EP1571440B1 - Méthode et appareil pour mesurer la teneur en pores, et méthode et appareil pour mesurer la teneur en particules - Google Patents

Méthode et appareil pour mesurer la teneur en pores, et méthode et appareil pour mesurer la teneur en particules Download PDF

Info

Publication number
EP1571440B1
EP1571440B1 EP05004692.9A EP05004692A EP1571440B1 EP 1571440 B1 EP1571440 B1 EP 1571440B1 EP 05004692 A EP05004692 A EP 05004692A EP 1571440 B1 EP1571440 B1 EP 1571440B1
Authority
EP
European Patent Office
Prior art keywords
sample
density
matrix
scattered
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05004692.9A
Other languages
German (de)
English (en)
Other versions
EP1571440A1 (fr
Inventor
Yoshiyasu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Publication of EP1571440A1 publication Critical patent/EP1571440A1/fr
Application granted granted Critical
Publication of EP1571440B1 publication Critical patent/EP1571440B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules

Definitions

  • the present invention relates to a method and an apparatus for the measurement of a void content and a particle content with the use of the X-ray small angle scattering method.
  • the present invention relates to the measurement of the void content or the particle content of a sample made of a thin film which has a matrix and voids or particles dispersed in the matrix.
  • the matrix represents the base material in which voids or particles exist.
  • Figs. 1A and 1B are exemplary sectional views of the sample to which the present invention is applied.
  • the sample shown in Fig. 1A is a thin film 10 on a substrate 18, the thin film 10 having a matrix 12 and voids 14 dispersed in the matrix 12.
  • a ratio of the total volume of the voids 14 existing in the region to the volume of the thin film in the region can be defined as a void content in the region.
  • 1B is a thin film 10 having a matrix 12 and particles 16, whose material is different from the matrix, dispersed in the matrix 12.
  • a ratio of the total volume of the particles 16 existing in the region to the volume of the thin film in the region can be defined as a particle content in the region.
  • a technique of forming particles or voids with a nanometer size in a thin film gets a lot of attention in the recent development of the nanotechnology.
  • the particles with a nanometer size are in the spotlight mainly in view of the improvement and variation of the properties caused by the quantum size effect.
  • the voids with a nanometer size are expected to realize the porous interlayer insulation material in connection with the fine structure wiring of the semiconductor device.
  • the particles or voids with a nanometer size can not be observed by the ordinary X-ray diffraction method because of the small periodicity. Therefore, the X-ray small angle scattering method and the EXAFS method would be important for observing the electron density fluctuation with a nanometer order.
  • the X-ray small angle scattering method has been used from old times as the technique for evaluating the electron density fluctuation in a material with several nanometers to several hundred nanometers, for example, it has been used for the size evaluation of the particles or the voids and the evaluation of the long-period structure.
  • the present invention relates to the measurement of the void content or the particle content of the sample with the use of the X-ray small angle scattering method, such a measurement is disclosed in Japanese patent publication No. 2001-349849 A , which will be referred to as the first publication.
  • the first publication discloses the analysis of the thin film having voids or particles dispersed therein with the use of the X-ray small angle scattering method and the parameter fitting operation between the measured profile of the scattered intensity and the theoretical profile of the scattered intensity to determine the optimum values of the parameters.
  • the embodiment of the first publication uses the scattering function for the theoretical profile of the scattered intensity, the function being a model in which the voids or the particles are assumed to be spherical or cylindrical and the size and its variance (which indicates the distribution of the size) are used as parameters to determine the size and the variance of the void or the particle.
  • the first publication also discloses that a scattering function is produced using a void or particle content and its correlation distance as parameters, and a parameter fitting operation is carried out to determine the void or particle content and its correlation distance.
  • the embodiment of the present invention carries out the measurement of the average density and the film thickness of the thin film using the X-ray reflectance method as the preliminary step before producing the theoretical profile of the X-ray small angle scattering
  • the measurement of the average density and the film thickness of the thin film using the X-ray reflectance method is known and disclosed in, for example, Japanese patent publication No. 10-38821 A (1998 ), which will be referred to as the third publication.
  • the prior art disclosed in the first publication can measure the void or particle content using the X-ray small angle scattering method, the prior art has the problems described below.
  • the method disclosed in the first publication uses a model in which the analysis is effective in the case that the proximal distance of the voids or particles is held at a certain distance, i.e., the state of the short-range-order.
  • a diffraction peak corresponding to the distance can be observed on the X-ray small angle scattering pattern.
  • the proximal distance of the voids or particles and the void or particle content can be evaluated based on the appearance angle of the diffraction peak, which corresponds to the proximal distance, and the spread of the diffraction peak, which is evaluated with the full-width-at-half-maximum and corresponds to the void or particle content.
  • This method is effective only in the case that the proximal distance is held at a certain distance and thus is not applicable to a system in which voids or particles are randomly dispersed.
  • the present invention discloses three aspects.
  • the first aspect is as follows. An equipment constant of the X-ray small angle scattering equipment is determined for a sample having a known void or particle content. Unknown void or particle content of another sample is calculated using the equipment constant.
  • the second aspect is as follows. There are prepared a plurality of samples which have unknown matrix densities expected to be identical with each other and void or particle contents expected to be different from each other.
  • the scale factor of the X-ray small angle scattering is determined for each of the samples.
  • the matrix density of each of the samples is determined using the scale factors under the provision that "the difference in matrix density among the samples becomes a minimum”.
  • the void or particle content is calculated based on the determined matrix densities and the scale factors. In measuring the void content according to the second aspect, the particle density should be known.
  • the third aspect is as follows. There are prepared a plurality of samples made of thin films which have known matrix densities, unknown particle densities expected to be identical with each other, and particle contents expected to be different from each other.
  • the scale factor of the X-ray small angle scattering is determined for each of the samples.
  • the particle density of each of the samples is determined using the scale factors under the provision that "the difference in particle density among the samples becomes a minimum”.
  • the particle content is calculated based on the determined particle densities and the scale factors.
  • any aspect of the invention utilizes the scale factor, which expresses the absolute value of the X-ray small angle scattering, as an important element and the void or particle content is calculated based on the scale factor.
  • the three aspects of the invention are common to each other in the viewpoint of the use of the scale factor.
  • Claims 1 to 6 relate to the first aspect.
  • the invention of claim 1 is an invention of a method in which the first aspect is applied to the void content measurement
  • the invention of claim 2 is an invention of an apparatus corresponding to the invention of claim 1.
  • the invention of claim 3 is an invention of a method in which the first aspect is applied to the particle content measurement in the case of the known particle density
  • the invention of claim 4 is an invention of an apparatus corresponding to the invention of claim 3.
  • the invention of claim 5 is an invention of a method in which the first aspect is applied to the particle content measurement in the case of the known matrix density
  • the invention of claim 6 is an invention of an apparatus corresponding to the invention of claim 5.
  • Claims 7 to 13 relate to the second aspect.
  • the invention of claim 7 is an invention of a method in which the second aspect is applied to the void content measurement
  • the invention of claim 10 is an invention of an apparatus corresponding to the invention of claim 7.
  • the invention of claim 11 is an invention of a method in which the first aspect is applied to the particle content measurement
  • the invention of claim 13 is an invention of an apparatus corresponding to the invention of claim 11.
  • Claims 14 and 15 relate to the third aspect.
  • the invention of claim 14 is an invention of a method regarding the third aspect
  • the invention of claim 15 is an invention of an apparatus corresponding to the invention of claim 14.
  • the present invention has the advantages described below.
  • the void or particle content can be determined with the use of the X-ray small angle scattering measurement even when the voids or particles are randomly dispersed and thus the diffraction peaks can not be observed.
  • the equipment constant can be calculated using samples having known void or particle contents, and thereafter unknown void or particle contents can be determined using the equipment constant.
  • the equipment constant can be determined using samples having different void or particle contents even without a sample having a known void or particle content, and thereafter unknown void or particle contents can be determined using the equipment constant.
  • a method for calculating a void content will be described in the case of a thin film having a known matrix density.
  • the void content of the thin film having voids can be calculated as described below.
  • the density of the thin film having no voids is measured by the X-ray reflectance method, the result being a matrix density ⁇ M .
  • the density of the thin film having voids is measured by the X-ray reflectance method, the result being an average density ⁇ F of the thin film having voids.
  • a void density as ⁇ pore and a void content as p formula (1) in Fig. 2 is effected. Since the void density ⁇ pore is zero, the void content p becomes formula (2) in Fig. 2 .
  • the matrix density ⁇ M is determined by the X-ray reflectance method, the void content can be calculated with a high accuracy.
  • the particle content p can be calculated with the use of the average density ⁇ F of the thin film having particles, which can be measured by the X-ray reflectance method, and the density ⁇ M of the thin film having no particles, which can be also measured by the X-ray reflectance method if such a thin film is prepared.
  • the first aspect of the present invention will now be described.
  • the point of the first aspect is that when a thin film having a known void content or particle content can be prepared, an equipment constant of an X-ray small angle scattering measurement equipment can be determined using such a thin film and then a void content or particle content of a thin film having an unknown void content or particle content can be determined based on the equipment constant.
  • a void content or particle content of a thin film having an unknown void content or particle content can be determined based on the equipment constant.
  • the scattering function F is a function of a scattering vector q and a parameter "para".
  • the scattering vector q depends on an X-ray incident angle against the thin film, an X-ray outgoing angle from the thin film and an X-ray wavelength used.
  • the parameter "para” depends on a scattering function model. The form of the scattering function f will be described later.
  • the equipment constant k 0 is a coefficient depending on the brightness of the incident X-ray, a geometric arrangement of the equipment, a slit size and so on, it being a specific value inherent in the equipment.
  • the scattered X-ray intensity I on the left side is a value actually detected with an X-ray detector, whereas a part between two absolute-value symbols on the right side can be calculated using a theoretical formula.
  • the average atomic scattering factor f F , the average atomic mass M f and the average density ⁇ F may be numerical values.
  • the scattering function F may be calculated with variable parameters.
  • the average density ⁇ F may be a value measured by the X-ray reflectance method, or may be a predetermined value if it is known by any other method.
  • an unknown term in formula (3) is k 0 p/(1-p) only, which is that determined as a result of the profile fitting operation as described below, it being expressed by S and being called as a scale factor.
  • formula (3) in Fig. 2 becomes formula (4)
  • the scale factor S in formula (4) is expressed by formula (5).
  • Formula (5) is the basic formula indicating a relationship among the scale factor S, the equipment constant k 0 and the void content p. Transforming formula (5) so that the equipment constant k 0 moves on the left side, formula (6) is effected.
  • the right side of formula (6) can be calculated and the equipment constant k 0 can be determined.
  • the equipment constant k 0 is determined, the void content p can be calculated, as seen from formula (7), using the scale factor S and the equipment constant k 0 after the scale factor S was determined by the X-ray small angle scattering method for a thin film having an unknown void content p.
  • the description above is the principle of calculation of the void content according to the first aspect of the present invention.
  • the scattered intensity I is a sum of four scattered intensities I a to I d .
  • the intensity I a is one caused by a phenomenon in which an incident X-ray is scattered by the voids or particles in the thin film.
  • the intensity I b is one caused by a phenomenon in which the incident X-ray which has been scattered by the voids or particles is further reflected at the boundary.
  • the intensity I c is one caused by a phenomenon in which the incident X-ray which has been reflected at the boundary is further reflected at the voids or particles.
  • the intensity I d is one caused by a phenomenon in which the incident X-ray which has been reflected at the boundary and further reflected at the voids or particles is further reflected at the boundary, i.e., multiple reflections.
  • the total intensity I becomes a scattered intensity I in the thin film having voids or particles.
  • q L + is a scattering vector and is expressed by formula (42) in Fig. 23 .
  • the symbol q L - is also a scattering vector and is expressed by formula (43).
  • the symbol v 0 is a wavenumber vector and is expressed by formula (44).
  • the symbol ⁇ L is a refraction angle at the incidence and is expressed by formula (45).
  • the symbol ⁇ L is a refraction angle at the outgoing and is expressed by formula (46).
  • the symbol Im represents the imaginary part of a complex number.
  • the symbol d L is the thickness of a thin film, the film thickness value determined by the X-ray reflectance method being substituted for d L .
  • the suffix L represents the Lth layer.
  • the symbol Re represents real part of a complex number.
  • the symbol ⁇ in formula (44) is the wavelength of the incident X-ray.
  • the symbol ⁇ 0 in formula (45) is an incident angle of an X-ray which is incident on the thin film.
  • the symbol n L is a refraction index of the thin film, which can be easily calculated from the average density of the thin film.
  • the average density may be an average density ⁇ F determined by the X-ray reflectance measurement.
  • the symbol ⁇ 0 in formula (46) is an outgoing angle of an X-ray which outgoes from the thin film.
  • the scale factor S has the same form as formula (5) mentioned above. Accordingly, when the scale factor S is determined by the X-ray small angle scattering method for the thin film having a known particle content p, the equipment constant k 0 can be determined. When the equipment constant k 0 is determined, the particle content p can be calculated using the scale factor S and the equipment constant k 0 after the scale factor S was determined by the X-ray small angle scattering method for a thin film having an unknown particle content p.
  • the description above is the principle of calculation of the particle content according to the first aspect of the present invention.
  • formula (8) is based on that the particle density ⁇ par is known, formula (8) is not applicable to the case that the particle density is unknown. However, if the matrix density ⁇ M is known in such a case, a scattered X-ray intensity can be determined using formula (28) in Fig. 20 . Formula (28) can be transformed to formula (29) using the scale factor S. Thus, if the matrix density ⁇ M is known, the scale factor S can be determined by the profile fitting operation in the X-ray small angle scattering method similarly to the case having voids, the scale factor S having the form of formula (30).
  • the equipment constant k 0 can be determined.
  • the particle content p can be calculated, as seen from formula (32), using the scale factor S and the equipment constant k 0 after the scale factor S was determined by the X-ray small angle scattering method for a thin film having an unknown particle content p.
  • the description above is another method of calculation of the particle content according to the first aspect of the present invention.
  • the second aspect of the present invention will now be described.
  • the second aspect is used in the case that a thin film having no voids is not available.
  • a void content p i of the ith sample is expressed by formula (10) in Fig. 3 , ⁇ Fi being an average density of the ith sample and ⁇ Mi being a matrix density of the ith sample.
  • the scattered X-ray intensity I(i) caused by the difference in density of electrons between the matrix and the void can be expressed by formula (11) in Fig. 3 , this formula having the same form as formula (3) except the difference of having the symbol indicating the ith number.
  • Formula (11) can be transformed to formula (12) using the scale factor S i which is be expressed by formula (13).
  • a relational expression shown in (14) is effected based on formula (13). Namely, there is effected a relational expression between the scale factor S and the void content p among plural samples. Since the void content p can be expressed using the average density ⁇ F and the matrix density ⁇ M of the sample as shown in formula (2) in Fig. 2 , formula (2) is applied to formula (14) to effect formula (15). Further, formula (16) is effected based on formula (14), and formula (17) is effected based on formula (15).
  • the void content p 1 of a sample 1 is expressed by the scale factor S 1 of the sample 1, the scale factor S 0 of a sample 0 and the void content p 0 of the sample 0.
  • the void factor of the sample 2 or a sample having a larger number is expressed by the scale factor of the sample in question, the scale factor S 0 of a sample 0 and the void content p 0 of the sample 1.
  • the void content of each sample is expressed by the void content p 0 of only one sample, e.g., sample 0, through the mediation of the scale factor S. This means that if the scale factors S of the samples have been determined and the void content p 0 of one sample is determined, the void contents of other samples can be easily calculated.
  • the matrix density ⁇ M1 of a sample 1 is expressed by the scale factor S 1 of the sample 1, the average density ⁇ F1 of the sample 1, the scale factor S 0 of the sample 0, the average density ⁇ F0 of the sample 0, and the matrix density ⁇ M0 of a sample 0.
  • the matrix density of the sample 2 or a sample having a larger number is similarly expressed. Namely, the matrix density of each sample is expressed by the matrix density ⁇ M0 of only any one sample, e.g., sample 0, through the mediation of the scale factor S and the average density ⁇ F . This means that if the scale factors S and the average densities ⁇ F of the samples are determined and the matrix density ⁇ M0 of any one sample is determined, the matrix densities of other samples can be easily calculated.
  • unknown items are matrix densities ⁇ M0 , ⁇ M1 , ⁇ M2 , ⁇ M3 , ... and the number of the unknown items is equal to the number of the samples, while the number of the formulas in question is less than the number of the samples by one. Therefore, the provisions are insufficient to solve formula (17). Then, it is assumed that the matrix densities of the plural samples are identical with each other. In other words, such samples should be the objects to be measured. In this case, formula (17) can be solved by adding the provision of "the difference in matrix density among the samples becomes a minimum". Such a provision can be expressed by formula (18) in Fig. 5 .
  • the left side of the formula (18) represents what should be a minimum in connection with the matrix densities ⁇ M0 , ⁇ M1 , ⁇ M2 , ... and uses the function name of "MinFun".
  • the right side shows the form of the function, the numerator being a square root of the sum, for all of the combinations of two samples, of the square of the difference between the matrix density ⁇ Mi of the ith sample and the matrix density ⁇ Mj of the jth sample, while the denominator being the sum of the matrix densities of all of the samples.
  • each of the matrix densities of the samples becomes a function of the matrix density ⁇ M0 of one sample as shown in formula (17) and thus formula (18) becomes a function of the matrix density ⁇ M0 only. Then, when differentiating formula (18) with the matrix density ⁇ M0 and allowing the resultant to be zero as shown in formula (19), this operation would satisfy the provision that the difference in matrix density among the samples becomes a minimum.
  • the matrix density ⁇ M0 of the sample 0 is determined.
  • the matrix densities ⁇ M1 , ⁇ M2 , ⁇ M3 , ... of the other samples can be calculated based on formula (17).
  • the void content p can be calculated based on formula (2).
  • the description above is the principle of calculation of the void content according to the second aspect of the present invention.
  • the equipment constant k 0 can be determined using formula (6) in Fig. 2 .
  • the equipment constant k 0 is determined, thereafter, as in the first aspect, the void content can be calculated based on formula (7) in Fig. 2 even for the sample having a different matrix density as long as the scale factor S is determined.
  • the matrix density ⁇ M0 of the sample 0 becomes formula (20) in Fig. 6 .
  • the matrix density ⁇ M0 of the sample 0 can be calculated with the use of the scale factors S 0 , S 1 and S 2 and the average densities ⁇ F0 , ⁇ F1 and ⁇ F2 of the samples 0, 1 and 2.
  • Each of the average densities of the samples can be measured by the X-ray reflectance method, and each of the scale factors can be determined by the X-ray small angle scattering method.
  • the matrix densities ⁇ M1 and ⁇ M2 can be calculated using formulae (21) and (22), thus the matrix densities of the three samples can be determined.
  • a method for determining a particle content according to the second aspect will now be described.
  • a theoretical profile of the scattered intensity is produced, for plural samples, with the use of formula (9) in Fig. 3 including the particle density ⁇ par , and a fitting operation is carried out between the measured profile of the scattered intensity and the theoretical profile to determine the scale factor S.
  • the matrix density of each sample can be expressed by formula (23) in Fig. 6 , which corresponds to formula (17) for the voids.
  • the matrix density ⁇ M1 of the sample 1 is expressed by the scale factor S 1 of the sample 1, the average density ⁇ F of the sample 1, the particle density ⁇ par1 of the sample 1, the scale factor S 0 of the sample 0, the average density ⁇ F of the sample 0, the particle density ⁇ par0 of the sample 0 and the matrix density ⁇ M0 of the sample 0.
  • the matrix density of the sample 2 or a sample having a larger number is expressed similarly.
  • the matrix density of each sample is expressed by the matrix density ⁇ M0 of only one sample, e.g., sample 0, through the mediation of the scale factor S, the average density ⁇ F and the particle density ⁇ par . This means that if the scale factors S, the average density ⁇ F and the particle density ⁇ par of the samples have been determined and the matrix density ⁇ M0 of one sample is determined, the matrix densities of other samples can be easily calculated.
  • the matrix density ⁇ M0 can be calculated by solving formula (19) in Fig. 5 .
  • the matrix densities ⁇ M1 , ⁇ M2 , ⁇ M3 , ... of the other samples can be calculated based on formula (23).
  • the particle content p can be calculated based on formula (24) in Fig. 6 , which is the transformation of formula (34) in Fig. 20 .
  • the description above is the principle of calculation of the particle content according to the second aspect of the present invention.
  • the equipment constant is determined in a manner that there are prepared a plurality of samples having void or particle contents which are different from each other under the provision that "the particle density is known", and the matrix densities are determined so that the matrix densities are identical with each other to determine the equipment constant.
  • the particle density is unknown while "the matrix density is known”.
  • the third aspect should be used as described below.
  • a theoretical profile of the scattered intensity is produced, for plural samples, with the use of formula (28) in Fig. 20 including the matrix density ⁇ M , and a fitting operation is carried out between the measured profile of the scattered intensity and the theoretical profile to determine the scale factor S.
  • formulae (33) and (35) are effected, and the particle density of each sample is expressed by formula (36) in Fig. 21 , which corresponds to formula (23) for the second aspect.
  • the particle density ⁇ par0 can be determined so that the difference in particle density becomes a minimum by solving the minimum provision, for the particle density ⁇ par , similar to formula (19) in Fig. 5 .
  • the particle densities ⁇ par1 , ⁇ par1 , ... of the other samples can be calculated based on formula (36). Further, when the particle density ⁇ par of each sample is determined, the particle content can be calculated based on formula (24).
  • the description above is the principle of calculation of the particle content according to the third aspect of the present invention.
  • the scattering function F in formula (3) will now be described.
  • the scattering function may be one of some functions, typically the functions shown by formulae (25) and (26) in Fig. 18 .
  • Formula (25) shows a model which uses the average diameter D 0 of the void or particle and the variance ⁇ indicating the distribution of the diameter, where Q(D,D 0 , ⁇ ) is a diameter distribution function of the void or particle, the D being a variable representing the diameter.
  • formula (26) shows a Debye model which uses the correlation distance ⁇ of the electron density fluctuation. The selection of the models depends on the state of the voids or particles in the sample.
  • Formula (25) is a model function effective in a system in which the void or particle has a specific shape, a sphere for example.
  • formula (26) is known as a model function, a type of two-layer separation, effective in a system in which the voids or particles are confusing like an ant nest.
  • the embodiment described below uses the model function of formula (25) to determine the theoretical profile of the scattered intensity.
  • the average atomic scattering factor f F and the average atomic mass M F appearing in formula (3) will now be described.
  • the atomic scattering factor f can be calculated by formula (27) in Fig. 19 and is expressed by a factor f 0 which does not depend on the wavelength and abnormal dispersions f 1 and f 2 which depend on the wavelength.
  • the symbol i in the formula represents an imaginary number.
  • the factor f 0 depends on the scattering angle and is substantially equal to the atomic number Z in the small angle scattering region.
  • MSQ methyl silsesquioxane, chemical formula being Si 2 O 3 C 2 H 6 .
  • the average atomic scattering factor f F and the average atomic mass M F of the MSQ are shown in a Table in Fig. 19 , the X-ray wavelength being assumed to be CuK ⁇ , 0.154178 nm.
  • Fig. 7A shows the X-ray reflectance measurement.
  • An X-ray 22 is incident on the surface of a sample 20 at a minute incident angle ⁇ .
  • a reflected X-ray 24 is detected in a direction of an outgoing angle ⁇ , the same as the incident angle, from the surface of the sample 20.
  • the sample is rotated with a ⁇ -rotation and the X-ray detector, i.e., the direction of the reflected X-ray 24, is rotated with a 2 ⁇ -rotation, so that a variation of an X-ray reflectance, i.e., a ratio of a reflected X-ray intensity to an incident X-ray intensity, is recorded to obtain an X-ray reflectance profile.
  • Fig. 8 is a graph showing the measurement result of the X-ray reflectance profiles for the three samples, 2 ⁇ in abscissa and a reflected X-ray intensity in ordinate.
  • a solid line represents a profile of the sample 0
  • a broken line represents a profile of the sample 1
  • a chain line represents a profile of the sample 2, noting however that the profiles for the samples 1 and 2 shown are limited, for avoiding complication, to only the starting regions in which the reflectance begins to decrease.
  • the void contents of the samples are different from each other because the critical angles of the total reflection, i.e., the angle at which the reflectance begins to decrease, of the three samples are different from each other.
  • a parameter fitting operation is carried out between the measured X-ray reflectance profile and the theoretical X-ray reflectance profile to determine the film thickness and the density of the sample and the roughness of the boundary between the thin film and the substrate, the parameter fitting operation being known, as disclosed in the third publication mentioned above, and detailed explanation thereof being omitted.
  • Fig. 9 shows a table indicating parameters determined by the fitting operation. Now, the average density and the roughness have been determined for the three samples. It is seen at least that the void contents of the three samples would be different from each other because of the same matrix material and the different average densities.
  • Fig. 10 shows three incident X-ray intensity profiles superimposed on each other, but shows one curve because these profiles are perfectly superimposed. It is understood with the graph that incident X-ray intensities are identical with each other in the X-ray small angle scattering measurement for the three samples. The X-ray small angle scattering profiles were measured under these conditions.
  • FIG. 7B shows a method for measuring the offset scanning profile.
  • An X-ray 22 is incident on the surface of a sample 20 at a minute incident angle ⁇ .
  • a scattered X-ray 26 is detected in a direction of an outgoing angle " ⁇ + ⁇ " from the surface of the sample 20. Namely, the outgoing angle is offset by ⁇ compared to the incident angle.
  • the offset allows the intense total-reflected X-ray not to enter the X-ray detector.
  • the sample is rotated with a ⁇ -rotation and the X-ray detector, i.e., the direction of the scattered X-ray 26, is rotated with a 2 ⁇ -rotation, so that a variation of the scattered X-ray intensity is recorded to obtain an offset scanning profile.
  • the profile is measured in a range between 0 to 8 degrees in 2 ⁇ .
  • Fig. 7C shows a method for measuring the rocking scanning profile.
  • An X-ray 22 is incident on the surface of a sample 20 at a minute incident angle ⁇ .
  • a scattered X-ray 26 is detected in a direction which is at 2 ⁇ against the incident X-ray 22 and is set stationary. Assuming that the position of the incident X-ray 22 is stationary, only the sample is rotated with an ⁇ -rotation, so that a variation of the scattered X-ray intensity is recorded to obtain a rocking scanning profile.
  • Fig. 11 is a graph showing the offset scanning profiles of the X-ray small angle scattering for the three samples.
  • the offset angle ⁇ is 0.1 degree.
  • a profile fitting, i.e., the parameter fitting, operation is carried out, for the three measured profiles, between the measured profile and the theoretical profile.
  • Fig. 12 is a graph showing the profile fitting on the offset scanning profile of the X-ray small angle scanning for the sample 1.
  • the offset angle ⁇ is 0.1 degree.
  • Small circles indicate the measured value and the assembly thereof becomes the measure profile.
  • the chain line represents the theoretical profile of the scattered X-ray intensity caused by the voids, the intensity being determined using formulae (37) to (41).
  • the broken line represents the theoretical profile of the scattered X-ray intensity caused by the roughness of the surface boundary, the intensity being calculated using known theoretical formula as disclosed in the second publication mentioned above.
  • the solid line represents the sum of the two theoretical profiles. The parameters are changed so that the total theoretical profile approaches the measured profile as close as possible to select the optimum parameters.
  • the scattered intensity caused by the voids is far larger than the scattered intensity caused by the roughness, the scattered intensity caused by the roughness may be omitted in the fitting operation.
  • the embodiment uses, as the scattering function, a model function of formula (25) mentioned above, in which spherical voids are randomly dispersed in the thin film and the distribution of the void size conforms to the Gamma distribution function.
  • Fig. 13 is a graph showing the profile fitting on the rocking scanning profile of the X-ray small angle scanning for the sample 1, the angle 2 ⁇ being 0.8 degree. It should be noted that the large measured peak at the center of the graph is caused the total reflection and thus not the scattered X-ray caused by the voids. The total reflection peak should be ignored in the profile fitting operation with the theoretical profile.
  • the offset scanning profile fitting operation as shown in Fig. 12 was carried out for each of the three samples and then the rocking scanning profile fitting operation as shown in Fig. 13 was carried out for each of the three samples.
  • the rocking scan profile fitting operations were carried out with 0.6, 0.8, 1.0, 1.2 and 1.5 degrees in 2 ⁇ .
  • the profile fitting operations should be carried out ideally at the same time between the measured values and the theoretical values for all of the offset scanning profiles and the rocking scanning profiles in a manner that the parameters are determined so that the difference becomes a minimum.
  • the method of nonlinear least squares is effectively used for the minimization of the difference.
  • the average diameter of the void and the variance indicating the diameter distribution, the variance of the Gamma distribution function, were determined as the parameters as shown in Fig. 14 and further the scale factor S was determined from the X-ray intensity on that occasion.
  • the average density ⁇ F has been determined and is shown in Fig. 9 .
  • the scale factor S has been determined in the X-ray small angle scattering method and is shown in Fig. 14 . Then, these values are substituted into formula (20) in Fig. 5 to calculate the matrix density ⁇ M0 of the sample 0, the resultant value being 1.412. Further, the matrix densities ⁇ M1 and ⁇ M2 of the sample 1 and sample 2 are calculated using formulae (21) and (22) in Fig. 6 , the resultant values being 1.413 and 1.412.
  • Fig. 15 is a graph showing relationships of formula (17) in connection with the matrix densities of the three samples, the matrix density ⁇ M0 of the sample 0 in abscissa and the matrix densities ⁇ M0 , ⁇ M1 and ⁇ M2 of the three samples in ordinate.
  • the average densities ⁇ F0 , ⁇ F1 and ⁇ F2 and the scale factors S 0 , S 1 and S 2 in formula (17) receive the values shown in the table in Fig. 17 .
  • the matrix densities of the samples become identical with each other at the intersection of the two straight lines.
  • the matrix density at the intersection is the value which allows the difference in the two matrix densities to be a minimum, i.e., zero. Accordingly, if at least two samples are measured, the matrix density can be determined.
  • Fig. 16 is a graph showing the relationships of formula (16) in connection with the void densities of the three samples. It is understood that when the void content p 0 of the sample 0 is determined, the void contents of the sample 1 and the sample 2 are easily calculated.
  • the average density and the film thickness of the sample are determined by the X-ray reflectance method in the embodiments described above, these values may be acquired by another means, for example, they may be entered via a keyboard by an operator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Claims (16)

  1. Procédé pour mesurer une teneur en pores d'un échantillon qui est constitué d'un film mince (10) comportant une matrice (12) et des pores (14) dispersés dans la matrice, comprenant les étapes suivantes :
    (a) préparer un premier échantillon ayant une teneur en pores connue et un deuxième échantillon ayant une teneur en pores inconnue ;
    (b) exécuter une mesure de réflectance de rayons X pour le premier échantillon pour obtenir un premier profil de réflectance et déterminer une densité moyenne et une épaisseur de film du premier échantillon sur la base du premier profil de réflectance ;
    (c) exécuter une mesure de diffusion à angle faible de rayons X pour le premier échantillon pour obtenir un premier profil mesuré d'une intensité de rayons X diffusés, et réaliser une opération d'adaptation de paramètre entre le premier profil mesuré de l'intensité de rayons X diffusés et un profil théorique d'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne et de l'épaisseur du film du premier échantillon, pour déterminer un premier facteur d'échelle de l'intensité de rayons X diffusés ;
    (d) calculer une constante d'équipement d'un équipement de mesure de diffusion à angle faible de rayons X sur la base du premier facteur d'échelle et de la teneur en pores connue du premier échantillon ;
    (e) exécuter une mesure de réflectance de rayons X pour le deuxième échantillon pour obtenir un deuxième profil de réflectance et déterminer une densité moyenne et une épaisseur de film du deuxième échantillon sur la base du deuxième profil de réflectance ;
    (f) exécuter une mesure de diffusion à angle faible de rayons X pour le deuxième échantillon en utilisant le même équipement de mesure de diffusion à angle faible de rayons X que pour le premier échantillon pour obtenir un deuxième profil mesuré de l'intensité de rayons X diffusés, et réaliser une opération d'adaptation de paramètre entre le deuxième profil mesuré de l'intensité de rayons X diffusés et un profil théorique de l'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne et de l'épaisseur de film du deuxième échantillon, pour déterminer un deuxième facteur d'échelle de l'intensité de rayons X diffusés ; et
    (g) calculer une teneur en pores du deuxième échantillon sur la base de la constante d'équipement et du deuxième facteur d'échelle.
  2. Appareil pour mesurer une teneur en pores d'un échantillon qui est constitué d'un film mince comportant une matrice et des pores dispersés dans la matrice, comprenant :
    (a) des moyens d'acquisition d'épaisseur de film pour acquérir une épaisseur de film de l'échantillon ;
    (b) des moyens d'acquisition de densité moyenne pour acquérir une densité moyenne de l'échantillon ;
    (c) un équipement de mesure de diffusion à angle faible de rayons X pour mesurer un profil mesuré d'une intensité de rayons X diffusés de l'échantillon ;
    (d) des moyens de production de profil théorique pour produire un profil théorique de l'intensité de rayons X diffusés de l'échantillon en utilisant l'épaisseur de film acquise par les moyens d'acquisition d'épaisseur de film et la densité moyenne acquise par les moyens d'acquisition de densité moyenne ;
    (e) des moyens de calcul de facteur d'échelle qui réalisent une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés mesuré par l'équipement de mesure de diffusion à angle faible de rayons X et le profil théorique de l'intensité de rayons X diffusés produit par les moyens de production de profil théorique, et calculent un facteur d'échelle de l'intensité de rayons X diffusés ;
    (f) des moyens d'acquisition de teneur en pores pour acquérir une teneur en pores d'un premier échantillon ;
    (g) des moyens de calcul de constante d'équipement pour calculer une constante d'équipement de l'équipement de mesure de diffusion à angle faible de rayons X sur la base de la teneur en pores connue pour le premier échantillon acquise par les moyens d'acquisition de teneur en pores et d'un premier facteur d'échelle calculé par les moyens de calcul de facteur d'échelle pour le premier échantillon ; et
    (h) des moyens de calcul de teneur en pores pour calculer une teneur en pores d'un deuxième échantillon ayant une teneur en pores inconnue sur la base d'un deuxième facteur d'échelle calculé par les moyens de calcul de facteur d'échelle pour le deuxième échantillon et de la constante d'équipement calculée par les moyens de calcul de constante d'équipement.
  3. Procédé pour mesurer une teneur en particules d'un échantillon qui est constitué d'un film le mince comportant une matrice et des particules, avec une densité de particule connue, dispersées dans la matrice, comprenant les étapes suivantes :
    (a) préparer un premier échantillon ayant une teneur en particules connue et un deuxième échantillon ayant une teneur en particules inconnue ;
    (b) exécuter une mesure de réflectance de rayons X pour le premier échantillon pour obtenir un premier profil de réflectance et déterminer une densité moyenne et une épaisseur de film du premier échantillon sur la base du premier profil de réflectance ;
    (c) exécuter une mesure de diffusion à angle faible de rayons X pour le premier échantillon pour obtenir un premier profil mesuré d'une intensité de rayons X diffusés, et réaliser une opération d'adaptation de paramètre entre le premier profil mesuré de l'intensité de rayons X diffusés et un profil théorique de l'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne, de l'épaisseur de film et de la densité de particule du premier échantillon, pour déterminer un premier facteur d'échelle de l'intensité de rayons X diffusés ;
    (d) calculer une constante d'équipement d'un équipement de mesure de diffusion à angle faible de rayons X sur la base du premier facteur d'échelle et de la teneur en particules connue du premier échantillon ;
    (e) exécuter une mesure de réflectance de rayons X pour le deuxième échantillon pour obtenir un deuxième profil de réflectance et déterminer une densité moyenne et une épaisseur de film du deuxième échantillon sur la base du deuxième profil de réflectance ;
    (f) exécuter une mesure de diffusion à angle faible de rayons X pour le deuxième échantillon en utilisant le même équipement de mesure de diffusion à angle faible de rayons X que pour le premier échantillon pour obtenir un deuxième profil mesuré de l'intensité de rayons X diffusés, et réaliser une opération d'adaptation de paramètre entre le deuxième profil mesuré de l'intensité de rayons X diffusés et un profil théorique de l'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne, de l'épaisseur de film et de la densité de particule du deuxième échantillon, pour déterminer un deuxième facteur d'échelle de l'intensité de rayons X diffusés ; et
    (g) calculer une teneur en particules du deuxième échantillon sur la base de la constante d'équipement et du deuxième facteur d'échelle.
  4. Appareil pour mesurer une teneur en particules d'un échantillon qui est constitué d'un film mince comportant une matrice et des particules, ayant une densité de particule connue, dispersées dans la matrice, comprenant :
    (a) des moyens d'acquisition d'épaisseur de film pour acquérir une épaisseur de film de l'échantillon ;
    (b) des moyens d'acquisition de densité moyenne pour acquérir une densité moyenne de l'échantillon ;
    (c) des moyens d'acquisition de densité de particule pour acquérir la densité de particule ;
    (d) un équipement de mesure de diffusion à angle faible de rayons X pour mesurer un profil mesuré d'une intensité de rayons X diffusés de l'échantillon ;
    (e) des moyens de production de profil théorique pour produire un profil théorique de l'intensité de rayons X diffusés de l'échantillon en utilisant l'épaisseur de film acquise par les moyens d'acquisition d'épaisseur de film et la densité moyenne acquise par les moyens d'acquisition de densité moyenne ;
    (f) des moyens de calcul de facteur d'échelle qui réalisent une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés mesuré par l'équipement de mesure de diffusion à angle faible de rayons X et le profil théorique de l'intensité de rayons X diffusés produit par les moyens de production de profil théorique, et calculent un facteur d'échelle de l'intensité de rayons X diffusés ;
    (g) des moyens d'acquisition de teneur en particules pour acquérir une teneur en particules connue d'un premier échantillon ;
    (h) des moyens de calcul de constante d'équipement pour calculer une constante d'équipement de l'équipement de mesure de diffusion à angle faible de rayons X sur la base de la teneur en particules connue du premier échantillon acquise par les moyens d'acquisition de teneur en particules et d'un premier facteur d'échelle calculé par les moyens de calcul de facteur d'échelle pour le premier échantillon ; et
    (i) des moyens de calcul de teneur en particules pour calculer une teneur en particules d'un deuxième échantillon ayant une teneur en particules inconnue sur la base d'un deuxième facteur d'échelle calculé par les moyens de calcul de facteur d'échelle pour le deuxième échantillon et de la constante d'équipement calculée par les moyens de calcul de constante d'équipement.
  5. Procédé pour mesurer une teneur en particules d'un échantillon qui est constitué d'un film mince comportant une matrice ayant une densité de matrice connue et des particules dispersées dans la matrice, comprenant les étapes suivantes :
    (a) préparer un premier échantillon ayant une teneur en particules connue et un deuxième échantillon ayant une teneur en particules inconnue ;
    (b) exécuter une mesure de réflectance de rayons X pour le premier échantillon pour obtenir un premier profil de réflectance et déterminer une densité moyenne et une épaisseur de film du premier échantillon sur la base du premier profil de réflectance ;
    (c) exécuter une mesure de diffusion à angle faible de rayons X pour le premier échantillon pour obtenir un premier profile mesuré de l'intensité de rayons X diffusés, et réaliser une opération d'adaptation de paramètre entre le premier profil mesuré de l'intensité de rayons X diffusés et un profil théorique de l'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne, de l'épaisseur de film et de la densité moyenne du premier échantillon, pour déterminer un premier facteur d'échelle de l'intensité de rayons X diffusés ;
    (d) calculer une constante d'équipement d'un équipement de mesure de diffusion à angle faible de rayons X sur la base du premier facteur d'échelle et de la teneur en particules connue du premier échantillon ;
    (e) exécuter une mesure de réflectance de rayons X pour le deuxième échantillon pour obtenir un deuxième profil de réflectance et déterminer une densité moyenne et une épaisseur de film du deuxième échantillon sur la base du deuxième profil de réflectance ;
    (f) exécuter une mesure de diffusion à angle faible de rayons X pour le deuxième échantillon en utilisant le même équipement de mesure de diffusion à angle faible de rayons X que pour le premier échantillon pour obtenir un deuxième profil mesuré de l'intensité de rayons X diffusés, et réaliser une opération d'adaptation de paramètre entre le deuxième profil mesuré de l'intensité de rayons X diffusés et un profil théorique de l'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne, de l'épaisseur de film et de la densité de matrice du deuxième échantillon, pour déterminer un deuxième facteur d'échelle de l'intensité de rayons X diffusés ; et
    (g) calculer une teneur en particules du deuxième échantillon sur la base de la constante d'équipement et du deuxième facteur d'échelle.
  6. Appareil pour mesurer une teneur en particules d'un échantillon qui est constitué d'un film mince comportant une matrice ayant une densité de matrice connue et des particules dispersées dans la matrice, comprenant :
    (a) des moyens d'acquisition d'épaisseur de film pour acquérir une épaisseur de film de l'échantillon ;
    (b) des moyens d'acquisition de densité moyenne pour acquérir une densité moyenne de l'échantillon ;
    (c) des moyens d'acquisition de densité de matrice pour acquérir la densité de matrice ;
    (d) un équipement de mesure de diffusion à angle faible de rayons X pour mesurer un profil mesuré de l'intensité de rayons X diffusés de l'échantillon ;
    (e) des moyens de production de profil théorique pour produire un profil théorique de l'intensité de rayons X diffusés de l'échantillon en utilisant l'épaisseur de film acquise par les moyens d'acquisition d'épaisseur de film, la densité moyenne acquise par les moyens d'acquisition de densité moyenne et la densité de matrice acquise par les moyens d'acquisition de densité de matrice ;
    (f) des moyens de calcul de facteur d'échelle qui réalisent une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés mesurés par l'équipement de mesure de diffusion à angle faible de rayons X et le profil théorique de l'intensité de rayons X diffusés produit par les moyens de production de profil théorique, et calculent un facteur d'échelle de l'intensité de rayons X diffusés ;
    (g) des moyens d'acquisition de teneur en particules pour acquérir une teneur en particules connue d'un premier échantillon ;
    (h) des moyens de calcul de constante d'équipement pour calculer une constante d'équipement de l'équipement de mesure de diffusion à angle faible de rayons X sur la base de la teneur en particules connue du premier échantillon acquise par les moyens d'acquisition de teneur en particules et d'un premier facteur d'échelle calculé par les moyens de calcul de facteur d'échelle pour le premier échantillon ; et
    (i) des moyens de calcul de teneur en particules pour calculer une teneur en particules d'un deuxième échantillon ayant une teneur en particules inconnue sur la base d'un deuxième facteur d'échelle calculé par les moyens de calcul de facteur d'échelle pour le deuxième échantillon et de la constante d'équipement calculée par les moyens de calcul de constante d'équipement.
  7. Procédé pour mesurer une teneur en pores d'un échantillon qui est constitué d'un film mince comportant une matrice et des pores dispersés dans la matrice, comprenant les étapes suivantes :
    (a) préparer une pluralité d'échantillons dont chacun a une densité de matrice inconnue et une teneur en pores inconnue, les densités de matrice inconnues des échantillons étant supposées être identiques entre elles alors que les teneurs en pores des échantillons sont supposées être différentes entre elles ;
    (b) exécuter, pour chacun des échantillons, une mesure de réflectance de rayons X pour obtenir un profil de réflectance et déterminer une densité moyenne et une épaisseur de film de l'échantillon sur la base du profil de réflectance ;
    (c) exécuter, pour chacun des échantillons, une mesure de diffusion à angle faible de rayons X pour obtenir un profil mesuré d'une intensité de rayons X diffusés, et réaliser, pour chacun des échantillons, une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés et un profil théorique de l'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne et de l'épaisseur de film de l'échantillon, pour déterminer un facteur d'échelle de l'intensité de rayons X diffusés pour chacun des échantillons ;
    (d) calculer des densités de matrices des échantillons sur la base des facteurs d'échelle des échantillons de telle sorte que les différences entre les densités de matrice parmi les échantillons deviennent minimales ; et
    (e) calculer, pour au moins l'un des échantillons, une teneur en pores de l'échantillon sur la base de la densité moyenne et de la densité de matrice de l'échantillon.
  8. Procédé selon la revendication 7, dans lequel l'étape consistant à calculer des densités de matrice comprend les étapes suivantes :
    sélectionner l'un des échantillons comme échantillon de référence ;
    exprimer chacune des densités de matrice des échantillons autres que l'échantillon de référence par une formule comprenant la densité moyenne et le facteur d'échelle de l'échantillon en question et la densité moyenne, le facteur d'échelle et la densité de matrice de l'échantillon de référence ;
    déterminer la densité de matrice de l'échantillon de référence de telle sorte que les différences entre les densités de matrice parmi les échantillons deviennent minimales ; et
    calculer des densités de matrice des échantillons autres que l'échantillon de référence sur la base de la densité de matrice de l'échantillon de référence.
  9. Procédé selon la revendication 7 ou 8, dans lequel la pluralité d'échantillons est constituée d'au moins trois échantillons.
  10. Appareil pour mesurer une teneur en pores d'un échantillon qui est constitué d'un film mince comportant une matrice et des pores dispersés dans la matrice, comprenant :
    (a) des moyens d'acquisition d'épaisseur de film pour acquérir une épaisseur de film de l'échantillon ;
    (b) des moyens d'acquisition de densité moyenne pour acquérir une densité moyenne de l'échantillon ;
    (c) un équipement de mesure de diffusion à angle faible de rayons X pour mesurer un profil mesuré d'une intensité de rayons X diffusés de l'échantillon ;
    (d) des moyens de production de profil théorique pour produire un profil théorique de l'intensité de rayons X diffusés de l'échantillon en utilisant l'épaisseur de film acquise par les moyens d'acquisition d'épaisseur de film et la densité moyenne acquise par les moyens d'acquisition de densité moyenne ;
    (e) des moyens de calcul de facteur d'échelle qui réalisent une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés mesuré par l'équipement de mesure de diffusion à angle faible de rayons X et le profil théorique de l'intensité de rayons X diffusés produit par les moyens de production de profil théorique, et calculent un facteur d'échelle de l'intensité de rayons X diffusés ;
    (f) des moyens de calcul de densité de matrice pour calculer des densités de matrice des échantillons sur la base des facteurs d'échelle calculés par les moyens de calcul de facteur d'échelle de telle sorte que les différences entre les densités de matrice parmi les échantillons deviennent minimales ; et
    (g) des moyens de calcul de teneur en pores pour calculer, pour au moins l'un des échantillons, une teneur en pores sur la base de la densité moyenne acquise par les moyens d'acquisition de densité moyenne et de la densité de matrice calculée par les moyens de calcul de densité de matrice.
  11. Procédé pour mesurer une teneur en particules d'un échantillon qui est constitué d'un film mince comportant une matrice et des particules, ayant une densité de particule connue, dispersées dans la matrice, comprenant les étapes suivantes :
    (a) préparer une pluralité d'échantillons dont chacun a une densité de matrice inconnue et une teneur en particules inconnue, les densités de matrice inconnues des échantillons étant supposées être identiques entre elles alors que les teneurs en particules inconnues des échantillons sont supposées être différentes entre elles ;
    (b) exécuter, pour chacun des échantillons, une mesure de réflectance de rayons X pour obtenir un profil de réflectance et déterminer une densité moyenne et une épaisseur de film de l'échantillon sur la base du profil de réflectance ;
    (c) exécuter, pour chacun des échantillons, une mesure de diffusion à angle faible de rayons X pour obtenir un profil mesuré d'une intensité de rayons X diffusés, et réaliser, pour chacun des échantillons, une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés et un profil théorique de l'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne, de l'épaisseur de film et de la densité de particule de l'échantillon, pour déterminer un facteur d'échelle de l'intensité de rayons X diffusés pour chacun des échantillons ;
    (d) calculer des densités de matrice des échantillons sur la base des facteurs d'échelle des échantillons de telle sorte que les différences entre les densités de matrice parmi les échantillons deviennent minimales ; et
    (e) calculer, pour au moins l'un des échantillons, une teneur en particules de l'échantillon sur la base de la densité de particule, de la densité moyenne et de la densité de matrice de l'échantillon.
  12. Procédé selon la revendication 11, dans lequel l'étape consistant à calculer des densités de matrice comprend les étapes suivantes :
    sélectionner l'un des échantillons comme échantillon de référence ;
    exprimer chacune des densités de matrice des échantillons autres que l'échantillon de référence par une formule comprenant la densité de particule, la densité moyenne et le facteur d'échelle de l'échantillon en question et la densité de particule, la densité moyenne, le facteur d'échelle et la densité de matrice de l'échantillon de référence ;
    déterminer la densité de matrice de l'échantillon de référence de telle sorte que les différences entre les densités de matrice parmi les échantillons deviennent minimales ; et
    calculer les densités de matrice des échantillons autres que l'échantillon de référence sur la base de la densité de matrice de l'échantillon de référence.
  13. Appareil pour mesurer une teneur en particules d'un échantillon qui est constitué d'un film mince comportant une matrice et des particules, ayant une densité de particule connue, dispersées dans la matrice, comprenant :
    (a) des moyens d'acquisition d'épaisseur de film pour acquérir une épaisseur de film de l'échantillon ;
    (b) des moyens d'acquisition de densité moyenne pour acquérir une densité moyenne de l'échantillon ;
    (c) des moyens d'acquisition de densité de particule pour acquérir la densité de particule ;
    (d) un équipement de mesure de diffusion à angle faible de rayons X pour mesurer un profil mesuré d'une intensité de rayons X diffusés de l'échantillon ;
    (e) des moyens de production de profil théorique pour produire un profil théorique de l'intensité de rayons X diffusés de l'échantillon en utilisant une épaisseur de film acquise par les moyens d'acquisition d'épaisseur de film, la densité moyenne acquise par les moyens d'acquisition de densité moyenne et la densité de particule acquise par les moyens d'acquisition de densité de particule ;
    (f) des moyens de calcul de facteur d'échelle qui réalisent une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés mesuré par l'équipement de mesure de diffusion à angle faible de rayons X et le profil théorique de l'intensité de rayons X diffusés produit par les moyens de production de profil théorique, et calculent un facteur d'échelle de l'intensité de rayons X diffusés ;
    (g) des moyens de calcul de densité de matrice pour calculer des densités de matrice des échantillons sur la base des facteurs d'échelle calculés par les moyens de calcul de facteur d'échelle de telle sorte que les différences entre les densités de matrice parmi les échantillons deviennent minimales ; et
    (h) des moyens de calcul de teneur en particules pour calculer, pour au moins l'un des échantillons, une teneur en particules sur la base de la densité moyenne acquise par les moyens d'acquisition de densité moyenne, de la densité de particule acquise par les moyens d'acquisition de densité de particule et de la densité de matrice calculée par les moyens de calcul de densité de matrice.
  14. Procédé pour mesurer une teneur en particules d'un échantillon qui est constitué d'un film mince comportant une matrice ayant une densité de matrice connue et de particules dispersées dans la matrice, comprenant les étapes suivantes :
    (a) préparer une pluralité d'échantillons dont chacun a une densité de particule inconnue et une teneur en particules inconnue, les densités de particules inconnues des échantillons étant supposées être identiques entre elles tandis que les teneurs en particules inconnues des échantillons sont supposées être différentes entre elles ;
    (b) exécuter, pour chacun des échantillons, une mesure de réflectance de rayons X pour obtenir un profil de réflectance et déterminer une densité moyenne et une épaisseur de film de l'échantillon sur la base du profil de réflectance ;
    (c) exécuter, pour chacun des échantillons, une mesure de diffusion à angle faible de rayons X pour obtenir un profil mesuré d'une intensité de rayons X diffusés, et réaliser, pour chacun des échantillons, une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés et un profil théorique de l'intensité de rayons X diffusés, qui est calculé sur la base de la densité moyenne, de l'épaisseur de film et de la densité de matrice de l'échantillon, pour déterminer un facteur d'échelle de l'intensité de rayons X diffusés pour chacun des échantillons ;
    (d) calculer des densités de particules des échantillons sur la base des facteurs d'échelle des échantillons de telle sorte que les différences entre les densités de particules parmi les échantillons deviennent minimales ; et
    (e) calculer, pour au moins l'un des échantillons, une teneur en particules de l'échantillon sur la base de la densité de matrice, de la densité moyenne et de la densité de particule de l'échantillon.
  15. Appareil pour mesurer une teneur en particules d'un échantillon qui est constitué d'un film mince comportant une matrice ayant une densité de matrice connue et de particules dispersées dans la matrice, comprenant :
    (a) des moyens d'acquisition d'épaisseur de film pour acquérir une épaisseur de film de l'échantillon ;
    (b) des moyens d'acquisition de densité moyenne pour acquérir une densité moyenne de l'échantillon ;
    (c) des moyens d'acquisition de densité de matrice pour acquérir la densité de matrice ;
    (d) un équipement de mesure de diffusion à angle faible de rayons X pour mesurer un profil mesuré d'une intensité de rayons X diffusés de l'échantillon ;
    (e) des moyens de production de profil théorique pour produire un profil théorique de l'intensité de rayons X diffusés de l'échantillon en utilisant l'épaisseur de film acquise par les moyens d'acquisition d'épaisseur de film, la densité moyenne acquise par les moyens d'acquisition de densité moyenne et la densité de matrice acquise par les moyens d'acquisition de densité de matrice ;
    (f) des moyens de calcul de facteur d'échelle qui réalisent une opération d'adaptation de paramètre entre le profil mesuré de l'intensité de rayons X diffusés mesuré par l'équipement de mesure de diffusion à angle faible de rayons X et le profil théorique de l'intensité de rayons X diffusés produit par les moyens de production de profil théorique, et calculent un facteur d'échelle de l'intensité de rayons X diffusés ;
    (g) des moyens de calcul de densité de particule pour calculer des densités de particules des échantillons sur la base des facteurs d'échelle calculés par les moyens de calcul de facteur d'échelle de telle sorte que les différences entre les densités de particules parmi les échantillons deviennent minimales ; et
    (h) des moyens de calcul de teneur en particules pour calculer, pour au moins l'un des échantillons, une teneur en particules sur la base de la densité moyenne acquise par les moyens d'acquisition de densité moyenne, de la densité de matrice acquise par les moyens d'acquisition de densité de matrice et de la densité de particule calculée par les moyens de calcul de densité de particule.
  16. Appareil pour mesurer une teneur en particules d'un échantillon selon l'une quelconque des revendications 2, 4, 6, 10, 13 ou 15, dans lequel les moyens d'acquisition d'épaisseur de film et les moyens d'acquisition de densité moyenne sont capables de réaliser une mesure de réflectance de rayons X pour l'échantillon pour obtenir un profil de réflectance de celui-ci.
EP05004692.9A 2004-03-04 2005-03-03 Méthode et appareil pour mesurer la teneur en pores, et méthode et appareil pour mesurer la teneur en particules Ceased EP1571440B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004061358 2004-03-04
JP2004061358A JP3927960B2 (ja) 2004-03-04 2004-03-04 空孔率の測定方法及び装置並びに粒子率の測定方法及び装置

Publications (2)

Publication Number Publication Date
EP1571440A1 EP1571440A1 (fr) 2005-09-07
EP1571440B1 true EP1571440B1 (fr) 2014-05-07

Family

ID=34747681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05004692.9A Ceased EP1571440B1 (fr) 2004-03-04 2005-03-03 Méthode et appareil pour mesurer la teneur en pores, et méthode et appareil pour mesurer la teneur en particules

Country Status (5)

Country Link
US (2) US7272206B2 (fr)
EP (1) EP1571440B1 (fr)
JP (1) JP3927960B2 (fr)
KR (1) KR100963605B1 (fr)
TW (1) TWI353445B (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3927960B2 (ja) * 2004-03-04 2007-06-13 株式会社リガク 空孔率の測定方法及び装置並びに粒子率の測定方法及び装置
US7680243B2 (en) * 2007-09-06 2010-03-16 Jordan Valley Semiconductors Ltd. X-ray measurement of properties of nano-particles
US7848483B2 (en) * 2008-03-07 2010-12-07 Rigaku Innovative Technologies Magnesium silicide-based multilayer x-ray fluorescence analyzers
TWI385373B (zh) * 2008-12-17 2013-02-11 Univ Nat Pingtung Sci & Tech 介質孔隙度測量裝置
GB201105926D0 (en) * 2011-04-08 2011-05-18 Rolls Royce Plc An apparatus and a method of determining the proportions of different powders in a powder
CN103454197B (zh) * 2012-05-28 2015-12-09 中国原子能科学研究院 微孔膜孔隙率测量方法
JP2015011024A (ja) * 2013-07-02 2015-01-19 株式会社東芝 計測装置および計測方法
JP6458798B2 (ja) * 2014-03-28 2019-01-30 日本電気株式会社 コンピュータシステム、データ処理装置
CN108489880A (zh) * 2018-02-08 2018-09-04 深圳市博盛新材料有限公司 一种用于隔膜的检测装置及检测方法
JP2019174249A (ja) * 2018-03-28 2019-10-10 三井化学株式会社 孔間距離の測定方法
JP7221536B2 (ja) * 2019-12-27 2023-02-14 株式会社リガク 散乱測定解析方法、散乱測定解析装置、及び散乱測定解析プログラム
CN113237809B (zh) * 2021-04-16 2023-03-17 贵州电网有限责任公司 一种复合绝缘子芯棒孔隙率评估方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619548A (en) * 1995-08-11 1997-04-08 Oryx Instruments And Materials Corp. X-ray thickness gauge
JP3329197B2 (ja) * 1996-07-19 2002-09-30 株式会社日立製作所 薄膜積層体検査方法
JP2001349849A (ja) 2000-04-04 2001-12-21 Rigaku Corp 密度不均一試料解析方法ならびにその装置およびシステム
US6895075B2 (en) * 2003-02-12 2005-05-17 Jordan Valley Applied Radiation Ltd. X-ray reflectometry with small-angle scattering measurement
JP3953754B2 (ja) * 2001-06-27 2007-08-08 株式会社リガク 密度不均一試料解析方法ならびにその装置およびシステム
JP3764407B2 (ja) * 2001-10-26 2006-04-05 株式会社リガク 密度不均一多層膜解析方法ならびにその装置およびシステム
KR100879729B1 (ko) * 2002-06-06 2009-01-22 가부시끼가이샤 리가쿠 밀도 불균일 다층막 해석방법, 그 장치 및 시스템
WO2004061428A1 (fr) * 2002-12-27 2004-07-22 Technos Institute Co., Ltd. Equipement pour mesurer la distribution de la taille des vides ou des particules
JP3927960B2 (ja) * 2004-03-04 2007-06-13 株式会社リガク 空孔率の測定方法及び装置並びに粒子率の測定方法及び装置

Also Published As

Publication number Publication date
KR100963605B1 (ko) 2010-06-15
JP3927960B2 (ja) 2007-06-13
EP1571440A1 (fr) 2005-09-07
KR20060044295A (ko) 2006-05-16
US20050195940A1 (en) 2005-09-08
US7272206B2 (en) 2007-09-18
TWI353445B (en) 2011-12-01
TW200533909A (en) 2005-10-16
JP2005249613A (ja) 2005-09-15
US20080002812A1 (en) 2008-01-03
US7474734B2 (en) 2009-01-06

Similar Documents

Publication Publication Date Title
EP1571440B1 (fr) Méthode et appareil pour mesurer la teneur en pores, et méthode et appareil pour mesurer la teneur en particules
US7130373B2 (en) Method and apparatus for film thickness measurement
KR102550482B1 (ko) X-선 산란계측을 이용한 깊은 구조체들에 대한 프로세스 모니터링
US7395132B2 (en) Optical metrology model optimization for process control
US20170167862A1 (en) X-Ray Scatterometry Metrology For High Aspect Ratio Structures
US6327040B2 (en) Reflectance method for evaluating the surface characteristics of opaque materials
US20150300965A1 (en) Scatterometry-Based Imaging and Critical Dimension Metrology
KR20170139669A (ko) 계산 효율적인 x 선 기반의 오버레이 측정
CN105444666B (zh) 用于光学关键尺寸测量的方法及装置
US7518740B2 (en) Evaluating a profile model to characterize a structure to be examined using optical metrology
JP2013083659A (ja) 回折構造体、広帯域、偏光、エリプソメトリおよび下地構造の測定
US7522295B2 (en) Consecutive measurement of structures formed on a semiconductor wafer using a polarized reflectometer
JP3726080B2 (ja) 多結晶材料の配向性の評価方法
WO2018016430A1 (fr) Système d'inspection combiné
US11131637B2 (en) Analysis method for fine structure, apparatus, and program
JP3764407B2 (ja) 密度不均一多層膜解析方法ならびにその装置およびシステム
US7747424B2 (en) Scatterometry multi-structure shape definition with multi-periodicity
Likhachev Efficient thin-film stack characterization using parametric sensitivity analysis for spectroscopic ellipsometry in semiconductor device fabrication
JP7560551B2 (ja) 基板を測定するための装置および方法
US7202958B1 (en) Modeling a sample with an underlying complicated structure
JP4996049B2 (ja) 薄膜デバイスの膜厚計測方法及び膜厚計測装置
KR20230127262A (ko) 교란된 개체에서 나오는 엑스레이 신호의 평가
Scheer et al. Measurement of scatter from PSL standard spheres deposited on disk surfaces
Sanchez et al. Determination of reflectance function for aluminum and stainless-steel foil surfaces
Yacoot et al. Review of x-ray and optical thin film measurement methods and transfer artefacts.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060307

AKX Designation fees paid

Designated state(s): GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20090114

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ITO, YOSHIYASU

INTG Intention to grant announced

Effective date: 20131011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170322

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180303