preferably at about 450mbar.
  • the lower pressure may e.g. be less than 300mbar, in particular between about 1 mbar and 100mbar and preferably be about 50mbar.
  • the pressure of the nitriding gas with long pulse periods of the order of a few minutes, for example with a pulse period of 10 minutes, in particular with a pulse period between 3min and 5min varies periodically alternately between the higher pressure and the lower pressure.
  • an oxidizing gas preferably oxygen
  • an oxidizing gas is fed into the process chamber during the equilibrium phase in a manner known per se for the purpose of preparing the surface for the subsequent method steps for targeted pre-oxidation of the surface of the workpiece.
  • ammonia is advantageously used.
  • the reducing gas and / or the activation gas further comprises an additional gas, preferably CO 2 or N 2 O.
  • an additional gas preferably CO 2 or N 2 O.
  • a gas is ionized by means of an ionizing agent, preferably in the reducing phase and / or in the nitration phase.
  • the ionization of one or more gases present in the process chamber can be achieved, for example, by providing in the process chamber a suitable electrode assembly which is connected to an electrical energy source which is connected between the electrodes e.g. generates a pulsed direct or alternating voltage, which, inter alia, alternately values between 100V and 1000V, preferably values between 350V and 600V can take.
  • the pulsed electrical voltage can have frequencies between a few hertz (Hz) and 30 kHz, in particular between 500 Hz and 20 kHz, preferably between 1 kHz and 15 kHz.
  • an ionization of the gases is carried out in the reduction phase and / or in the nitration phase.
  • the ionization of the gases in the Reduzierphase causes an improvement in the Reduzierrease, while in the nitration phase above all it is possible to nitride the workpiece only on selected surfaces, which are directly accessible to the plasma, ie the ionized particles of the gases, while the area of the surface of the workpiece covered by suitable measures is substantially not nitrided.
  • the invention relates to a gas nitriding apparatus for gas nitriding a workpiece according to one of the above-described gas nitriding methods according to the invention.
  • the erfindungsgemässe gas nitriding apparatus comprises a process chamber for receiving the workpiece, and gas supply means for supplying the process chamber with gases and a gas exhaust means for withdrawing the gases from the process chamber, wherein for generating a negative pressure in the process chamber, the gas exhaust means comprises a shut-off device.
  • a pressure control device with a gas extraction device and gas flow control devices are provided so that a gas pressure and / or a mixing ratio of gases in the process chamber can be varied according to a predefinable pressure scheme.
  • a control unit is provided for controlling and / or regulating the gas pressure in the process chamber.
  • a measuring device may be provided for detecting and controlling and / or regulating the gas pressure and / or a gas temperature and / or the composition of gases in the process chamber.
  • the gas nitriding device comprises an ionization agent, which preferably has a plasma generator, for the ionization of a gas located in the process chamber.
  • a workpiece produced by a gas nitriding method according to the invention has a surface layer comprising a diffusion layer with a hard layer.
  • the workpiece on the hard layer having an additional outer end layer which is preferably applied by means of a PVD method, CVD method, or an arc evaporation method or a thermal spraying method.
  • FIG. 1 shows a schematic representation of a time t temperature T schema of a method according to the invention.
  • a process gas 4 in the present example nitrogen (N 2 )
  • N 2 nitrogen
  • the process chamber 3 is heated, so that the process gas 4 and the workpiece 2 is heated to a predetermined equilibrium temperature GT under a predetermined gas pressure.
  • the workpiece 2 is then held during an equilibrium phase G substantially at the equilibrium temperature GT, which may for example be between 200 ° C and 600 ° C, preferably in the vicinity of 350 ° C, held for a predetermined period of time t.
  • the temperature T is increased in the process chamber 3 during a Reduzierphase R to a predetermined process temperature PT, the process chamber 3 during the Reduzierphase R a reducing gas 5 at a predetermined Reduzier horr RP, which is pressure-cycled as described in detail above.
  • the process temperature PT can be between 300 ° C and 1000 ° C, for example; Preferably, the process temperature PT is about 600 ° C.
  • an activation gas 6 is supplied, so that a predetermined activation pressure AP is set, which is preferably but not necessarily at normal pressure, so for example. is about 1000mbar.
  • a predetermined activation pressure AP is set, which is preferably but not necessarily at normal pressure, so for example. is about 1000mbar.
  • the workpiece 2 is activated in a manner known per se during a predetermined activation period at an activation temperature AT.
  • the activation temperature AT may be substantially the same as the process temperature PT as in the present example; However, it can also deviate significantly up or down from it.
  • a nitriding temperature NT which may be here as for example the activation temperature AT and / or the process temperature PT, in a Nitriergasatmospphrase, as the nitriding gas such as ammonia (NH 3 ), methane (CH 4 ), Hydrogen (H, H 2 ), nitrogen (N, N 2 ), and all other suitable Nitriding gases and / or additional gases, which have already been mentioned in part above, gas nitrided at a given nitriding pressure NP to produce a diffusion layer 200.
  • the method is carried out pressure pulsed as described above.
  • the higher pressure during the pressure pulses is well below the normal pressure of about 1000mbar. As a result, it is achieved that the diffusion layer 200 has no bonding layer, which is why in this case the process can also be referred to as "bonding layer free nitriding".
  • a significantly higher nitriding pressure NP is selected in the nitration phase N.
  • a nitriding pressure NP of about 1000mbar creating a bonding layer that has some negative properties that are extremely disturbing for many applications.
  • the bonding layer is relatively brittle, so that it tends to cracking or chipping, especially in dynamic loads of the workpiece 2, for example, when the workpiece 2 is a coil spring 2 or a leaf spring 2.
  • a hard layer 201 sufficient hardness produced and difficult to an additional outer terminating layer 202 are applied.
  • the workpiece 2 is hardened in a hardening phase H to produce a surface layer 201 at a predetermined hardening pressure HP, the temperature T being varied during the hardening phase H according to a predetermined pattern. That is, in the present specific embodiment, the temperature T is initially maintained at a substantially constant value for a certain period of time t.
  • the temperature T in the first part of the hardening phase H equal to the process temperature PT or equal to the activation and nitriding temperature AT, NT was chosen constant.
  • the temperature T in this part of the hardening phase H also higher or lower at a constant value is selectable, or the temperature profile is also varied in a first phase according to any suitable temperature scheme.
  • the temperature T is thus initially substantially constant during a first part of the hardening phase H and is then lowered to a lower temperature T, wherein the temperature reduction does not have to be linear with time t, but rather a specific scheme can follow, or in between even rise again.
  • the hardening pressure HP is preferably chosen in the vicinity of normal pressure, ie at about 1000 mbar, but depending on the workpiece 2 and other requirements may also deviate more or less strongly to higher or lower pressures.
  • the workpiece 2 is heated to an end temperature ET, which is e.g. may correspond to room temperature, cooled.
  • FIG. 2 schematically shows an exemplary embodiment of a gas nitriding device according to the invention for carrying out the gas nitriding process described in detail above by way of example.
  • the gas nitriding device comprises a process chamber 3 for receiving a workpiece 2, and gas supply means 9, 91 for supplying the process chamber 3 with gases.
  • the process chamber 3 can be supplied with ammonia (NH 3 ) via the gas supply means 9, here configured as a gas supply line 9.
  • gas supply means 91 of the process chamber further gases, such as process gases, additional gases and all other in the context of this application etähnten fluids and gases are supplied, wherein the supply the various gases separated by the gas control devices 122 controllable and / or adjustable sit.
  • the gas control devices 121, 122 which in the present case preferably comprise an electrically controllable and / or controllable valve, make it possible to suitably control the inflow of ammonia and all other gases into the process chamber 3.
  • the gas control device comprises a pump, e.g. a vacuum pump 120 with which the process chamber 3 can be evacuated to a predeterminable pressure.
  • a gas extraction means 10 is provided, so that the process chamber 3 gases can be withdrawn, which can be flared in the gas vent 10, if the gases are combustible.
  • the gas removal means 10 has a shut-off device 11, which is configured, for example, but not necessarily, as an electrically controllable and / or controllable valve 11, so that the withdrawal of gases from the process chamber can be controlled.
  • any desired value of a gas pressure in the process chamber 3 can be set. So from the fine vacuum, i. Press the much smaller than e.g. are 1 mbar, up to gas pressures that are well above normal pressure, ie above 1000mbar.
  • the pressure pulses described in detail above can be carried out in the process chamber 3.
  • the shut-off device 11 is closed in the operating state and by suitable control and / or regulation of the pump 120 and the gas control devices 121, 122, the pressure pulses can be controlled as desired.
  • a control unit 123 may be provided which, for example, comprises a data processing system and thus all processes , including data acquisition by means of suitable sensors, coordinated.
  • a measuring device 131 e.g. a vacuum gauge 131 is provided, which among other things allows the measurement of the gas pressure or the measurement of the hydrogen content or other gases in the process chamber 3.
  • at least one thermocouple 130 is provided with which the temperature T in the process chamber 3 can be determined.
  • additional measuring devices 130, 131 can additionally be provided for recording important process data and the acquisition of all data in one or more control units 123 can be coordinated and further processed for process control.
  • FIG. 3 an embodiment according to FIG. 2 with lons Deutschenskar 13 is shown in a schematic drawing.
  • the process chamber 3 is shown only hinted.
  • the workpiece 3 is arranged on a cathode plate 14, wherein the cathode plate 14 is electrically connected in a known manner with a plasma generator 17.
  • the process chamber itself is also electrically connected to the plasma generator 17 and forms the anode in the present arrangement.
  • This is between process chamber 3 and workpiece 2 or cathode plate 14 an electrical ionmaschinesbond applied, so that the gas located in the process chamber is ionizable to a predetermined part and in a predeterminable manner.
  • the ionization means 13 can be controlled by the control unit.
  • FIG. 4 shows a workpiece 2 according to the invention.
  • the workpiece 2 has a surface layer comprising a diffusion layer 200 with a hard layer 201, which was produced by the method according to the invention described above in a gas nitriding device according to the invention.
  • the diffusion layer 200 connection layer is free, so it has essentially no connection layer.
  • the workpiece 2 itself is preferably a dynamically loaded workpiece 2, such as e.g. a spring 2.
  • the workpiece 2 which is produced by a method according to the invention without a connecting layer, as shown in FIG. 4, can be provided with an additional finishing layer 202 in a particularly advantageous manner.
  • the additional termination layer 202 is e.g. by a PVD method, e.g. by sputtering, a CVD method, an arc evaporation method or a thermal spraying method. All of the aforementioned methods for applying the additional capping layer 202 are well known, so that explanation at this point can be omitted.
  • the additional finishing layer shows particularly good adhesive properties on the diffusion layer, so that in particular the hardness of the surface of the inventive treated workpiece, but also the wear resistance and thus Related properties are significantly improved compared to the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
EP05405366A 2004-07-02 2005-06-03 Procédé et installation pour la nitruration à l'aide de gaz d'un substrat et substrat obtenu. Withdrawn EP1612290A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05405366A EP1612290A1 (fr) 2004-07-02 2005-06-03 Procédé et installation pour la nitruration à l'aide de gaz d'un substrat et substrat obtenu.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04405413 2004-07-02
EP05405366A EP1612290A1 (fr) 2004-07-02 2005-06-03 Procédé et installation pour la nitruration à l'aide de gaz d'un substrat et substrat obtenu.

Publications (1)

Publication Number Publication Date
EP1612290A1 true EP1612290A1 (fr) 2006-01-04

Family

ID=35463917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05405366A Withdrawn EP1612290A1 (fr) 2004-07-02 2005-06-03 Procédé et installation pour la nitruration à l'aide de gaz d'un substrat et substrat obtenu.

Country Status (1)

Country Link
EP (1) EP1612290A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028888A1 (de) 2007-06-20 2009-01-02 Maschinenfabrik Alfing Kessler Gmbh Verfahren zur Erhöhung der Festigkeit eines Bauteils
WO2018086930A1 (fr) * 2016-11-08 2018-05-17 Robert Bosch Gmbh Procédé de traitement thermique d'une pièce à usiner constituée d'un acier fortement allié
DE102017113066B3 (de) * 2017-06-14 2018-11-15 Maschinenfabrik Alfing Kessler Gmbh Verfahren zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
DE102017113070B3 (de) * 2017-06-14 2018-11-15 Maschinenfabrik Alfing Kessler Gmbh Verfahren zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
DE102017113074B3 (de) * 2017-06-14 2018-11-15 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen eines Übergangsradius einer Kurbelwelle
DE102017113065B3 (de) * 2017-06-14 2018-11-15 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
DE102017113078A1 (de) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
WO2018228793A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif de post-traitement d'un vilebrequin
WO2018228841A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif de trempe d'un vilebrequin
WO2018228797A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif pour consolider par percussion des rayons de transition d'un vilebrequin
DE102017113072A1 (de) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB759694A (en) * 1950-08-03 1956-10-24 Bernhard Berghaus Improvements in or relating to methods and apparatus for carrying out processes for the treatment of objects and materials employing electric glow discharges
FR1164640A (fr) * 1955-12-06 1958-10-13 Elino Ind Ofenbau Carl Hanf & Procédé pour la cémentation, la nitruration et la carbonitruration de pièces en acier
FR1503350A (fr) * 1966-01-15 1967-11-24 Zahnradfabrik Friedrichshafen Procédé pour la nitruration du fer et d'alliages de fer dans des milieux gazeux cédant de l'azote
US4460415A (en) * 1981-09-30 1984-07-17 Kymi Kymmene Oy Method for nitriding materials at low pressures using a glow discharge
JPS6176659A (ja) * 1984-09-21 1986-04-19 Mitsubishi Heavy Ind Ltd 金属材料の表面硬化方法
DE9417988U1 (de) * 1994-11-10 1995-02-16 INCORTRAS Innovations-Consulting-Trading-Services GmbH, 65439 Flörsheim Vorrichtung zur Gasoxynitrierung von Bauteilen aus Eisenwerkstoffen
FR2719057A1 (fr) * 1994-04-22 1995-10-27 Innovatique Sa Procédé pour la nitruration à bsase pression d'une pièce métallique et four pour la mise en Óoeuvre dudit procédé.
EP0696648A1 (fr) * 1994-08-12 1996-02-14 Mitsubishi Jukogyo Kabushiki Kaisha Cylindre cannelé et sa fabrication
DE19652125C1 (de) * 1996-12-14 1998-04-30 Volker Dipl Ing Leverkus Verfahren zur Regelung einer Nitrier- bzw. Nitrocarburier-Atmosphäre sowie Vorrichtung zur Durchführung des Verfahrens
DE19719225C1 (de) * 1997-05-07 1998-08-06 Volker Dipl Ing Leverkus Verfahren zur Regelung einer Nitrier- bzw. Nitrocarburier-Atmosphäre sowie Vorrichtung zur Durchführung des Verfahrens
US6024893A (en) * 1998-06-24 2000-02-15 Caterpillar Inc. Method for controlling a nitriding furnace
US6110571A (en) * 1994-07-19 2000-08-29 Sumitomo Metal Mining Co., Ltd. Duplex coated steel composite products and method of manufacturing them
EP1229143A2 (fr) * 2001-02-02 2002-08-07 Meritor Suspension Systems Company Inc. Procédé de durcissement d'un ressort hélicoidal en acier
DE10147205C1 (de) * 2001-09-25 2003-05-08 Bosch Gmbh Robert Verfahren zur Wärmebehandlung von Werkstücken aus temperaturbeständigen Stählen

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB759694A (en) * 1950-08-03 1956-10-24 Bernhard Berghaus Improvements in or relating to methods and apparatus for carrying out processes for the treatment of objects and materials employing electric glow discharges
FR1164640A (fr) * 1955-12-06 1958-10-13 Elino Ind Ofenbau Carl Hanf & Procédé pour la cémentation, la nitruration et la carbonitruration de pièces en acier
FR1503350A (fr) * 1966-01-15 1967-11-24 Zahnradfabrik Friedrichshafen Procédé pour la nitruration du fer et d'alliages de fer dans des milieux gazeux cédant de l'azote
US4460415A (en) * 1981-09-30 1984-07-17 Kymi Kymmene Oy Method for nitriding materials at low pressures using a glow discharge
JPS6176659A (ja) * 1984-09-21 1986-04-19 Mitsubishi Heavy Ind Ltd 金属材料の表面硬化方法
FR2719057A1 (fr) * 1994-04-22 1995-10-27 Innovatique Sa Procédé pour la nitruration à bsase pression d'une pièce métallique et four pour la mise en Óoeuvre dudit procédé.
US6110571A (en) * 1994-07-19 2000-08-29 Sumitomo Metal Mining Co., Ltd. Duplex coated steel composite products and method of manufacturing them
EP0696648A1 (fr) * 1994-08-12 1996-02-14 Mitsubishi Jukogyo Kabushiki Kaisha Cylindre cannelé et sa fabrication
DE9417988U1 (de) * 1994-11-10 1995-02-16 INCORTRAS Innovations-Consulting-Trading-Services GmbH, 65439 Flörsheim Vorrichtung zur Gasoxynitrierung von Bauteilen aus Eisenwerkstoffen
DE19652125C1 (de) * 1996-12-14 1998-04-30 Volker Dipl Ing Leverkus Verfahren zur Regelung einer Nitrier- bzw. Nitrocarburier-Atmosphäre sowie Vorrichtung zur Durchführung des Verfahrens
DE19719225C1 (de) * 1997-05-07 1998-08-06 Volker Dipl Ing Leverkus Verfahren zur Regelung einer Nitrier- bzw. Nitrocarburier-Atmosphäre sowie Vorrichtung zur Durchführung des Verfahrens
US6024893A (en) * 1998-06-24 2000-02-15 Caterpillar Inc. Method for controlling a nitriding furnace
EP1229143A2 (fr) * 2001-02-02 2002-08-07 Meritor Suspension Systems Company Inc. Procédé de durcissement d'un ressort hélicoidal en acier
DE10147205C1 (de) * 2001-09-25 2003-05-08 Bosch Gmbh Robert Verfahren zur Wärmebehandlung von Werkstücken aus temperaturbeständigen Stählen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 245 (C - 368) 22 August 1986 (1986-08-22) *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028888A1 (de) 2007-06-20 2009-01-02 Maschinenfabrik Alfing Kessler Gmbh Verfahren zur Erhöhung der Festigkeit eines Bauteils
US9015939B2 (en) 2007-06-20 2015-04-28 Maschinenfabrik Alfing Kessler Gmbh Method for increasing the strength of components
DE102007028888B4 (de) * 2007-06-20 2015-07-23 Maschinenfabrik Alfing Kessler Gmbh Verfahren zur Erhöhung der Festigkeit eines Bauteils
WO2018086930A1 (fr) * 2016-11-08 2018-05-17 Robert Bosch Gmbh Procédé de traitement thermique d'une pièce à usiner constituée d'un acier fortement allié
DE102017113066B3 (de) * 2017-06-14 2018-11-15 Maschinenfabrik Alfing Kessler Gmbh Verfahren zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
DE102017113070B3 (de) * 2017-06-14 2018-11-15 Maschinenfabrik Alfing Kessler Gmbh Verfahren zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
DE102017113074B3 (de) * 2017-06-14 2018-11-15 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen eines Übergangsradius einer Kurbelwelle
DE102017113065B3 (de) * 2017-06-14 2018-11-15 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
DE102017113078A1 (de) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
WO2018228791A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif de trempe par impact des rayons de transition d'un vilebrequin
WO2018228796A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif pour consolider par percussion un rayon de transition d'un vilebrequin
WO2018228793A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif de post-traitement d'un vilebrequin
WO2018228841A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif de trempe d'un vilebrequin
WO2018228797A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif pour consolider par percussion des rayons de transition d'un vilebrequin
DE102017113071A1 (de) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zur Nachbearbeitung einer Kurbelwelle
DE102017113077A1 (de) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
WO2018228792A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif pour la consolidation par percussion de rayons de transition d'un vilebrequin
DE102017113072A1 (de) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
WO2018228790A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif d'écrouissage de rayons de transition d'un vilebrequin
DE102017113088A1 (de) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Kaltverfestigen einer Kurbelwelle
WO2018228795A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif de consolidation par percussion de rayons de transition d'un vilebrequin
WO2018228799A1 (fr) 2017-06-14 2018-12-20 Maschinenfabrik Alfing Kessler Gmbh Procédé et dispositif de trempe par impact de rayons de transition d'un vilebrequin
DE102017113078B4 (de) 2017-06-14 2019-05-29 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
JP2020530815A (ja) * 2017-06-14 2020-10-29 マシネンファブリック アルフィング ケスラー ゲーエムベーハーMaschinenfabrik Alfing Kessler Gesellschaft Mit Beschrankter Haftung クランクシャフトの渡り部を衝撃処理するための方法及び装置
JP2020530814A (ja) * 2017-06-14 2020-10-29 マシネンファブリック アルフィング ケスラー ゲーエムベーハーMaschinenfabrik Alfing Kessler Gesellschaft Mit Beschrankter Haftung クランクシャフトの渡り部を衝撃処理するための方法及び装置
DE102017113072B4 (de) * 2017-06-14 2021-04-08 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
US11141819B2 (en) 2017-06-14 2021-10-12 Maschinenfabrik Alfing Kessler Gmbh Method and device for the impact treatment of transition radii of a crankshaft
US11161206B2 (en) 2017-06-14 2021-11-02 Maschinenfabrik Alfing Kessler Gmbh Method and device for the impact treatment of transition radii of a crankshaft
US11203056B2 (en) 2017-06-14 2021-12-21 Maschinenfabrik Alfing Kessler Gmbh Method and device for the impact treatment of transition radii of a crankshaft
DE102017113077B4 (de) 2017-06-14 2022-02-03 Maschinenfabrik Alfing Kessler Gmbh Verfahren und Vorrichtung zum Schlagverfestigen von Übergangsradien einer Kurbelwelle
US11344980B2 (en) 2017-06-14 2022-05-31 Maschinenfabrik Alfing Kessler Gmbh Method and device for work-hardening a crankshaft
US11512735B2 (en) 2017-06-14 2022-11-29 Maschinenfabrik Alfing Kessler Gmbh Method and device for post-processing a crankshaft

Similar Documents

Publication Publication Date Title
EP1612290A1 (fr) Procédé et installation pour la nitruration à l'aide de gaz d'un substrat et substrat obtenu.
DE10197283B4 (de) Verfahren und Vorrichtung zur Vakuumwärmebehandlung
DE69613822T3 (de) Verfahren zur vakuumaufkohlung, verwendung einer vorrichtung zur vakuumaufkohlung und aufgekohlte stahlerzeugnisse
EP2107131A1 (fr) Procédé et installation de revêtement et de traitement de surface de substrats à l'aide d'un rayon de plasma
EP2302081B1 (fr) Procédé et dispositif de préparation de gaz de procédé pour des traitements à chaud de matériaux/pièces métalliques dans des fours industriels
AT514555B1 (de) Verfahren und Vorrichtung zur Erzeugung eines Plasmastrahls
DE3430009C2 (de) Verfahren und Vorrichtung zum Dotieren von Halbleitersubstraten
DE102014104997B4 (de) Verfahren zum Nitrieren von Innenoberflächen leitfähiger Hohlkörper oder gravierten Oberflächen mit Hohlkathodenentladung
DE102006044626A1 (de) Aufkohlungsbehandlungsvorrichtung und -verfahren
EP2627795A1 (fr) Procédé et dispositif de carburation et carbonitruration de matériaux métalliques
WO2006013055A1 (fr) Procede de traitement thermique de pieces en acier
DE4427902C1 (de) Verfahren zum Aufkohlen von Bauteilen aus kohlungsfähigen Werkstoffen mittels einer impulsförmig betriebenen Plasmaentladung
DE2845756A1 (de) Ionenitrierhaertungsverfahren
DE668639C (de) Verfahren zum Vergueten von Metallgegenstaenden
DE69829543T2 (de) Verfahren zur Erzeugung von Wasserdampf
EP0552460B1 (fr) Procédé de traitement thermochimique de pièces par des impulsions à plasma
DE10322871A1 (de) Sinterkörper und Verfahren zu seiner Herstellung
DE3139622A1 (de) Verfahren zur gasaufkohlung von stahl
DE19815019B4 (de) Verfahren zur Herstellung von Aluminiumnitridschichten auf Bauteilen aus Aluminiumwerkstoffen auf der Grundlage des Plasmanitrierens
EP0749147B1 (fr) Procédé et dispositif pour la commande de la densité de courant électrique sur une pièce soumise à un traitement thermique par plasma
DE2620391A1 (de) Regeln des gasdrucks bei stromstarken glimmentladungen
DE10152204B4 (de) Vorrichtung und Verfahren zum Messen und/oder Regeln der Aufkohlungsatmophäre in einer Vakuumaufkohlungsanlage
EP4249626A1 (fr) Procédé et dispositif de nitruration par plasma et d'oxydation ultérieure d'une surface d'un composant
EP2877607B1 (fr) Procédé pour fabriquer au moins un élément et dispositif de commande et/ou de réglage
WO2008025344A1 (fr) Procédé de formation d'un composant de palier de roulement hautement durcissable en utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060608

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070828

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER METAPLAS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090915