EP1572770A2 - Kosmetische zusammensetzung, enthaltend ein polymer - Google Patents

Kosmetische zusammensetzung, enthaltend ein polymer

Info

Publication number
EP1572770A2
EP1572770A2 EP03813183A EP03813183A EP1572770A2 EP 1572770 A2 EP1572770 A2 EP 1572770A2 EP 03813183 A EP03813183 A EP 03813183A EP 03813183 A EP03813183 A EP 03813183A EP 1572770 A2 EP1572770 A2 EP 1572770A2
Authority
EP
European Patent Office
Prior art keywords
composition according
weight
silicone
chosen
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03813183A
Other languages
English (en)
French (fr)
Inventor
Pascal Arnaud
Bertrand Lion
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOreal SA
Original Assignee
LOreal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0215739A external-priority patent/FR2848560B1/fr
Priority claimed from FR0215738A external-priority patent/FR2848559B1/fr
Priority claimed from FR0215737A external-priority patent/FR2848558B1/fr
Application filed by LOreal SA filed Critical LOreal SA
Publication of EP1572770A2 publication Critical patent/EP1572770A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/58Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
    • A61K8/585Organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/893Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by an alkoxy or aryloxy group, e.g. behenoxy dimethicone or stearoxy dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/91Graft copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/08Preparations containing skin colorants, e.g. pigments for cheeks, e.g. rouge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/04Preparations for care of the skin for chemically tanning the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • Cosmetic composition comprising a polymer
  • the subject of the present invention is a cosmetic composition
  • a cosmetic composition comprising a specific polymer intended to be applied to keratin materials of human beings, such as the skin, the lips, the eyelashes, the eyebrows, the nails, the hair.
  • the composition is more particularly intended to be applied to the skin or the lips.
  • composition according to the invention may be a makeup composition or a care composition for keratin materials, in particular of the skin and lips, and preferably a makeup composition.
  • the makeup composition can be a foundation, a lip makeup product (lipstick), an eyeshadow, a blush, a concealer product, an eyeliner, a body makeup product, a mascara, nail polish, hair makeup product.
  • lip makeup product lipstick
  • eyeshadow eyeshadow
  • blush blush
  • concealer product an eyeliner
  • body makeup product a mascara, nail polish, hair makeup product.
  • the care composition may be a care product for the skin of the body and the face, in particular a sun care product, a product for coloring the skin (such as a self-tanner).
  • the composition can also be a hair product, in particular for maintaining the hairstyle or shaping the hair.
  • Makeup compositions are commonly used to provide an aesthetic color to keratin materials. These makeup products generally contain oils, pigments and / or fillers and possibly additives such as cosmetic or dermatological active ingredients.
  • compositions when applied to keratin materials, in particular to the skin, have the drawback of transferring, that is to say, depositing at least in part, leaving traces, on certain supports with which they can be brought into contact and in particular a glass, a cup, a cigarette, a garment or the skin.
  • the appearance of these unacceptable traces, in particular on shirt collars may exclude certain women from the use of this type of makeup.
  • the sebum or sweat excreted by the skin over time also changes the properties of makeup.
  • the sebum does not promote the adhesion of the makeup to the skin and the transfer of the makeup is even greater, causing a significant loss of the makeup remaining on the skin.
  • the non-transfer properties of the makeup are also degraded.
  • compositions for making up the skin which have the advantage of forming a deposit of good hold, in particular in the presence of sebum or sweat or water, in particular which does not settle, at least in part, on the supports with which they are brought into contact (glass, clothing, cigarettes, fabrics).
  • the present invention therefore aims to provide a new way of formulating a cosmetic product capable of forming on keratin materials a deposit having good resistance to transfer, especially in the presence of sebum or sweat or water.
  • the inventors have discovered that it is possible to obtain such a composition using a particular polymer.
  • the present invention therefore relates to a cosmetic composition, in particular for making up or caring for keratin materials, comprising a dispersion of particles, preferably solid, of an acrylic polymer grafted in a liquid fatty phase as described below, said grafted acrylic polymer capable of being obtained by polymerization of at least one acidic ethylenic monomer, at least one non-acidic acrylic monomer and at least one macromonomer.
  • the subject of the invention is also a process for making up keratin materials comprising the application to the keratin materials of a composition as defined above.
  • the subject of the invention is also the use of a composition as defined above for obtaining a deposit, in particular a make-up, on keratin materials having good transfer resistance, in particular in the presence of sebum or of sweat or water .
  • Another subject of the invention is the use, in a cosmetic composition, of a dispersion of particles (preferably solid) of a grafted acrylic polymer as defined above in dispersion in a liquid fatty phase, to obtain a deposit, in particular make-up, on keratinous materials having good resistance to transfer, in particular in the presence of sebum or sweat or water.
  • the cosmetic composition according to the invention comprises a dispersion of particles, preferably solid, of an acrylic polymer grafted in a liquid fatty phase, the grafted acrylic polymer being capable of being obtained by polymerization of at least one acidic ethylenic monomer, at least one non-acidic acrylic monomer and at least one macromonomer.
  • the cosmetic composition according to the invention is a composition compatible with keratin materials, in particular the skin.
  • the dispersion of grafted acrylic polymer is in particular free of stabilizing polymer distinct from said grafted polymer, such as those described in EP749747, and the particles of grafted acrylic polymer are therefore not surface stabilized by such additional stabilizing polymers.
  • the grafted polymer is therefore dispersed in the liquid fatty phase in the absence of additional stabilizer on the surface of the particles of the grafted polymer.
  • grafted polymer is intended to mean a polymer having a backbone comprising at least one side chain hanging or situated at the end of the chain, and preferably hanging.
  • the grafted acrylic polymer comprises an acrylic skeleton insoluble in said liquid fatty phase, and side chains covalently linked to said skeleton and soluble in said liquid fatty phase.
  • the grafted acrylic polymer is in particular a non-crosslinked polymer.
  • the polymer is obtained by polymerization of monomers comprising a single polymerizable group.
  • the grafted acrylic polymer is a film-forming polymer.
  • film-forming polymer is meant a polymer capable of forming on its own or in the presence of an auxiliary film-forming agent, a continuous and adherent film on a support, in particular on keratin materials.
  • the grafted acrylic polymer is in particular capable of being obtained by radical polymerization in an organic polymerization medium:
  • At least one macromonomer comprising a polymerizable end group to form side chains, said macromonomer having a weight average molecular weight greater than or equal to 200 and the content of polymerized macromonomer representing from 0.05 to 20% by weight of the polymer
  • the liquid fatty phase may contain the organic polymerization medium.
  • the liquid organic dispersion medium corresponding to the medium in which is provided the grafted polymer, may be identical to the polymerization medium.
  • the polymerization medium can be substituted in whole or in part by another liquid organic medium.
  • This other liquid organic medium can be added, after polymerization, to the polymerization medium. The latter is then evaporated in whole or in part.
  • the liquid fatty phase can contain organic liquid compounds other than those present in the dispersion medium. These other compounds are chosen so that the grafted polymer remains in the state of dispersion in the liquid fatty phase.
  • the organic liquid dispersion medium is present in the liquid fatty phase of the composition according to the invention due to the introduction into the composition of the graft polymer dispersion obtained.
  • the liquid fatty phase preferably comprises one or more liquid organic compounds (or oils) as defined below.
  • the liquid fatty phase is a non-aqueous liquid organic phase which is immiscible with water at room temperature (25 ° C).
  • liquid organic compound is understood to mean a non-aqueous compound which is in the liquid state at room temperature (25 ° C.) and which therefore flows from its own weight.
  • silicon compound means a compound containing at least one silicon atom.
  • liquid organic compounds or oils which may be present in the liquid organic dispersion medium, there may be mentioned: - liquid organic compounds, in particular non-silicone or silicone compounds, having an overall solubility parameter according to the lower Hansen solubility space
  • - d D characterizes the dispersion forces of LONDON resulting from the formation of dipoles induced during molecular shocks
  • - dp characterizes the forces of DEBYE interactions between permanent dipoles
  • liquid fatty substances in particular oils, which can be chosen from natural or synthetic, carbon, hydrocarbon, fluorinated, silicone oils, optionally branched, alone or as a mixture.
  • Oil means any non-aqueous medium which is liquid at room temperature (25 ° C) and atmospheric pressure (760mm Hg), compatible with application to the skin, mucous membranes (lips) and / or integuments (nails, eyelashes, eyebrows, hair).
  • oils examples include vegetable oils formed by—. esters of fatty acids and polyols, in particular triglycerides, such as sunflower, sesame or rapeseed oil, or esters derived from long chain acids or alcohols (i.e. say having from 6 to 20 carbon atoms), in particular the esters of formula RCOOR 'in which R represents the remainder of a fatty acid higher comprising from 7 to 19 carbon atoms and R ′ represents a hydrocarbon chain comprising from 3 to 20 carbon atoms, such as palmitates, adipates and benzoates, in particular diisopropyl adipate.
  • esters of fatty acids and polyols in particular triglycerides, such as sunflower, sesame or rapeseed oil, or esters derived from long chain acids or alcohols (i.e. say having from 6 to 20 carbon atoms), in particular the esters of formula RCOOR 'in which R represents the remainder of a fatty acid higher comprising from 7 to 19 carbon
  • Mention may also be made of linear, branched and / or cyclic alkanes which may be volatile and in particular paraffin oils, of petrolatum, or hydrogenated polyisobutylene, isododecane, or also 'ISOPARS', volatile isoparaffins. Mention may also be made of esters, ethers and ketones. Mention may also be made of silicone oils such as polydimethylsiloxanes and polymethylphenylsiloxanes, optionally substituted by aliphatic and or aromatic groups, optionally fluorinated, or by functional groups such as hydroxyl, thiol and / or amino groups, and volatile silicone oils , especially cyclical.
  • paraffin oils of petrolatum, or hydrogenated polyisobutylene, isododecane, or also 'ISOPARS', volatile isoparaffins. Mention may also be made of esters, ethers and ketones. Mention may also be made of silicone oils such as polydimethylsilox
  • silicone oils optionally branched, volatile and / or non-volatile.
  • volatile oil any non-aqueous medium capable of evaporating from the skin or the lips, in less than an hour, having in particular a vapor pressure, at ambient temperature and atmospheric pressure ranging from 10 "3 to 300 mm of Hg (0.13 Pa to 40,000 Pa).
  • volatile silicone oil which can be used in the invention, mention may be made of linear or cyclic silicones having from 2 to 7 silicon atoms, these silicones optionally comprising alkyl or alkoxy groups having from 1 to 10 carbon atoms.
  • these silicones optionally comprising alkyl or alkoxy groups having from 1 to 10 carbon atoms.
  • octamethylcyclotetrasiloxane decamethylcyclopentasiloxane
  • dodecamethylcyclohexasiloxane heptamethylhexyltrisiloxane
  • heptamethyloctyltrisiloxane octamethyltrisiloxane
  • decamethyltetrasiloxane and their mixtures.
  • non-volatile silicone oil there may be mentioned non-volatile polydialkylsiloxanes, such as non-volatile polydimethylsiloxanes (PDMS); polydimethylsiloxanes comprising alkyl, alkoxy or phenyl groups, during or at the end of the silicone chain, groups having from 2 to 24 carbon atoms; phenylated silicones such as phenyl trimethicones, phenyl dimethicones, phenyl trimethylsiloxy diphenylsiloxanes, diphenyls dimethicones, diphenyl methyldiphenyl trisiloxanes, polymethylphenylsiloxanes; polysiloxanes modified with fatty acids (in particular C8-C20).
  • PDMS non-volatile polydimethylsiloxanes
  • phenylated silicones such as phenyl trimethicones, phenyl dimethicones, phenyl tri
  • fatty alcohols especially C8-C20
  • polyoxyalkylenes especially polyoxyethylene and / or polyoxypropylene
  • amino polysiloxanes especially C8-C20
  • polyoxyalkylenes especially polyoxyethylene and / or polyoxypropylene
  • amino polysiloxanes especially polysiloxanes containing hydroxyl groups
  • fluorinated polysiloxanes comprising a fluorinated group during or at the end of the silicone chain having from 1 to 12 carbon atoms of which all or part of the hydrogen are substituted by fluorine atoms; and their mixtures.
  • liquid monoalcohols having a global solubility parameter according to the Hansen solubility space of less than or equal to 20 (MPa) 1/2 is meant aliphatic fatty liquid monoalcohols having from 6 to 30 carbon atoms, the hydrocarbon chain not comprising no substitution group.
  • monoalcohols according to the invention there may be mentioned oleic alcohol, decanol and linoleic alcohol.
  • the composition according to the invention may comprise a volatile oil in a content ranging from 1% to 90% by weight, relative to the total weight of the composition, and preferably ranging from 5% to 70% by weight.
  • the composition may comprise a non-volatile oil in a content ranging from 0.1% to 80% by weight, relative to the total weight of the composition, and preferably ranging from 3% to 50% by weight.
  • the liquid fatty phase can be a non-silicone liquid fatty phase.
  • non-silicone liquid fatty phase means a fatty phase comprising one or more liquid organic compounds or non-silicone oils, such as those mentioned above, said non-silicone compounds being present mainly in the liquid fatty phase, it that is to say at least 50% by weight, in particular from 50 to 100% by weight, preferably from 60% to 100% by weight (for example from 60 to 99% by weight), or even from 65% to 100% by weight (for example from 65 to 95% by weight), relative to the total weight of the liquid fatty phase.
  • the non-silicone-based liquid organic compounds can in particular be chosen from:
  • non-silicone-based liquid organic compounds having a global solubility parameter according to the Hansen solubility space of less than or equal to 18 (MPa) 1/2 , the monoalcohols having a global solubility parameter according to the space of
  • Said non-silicone-based liquid fatty phase may therefore optionally comprise liquid organic compounds or silicone oils, such as those mentioned above, which may be present in an amount of less than 50% by weight, in particular ranging from 0.1 to 40 % by weight, or even ranging from 1 to 35% by weight, or even ranging from 5 to 30% by weight, relative to the total weight of the liquid fatty phase.
  • the non-silicone liquid fatty phase does not contain liquid organic compounds or silicone oils.
  • non-silicone liquid fatty phase When the liquid fatty phase is one. non-silicone liquid fatty phase, _l-e_s-- macromonomers present in the grafted polymer are advantageously carbon macromonomers as described below.
  • non-silicone graft polymer means a graft polymer mainly containing a carbon macromonomer and optionally containing at most 7% by weight of the total weight of the polymer, preferably at most 5% by weight, or even is free, of silicone macromonomer.
  • the liquid fatty phase can be a silicone liquid fatty phase.
  • silicone liquid fatty phase means a fatty phase comprising one or more silicone liquid organic compounds or silicone oils such as those described above, said silicone compounds being present mainly in the liquid fatty phase, that is to say at least at least 50% by weight, in particular from 50 to 100% by weight, preferably from 60% to 100% by weight (for example from 60 to 99% by weight), or also from 65% to 100% by weight (for example from 65 to 95% by weight), relative to the total weight of the liquid fatty phase.
  • the liquid organic silicone compounds can be chosen in particular from: - liquid organic compounds, in particular non-silicone or silicone, having an overall solubility parameter according to the Hansen solubility space of less than or equal to 18 (MPa) 1/2 .
  • Said liquid silicone fatty phase can therefore optionally comprise liquid organic compounds or non-silicone oils, as described above, which can be present in an amount of less than 50% by weight, in particular ranging from 0.1 to 40% by weight, even ranging from 1 to 35% by weight, or even ranging from 5 to 30% by weight, relative to the total weight of the liquid fatty phase.
  • the silicone liquid fatty phase does not contain non-silicone liquid organic compounds.
  • the macromonomers present in the grafted polymer are advantageously silicone macromonomers as described below.
  • the grafted polymer present in the composition is advantageously a silicone grafted polymer.
  • grafted silicone polymer means a grafted polymer mainly containing a silicone macromonomer and optionally containing at most 7% by weight, of the total weight of the polymer, preferably at most 5% by weight, or even is free, of carbonaceous macromonomer.
  • the choice of monomers constituting the backbone of the polymer, of the macromonomers, the molecular weight of the polymer, the proportion of the monomers and of the macromonomers can be made as a function of the liquid organic dispersion medium so as to advantageously obtain a dispersion of polymer particles grafted in particularly a stable dispersion, this choice can be made by a person skilled in the art.
  • stable dispersion is meant a dispersion which is not liable to form a solid deposit or a liquid / solid phase shift, in particular after centrifugation, for example, at 4000 rpm for 15 minutes.
  • the grafted acrylic polymer forming the particles in dispersion therefore comprises a skeleton insoluble in said dispersion medium and a part soluble in said dispersion medium.
  • the grafted acrylic polymer could be a random polymer.
  • grafted acrylic polymer means a polymer capable of being obtained by radical polymerization:
  • the ethylenic, acrylic or vinyl monomers are chosen from monomers whose homopolymer is insoluble in the dispersion medium under consideration, that is to say that the homopolymer is in solid (or undissolved) form. a concentration greater than or equal to 5% by weight at room temperature (20 ° C) in said dispersion medium.
  • the term "macromonomer having a polymerizable end group” means any polymer comprising on only one of its ends a polymerizable end group capable of reacting during the polymerization reaction with acrylic monomers and optionally additional non-acrylic vinyl monomers constituting the skeleton.
  • the macromonomer makes it possible to form the side chains of the grafted acrylic polymer.
  • the polymerizable group of the macromonomer can advantageously be an ethylenically unsaturated group capable of polymerizing by the radical route with the monomers constituting the skeleton.
  • carbon macromonomer is meant a non-silicone macromonomer, and in particular an oligomeric macromonomer obtained by polymerization of non-silicone monomer (s) with ethylenic unsaturation, and mainly by polymerization of acrylic and / or non-acrylic vinyl monomers.
  • silicone macromonomer is meant an organopolysiloxane macromonomer, and in particular a polydimethylsiloxane macromonomer.
  • the macromonomer is chosen from macromonomers whose homopolymer is soluble in the dispersion medium under consideration, that is to say completely dissolved at a concentration greater than or equal to 5% by weight and at room temperature in said medium of dispersion.
  • the grafted acrylic polymer comprises a skeleton (or main chain) consisting of a series of acrylic units resulting from the polymerization in particular of one or more acrylic monomers and side chains (or grafts) resulting from the reaction of the macromonomers, said side chains being covalently linked to said main chain.
  • the skeleton (or main chain) is insoluble in the dispersion medium considered while the side chains (or grafts) are soluble in said dispersion medium.
  • the insoluble backbone of the grafted acrylic polymer comprises at least one acidic ethylenic monomer and at least one non-acidic acrylic monomer.
  • the ethylenic acid monomer can be chosen from (meth) acrylic monomers comprising at least one carboxylic, phosphoric or sulphonic acid function, non (meth) acrylic vinyl monomers comprising at least one carboxylic, phosphoric or sulphonic acid function, and their salts.
  • non-acidic acrylic monomers is meant in the present application of the selected monomers the esters of (meth) acrylic acid (also called (meth) acrylates), the amides of (methacrylic acid) (also called (meth) acrylamides) and not comprising an acid group.
  • acidic ethylenic monomer mention may be made of (meth) acrylic acid, acrylamidopropanesulfonic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, fumaric acid, vinyl benzoic acid. , vinylphosphoric acid, and their salts.
  • the acidic ethylenic monomer is (meth) acrylic acid.
  • the acidic ethylenic monomer may be present in a content ranging from 5% to 80% by weight, relative to the total weight of the polymer, preferably ranging from 10% to 70% by weight, and preferably ranging from 15% to 60% by weight. weight.
  • the ethylenic monomer acid, or the grafted acrylic polymer comprises a main acid monomer chosen from (meth) acrylic acid and optionally an additional acid monomer different from (meth) acrylic acid, and their salts.
  • the additional acid monomer can be chosen from acrylamidosulfonic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, fumaric acid, vinylbenzoic acid, vinylphosphoric acid, and their salts.
  • the (meth) acrylic acid may be present in a content of at least 5% by weight, relative to the total weight of the polymer, in particular ranging from 5% to 80% by weight, preferably at least 10% by weight. weight, in particular ranging from 10% by weight to 70% by weight, preferably at least 15% by weight, in particular ranging from 15% to 60% by weight.
  • the additional acid monomer may be present in a content ranging from 0.1% to 20% by weight, relative to the total weight of the polymer, preferably ranging from 5% to 15% by weight.
  • non-acid acrylic monomer capable of being used to form the insoluble backbone of the polymer
  • monomers as well as their salts:
  • --Ri denotes an atonne of hydrogen or n methyl group
  • - R 2 represents a group chosen from: - a linear or branched alkyl group, comprising from 1 to 6 carbon atoms, said group possibly comprising in its chain one or more heteroatoms chosen from O, N and S; and / or may include one or several substituents chosen from -OH, the halogen atoms (F, Cl, Br, I) and - NR'R "with R 'and R" identical or different chosen from linear or branched C1-C4 alkyls; and / or may be substituted by at least one polyoxyalkylene group, in particular with C2-C4 alkylene, in particular polyoxyethylene and / or polyoxypropylene, said polyoxyalkylene group being constituted by the repetition of 5 to 30 oxyalkylene units;
  • a cyclic alkyl group comprising from 3 to 6 carbon atoms, said group possibly comprising in its chain one or more heteroatoms chosen from O, N and S, and / or possibly comprising one or more substituents chosen from OH and the atoms of halogen (F, Cl, Br, I);
  • R 2 mention may be made of the methyl, ethyl, propyl, butyl, isobutyl, methoxyethyl, ethoxyethyl, methoxy-polyoxyethylene 350 EO, trifluoroethyl, 2-hydroxyethyl, 2-hydroxypropyl, dimethylaminoethyl, diethylaminoethyl, dimethylaminopropyl group.
  • R 3 denotes a hydrogen atom or a methyl group
  • - R and R 5 identical or different, represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 6 carbon atoms, which may comprise one or more substituents chosen from -OH, the halogen atoms (F, Cl, Br, I) and -NR'R "with R 'and R" identical or different chosen from linear or branched Cj-C4 alkyls; or
  • R 4 represents a hydrogen atom and R 5 represents a group 1, 1-dimethyl-3-oxobutyl: ⁇
  • alkyl groups which may constitute R and R 5 , there may be mentioned n-butyl, t-butyl, n-propyl, dimethylaminoethyl, diethylaminoethyl, dimethylaminopropyl.
  • non-acidic acrylic monomers mention may very particularly be made of methyl, ethyl, propyl, butyl and isobutyl (meth) acrylates; methoxyethyl or ethoxyethyl (meth) acrylates; trifluoroethyl methacrylate; dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl acrylate; dimethylaminopropylmethacrylamide; and their salts; and their mixtures.
  • the non-acidic acrylic monomers are chosen from methyl acrylate, methoxyethyl acrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, (meth) acrylic acid, dimethylaminoethyl methacrylate, and their mixtures.
  • the non-acid acrylic monomer can be chosen from C1-C3 alkyl (meth) acrylates.
  • the grafted acrylic polymer as defined above may also be capable of being obtained by polymerization in the presence of one or more additional non-acrylic vinyl monomer (s) non-acid (s).
  • non-acrylic non-acrylic vinyl monomers that may be mentioned:
  • R 6 -COO-CH CH 2 in which R 6 represents a linear or branched alkyl group, comprising from 1 to 6 atoms, or a cyclic alkyl group comprising from 3 to 6 carbon atoms and / or an aromatic group, for example of the benzene, anthracene and naphthalene type; _ - vinyl monomers not. acrylic, non-acidic comprising at least. a tertiary amine function, such as 2-vinylpyridine, 4-vinylpyridine;
  • the grafted acrylic polymer comprises from 50 to 100% in weight, preferably from 55 to 100% by weight (especially from 55 to 95% by weight), preferably from 60 to 100% by weight (especially from 60 to 90% by weight) of acrylic monomer (s) by relative to the total weight of the mixture of acrylic monomers + possible non-acrylic vinyl monomers.
  • salts there may be mentioned those obtained by neutralization of the acid groups using inorganic bases such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or organic bases of amino alkanol type such as monoethanolamine, diethanolamine, triethanolamine, 2-methyl-2-amino-1-propanol.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or organic bases of amino alkanol type such as monoethanolamine, diethanolamine, triethanolamine, 2-methyl-2-amino-1-propanol.
  • mineral acids there may be mentioned sulfuric acid or hydrochloric acid, hydrobromic acid, hydroiodic acid, phosphoric acid, boric acid.
  • organic acids mention may be made of acids comprising one or more carboxylic, sulphonic or phosphonic groups. They can be linear, branched or cyclic aliphatic acids or even aromatic acids. These acids may also contain one or more heteroatoms chosen from O and N, for example in the form of hydroxyl groups. Mention may in particular be made of acetic acid or propionic acid, terephthalic acid, as well as citric acid and tartaric acid.
  • the grafted acrylic polymer does not contain additional non-acrylic vinyl monomers as described above.
  • the insoluble skeleton of the grafted acrylic polymer is formed only of acrylic monomers as described above.
  • these ethylenic, acrylic or vinyl monomers which are not polymerized, may be soluble in the dispersion medium under consideration, but the polymer formed with these monomers is insoluble in the dispersion medium.
  • Macromonomers have a group at one end of the chain polymerizable terminal capable of reacting during polymerization with acrylic monomers and optionally additional vinyl monomers, to form the side chains of the grafted acrylic polymer.
  • Said polymerizable end group may in particular be a vinyl or (meth) acrylate (or (meth) acryl) group, and preferably a (meth) acrylate group.
  • the macromonomers are preferably chosen from macromonomers whose homopolymer has a glass transition temperature (Tg) less than or equal to 25 ° C, in particular ranging from - 100 ° C to 25 ° C, preferably ranging from - 80 ° C to 0 ° C.
  • Tg glass transition temperature
  • the macromonomers have a weight average molecular weight greater than or equal to 200, preferably greater than or equal to 300, preferably greater than or equal to 500, and more preferably greater than 600.
  • the macromonomers have a weight average molecular weight ( Mw) ranging from 200 to 100,000, preferably ranging from 500 to 50,000, preferably ranging from 800 to 20,000, more preferably ranging from 800 to 10,000, and even more preferably ranging from 800 to 6,000.
  • the average molar masses by weight (Mw) and by number (Mn) are determined by liquid chromatography by gel permeation (THF solvent, calibration curve established with linear polystyrene standards, refractometric detector).
  • carbon macromonomers mention may in particular be made of:
  • polyolefins having an ethylenically unsaturated end group, in particular having a (meth) acrylate end group.
  • polyolefins mention may be made in particular of the following macromonomers, it being understood that they have a terminal (meth) acrylate group: polyethylene macromonomers, polypropylene macromonomers, macromonomers of polyethylene / polypropylene copolymer, macromonomers of polyethylene / polybutylene copolymer, polyisobutylene macromonomers; polybutadiene macromonomers; polyisoprene macromonomers; polybutadiene macromonomers; poly (ethylene / butylene) -polyisoprene macromonomers;
  • Such macromonomers are in particular described in US5625005 which mentions ethylene / butylene and ethylene / propylene macromonomers with reactive (meth) acrylate end group.
  • silicone macromonomers mention may in particular be made of polydimethylsiloxanes with a mono (meth) acrylate end group, and in particular those of formula (II) below:
  • RQ denotes a hydrogen atom or a methyl group
  • Rg denotes a divalent hydrocarbon group having from 1 to 10 carbon atoms and optionally contains one or two ether bonds -O-
  • R10 denotes an alkyl group having from 1 to 10 carbon atoms, in particular from 2 to 8 carbon atoms
  • n denotes an integer ranging from 1 to 300, preferably ranging from 3 to 200, and preferably ranging from 5 to 100.
  • silicone macromonomers use may be made of monomethacryloxypropyl polydimethylsiloxanes such as those sold under the name PS560-K6 by the company United Chemical Technologies Inc. (UCT) or under the name MCR-M17 by the company Gelest Inc.
  • the polymerized macromonomer (constituting the side chains of the grafted polymer) represents from 0.1 to 15% by weight of the total weight of the polymer, preferably from 0.2 to 10% by weight, and more preferably from 0.3 to 8% by weight.
  • grafted acrylic polymer dispersed in a non-silicone liquid fatty phase those obtained by polymerization can be used:
  • grafted acrylic polymer dispersed in a silicone liquid fatty phase those obtained by polymerization can be used:
  • the grafted polymer has a weight-average molecular mass (Mw) of between 10,000 and 300,000, especially between 20,000 and 200,000, better still between 25,000 and 150,000.
  • Mw weight-average molecular mass
  • the polymers in a given organic dispersion medium, have the capacity to fold in on themselves, thus forming particles of substantially spherical shape, with around the periphery of these particles the deployed side chains, which ensure the stability of these particles.
  • Such particles resulting from the characteristics of the grafted polymer have the particularity of not agglomerating in said medium and therefore of self-stabilizing and of forming a dispersion of particularly stable polymer particles.
  • the grafted acrylic polymers of the dispersion can form nanometric particles, of average size ranging from 10 to 400 nm, preferably from 20 to 200 nm. Because of this very small size, the particles of polymer grafted in dispersion are particularly stable and therefore unlikely to form agglomerates.
  • the dispersion of grafted polymer can therefore be a stable dispersion and does not form sediments, when it is placed for a prolonged period (for example 24 hours) at room temperature (25 ° C).
  • the dispersion of particles of grafted polymer has a content of dry matter (or dry extract) in polymer which can range from 40% to 70% by weight of dry matter, in particular ranging from 45% to 65% by weight.
  • the dispersion of grafted polymer particles can be prepared by a process comprising a step of radical copolymerization, in an organic polymerization medium, of one or more acrylic monomers as defined above with one or more macromonomers as defined above.
  • the liquid organic dispersion medium can be identical to or different from the polymerization medium.
  • the copolymerization can be carried out in the presence a polymerization initiator.
  • the polymerization initiators can be radical initiators.
  • such a polymerization initiator can be chosen from organic peroxide compounds such as dilauroyl peroxide, dibenzoyl peroxide, tert-butyl peroxy-2-ethylhexanoate; diazotized compounds such as azobisisobutyronitrile, azobisdimethylvalero-nitrile.
  • the reaction can also be initiated using photoinitiators or by radiation such as UV, neutrons or plasma.
  • photoinitiators or by radiation such as UV, neutrons or plasma.
  • at least part of the organic polymerization medium is introduced into a reactor of a size appropriate to the quantity of polymer that is to be produced, and / or additional vinyls, which will constitute, after polymerization, the insoluble skeleton, all of the macromonomer (which will constitute the side chains of the polymer) and part of the polymerization initiator.
  • the reaction medium forms a relatively homogeneous medium.
  • the reaction medium is then stirred and heated to a temperature to obtain a polymerization of the monomers and macromonomers. After a certain time, the initially homogeneous and clear medium leads to a dispersion with a milky appearance. A mixture consisting of the remaining part of the monomers and of the polymerization initiator is then added. After an adequate time during which the mixture is heated with stirring, the medium stabilizes in the form of a milky dispersion, the dispersion comprising particles of polymers stabilized in the medium in which they were created, said stabilization being due to the presence , in the polymer, of side chains soluble in said dispersion medium.
  • the graft polymer described above can be present in the composition according to the invention in a content ranging from 0.1% to 70% by weight, relative to the total weight of the composition, preferably ranging from 0.5% to 50% by weight, and preferably ranging from 1% to 40% by weight.
  • the composition according to the invention may comprise one or more coloring materials chosen from water-soluble dyes, and pulverulent coloring materials such as pigments, pearlescent agents and flakes well known to those skilled in the art.
  • the coloring matters can be present, in the composition, in a content ranging from 0.01% to 50% by weight, relative to the weight of the composition, preferably from 0.01% to 30% by weight.
  • pigments should be understood to mean particles of any shape, white or colored, mineral or organic, insoluble in the physiological medium, intended to color the composition.
  • the pigments can be white or colored, mineral and / or organic.
  • mineral pigments mention may be made of titanium dioxide, optionally surface-treated, zirconium or cerium oxides, as well as oxides of zinc, iron (black, yellow or red) or chromium, violet of manganese, ultramarine blue, chromium hydrate and ferric blue, metallic powders such as aluminum powder, copper powder.
  • organic pigments mention may be made of carbon black, pigments of D & C type, and lakes based on cochineal carmine, barium, strontium, calcium, aluminum.
  • effect pigments such as particles comprising an organic or mineral, natural or synthetic substrate, for example glass, acrylic resins, polyester, polyurethane, polyethylene terephthalate, ceramics or aluminas, said substrate being whether or not covered with metallic substances such as aluminum, gold, silver, platinum, copper, bronze, or oxides .
  • the pearlescent pigments can be chosen from white pearlescent pigments such as mica coated with titanium or bismuth oxychloride, pearlescent pigments colored such as titanium mica coated with iron oxides, titanium mica coated with in particular ferric blue or chromium oxide, titanium mica coated with an organic pigment of the aforementioned type as well as pearlescent pigments based on bismuth oxychloride. It is also possible to use interference pigments, in particular liquid crystal or multilayer pigments.
  • the grafted polymer in dispersion makes it possible, surprisingly, to easily disperse pulverulent dyestuffs such as pigments and nacres in the composition.
  • the invention therefore also relates to a foundation composition
  • a foundation composition comprising a dispersion of particles of acrylic polymer grafted in a liquid fatty phase, as described above, and at least one coloring material, in particular pigments, nacres, or any other charge with optical effect.
  • the water-soluble dyes are, for example, beet juice, methylene blue.
  • composition according to the invention may also further comprise one or more fillers, in particular in a content ranging from 0.01% to 50% by weight, relative to the total weight of the composition, preferably ranging from 0.01% at 30% by weight.
  • fillers it is necessary to understand particles of any shape, colorless or white, mineral or synthetic, insoluble in the medium of the composition regardless of the temperature at which the composition is produced. These charges are used in particular to modify the rheology or the texture of the composition.
  • the fillers can be mineral or organic in any form, platelet, sp_hé ⁇ _ques or oblong, whatever the crystallographic form _ (__ p_ar. Example sheet, cubic, hexagonal, orthorombic, etc.). Mention may be made of talc, mica, silica, kaolin, polyamide (Nylon®) (Orgasol® from Atochem), poly- ⁇ -alanine and polyethylene powders, powders of tetrafluoroethylene polymers (Teflon®) ), lauroyl-lysine, starch, boron nitride, polymeric hollow microspheres such as those of polyvinylidene chloride / acrylonitrile such as Expancel® (Nobel Industry), of acrylic acid copolymers (Polytrap® of the company Dow Corning) and the microbeads of silicone resin (Tospearls® of Toshiba, for example), elastomeric polyorganosiloxane particles, precipitated calcium
  • composition according to the invention may also comprise at least one fatty substance that is solid at room temperature, in particular chosen from waxes, pasty fatty substances, gums and their mixtures. These fatty substances can be of animal, vegetable, mineral or synthetic origin.
  • pasty fatty substance means a lipophilic fatty compound comprising at the temperature of 23 ° C. a liquid fraction and a solid fraction. Said pasty compound preferably has a hardness at 20 ° C ranging from 0.001 to 0.5 MPa, preferably from 0.002 to 0.4 MPa.
  • the hardness is measured according to a method of penetration of a probe into a sample of compound and in particular using a texture analyzer (for example TA-XT2i from Rhéo) equipped with a stainless steel cylinder of 2 mm in diameter.
  • the hardness measurement is carried out at 20 ° C in the center of 5 samples.
  • the cylinder is introduced into each sample at a pre-speed of 1 mm / s and then at a measurement speed of 0.1 mm / s, the penetration depth being 0.3 mm.
  • the value recorded for the hardness is that of the maximum peak.
  • the liquid fraction of the pasty compound measured at 23 ° C preferably represents 9 to 97% by weight of the compound.
  • This liquid fraction at 23 ° C preferably represents between 15 and 85%, more preferably between 40 and 85% by weight.
  • the liquid fraction by weight of the pasty compound at 23 ° C. is equal to the ratio of the enthalpy of fusion consumed at 23 ° C over the enthalpy of fusion of the pasty compound.
  • the enthalpy of fusion of the pasty compound is the enthalpy consumed by the compound to pass from the solid state to the liquid state.
  • the pasty compound is said to be in the solid state when all of its mass is in crystalline solid form.
  • the pasty compound is said to be in the liquid state when all of its mass is in liquid form.
  • the enthalpy of fusion of the pasty compound is equal to the area under the curve of the thermogram obtained using a differential scanning calorimeter (DS C), such as the calorimeter sold under the name MDSC 2920 by the company TA instrument, with a temperature rise of 5 or 10 ° C per minute, according to ISO 11357-3: 1999.
  • the enthalpy of fusion of the pasty compound is the amount of energy required to bring the compound from the solid state to the liquid state. It is expressed in J / g.
  • the enthalpy of fusion consumed at 23 ° C is the amount of energy absorbed by the sample to go from the solid state to the state it presents at 23 ° C consisting of a liquid fraction and a solid fraction.
  • the liquid fraction of the pasty compound measured at 32 ° C. preferably represents from 30 to 100% by weight of the compound, preferably from 80 to 100%, more preferably from 90 to 100% by weight of the compound.
  • the temperature at the end of the melting range of the pasty compound is less than or equal to 32 ° C.
  • the liquid fraction of the pasty compound measured at 32 ° C is equal to the ratio of the enthalpy of fusion consumed at 32 ° C to the enthalpy of fusion of the pasty compound.
  • the enthalpy of fusion consumed at 32 ° C is calculated in the same way as the enthalpy of fusion consumed at 23 ° C.
  • wax within the meaning of the present invention means a lipophilic compound, solid at room temperature (25 ° C.), with reversible solid / liquid change of state having a melting point greater than or equal to 30 ° C. up to at 120 ° C.
  • the melting point of the wax can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name DSC 30 by METLER.
  • DSC differential scanning calorimeter
  • the waxes can be hydrocarbon, fluorinated and / or silicone and be of vegetable, mineral, animal and / or synthetic origin.
  • the waxes have a melting point greater than or equal to 30 ° C. and better still greater than 45 ° C.
  • wax which can be used in the composition of the invention, mention may be made of beeswax, Carnauba or Candellila wax, paraffin, microcrystalline waxes, ceresin or ozokerite; synthetic waxes such as polyethylene or Fischer Tropsch waxes, silicone waxes such as alkyl or 0 alkoxy-dimethicone having from 16 to 45 carbon atoms.
  • the gums are generally high molecular weight polydimethylsiloxanes (PDMS) or cellulose gums or polysaccharides and the pasty bodies are generally hydrocarbon compounds such as lanolines and their derivatives or PDMS. 5
  • PDMS polydimethylsiloxanes
  • the nature and quantity of the solid bodies depend on the mechanical properties and the textures sought.
  • the composition may contain from 0.1 to 50% by weight of waxes, relative to the total weight of the composition and better still from 1 to 30% by weight.
  • the composition can thus comprise water or a mixture of water and hydrophilic organic solvent (s) such as alcohols and in particular linear or branched lower monoalcohols having from 2 to 5 carbon atoms as ethanol, isopropanol or n-propanol, and polyols such as glycerin, diglycerin, propylene glycol, sorbitol, butylene glycol, pentylene glycol, hexylene glycol, and polyethylene glycols.
  • hydrophilic organic solvent such as alcohols and in particular linear or branched lower monoalcohols having from 2 to 5 carbon atoms as ethanol, isopropanol or n-propanol
  • polyols such as glycerin, diglycerin, propylene glycol, sorbitol, butylene glycol, pentylene glycol, hexylene glycol, and polyethylene glycols.
  • the water or the mixture of water and hydrophilic organic solvents may be present in the composition according to the invention in a content ranging from 0.1% to 95% by weight, relative to the total weight of the composition, and preference ranging from
  • composition according to the invention may also contain ingredients commonly used in cosmetics, such as vitamins, moisturizers, thickeners, trace elements, softeners, sequestrants, perfumes, alkalizing or acidifying agents, preservatives, plasticizers, sunscreens, surfactants, antioxidants, anti-hair loss agents, anti-dandruff agents, propellants, or mixtures thereof.
  • ingredients commonly used in cosmetics such as vitamins, moisturizers, thickeners, trace elements, softeners, sequestrants, perfumes, alkalizing or acidifying agents, preservatives, plasticizers, sunscreens, surfactants, antioxidants, anti-hair loss agents, anti-dandruff agents, propellants, or mixtures thereof.
  • the composition according to the invention can be in particular in the form of a suspension, dispersion, solution, gel, emulsion, in particular oil-in-water (O / W) or water-in-oil (W / O) emulsion ), or multiple (W / O / W or polyol / O / W or O / W / O), in the form of a cream, paste, foam, vesicle dispersion, in particular of ionic lipids or not, of two-phase lotion or multiphase, spray, powder, paste.
  • the composition can be anhydrous, for example it can be a stick or an anhydrous paste.
  • the composition can be a leave-in composition.
  • the invention also relates to a cosmetic assembly comprising: i) a container delimiting at least one compartment, said container being closed by a closing element; and ii) a composition placed inside said compartment, the composition being in accordance with the invention.
  • the container can be in any suitable form. It can in particular be in the form of a bottle, a tube, a pot, a case, a box, a sachet or a case.
  • the closure element may be in the form of a removable stopper, a cover, a cover, a tearable strip, or a capsule, in particular of the type comprising a body fixed to the container and an articulated cap. on the body. It can also be in the form of an element ensuring the selective closure of the container, in particular a pump, a valve, or a valve.
  • the container can be associated with an applicator, in particular in the form of a brush comprising an arrangement of bristles held by a twisted wire.
  • a twisted brush is described in particular in US Pat. No. 4,887,622.
  • It can also be in the form of a comb comprising a plurality of application elements, obtained in particular by molding. Such combs are described for example in patent FR 2 796 529.
  • the applicator can be in the form of a brush, as described for example in patent FR 2 722 380.
  • the applicator can be in the form of a block of foam or elastomer, a felt, or a spatula.
  • the applicator can be free (puff or sponge) or integral with a rod carried by the closure element, as described for example in US patent 5,492,426.
  • the applicator can be integral with the container, as described for example the patent FR 2 761 959.
  • the product can be contained directly in the container, or indirectly.
  • the product can be placed on an impregnated support, in particular in the form of a wipe or a tampon, and placed (individually or several) in a box or in a sachet.
  • an impregnated support in particular in the form of a wipe or a tampon
  • Such a support incorporating the product is described for example in application WO 01/03538.
  • the closure element can be coupled to the container by screwing.
  • the coupling between the closure element and the container is done other than by screwing, in particular via a bayonet mechanism, by snap-fastening, tightening, welding, bonding, or by magnetic attraction.
  • screw means in particular any system involving the crossing of a bead or a bead of material by elastic deformation of a portion, in particular of the closure element, then by returning to said position elastically unstressed of said portion after the crossing of the bead or cord.
  • the container can be at least partly made of thermoplastic material.
  • thermoplastic materials mention may be made of polypropylene or polyethylene.
  • the container is made of non-thermoplastic material, in particular glass or metal (or alloy).
  • the container may have rigid walls or deformable walls, in particular in the form of a tube or a tube bottle.
  • the container may include means for causing or facilitating the distribution of the composition.
  • the container may have deformable walls so as to cause the exit of the composition in response to an overpressure inside the container, which overpressure is caused by elastic (or inelastic) crushing of the walls of the container. .
  • the latter can be driven by a piston mechanism.
  • the container may include a mechanism, in particular rack and pinion, or with a threaded rod, or with a helical ramp, and able to move a stick in the direction of said opening.
  • a mechanism is described for example in patent FR 2 806 273 or in patent FR 2 775 566.
  • Such a mechanism for a liquid product is described in patent FR 2 727 609.
  • the container can be made up of a housing with a bottom delimiting the. mo.ins -_- ua_ housing containing the composition, and a cover, in particular articulated on the bottom, and able to cover at least partly said bottom.
  • a case is described, for example, in application WO 03/018423 or in patent FR 2,791,042.
  • the container can be equipped with a wringer disposed near the opening of the container. Such a wringer makes it possible to wipe the applicator and possibly, the rod of which it may be integral. Such a wringer is described for example in patent FR 2 792 618.
  • the composition can be at atmospheric pressure inside the container (at room temperature) or pressurized, in particular by means of a propellant gas (aerosol).
  • a propellant gas as an aerosol
  • the container is fitted with a valve (of the type used for aerosols).
  • the present examples illustrate the preparation of polymers in accordance with the invention, capable of forming a dispersion of particles in a considered organic medium.
  • the average molar masses by weight (Mw) and by number (Mn) of the polymer are determined, the glass transition temperature of the polymer, the dry matter (or dry extract) content of the dispersion and size of the polymer particles.
  • the average molar masses by weight (Mw) and by number (Mn) are determined by liquid chromatography by gel permeation (THF solvent, calibration curve established with linear polystyrene standards, refractometric detector).
  • the measurement of the glass transition temperature (Tg) is carried out according to standard ASTM D3418-97, by differential enthalpy analysis (DSC "Differential Scanning Calorimetry") on a calorimeter, over a temperature range between -100 ° C and +150 ° C at a heating rate of 10 ° C / min in crucibles 150 ⁇ l aluminum.
  • DSC differential enthalpy analysis
  • the crucibles are prepared as follows: 100 ⁇ l of the dispersion obtained is introduced into an aluminum crucible of 150 ⁇ l and the solvent is allowed to evaporate for 24 hours at room temperature and at 50% relative humidity. The operation is repeated and then the crucible is introduced into the Mettler DSC30 calorimeter.
  • the rate of dry matter (or dry extract), that is to say the content of non-volatile matter, can be measured in different ways: there may be mentioned, for example, methods by drying in an oven or methods by drying by exposure. to infrared radiation.
  • the dry matter content is measured by heating the sample by infrared rays from 2 ⁇ m to 3.5 ⁇ m in wavelength.
  • the substances contained in the composition which have a high vapor pressure evaporate under the effect of this radiation. Measuring the weight loss of the sample makes it possible to determine the dry extract of the composition.
  • These measurements are carried out using a commercial infrared dryer LP16 from Mettler. This technique is fully described in the device documentation provided by Mettler.
  • the measurement protocol is as follows: approximately 1 g of the composition is spread over a metal dish. This, after introduction into the desiccator, is subjected to a temperature set point of 120 ° C for one hour.
  • the wet mass of the sample, corresponding to the initial mass and the dry mass of the sample, corresponding to the mass after exposure to radiation, are measured using a precision balance.
  • Dry extract 100 x (dry mass / wet mass).
  • The. particle sizes can be low. be me_s- negligence-e_s_par_diffé_re-nte_s-techni_q-u_es: we can cite in particular light scattering techniques (dynamic and static), Coulter counter methods, measurements by sedimentation rate (linked to the size via the Stokes law) and microscopy. These techniques make it possible to measure a particle diameter and for some of them a particle size distribution.
  • the sizes and size distributions of the particles of the compositions according to the invention are measured by static light scattering using a commercial particle size analyzer of the MasterSizer 2000 type from Malvern.
  • the data is processed on the basis of Mie diffusion theory.
  • This theory exact for isotropic particles, makes it possible to determine in the case of non-spherical particles, an "effective" diameter of particles.
  • This theory is notably described in the work of Van de Hulst, H.C., "Light Scattering by Small Particles," Chapters 9 and 10, Wiley, New York, 1957.
  • composition is characterized by its mean “effective” diameter in volume D [4.3], defined as follows:
  • the "effective" diameter is obtained by taking a refractive index of 1.33 for water and an average refractive index of 1.42 for particles.
  • This example illustrates the preparation of a polymer forming a dispersion of particles in a carbon solvent, said polymer being obtained by polymerization of methyl acrylate, acrylic acid and the macromonomer corresponding to a polyethylene / polybutylene copolymer (Kraton L-1253 ).
  • 200 g of heptane, 200 g of isododecane, 14 g of methyl acrylate, 10 g of acrylic acid, 16 g of macromonomer of the polyethylene / polybutylene copolymer type with methacrylate end group are charged into a 1 liter reactor.
  • Theoretical dry extract 54.9% in isododecane
  • the grafted polymer comprises 8% by weight of macromonomer relative to the weight of the polymer.
  • This example illustrates the preparation of a polymer forming a dispersion of particles in a silicone solvent, said polymer being obtained by polymerization of methyl acrylate, acrylic acid and of monomethacryloxypropylpolydimethylsiloxane macromonomer having a weight average molecular weight of 5000 sold under the name MCR-M17 by the company Gelest Inc.
  • the grafted polymer comprises 7% by weight of macromonomer (therefore of side chain soluble in D5) relative to the weight of the polymer.
  • This example illustrates the preparation of a polymer forming a dispersion of particles in a carbon solvent, said polymer being obtained by polymerization of methyl acrylate, acrylic acid and the macromonomer corresponding to a polyethylene / polybutylene copolymer (Kraton L-1253 ).
  • the grafted polymer comprises 8% by weight of macromonomer relative to the weight of the polymer. After the implementation of the stability protocol in accordance with Example 1, it is found that the dispersion obtained is stable.
  • This example illustrates the preparation of a polymer forming a dispersion of particles in a carbonaceous solvent, said polymer being obtained by polymerization of methyl acrylate, acrylic acid and the macromonomer corresponding to a polyethylene / polybutylene copolymer with methacrylate end group ( Kraton L-1253).
  • the reaction mixture is stirred and heated to room temperature at 90 ° C.
  • the grafted polymer comprises 6% by weight of macromonomer relative to the weight of the polymer.
  • This example illustrates the preparation of a polymer forming a dispersion of particles in a silicone oil, said polymer being obtained by polymerization of methyl acrylate and of the macromonomer monométhacryloxypropylpolydiméthylsiloxane having an average molecular weight in weight of 5000 sold under the name MCR-M17 by the company Gelest Inc.
  • the grafted polymer comprises 5% by weight of macromonomer (therefore of side chain soluble in D5) relative to the weight of the polymer.
  • This example illustrates the preparation of a polymer forming a dispersion of particles in a carbon solvent, said polymer being obtained by polymerization of methyl acrylate and the macromonomer corresponding to a polyethylene / polybutylene copolymer with methacrylate end group (Kraton L-1253).
  • the grafted polymer comprises 6% by weight of macromonomer relative to the weight of the polymer.
  • the polymers of Examples 1 to 6 include the following monomers, their levels being indicated as a percentage by weight of the polymer:
  • Each composition contains 2.1% by weight of graft polymer active material.
  • Imwitor 780 K Mono-diglycerides of isosteroic acid esterified with succinic acid, sold by the company Sasol
  • Silicone gum mixture of polydiphenyl dimethylsiloxane and cyclopentasiloxane (15/85) sold under the name Mirasil C (DPDM by the company RHODIA
  • the 10% of pigments include:
  • a support is prepared (square 40 mm X 40 mm) consisting of a layer of adhesive neoprene foam on one of its faces (sold under the name
  • an adhesive crown is fixed having an internal diameter of 24 mm and the thickness of which is approximately 250 ⁇ m.
  • the composition which is leveled off with a glass slide to obtain a deposit of the composition of approximately 250 ⁇ m in thickness, then the crown is removed and left to dry for 20 hours in an oven at 37 ° C.
  • the support is then bonded by its adhesive side to a tip with a diameter of 27 mm fixed on a press (MANUAL STATIF SV-1 from the company IMADA Co LTD) equipped with a dynanometer (DPS-5R from the company IMADA Co LTD).
  • a drop of 10 ⁇ l of artificial sebum having the following composition is placed in the center of the first box:
  • the support (comprising the composition sample) is pressed on the first box of the paper strip at a force of approximately 4 kg exerted for 5 seconds. Then the paper is moved in a rectilinear and regular fashion over the entire length of the strip so that the support is in contact with the entire length of the strip.
  • the speed of movement of the strip is of the order of 10 cm / s.
  • the product trail deposited on the paper strip is then visually observed.
  • a score ranging from 0 to 5 is assigned in increments of 0.5 depending on the number of boxes, from the first to the fifth, crossed in whole or in part by the possible product trail.
  • a revealing step may be necessary in order to make the product trail visible.
  • a compound is used which is capable of producing a colored reaction on contact with the transferred product.
  • an active ingredient which emits at least part of the UV radiation (Wood lamp) is incorporated into the product to be tested.
  • a score of 5 is awarded when, upon observation, after having made the relative displacement between the paper and the support, substantially no product remains on the support (less than 10%). In the latter case, the transfer can be qualified as total.
  • a score of 5 is also awarded when the product trail extends beyond the fifth box, regardless of the amount of product remaining on the support.
  • a score of 0 is assigned in the event that no product present on the support is transferred to the paper strip. No visible trace can be observed on the sheet. The transfer can be called null.
  • the table below illustrates how the other scores are assigned based on the location in boxes 1 to 5 where the product streak ends. For these notes, there remains a greater or lesser quantity of product on the support. The transfer is partial.
  • compositions containing a grafted polymer comprising a carbon macromonomer (examples 7, 9, 10, 12)
  • the compositions of Examples 7, 9, 10 according to the invention - for which the grafted polymer comprises acrylic acid - form a deposit having a transfer index (equal to 0.5; 0.5; 3.5 respectively) lower than that of the deposit formed with the composition of Example 12 not forming part of the invention (the grafted polymer not containing acrylic acid) whose transfer index is equal to 4.5.
  • compositions in which the grafted polymer comprises a silicone macromonomer comprises a silicone macromonomer
  • compositions containing a grafted polymer comprising a silicone macromonomer (Examples 8 and 11)
  • the composition of Example 2 according to the invention - for which the grafted polymer comprises acrylic acid - forms a deposit having a transfer index equal to 0.5, which is lower than the index of 3.5 obtained for the deposit formed with the composition of Example 12 not forming part of the invention.
  • compositions of Examples 7, 8 and 9 according to the invention have the best non-transfer properties (index equal to 0.5), confirming that the presence of acrylic acid, in particular at a rate of 20% and of 50% in the grafted polymer) contributes to the desired non-transfer property.
  • This composition can be prepared in a standard manner by hot forming of a wax in water emulsion.
  • the fatty phase is heated (phase A) containing the wax and the stearic acid until all the constituents have completely melted. Then, the polymer dispersion of Example 2 and the pigments are incorporated with stirring in the oily phase.
  • the aqueous phase (phase B) containing the neutralizer (Triethanolamine), the gelling polymers are brought to a temperature at least equal to the temperature of the fatty phase. The aqueous phase is then added to the oily phase, with vigorous stirring (3000rpm), to form the hot emulsion. Agitation and temperature are maintained for approximately 30 minutes.
  • Parlam oil is mixed, poly (12-hydroxystearic acid) stearate, Parleam oil, sucrose acetate isobutyrate, while heating to about 60 ° C.
  • a pigment grind of the pigments is produced with this mixture by making 3 passes of the mixture in a three-cylinder grinder.
  • the pigmented ground material and the polyethylene wax are then mixed while heating to 100 ° C. Then the polymer dispersion is added with stirring, then the perfume.
  • the formula is poured at 42 ° C. into a mold and then placed in the freezer. The stick obtained is then removed from the mold.
  • This lipstick makes it possible to obtain a makeup having good resistance to transfer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Graft Or Block Polymers (AREA)
EP03813183A 2002-12-12 2003-12-12 Kosmetische zusammensetzung, enthaltend ein polymer Withdrawn EP1572770A2 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
FR0215738 2002-12-12
FR0215739A FR2848560B1 (fr) 2002-12-12 2002-12-12 Polymere acrylique, dispersion dudit polymere stable dans un milieu organique non aqueux silicone et composition comprenant ladite dispersion.
FR0215737 2002-12-12
FR0215739 2002-12-12
FR0215738A FR2848559B1 (fr) 2002-12-12 2002-12-12 Polymere acrylique, dispersion dudit polymere stable dans un milieu organique non aqueux et non silicone et composition comprenant ladite dispersion.
FR0215737A FR2848558B1 (fr) 2002-12-12 2002-12-12 Polymere acrylique, dispersion dudit polymere stable dans un milieu organique non aqueux et composition comprenant ladite dispersion
PCT/FR2003/003707 WO2004055077A2 (fr) 2002-12-12 2003-12-12 Composition cosmetique comprenant un polymere

Publications (1)

Publication Number Publication Date
EP1572770A2 true EP1572770A2 (de) 2005-09-14

Family

ID=32600653

Family Applications (4)

Application Number Title Priority Date Filing Date
EP03813183A Withdrawn EP1572770A2 (de) 2002-12-12 2003-12-12 Kosmetische zusammensetzung, enthaltend ein polymer
EP03813190.0A Expired - Lifetime EP1572137B1 (de) 2002-12-12 2003-12-12 Kosmetische zusammensetzung, die eine dispersion von teilchen eines silikonfreien gepfropften ethylenpolymers in einer flüssigen ölphase enthält
EP03813186A Withdrawn EP1583784A2 (de) 2002-12-12 2003-12-12 Nicht übertragende kosmetische zusammensetzung, enthaltend einedispersion eines gepfropften ethylenpolymers
EP03813184A Withdrawn EP1585777A2 (de) 2002-12-12 2003-12-12 Kosmetische zusammensetzung mit einem polymer

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP03813190.0A Expired - Lifetime EP1572137B1 (de) 2002-12-12 2003-12-12 Kosmetische zusammensetzung, die eine dispersion von teilchen eines silikonfreien gepfropften ethylenpolymers in einer flüssigen ölphase enthält
EP03813186A Withdrawn EP1583784A2 (de) 2002-12-12 2003-12-12 Nicht übertragende kosmetische zusammensetzung, enthaltend einedispersion eines gepfropften ethylenpolymers
EP03813184A Withdrawn EP1585777A2 (de) 2002-12-12 2003-12-12 Kosmetische zusammensetzung mit einem polymer

Country Status (6)

Country Link
US (3) US7794695B2 (de)
EP (4) EP1572770A2 (de)
JP (5) JP2006509811A (de)
AU (8) AU2003300596A1 (de)
ES (1) ES2627551T3 (de)
WO (8) WO2004055074A2 (de)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509811A (ja) * 2002-12-12 2006-03-23 ロレアル グラフト化エチレン性ポリマーの分散物を含む非色移り性化粧用組成物
FR2863493B1 (fr) * 2003-12-12 2006-07-14 Oreal Composition comprenant une dispersion de particules d'un polymere ethylenique greffe et un agent filmogene
US7258023B2 (en) 2003-12-18 2007-08-21 L'oreal S.A. Process for measuring the transfer resistance of a cosmetic product
FR2867681A1 (fr) * 2004-03-19 2005-09-23 Oreal Composition cosmetique comprenant un agent tenseur et une dispersion de particules solides d'un polymere ethylenique greffe
US8728451B2 (en) * 2004-03-25 2014-05-20 L'oreal Styling composition comprising, in a predominantly aqueous medium, a pseudo-block polymer, processes employing same and uses thereof
FR2873034B1 (fr) 2004-07-16 2008-04-18 Oreal Composition cosmetique a tenue amelioree..
FR2873035A1 (fr) 2004-07-16 2006-01-20 Oreal Composition cosmetique comprenant un polymere de silicone defini et un agent filmogene.
FR2879442B1 (fr) 2004-12-21 2007-07-20 Oreal Composition cosmetique pour le maquillage resistante a l'eau et facilement demaquillable
FR2881648B1 (fr) * 2005-02-04 2008-12-05 Oreal Composition cosmetique comprenant une dispersion de particules de polymeres, dispersion de particules de polymeres et procede cosmetique l'utilisant
US7585922B2 (en) 2005-02-15 2009-09-08 L'oreal, S.A. Polymer particle dispersion, cosmetic compositions comprising it and cosmetic process using it
FR2881950B1 (fr) * 2005-02-15 2007-04-13 Oreal Composition cosmetique comprenant une dispersion de particules de polymeres, dispersion de particules de polymeres et procede cosmetique l'utilisant
FR2889952A1 (fr) * 2005-07-22 2007-03-02 Oreal Procede de revetement des cils
US7884158B2 (en) * 2005-09-06 2011-02-08 L'Oré´al Cosmetic compositions containing block copolymers, tackifiers and phenylated silicones
FR2892925B1 (fr) * 2005-11-09 2007-12-14 Oreal Composition de revetement des cils sous forme de mousse
FR2901698B1 (fr) 2006-05-31 2008-08-08 Oreal Composition cosmetique comprenant un polymere vinylique et un copolyme d'olefine
FR2911065B1 (fr) 2007-01-04 2009-03-20 Oreal Kit de maquillage des fibres keratiniques.
FR2912649B1 (fr) * 2007-02-19 2009-05-08 Oreal Dispersion de particules de polymere, composition la comprenant et procede de traitement cosmetique
FR2915892B1 (fr) 2007-05-10 2009-07-03 Oreal Composition sous forme de mousse comprenant un structurant polymerique
FR2915893B1 (fr) 2007-05-10 2012-05-11 Oreal Composition cosmetique sous forme de mousse sans cire
US8029771B2 (en) 2007-06-29 2011-10-04 Mary Kay Inc. Guar gum containing compounds
EP2030609A3 (de) 2007-08-28 2009-11-04 L'Oreal Pflege- oder Schminkzusammensetzung, die ein Hartwachs und eine pastenartige Verbindung enthält, Pflege- oder Schminkverfahren der Augenwimpern
WO2009080965A2 (fr) * 2007-12-05 2009-07-02 L'oreal Procede cosmetique utilisant une composition comprenant une resine de siloxane et une charge minerale
FR2925320B1 (fr) * 2007-12-20 2012-06-08 Oreal Procede de maquillage des levres.
FR2925849B1 (fr) * 2007-12-27 2010-06-04 Oreal Procede cosmetique procurant un effet allongeant des cils et kit correspondant a base d'un polymere filmogene
FR2932070B1 (fr) * 2008-06-10 2012-08-17 Oreal Ensemble de maquillage et/ou de soin des cils
FR2936417B1 (fr) 2008-09-30 2020-01-10 L'oreal Composition de maquillage des cils et ensemble de conditionnement.
FR2936419B1 (fr) 2008-09-30 2010-10-01 Oreal Composition de maquillage des cils et ensemble de conditionnement.
FR2938764B1 (fr) 2008-11-24 2012-06-08 Oreal Composition cosmetique solide pour application sur les fibres keratiniques
FR2938763B1 (fr) 2008-11-24 2012-09-28 Oreal Composition cosmetique solide pour application sur les fibres keratiniques
FR2939033B1 (fr) 2008-12-02 2012-08-31 Oreal Composition cosmetique de maquillage et/ou de soin des matieres keratiniques, et procede de maquillage
JP2012511581A (ja) * 2008-12-10 2012-05-24 プレスパース コーポレーション シリコーンフリーな炭化水素複合体を用いた化粧品分散剤
FR2940111B1 (fr) 2008-12-19 2012-06-01 Oreal Kit de revetement des matieres keratiniques comprenant un polysaccharide et un agent de complexation ionique ou dative
FR2940115B1 (fr) 2008-12-19 2012-06-15 Oreal Kit de revetement des matieres keratiniques comprenant un polysaccharide et un agent de reticulation chimique
FR2943225B1 (fr) 2009-03-17 2011-06-03 Oreal Dispositif de conditionnement et d'application d'au moins une composition cosmetique solide
FR2943253B1 (fr) 2009-03-20 2011-04-22 Oreal Composition contenant l'association de madecassoside, d'une arginine et de polysorbate
FR2944958B1 (fr) 2009-04-30 2011-07-08 Oreal Emulsion cire-dans-eau comprenant l'association d'un derive d'acide glutamique et d'un alkylpolyglycoside
FR2949958B1 (fr) 2009-09-11 2012-10-05 Oreal Ensemble cosmetique de maquillage et/ou de soin des matieres keratiniques
WO2011045741A2 (en) 2009-10-12 2011-04-21 L'oreal Photonic particles; compositions containing them; methods of photoprotecting various materials
WO2011045746A2 (en) 2009-10-12 2011-04-21 L ' Oreal A composition comprising a dispersion of photonic particles; methods of treating various materials
CN105708729A (zh) 2009-10-12 2016-06-29 欧莱雅 用光子颗粒抗太阳uv辐射的光照保护材料方法及组合物
EP2490665B1 (de) 2009-10-22 2016-09-07 L'Oréal Lichtschutzzusammensetzungen und filme daraus sowie herstellungsverfahren dafür
US20110146702A1 (en) 2009-12-17 2011-06-23 L'oreal Extending cosmetic composition comprising behenyl alcohol as thickener
EP2353582A1 (de) 2009-12-18 2011-08-10 L'Oréal Kosmetische Zusammensetzung für Wimpern
WO2011120843A2 (en) 2010-03-29 2011-10-06 L'oreal Composition for making up the eyelashes or eyebrows, combination and methods
FR2960434B1 (fr) 2010-05-26 2012-08-17 Oreal Composition cosmetique a base d'un polymere supramoleculaire et d'un charge absorbante
FR2960435B1 (fr) 2010-05-26 2012-07-27 Oreal Composition cosmetique comprenant un polysiloxane et un polymere portant tous deux un groupe de jonction generateur de liaison hydrogene, et procede de traitement cosmetique
FR2960433B1 (fr) 2010-05-26 2012-08-17 Oreal Procede cosmetique de maquillage et/ou de soin de la peau et/ou des levres
WO2011148325A1 (en) 2010-05-26 2011-12-01 L'oreal Cosmetic composition based on a supramolecular polymer and a silicone filler
EP2575970A2 (de) 2010-05-26 2013-04-10 L'Oréal Kosmetische zusammensetzung auf der basis eines supramolekularen polymers und einer silikonverbindung
FR2960427B1 (fr) 2010-05-26 2015-03-27 Oreal Composition cosmetique comprenant une huile et un polymere portant tous deux un groupe de jonction generateur de liaisons hydrogene, et procede de traitement cosmetique
FR2961396B1 (fr) 2010-06-16 2013-03-15 Oreal Procede de maquillage ou de soin des fibres keratiniques mettant en oeuvre des fibres retractables et utilisation
US11819563B2 (en) * 2010-09-20 2023-11-21 L'oreal Aqueous cosmetic composition comprising alkylcellulose
PL2618811T3 (pl) * 2010-09-20 2015-06-30 Oreal Wodne kompozycje kosmetyczne zawierające alkilocelulozę
FR2967059B1 (fr) 2010-11-05 2015-07-17 Oreal Composition cosmetique et procede de recourbement des fibres keratiniques
FR2967058B1 (fr) 2010-11-05 2013-10-04 Oreal Composition cosmetique et procede de recourbement des fibres keratiniques
FR2967057B1 (fr) 2010-11-05 2013-08-02 Oreal Composition cosmetique et procede de recourbement des fibres keratiniques
FR2967912B1 (fr) 2010-11-26 2013-05-10 Oreal Composition de maquillage des fibres keratiniques
US8658142B2 (en) 2011-05-18 2014-02-25 L'oreal Cosmetic compositions having long lasting shine
FR2990347A1 (fr) * 2012-09-07 2013-11-15 Chanel Parfums Beaute Composition cosmetique anhydre solide comprenant une cire et/ou un compose pateux et au moins une particule de taille moyenne allant de 1 a 200nm
WO2014087183A1 (en) 2012-12-04 2014-06-12 L'oreal Solid powdery cosmetic composition
FR3025100B1 (fr) 2014-08-28 2016-12-09 Oreal Composition cosmetique de type gel a tenue amelioree
FR3025098B1 (fr) 2014-08-28 2018-03-09 Oreal Composition cosmetique de type gel facilement demaquillable
FR3025099B1 (fr) 2014-08-28 2016-12-16 Oreal Composition cosmetique de type gel a tenue amelioree et non collante
FR3028751B1 (fr) 2014-11-24 2018-01-05 L'oreal Phyllosilicate synthetique sous forme de poudre a titre d'agent matifiant et/ou homogeneisant d'application
FR3028753B1 (fr) 2014-11-24 2018-01-05 L'oreal Gel aqueux ou hydroalcoolique de phyllosilicates synthetiques a titre d'agent viscosant, matifiant et/ou homogeneisant d'application
US9422315B2 (en) 2014-12-05 2016-08-23 Momentive Performance Materials Japan Llc Organosiloxane composition having high refractive index and applications containing the same
FR3030261B1 (fr) 2014-12-18 2017-01-13 Oreal Composition comprenant des particules de polymere stabilise et un polymere filmogene hydrophobe
FR3030260B1 (fr) * 2014-12-18 2017-01-13 Oreal Composition comprenant des particules de polymere stabilise et un tensioactif non ionique
FR3039369B1 (fr) 2015-07-31 2017-09-08 Oreal Procede de traitement cosmetique
US11111339B2 (en) 2015-12-04 2021-09-07 Momentive Performance Materials Inc. Polyacrylate salt, methods of preparation and applications for employing the same
WO2017102359A1 (en) 2015-12-17 2017-06-22 L'oreal Composition of gel/gel type based on hydrophobic coated pigments and a liquid fatty acid and/or a glycol compound
ES2942623T3 (es) 2017-06-30 2023-06-05 Oreal Método de tratamiento cosmético para añadir fibras a pestañas naturales
US11963567B2 (en) 2017-06-30 2024-04-23 L'oreal Cosmetic treatment method and assembly
KR102141580B1 (ko) * 2017-10-30 2020-08-05 한국화학연구원 자기유화성 폴리에틸렌 왁스, 이의 제조방법 및 이를 포함하는 에멀젼
FR3090303B1 (fr) 2018-12-21 2021-01-01 Oreal Applicateur pour appliquer au moins une fibre sur des matières kératiniques humaines
FR3090302A1 (fr) 2018-12-21 2020-06-26 L'oreal Applicateur cosmétique pour la pose de fibres sur des matières kératiniques humaines
FR3090282A1 (fr) 2018-12-21 2020-06-26 L'oreal Procédé de pose de fibres sur une zone des matières kératiniques humaines
US20200276093A1 (en) 2019-02-28 2020-09-03 L'oreal Skin perfecting cosmetic compositions and methods of use
FR3094228B1 (fr) 2019-03-29 2022-04-01 Chanel Parfums Beaute Base de teint conférant un maquillage longue tenue
FR3094220B1 (fr) 2019-03-29 2022-02-25 Chanel Parfums Beaute Composition cosmétique filmogène pelable
FR3094222B1 (fr) 2019-03-29 2021-09-10 Chanel Parfums Beaute Composition cosmétique longue tenue
FR3094224B1 (fr) 2019-03-29 2021-05-28 Chanel Parfums Beaute Composition permettant le transfert d’un motif coloré sur la peau et utilisations
FR3094226B1 (fr) 2019-03-29 2021-11-26 Chanel Parfums Beaute Composition cosmétique longue tenue
FR3097746B1 (fr) * 2019-06-27 2021-12-10 Oreal Emulsion comprenant un latex de polymere filmogene, une huile siliconee de viscosite elevee et procede l’utilisant
US11696880B2 (en) 2019-12-31 2023-07-11 L'oreal Skin tightening compositions and methods of use
US11660260B2 (en) 2020-02-29 2023-05-30 L'oreal Compositions and methods for treating keratinous substrates
EP4188314A1 (de) 2020-07-31 2023-06-07 L'oreal Kosmetische zusammensetzungen zur hautstraffung und verfahren zur verwendung
FR3114026B1 (fr) 2020-09-16 2022-09-16 Oreal COMPOSITIONS COSMETIQUES DE PERFECTIONNEMENT DE LA PEAU et PROCEDES D’UTILISATION
WO2022146700A1 (en) 2020-12-29 2022-07-07 L'oreal Skin perfecting compositions and methods of use
EP4271358A1 (de) 2020-12-29 2023-11-08 L'oreal Kosmetische zusammensetzungen zur verbesserung der haut und anwendungsverfahren
FR3121600B1 (fr) 2021-04-08 2023-11-24 Oreal Compositions cosmétiques pour le perfectionnement de la peau et procédés d’utilisation
FR3120196B1 (fr) 2021-03-01 2024-03-22 Oreal Compositions cosmétiques pour le perfectionnement de la peau et procédés d’utilisation

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0096459A3 (de) 1982-05-14 1985-12-18 Imperial Chemical Industries Plc Verfahren zur Polymerisation
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
FR2607373B1 (fr) 1986-11-28 1989-02-24 Oreal Brosse pour l'application de mascara sur les cils
US5219560A (en) * 1989-03-20 1993-06-15 Kobayashi Kose Co., Ltd. Cosmetic composition
US5061481A (en) * 1989-03-20 1991-10-29 Kobayashi Kose Co., Ltd. Cosmetic composition having acryl-silicone graft copolymer
US7970620B2 (en) * 1992-11-17 2011-06-28 Health Hero Network, Inc. Multi-user remote health monitoring system with biometrics support
FR2701818B1 (fr) 1993-02-22 1995-06-16 Oreal Applicateur.
WO1995002003A1 (en) 1993-07-08 1995-01-19 Avery Dennison Corporation Acrylic-saturated rubber hybrid pressure-sensitive adhesives
FR2722380A1 (fr) 1994-07-12 1996-01-19 Oreal Applicateur pour l'application d'un produit cosmetique liquide et ensemble de maquillage muni d'un tel applicateur
FR2727609B1 (fr) 1994-12-06 1997-01-10 Oreal Ensemble de distribution pour l'application d'un produit de consistance liquide a pateuse
ES2220921T3 (es) 1994-12-06 2004-12-16 L'oreal Distribuidor para un producto de consistencia liquida a pastosa equipado con un elemento tubular de aplicacion.
FR2727608B1 (fr) 1994-12-06 1997-01-10 Oreal Distributeur pour un produit de consistance liquide a pateuse
FR2735690B1 (fr) * 1995-06-21 1997-09-12 Oreal Composition sous forme de produit coule comprenant une dispersion de polymeres
CA2197498C (fr) * 1995-06-21 2002-12-17 Nathalie Mougin Composition cosmetique comprenant une dispersion de particules de polymere
FR2735689B1 (fr) 1995-06-21 1997-08-01 Oreal Composition comprenant une dispersion de particules de polymeres dans un milieu non aqueux
CA2225996A1 (en) * 1995-06-26 1997-01-16 Revlon Consumer Products Corporation Glossy transfer resistant cosmetic compositions
FR2739288B1 (fr) * 1995-09-29 1997-11-07 Oreal Composition topique comprenant l'association d'un polymere de squelette non-silicone a greffons silicones et d'un polymere de squelette polysiloxanique a greffons non silicones
FR2739280B1 (fr) * 1995-09-29 1997-11-07 Oreal Composition cosmetique comprenant au moins un polymere silicone greffe et au moins un copolymere bloc lineaire polysiloxane-polyoxyalkylene
FR2740037B1 (fr) * 1995-10-18 1997-12-05 Rhone Poulenc Chimie Compositions cosmetiques pour le cheveu et la peau a base de polyorganosiloxanes fonctionnalises greffes
TR199800810T2 (xx) 1995-11-07 1998-09-21 The Procter & Gamble Company Aktarma diren�li kozmetik bile�imleri.
US6139826A (en) 1996-03-15 2000-10-31 The Procter & Gamble Company Personal care compositions containing a copolymer having hydrophobic, carbon-based grafts
US5632998A (en) * 1996-03-15 1997-05-27 The Procter & Gamble Company Personal care compositions containing hydrophobic graft copolymer and hydrophobic, volatile solvent
FR2746640B1 (fr) 1996-03-27 1998-05-07 Oreal Utilisation en cosmetique de copolymeres a squelette hydrophile et rigide, greffes par des macromonomeres hydrophobes et flexibles ; compositions mises en oeuvre
FR2750321B1 (fr) * 1996-06-28 1998-07-31 Oreal Utilisation en cosmetique de copolymeres a squelette flexible, greffes par des macromonomeres hydrophobes et rigides ; compositions mises en oeuvre
US5804173A (en) * 1996-09-04 1998-09-08 The Procter & Gamble Company Personal care compositions
US5916548A (en) * 1996-09-04 1999-06-29 The Procter & Gamble Company Personal care compositions
CN1235538A (zh) * 1996-09-04 1999-11-17 普罗格特-甘布尔公司 个人护理组合物
FR2761959B1 (fr) 1997-04-15 1999-05-21 Oreal Ensemble de conditionnement et d'application d'un produit fluide
US5929173A (en) * 1997-05-12 1999-07-27 The Procter & Gamble Company Toughened grafted polymers
EP1000602B1 (de) * 1997-06-04 2010-04-07 Daikin Industries, Limited Copolymere für kosmetik
FR2772601B1 (fr) * 1997-12-22 2000-01-28 Oreal Composition cosmetique sans transfert comprenant une dispersion de particules de polymere non filmifiable dans une phase grasse liquide partiellement non volatile
FR2772600B1 (fr) * 1997-12-22 2000-03-17 Oreal Composition cosmetique sans transfert comprenant une dispersion de particules de polymere dans une phase grasse liquide
FR2772602B1 (fr) * 1997-12-22 2000-01-28 Oreal Composition cosmetique sans transfert comprenant une dispersion de particules de polymere dans une phase grasse liquide et un polymere liposoluble
TW587943B (en) * 1998-01-13 2004-05-21 Kose Corp Powder composition, a powder dispersion in oil and a cosmetic composition containing said powder composition and a powder dispersion in oil
FR2775566B1 (fr) 1998-03-03 2000-05-12 Oreal Cupule porte raisin et ensemble de conditionnement pour un produit de maquillage la comportant
US6280748B1 (en) * 1998-06-12 2001-08-28 Dow Corning Toray Silicone, Ltd. Cosmetic raw material cosmetic product and method for manufacturing cosmetic products
JP2000001653A (ja) * 1998-06-12 2000-01-07 Sekisui Chem Co Ltd アクリル系粘着テープもしくはシート
JP2000080134A (ja) * 1998-06-23 2000-03-21 Sekisui Chem Co Ltd オレフィンマクロマ―含有共重合体、樹脂組成物、樹脂相溶化剤、ポリオレフィン系樹脂組成物、樹脂積層体及び樹脂成形体
JP3704252B2 (ja) * 1998-07-10 2005-10-12 積水化学工業株式会社 アクリル系共重合体、アクリル系粘着剤組成物、アクリル系粘着テープまたはシート及びアクリル系接着剤組成物
FR2785529A1 (fr) * 1998-11-09 2000-05-12 Oreal Composition cosmetique sans transfert comprenant une dispersion de particules de polymere dans une phase grasse liquide
AU1316199A (en) * 1998-11-12 2000-06-05 Procter & Gamble Company, The Cosmetic compositions
FR2791042B1 (fr) 1999-03-16 2001-05-04 Oreal Ensemble articule monopiece
FR2792190B1 (fr) 1999-04-16 2001-09-28 Sophim Procede de fabrication d'un emollient non gras a base de cires-esters
FR2792194B1 (fr) * 1999-04-16 2001-06-01 Oreal Composition cosmetique sous forme anhydre comprenant une dispersion de particules de polymere stabilisees en surface
FR2792618B1 (fr) 1999-04-23 2001-06-08 Oreal Dispositif de conditionnement et d'application d'un produit ayant un organe d'essorage comprenant une fente
JP2000313842A (ja) * 1999-04-28 2000-11-14 Sekisui Chem Co Ltd プライマー組成物
FR2795635B1 (fr) 1999-06-30 2006-09-15 Oreal Mascara comprenant des polymeres filmogenes
WO2001003538A1 (fr) 1999-07-09 2001-01-18 Bourjois Article pour l'application d'une composition topique et son procede de preparation
FR2796529B1 (fr) 1999-07-21 2001-09-21 Oreal Dispositif de conditionnement et d'application d'un produit sur les cils ou les sourcils
FR2796528B1 (fr) 1999-07-21 2001-09-21 Oreal Dispositif de conditionnement et d'application d'un produit sur les cils ou les sourcils
FR2806273B1 (fr) 2000-03-16 2002-10-04 Oreal Dispositif de conditionnement et d'application d'un produit cosmetique ou de soin
JP2002047140A (ja) * 2000-07-27 2002-02-12 Mitsubishi Pencil Co Ltd 液体メークアップ化粧料
FR2819516B1 (fr) * 2001-01-15 2004-10-22 Oreal Polymere comprenant des unites hydrosolubles et des unites a lcst et composition aqueuse le comprenant
FR2827160B1 (fr) * 2001-07-16 2007-01-26 Oreal Composition cosmetique comprenant une dispersion de particules
EP1427648B1 (de) 2001-08-21 2006-07-05 L'Oréal USA, Inc. Kosmetikbehälter mit einem magnetischen scharnier
JP2006509811A (ja) * 2002-12-12 2006-03-23 ロレアル グラフト化エチレン性ポリマーの分散物を含む非色移り性化粧用組成物
FR2867681A1 (fr) * 2004-03-19 2005-09-23 Oreal Composition cosmetique comprenant un agent tenseur et une dispersion de particules solides d'un polymere ethylenique greffe
US20050276779A1 (en) * 2004-05-25 2005-12-15 L'oreal Two coat cosmetic product, its method of use and make-up kit comprising this product
US20050281769A1 (en) * 2004-06-11 2005-12-22 Toumi Beatrice Cosmetic composition comprising a polymer
US7378013B2 (en) * 2005-09-15 2008-05-27 Buyers Products Company Gooseneck trailer coupler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004055077A2 *

Also Published As

Publication number Publication date
JP4167229B2 (ja) 2008-10-15
WO2004055080A3 (fr) 2004-08-12
WO2004055078A1 (fr) 2004-07-01
WO2004055081A3 (fr) 2004-08-05
EP1572137B1 (de) 2017-03-15
WO2004055077A3 (fr) 2004-08-05
WO2004055079A2 (fr) 2004-07-01
US20060251601A1 (en) 2006-11-09
AU2003300598A1 (en) 2004-07-09
AU2003300601A1 (en) 2004-07-09
EP1583784A2 (de) 2005-10-12
AU2003300597A1 (en) 2004-07-09
WO2004055082A2 (fr) 2004-07-01
AU2003300602A1 (en) 2004-07-09
AU2003300595A8 (en) 2004-07-09
WO2004055073A3 (fr) 2004-08-05
AU2003300596A1 (en) 2004-07-09
AU2003300596A8 (en) 2004-07-09
JP2006509810A (ja) 2006-03-23
EP1572137A2 (de) 2005-09-14
AU2003300601A8 (en) 2004-07-09
ES2627551T3 (es) 2017-07-28
WO2004055079A3 (fr) 2004-08-12
US20060134034A1 (en) 2006-06-22
WO2004055074A2 (fr) 2004-07-01
JP2006509812A (ja) 2006-03-23
EP1585777A2 (de) 2005-10-19
US20060127341A1 (en) 2006-06-15
WO2004055080A2 (fr) 2004-07-01
WO2004055081A2 (fr) 2004-07-01
WO2004055073A2 (fr) 2004-07-01
JP2006509809A (ja) 2006-03-23
WO2004055082A3 (fr) 2004-09-10
WO2004055077A8 (fr) 2005-08-25
JP2006509811A (ja) 2006-03-23
WO2004055077A2 (fr) 2004-07-01
JP2008201803A (ja) 2008-09-04
AU2003300599A1 (en) 2004-07-09
AU2003300595A1 (en) 2004-07-09
AU2003301500A1 (en) 2004-07-09
AU2003300598A8 (en) 2004-07-09
WO2004055074A3 (fr) 2004-08-05
AU2003301500A8 (en) 2004-07-09
AU2003300599A8 (en) 2004-07-09
US7794695B2 (en) 2010-09-14
AU2003300602A8 (en) 2004-07-09

Similar Documents

Publication Publication Date Title
EP1572770A2 (de) Kosmetische zusammensetzung, enthaltend ein polymer
EP1518535B1 (de) Kosmetische Zusammensetzung enthaltend einen Blockpolymer und ein nicht flüchtiges Silikonöl
EP1545438B1 (de) Blockpolymer enthaltende abriebfeste kosmetische zusammensetzung
EP1704896B1 (de) Kit zum Schminken und/oder zur Pflege zur Bereitstellung eines Volumeneffekts
EP2229218A2 (de) Kosmetisches make-up- und/oder pflegeverfahren unter verwendung eines siloxanharzes und eines filmbildenden polymers
CA2380793A1 (fr) Produit de maquillage bicouche contenant un pigment goniochromatique et un pigment monocolore et kit de maquillage contenant ce produit
FR2873030A1 (fr) Produit cosmetique bicouche comprenant un polymere de silicone
CA2380789A1 (fr) Produit de maquillage bicouche, ses utilisations et kits de maquillage contenant le produit
EP1600146A1 (de) Doppelschichtiges Schminkprodukt, dessen Verwendungen und dieses Produkt enthaltendes Kit für das Schminken
EP1428843A1 (de) Polymerdispersionen im Silikon Medium und deren Verwendung
EP1452164A1 (de) Kosmetische Zusammensetzung in Schichten, deren Verwendungen, sowie Kit für Schminke enthaltend solche Zusammensetzungen
CA2380784A1 (fr) Procede de maquillage bicouche et kit de maquillage contenant des premiere et seconde compositions
FR2823101A1 (fr) Produit de maquillage bi-couche, ses utilisations et kit de maquillage contenant ce produit
EP1452165A2 (de) Doppelschichtiges Schminkprodukt, dessen Verwendungen und dieses Produkt enthaltendes Kit für das Schminken
FR2933704A1 (fr) Dispersion de polymere en milieu organique, compostion cosmetique et procede de traitement cosmetique
EP1477153A1 (de) Kosmetische Zusammensetzung enthaltend eine Polymerdispersion und einen Weichmacher
FR2863493A1 (fr) Composition comprenant une dispersion de particules d'un polymere ethylenique greffe et un agent filmogene
EP1604648A1 (de) Kosmetische Zusammensetzung enthaltend einen ethylenischen Pfropfpolymer
FR3117798A1 (fr) Composition cosmétique une dispersion huileuse de particules de polymère et une dispersion aqueuse de particules de polymère filmogène non issu de monomère styrénique.
EP1637125A2 (de) Doppelschichtiges Schminkprodukt mit verbesserter Haltung, dessen Verwendungen und dieses Produkt enthaltendes Kit für das Schminken
WO2005058257A1 (fr) Composition cosmetique comprenant un polymere et un plastifiant
FR2863491A1 (fr) Composition cosmetique comprenant un polymere et un polymere et un plastifiant
FR2874501A1 (fr) Produit de maquillage bicouche de tenue amelioree, ses utilisations et kit de maquillage contenant ce produit.
FR2876902A1 (fr) Produit de maquillage bicouche de tenue amelioree, ses utilisations et kit de maquillage contenant ce produit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050712

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070503