EP1569764A1 - Vorrichtung zum walzen von metallbändern - Google Patents

Vorrichtung zum walzen von metallbändern

Info

Publication number
EP1569764A1
EP1569764A1 EP03759090A EP03759090A EP1569764A1 EP 1569764 A1 EP1569764 A1 EP 1569764A1 EP 03759090 A EP03759090 A EP 03759090A EP 03759090 A EP03759090 A EP 03759090A EP 1569764 A1 EP1569764 A1 EP 1569764A1
Authority
EP
European Patent Office
Prior art keywords
roller
rolling
band
diameter
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03759090A
Other languages
English (en)
French (fr)
Other versions
EP1569764B1 (de
Inventor
Cornelis Hendricus Maria Van Oirschot
Gerardus Jacobus Maria Braspenning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Transmission Technology BV
Original Assignee
Van Doornes Transmissie BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Van Doornes Transmissie BV filed Critical Van Doornes Transmissie BV
Publication of EP1569764A1 publication Critical patent/EP1569764A1/de
Application granted granted Critical
Publication of EP1569764B1 publication Critical patent/EP1569764B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B5/00Extending closed shapes of metal bands by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/14Making other particular articles belts, e.g. machine-gun belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • B21B13/147Cluster mills, e.g. Sendzimir mills, Rohn mills, i.e. each work roll being supported by two rolls only arranged symmetrically with respect to the plane passing through the working rolls

Definitions

  • the present invention relates to a device for rolling endless metal bands as defined in the preamble of claim 1.
  • Such bands form part of a generally known metal push belt, such as that for use in a continuously variable transmission, and is known, for example, from EP- A 0 950 830.
  • a transmission is generally known and is used, inter alia, in passenger vehicles.
  • a band is used as part of a pulling element comprising a number of such bands nested concentrically.
  • the bands here are formed by rolling up a sheet part to form a tube and closing said tube by welding, from which tube a ring is subsequently separated off or cut. Finally, the ring is then rolled to a relatively low band thickness, which is desirable in order to obtain flexibility of the band and relatively low internal material stress when said band is subjected to a rotating movement over a bearing with a relatively small diameter.
  • the desired shape of the band is achieved specifically in a very accurate manner for each individual band of the pulling element.
  • the band After the rolling operation, the band generally undergoes a further number of processing or treatment steps before said band is ready for use in a push belt.
  • the Applicant has been rolling the metal bands by a method which has not changed since the Applicant's invention of the push belt in 1970, and the principle of which method was recently published in Japanese patent publication JP-11-290908.
  • JP-11-290908 With the development of the insight into the properties of the push belt and the bands in it, and with the increase in popularity of the continuously variable transmission, the necessity has arisen for an improvement in the principle of the rolling process and the rolling device, not least with a view to the quality requirements of a band in accordance with the present state of the art, but also in order to achieve an entirely modern process and corresponding device in which the years of experience of the Applicant, the requirements of a modern push belt and the advance in general development of the art are reflected.
  • the advance in the art of the push belt requires that the power to be transmitted per unit mass of the push belt be increased, so that for this also a technologically very advanced execution of each part of the production process of a push belt is desired.
  • One of the objects of the invention is therefore to achieve a high-grade process and device for producing rolled bands of relatively high quality, or at any rate of relatively great uniformity.
  • the pulling force to be exerted upon the band can be fully controlled by one set of activation means, with the result that said force acts more quickly and more accurately on the rolling process.
  • two supporting rollers are accommodated in the device, which rollers make contact with the first bearing roller from eccentric positions relative to an imaginary axis between the shaft of the rolling roller and the shaft of the central or first bearing roller.
  • the rolling performance obtained is of very high quality because this configuration has the effect that, as a result of the difference in curvature of the surfaces by means of which the respective inside and outside of a band is in contact with the rollers, with the typical very low thickness of a band to be achieved, causes the material to be pressed out in the optimum manner under the pressure applied in the device.
  • the present invention has the advantage that the large rolling roller does not wear so fast. This improves the uniformity of the rolling result, and the operational process costs fall, because a roller needs replacement less often.
  • the set-up according to the present invention is therefore particularly suitable for carrying out a rolling process in which the band is provided on the inside or on the outside with a profile, the profile being provided by means of the smaller roller, i.e. the first bearing roller, which can be replaced or overhauled in a relatively simple manner and at low cost.
  • the diameter of the rolling roller In connection with the low thickness of a band, it is particularly desirable according to the invention, partly on the basis of practical experience, for the diameter of the rolling roller to be at least 3 - and preferably approximately equal to 4 - times the size of that of the first bearing roller.
  • the invention therefore also relates to a separate rolling device, in which the diameters of the rollers that are in direct contact with the band during the rolling operation differ considerably from each other.
  • the invention in this respect runs counter to the existing teaching, which states that at given rolling forces two relatively small rollers, for example of 40 mm diameter, have a greater rolling effect than two relatively large rollers, or than a combination of a large and a small roller.
  • the speed of revolution of the rolling roller is selected at a relatively high level during the rolling process, in such a way even that the cycle time for rolling the band is effectively shortened.
  • the slow-down phase In the slow-down phase the relatively high speed of revolution of the rollers used in the main phase is drastically lowered, and in the slow-down phase relatively low rolling forces are also preferably used. In the slow-down phase a reduction in the thickness of the band, which was achieved rapidly during the main phase, but is to a certain extent inaccurate, is then rounded off accurately and stably to the desired and uniformly distributed band thickness.
  • the slow-down phase is preferably carried out for a short period of time than that of the main phase .
  • Figure 1 relates to an overview of the rolling process according to the invention and provides a diagrammatic insight into the corresponding rolling device
  • Figures 2, 3 and 4 show a part of the rolling process
  • Figure 5 is an illustration of phases to be distinguished in the speed of revolution applied and rolling force, which phases are used in the rolling process according to the invention for shortening the cycle time in an optimum manner;
  • Figure 6 is a side view and a cross section of a band such as is formed in an excellent manner by the process and the device according to the invention.
  • Figure 1 shows a rolling device that is illustrated diagrammatically in such a way that the rolling process used can also be seen from it.
  • the device comprises three rolling device parts or modules. The figure shows for this purpose, from right to left, a first measuring module 1, a roller module 2, and a second measuring module 3.
  • the rolling device and the rolling process are controlled by an electronic control unit, which is not further shown in the figure .
  • the band 10 in its initial state in other words before the rolling, is also sometimes indicated by the term ring, on account of its round, relatively rigid character. After rolling, the band is also sometimes indicated by the term belt because of its flexible character.
  • the measuring modules 1 and 3 comprise measuring rollers 4, 5 around which the band 10, rolled or otherwise, can be placed, in such a way that a measurement of the thickness D of band 10 can be carried out.
  • At least one of the rollers 4 or 5 is preferably drivable, so that the thickness measurement can be carried out at a number of positions around the circumference of the band 10 and an average value can be determined for it.
  • the abovementioned drivable roller 4 or 5 can preferably be moved away from the respective other roller 5 or 4, in which case the band is subjected to a tensile stress, which benefits the accuracy and in particular the reproducibility of the thickness measurement.
  • the thickness measurement can be carried out by means of a movement sensor DS accommodated between the measuring rollers 4, 5.
  • the thickness, or the average thickness, according to the invention is a decisive measurement for the material volume of the band 10 to be rolled, and consequently for the process settings of the rolling process.
  • the abovementioned measurement for the material volume can be determined more accurately if the length and possibly also the width of the band to be rolled are likewise determined.
  • the thickness measurement alone because the length and width of the band 10 are assumed to be constant, which is quite possible in combination with the known method by which the bands to be rolled are produced.
  • a band is produced by rolling up sheet material to form a cylinder, welding together the sides of the sheet material that are then resting against each other, and cutting the tube created in this way into rings.
  • the roller module 2 comprises two rotatable bearing rollers 6, 7, a first roller 7 of which is placed centrally in the roller module 2, and a second roller 6 of which is accommodated in the roller module 2 in such a way that it is movable by the application of a pulling force Fm, Fl and around which the band 10 to be rolled can be placed.
  • the roller module 2 comprises first activation means 21, which in this exemplary embodiment comprise a motor M and a screw spindle S and can move a roller holder 8 with the second bearing roller 6 rotatably mounted on it relative to the first bearing roller 7.
  • a movement sensor LS is shown, by means of which sensor by way of a reference part 9 of the roller holder 8 the movement of the latter can be determined, and by means of which the length L of the rolled band 10 can also be determined.
  • the pulling force actually exerted can be measured by means of the load cell LC also shown.
  • the band length L obtained can be determined accurately with the aid of the movement sensor LS from the measured distance between the bearing rollers 6 and 7 and their diameters, by making said sensor rotate about the bearing rollers 6 and 7 without a rolling force Fu or pushing force Fu being exerted between the rolling roller 11 and the first bearing roller 7 in the process.
  • the measured band length L according to the invention can be advantageously used to optimize the rolling process settings by way of feedback, but can also serve as a control parameter for subsequent process steps to be carried out on the rolled band 10.
  • the roller module 2 further comprises a pair of supporting rollers 12, which act upon the first bearing roller 7, a rolling roller 11, and a pressure roller 13 acting upon the supporting rollers 12.
  • the supporting rollers 12 are each provided around their circumference with an opening through which they act upon the first bearing roller 7 only on either side next to the band 10.
  • the pressure roller 13 is accommodated in the roller module 2 in a movable manner under the influence of second activation means 22, which in this exemplary embodiment comprise a motor M and a screw spindle S, in such a way that a pushing or rolling force Fu can be exerted upon the supporting rollers 12, which pushing force Fu can be measured by way of a so-called load cell LC.
  • second activation means 22 which in this exemplary embodiment comprise a motor M and a screw spindle S, in such a way that a pushing or rolling force Fu can be exerted upon the supporting rollers 12, which pushing force Fu can be measured by way of a so-called load cell LC.
  • Said bearing roller 7 is subsequently supported again by way of a part of the band 10 on the rolling roller 11, which is supported by the pushing force Fu during the rolling operation by way of a reaction force Fr.
  • the band here is accommodated so that during the rolling process it rotates between the first bearing roller 7 and the rolling roller 11.
  • the rotating movement of the band 10 is achieved here by driving one or more of the abovementioned rollers 6, 7, 11, 12 and 13, as indicated by the arrows shown in them.
  • material flow occurs over the entire circumference from the thickness dimension of the band 10 to its length and width dimension.
  • the direction of movement or of rotation of the band 10 is important for the quality of the rolling process, which apart from that is carried out with a continuous supply of a lubricant and cooling agent to the contact between the band 10 and the rollers 11 and 7, in such a way that the bearing roller 7 takes the band 10 off the rolling roller 11, the actual deformation of the band 10 occurring in a stretched part of said band.
  • the control unit determines a desired pulling force Fl and pushing force Fu for the band 10 concerned, which forces are to be applied during the rolling process by way of the activation means 21 or 22.
  • Figures 2, 3 and 4 show diagrammatically the movement towards each other or, conversely, the movement away from each other of the respective rollers 6, 7, 11, 12 and 13, for placing the band 10 in or removing it from the rolling device.
  • electronically controllable movement units are present in the rolling device, according to the invention, for example in the form of electro- hydraulic units or the electronically activated air cylinder AC shown in Figure 1.
  • One of these in the present embodiment acts by way of a bearing arm upon the first bearing roller 7, so that the latter can move towards the supporting rollers 12, which is shown in Figure 2.
  • the rolling process itself according to the invention is primarily aimed at achieving a desired uniform band thickness D.
  • the rolling process according to the invention is conceived as a displacement process in the case of which a material flow from the thickness D of the ring 10 is directed towards the length L and the width B of said ring.
  • the electronic control unit on the basis an algorithm suitable for the purpose and depending on the measurement for the volume of the band, determines the pushing force Fu and pulling force Fl exerted by the device upon the band 10.
  • the stability of the band widths B obtained after the rolling operation is therefore to a large degree dependent upon the stability of the material volume of the bands 10 yet to be rolled.
  • the measure is taken to divide the bands 10 to be rolled into at least two rolling groups, which are distinguished by the band length L aimed at after rolling and for which the rolling process settings differ per rolling group.
  • bands 10 with a relatively great thickness D are placed in a first rolling group that is rolled out to a relatively great length L, and that bands 10 with a relatively low thickness D are placed in a second rolling group that is rolled out to a relatively small length L.
  • the rolling process settings are characterized in that for the first rolling group the ratio between the pulling force Fl and the pushing force Fu is selected at a higher level than is the case for the second rolling group.
  • the rolled bands in the pulling element of the push belt in which a number of bands 10 are nested concentrically in relation to one another, for which purpose said bands must be of different lengths.
  • Bands 10 from the second rolling group are then eminently suitable for nesting in the bands 10 of the first rolling group.
  • Different lengths L between the rolled bands 10 of the pulling element are therefore advantageous for nesting of said bands and according to the invention can also advantageously be used to reduce a variation in the width B of the bands 10 in the pulling element.
  • the number of different rolling groups to be defined is, of course, dependent here upon an envisaged maximum variation in the width B of said bands and on the number of bands 10 per pulling element.
  • the pushing force Fu and pulling force Fl to be exerted during the rolling process are regulated by the control unit by feedback from the actual forces exerted that have been measured with the aid of the load cells.
  • the quality of the rolling process is largely determined by the fact that it is controlled on the basis of the abovementioned forces Fl and Fu. This contrasts with a possible process control on the basis of the mutual position of the bearing rollers 6 and 7 and the of the rolling roller 11 and the central roller 7.
  • the band thickness D obtained after rolling can be measured with the aid of the second measuring module 3.
  • a thickness measurement is preferably carried out outside the roller module 2, in order to make efficient use of the device.
  • it can be checked whether the selected rolling process setting is actually leading to the desired rolling result, and wear of, for example, the first bearing roller 7 can be detected.
  • it is further possible greatly to shorten the speed of the rolling process, or the cycle time needed for rolling one band 10, thereof, which is achieved by selecting the speed of rotation of the first bearing roller 7 and consequently also of the band 10 at a relatively high level during a main phase HF of the rolling process.
  • a slow-down phase UF be added to the rolling process, in which latter phase the rolling forces Fu and Fl, and preferably also the abovementioned speed of rotation, are considerably lower than is the case in the main phase HF.
  • a rolling process is illustrated in the diagram of Figure 5, in which, depending on the cycle time t, the speed of rotation rpm of the band 10 and one of the two rolling forces, in this case Fu, given as an example.
  • the dashed lines indicate for purposes of comparison a rolling process with a single rolling phase WF.
  • the abovementioned reduction should be at least 10%, but should preferably be between 25% and 50%.
  • Such a rolling process has the advantage that in the main phase a considerable initial reduction in thickness of the band 10 can be achieved relatively quickly, although to some extent at the expense of the accuracy or stability of the end result of the process, while in the slow-down phase the desired thickness D of the band 10 is achieved accurately and in a stable manner, also uniformly distributed over the band length L.
  • the features of the rolling process including the reproducibility of the rolling result and the shortening of the cycle time t discussed above, are improved by a specific diameter ratio between the rolling roller 11 and the first bearing roller 7 between which the band 10 is rolled, with one of the rollers having to be considerably larger than the other, as shown in Figure 1.
  • the diameter of the rolling roller 11 should be at least 3 times, but preferably approximately 4 times, the size of that of the first bearing roller 7.
  • Such diameter ratios have the additional advantage that the rolling roller 11 wears significantly less quickly, so that during operation in most cases only the bearing roller 7, which is relatively easy to remove and overhaul, needs to be replaced because of wear. There is consequently an advantageous effect on the production capacity and the maintenance costs of the rolling device .
  • Figure 6 shows diagrammatically a side view and a cross section of a rolled band 10.
  • the rolled band 10, viewed in cross section can be provided with an arch shape with a radius R.
  • the rolled band 10, viewed in cross section can be provided with a barrel shape, in other words a thickness D measured centrally on the band 10 is greater than a thickness A measured near the edges of the band 10.
  • the configuration of the present rolling device in particular the specified diameter ratio of the rolling roller 11 and the first bearing roller 7, is eminently suitable for obtaining the desired band shapes. It is also possible according to the invention to obtain a desired shape of the cross section of the band 10 depending on the shape of at least one of the rollers 7, 11. For instance, according to the invention it is advantageously possible, in particular in order to obtain the abovementioned barrel shape, to provide the respective roller 7 or 11 with a non-cylindrical shape, for example by narrowing said roller slightly from its edges towards a central point on the roller, in other words providing it with a concave, hourglass-like shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Replacement Of Web Rolls (AREA)
  • Rolling Contact Bearings (AREA)
  • Forging (AREA)
EP03759090A 2002-12-02 2003-10-29 Vorrichtung zum walzen von metallbändern Expired - Lifetime EP1569764B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL1022044 2002-12-02
NL1022044A NL1022044C2 (nl) 2002-12-02 2002-12-02 Inrichting voor het walsen van metalen riemen.
PCT/NL2003/000735 WO2004050270A1 (en) 2002-12-02 2003-10-29 A device for rolling metal bands

Publications (2)

Publication Number Publication Date
EP1569764A1 true EP1569764A1 (de) 2005-09-07
EP1569764B1 EP1569764B1 (de) 2007-01-03

Family

ID=32464681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03759090A Expired - Lifetime EP1569764B1 (de) 2002-12-02 2003-10-29 Vorrichtung zum walzen von metallbändern

Country Status (8)

Country Link
EP (1) EP1569764B1 (de)
JP (1) JP4359343B2 (de)
KR (1) KR101050614B1 (de)
AT (1) ATE350177T1 (de)
AU (1) AU2003274833A1 (de)
DE (1) DE60310999T2 (de)
NL (1) NL1022044C2 (de)
WO (1) WO2004050270A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1024968C2 (nl) * 2003-12-08 2005-06-09 Bosch Gmbh Robert Werkwijze en inrichting voor het vormen van een oneindige metalen riem voorzien van een oppervlakteprofiel, profielrol daarvoor en een duwband voorzien van de oneindige metalen riem.
NL1043109B1 (en) 2018-12-24 2020-07-21 Bosch Gmbh Robert Method for manufacturing a metal ring for a ring set of a drive belt for a continuously variable transmission
NL1043108B1 (en) 2018-12-24 2020-07-21 Bosch Gmbh Robert Method for manufacturing a drive belt for a continuously variable transmission and a drive belt thus manufactured
WO2022128043A1 (en) 2020-12-16 2022-06-23 Robert Bosch Gmbh Method for manufacturing a metal ring for a ring-set of a drive belt for a continuously variable transmission

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE450191A (de) * 1942-04-24
DE2204208A1 (de) * 1971-02-03 1972-08-10 Honeywell Inc Walzvorrichtung zum Herstellen eines dünnen Metalibandes
NL169428C (nl) * 1977-06-28 1983-11-16 Volvo Car Bv Trekwalsinrichting voor het uitwalsen van eindloze metalen banden.
JPS5856001Y2 (ja) 1980-12-09 1983-12-23 石橋鉄工株式会社 エンドレスベルト圧延加工機
JPS61140642A (ja) * 1984-12-10 1986-06-27 Kato Hatsujo Kaisha Ltd 無端状金属ベルトの製造方法
JPS61290257A (ja) * 1985-06-17 1986-12-20 Nissan Motor Co Ltd Vベルト
EP0950830B1 (de) * 1998-04-14 2002-06-26 Van Doorne's Transmissie B.V. Metallischer Riemen und Verfahren zu seiner Herstellung
JP3441964B2 (ja) * 1998-04-14 2003-09-02 本田技研工業株式会社 金属ベルトの圧延加工装置
WO2002036285A1 (fr) * 2000-10-20 2002-05-10 Honda Giken Kogyo Kabushiki Kaisha Dispositif de roulage pour bague

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004050270A1 *

Also Published As

Publication number Publication date
KR101050614B1 (ko) 2011-07-19
ATE350177T1 (de) 2007-01-15
AU2003274833A1 (en) 2004-06-23
DE60310999T2 (de) 2007-10-11
KR20050085240A (ko) 2005-08-29
JP2006507949A (ja) 2006-03-09
WO2004050270A1 (en) 2004-06-17
EP1569764B1 (de) 2007-01-03
DE60310999D1 (de) 2007-02-15
NL1022044C2 (nl) 2004-06-03
JP4359343B2 (ja) 2009-11-04

Similar Documents

Publication Publication Date Title
JP5167459B2 (ja) 金属バンドを圧延するための工程
CN102176987B (zh) 成型给定长度的管子的方法
CN109807208B (zh) 一种多辊包络成形的变弯径薄壁管材弯曲成形装置
EP1569764B1 (de) Vorrichtung zum walzen von metallbändern
EP2026917B1 (de) Werk zum walzen mit festgehaltenem dorn für nahtlose rohre
CN110899406A (zh) 一种卷圆机及其控制方法
KR100954617B1 (ko) 플라스틱시트제조시스템의 가압롤러장치 및 플라스틱시트 제조방법
JPH11221644A (ja) 中空ワークを冷間塑性変形加工する方法並びに装置
KR20030065482A (ko) 강철 파이프의 한 단부에 플랜지 또는 림을 성형하기 위한방법 및 장치
WO2005053867A2 (en) Method and device for forming an endless metal belt provided with a surface profile
US20100077826A1 (en) Method for the production of axially symmetrical workpieces with or without a toothed profile
JP2004516940A (ja) フローフォーミング方法および装置
US20020121119A1 (en) Rotary drive of reciprocating roll passes of a cold pilger rolling mill
JPS63157723A (ja) ロ−ル曲げ装置
EP1493507B1 (de) Vorrichtung zur Herstellung eines endlosen Metallriemens
CN218951714U (zh) 一种设置有力矩平衡调节装置的压轧装置
CN210936591U (zh) 一种卷圆机
JPH0119967B2 (de)
RU7912U1 (ru) Машина для правки дисковых пил
PL243823B1 (pl) Walcarka do walcowania pierścieni i sposób walcowania pierścieni
JPH059173B2 (de)
WO2001096043A1 (en) Machine for making continuous grids for electric accumulator plates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60310999

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070604

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

26N No opposition filed

Effective date: 20071005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151026

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151026

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20161025

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161029

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181206

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60310999

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501