EP1563567A1 - Composant electronique en boitier pour applications a des frequences millimetriques - Google Patents

Composant electronique en boitier pour applications a des frequences millimetriques

Info

Publication number
EP1563567A1
EP1563567A1 EP03799522A EP03799522A EP1563567A1 EP 1563567 A1 EP1563567 A1 EP 1563567A1 EP 03799522 A EP03799522 A EP 03799522A EP 03799522 A EP03799522 A EP 03799522A EP 1563567 A1 EP1563567 A1 EP 1563567A1
Authority
EP
European Patent Office
Prior art keywords
frequency
access
component according
ghz
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03799522A
Other languages
German (de)
English (en)
Inventor
Marc Thales Intellectual Property CAMIADE
Denis Thales Intellectual Property DOMNESQUE
Klaus Thales Intellectual Property BEILENHOFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Monolithic Semiconductors SAS
Original Assignee
United Monolithic Semiconductors SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Monolithic Semiconductors SAS filed Critical United Monolithic Semiconductors SAS
Publication of EP1563567A1 publication Critical patent/EP1563567A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Definitions

  • the invention relates to electronic circuits working at very high frequencies, greater than 45 GHz, also called “millimeter frequencies”.
  • These electronic circuits are used for radar type applications in which an electromagnetic wave is emitted at a millimeter frequency and a wave reflected by an obstacle is received on an antenna, in order to extract distance information from this wave, on the one hand, and of relative speed, on the other hand, between this obstacle and the source which emitted the wave.
  • Millimeter frequency circuits can also be used for short distance and very high speed communications applications.
  • electronic processing of millimeter frequency signals includes a low frequency processing part which can be implemented by integrated silicon circuits mounted on printed circuits. This part can be achieved by very widely used technologies and at low cost, with simple connections to be made between circuit elements on the same integrated circuit chip or between different integrated circuit chips.
  • the treatment also includes a very high frequency part (greater than 45 GHz), which can only be implemented by components and integrated circuits made of semiconductor materials other than silicon (gallium arsenide GaAs and its derivatives in particular, or else SiGe). These integrated circuits are called MMIC for "microwave monolithic integrated circuits". This high frequency part poses difficult production problems and is generally very expensive.
  • the mounting of the chips on a hybrid substrate is itself very expensive when the chips are numerous.
  • the present invention aims to reduce the cost of electronic systems operating at millimeter frequencies above 45 GHz (and preferably above 60 GHz) and comprising MMIC chips.
  • the invention proposes to use, to make the system, a new type of component.
  • This electronic component is a component mounted in an individual housing and intended to be connected to other components of an electronic system, for example on a printed circuit board grouping together several components; the component comprises at least one integrated circuit MMIC chip working around a main millimeter frequency F greater than 45 GHz.
  • the box has at least two accesses for the communication of electrical signals between the inside and the outside of the box, the first access being a transition access by electromagnetic coupling (transition without material electrical contact) allowing the transmission of the working frequency.
  • the subharmonic frequency is preferably one of the following four frequencies: F / 6 or F / 4 or F / 3 (in borderline cases it could be F / 2).
  • the subharmonic frequency is therefore 1/6 or 1/4 or 1/3 of 77GHz.
  • the housing is preferably provided with a conductive cover placed at a distance from the first access such that it establishes, near this access, an electromagnetic short circuit at the main working frequency, this short circuit forming a reflector d 'wavy favoring the contactless transmission of this frequency by the first access.
  • the height of the conductive cover above the first access is preferably equal to a quarter of the wavelength of the main working frequency, to perform this role of short circuit and reflector. This height can also be an odd multiple of a quarter of the wavelength.
  • the MMIC chip (s) present in the housing will preferably include multiplication means in an N ratio to pass from the subharmonic frequency to the main working frequency. It could also in certain cases include frequency division means in the N report.
  • the component therefore has the particularity that it includes access without hardware contact, dedicated to the passage of signals at the main frequency and access with contact dedicated to passage of signals at the subharmonic frequency.
  • FIG. 1 shows a component in a millimeter package according to the invention
  • FIG. 2 shows a component according to the invention associated with a radar antenna.
  • a typical example of application in which the component according to the invention can be used is a radar application, in which, on the one hand, it is desired to transmit by a first antenna a millimeter frequency greater than 45 GHz, in this example a frequency of 77 GHz, and on the other hand receive, by several different antennas, the electromagnetic wave reflected by an obstacle. It is therefore a multibeam radar.
  • the presence of several receiving antennas allows to observe the presence of obstacles in a wider angular field and on the other hand allows to locate more precisely the detected obstacle.
  • millimeter boxes capable of working at frequencies above 45 GHz, and having external accesses to allow a link by electromagnetic coupling without contact at the frequency.
  • This box includes in particular a conductive cover (metallic or metallized cover) which encloses the lines of propagation of the signals coming from the chip or going towards the chip.
  • the conductive hood is located above the non-contact exterior access, at a distance such that it constitutes (at the main working frequency for which the component is designed) an electromagnetic short-circuit favoring the signal transmission in free propagation by this access.
  • the accesses to the working frequency F of more than 45 GHz are transitions by electromagnetic coupling in the air (or in a gas or in the vacuum), and in particular of the conducting elements capable of radiating towards a waveguide placed in view of these elements, or capable of receiving electromagnetic radiation at the output of a waveguide in front of which they are placed.
  • the case in which the MMIC chips are enclosed has a non-conductive part opposite these conductive elements so as to allow the electromagnetic energy to pass between the guide and the conductive elements.
  • the housing preferably has, in addition to one or more non-contact external accesses capable of efficient coupling at more than 45 GHz, accesses that are not capable of working efficiently at a frequency greater than 45 GHz but designed to work at a frequency sub-harmonic of the working frequency. And the chips contained in these components then preferably comprise the means of multiplication of frequency necessary to pass from the subharmonic frequency to the main frequency.
  • FIG. 1 shows in section a component according to the invention.
  • the housing is conductive, for example metallic or partially metallic; it preferably comprises a metal base 20, serving as a substrate on which the rear face of the MMIC chip 22 is directly transferred, a double-sided ceramic substrate 24 serving for interconnections inside the case and towards the outside of the case, and a metallic or metallized cover 25 covering the base to enclose, between the base and the cover, the chip or chips and the ceramic substrate. Since the MMIC chip 22 is soldered directly to the base, the ceramic substrate 24 has an opening into which the chip is inserted.
  • the ceramic substrate 24 is preferably a metallized substrate on its two faces: metallization 26 on the front face to form transmission lines, and metallization 28 on the rear face to form a ground plane.
  • the dimensions of the various dielectric and conductive parts are such that the component operates correctly at the working frequency considered (77 GHz).
  • the metallizations 26 and 28 are used on the one hand to establish interconnections between chips and on the other hand to establish the external accesses of the box, as well the accesses able to work at 77 GHz as the accesses intended to transmit a subharmonic frequency of 77 GHz.
  • the access 30 capable of transmitting the frequency of 77 GHz comprises a transition by contactless electromagnetic coupling making it possible to pass the signal at the frequency of 77 GHz without contact from a waveguide to the chip or vice versa.
  • This transition by electromagnetic coupling is preferably made via an opening 32 in the housing, and more precisely in the metal base 20.
  • This opening 32 communicates with a waveguide not shown in FIG. 1.
  • This opening is closed physically, but not electromagnetically, by the ceramic substrate 24. It comes opposite a demetallized zone 34 formed in the metallization 28 of the rear face of the ceramic substrate.
  • the end 36 of the microstrip line On the front face metallization 26, constituting a microstrip line going from the MMIC chip 22 towards the access 30, provision has been made for the end 36 of the microstrip line to end exactly opposite the center of the opening 32 of the base 20.
  • This end 36 associated with the demetallized zone 34 which is surrounded by the metallization 28 forming a ground plane, forms a radiating element therefore an antenna communicating for example with a waveguide placed in front of the opening 32, directly coupling electromagnetically the waveguide with the microstrip line.
  • the conductive surface of the cover is located at a distance in relation to the wavelength of the main working frequency of the signals transmitted by this line, this distance being such that the cover constitutes an electromagnetic short-circuit and therefore a reflector for the antenna radiated by the end 36 of the microstrip line.
  • the height H of the cover above the metallization of the ceramic substrate 24 is equal to a quarter of the wavelength corresponding to this frequency or very close to this value. It can also be an odd multiple of a quarter of the wavelength.
  • wired wiring 38 is established between the chip and the line.
  • the coupling thus established operates at 77 GHz provided that the dimensions of the metallized and non-metallized zones, the thickness of the ceramic substrate and the width of the opening in the ceramic substrate, are correctly chosen, in relation to the corresponding wavelength at the main frequency of 77 GHz.
  • the waveguide is connected to an antenna for receiving (or transmitting) the reflected radar wave, and the end 36 of the microstrip line plays the role of receiving element d 'an electromagnetic wave entering the housing.
  • the other access shown in FIG. 1 is a direct access 40 per microstrip line, not allowing communication at 77 GHz but allowing communication at a frequency under harmonic which is preferably F / 6 but which can also be F / 4 or F / 3, or even F / 2 in some cases.
  • the microstrip line corresponding to this access is formed in the upper metallization 26 of the substrate 24 of metallized ceramic.
  • the lower metallization 28 acts as a ground plane.
  • the passage of the line from the inside to the outside of the housing is done through a local interruption of the conductive cover 25, by isolating the microstrip line from the cover, for example by means of an insulating washer 42 interposed between the line and the edge of the cover, or by a notch in the cover.
  • the MMIC chip On the side of this sub-harmonic frequency access 40, the MMIC chip is also connected to the microstrip line by wired wiring 44.
  • connection of the component to the outside can be made by the access 40 with another similar component mounted on the same hybrid substrate, or with a different component mounted on the same hybrid substrate or mounted on a conventional printed circuit.
  • This connection can be made directly from the upper metallization surface 26 which leaves the housing; for example a wire can be soldered on this upper surface; or it can be done by means of a connection pin 46 welded to this external part of the metallization 26 and then forming an integral part of the component.
  • Figure 2 shows the use of the Figure 1 component in an electronic radar system.
  • a metal plate 50 which is a wave guide plate: in this plate is fitted out a waveguide 52, the outlet end of which comes just opposite the opening 32 of the base 20, therefore opposite the conductive end 36 which allows electromagnetic coupling between the waveguide and the housing.
  • the waveguide plate 50 can comprise several waveguides, for example a second guide 54 leading to a second antenna 64 machined in the same antenna plate 60; this guide directs the electromagnetic wave received from the second antenna to a second component in a millimeter package, not shown, similar to the component in FIG. 1 and mounted like it on the plate 50 forming a substrate common to several components according to the invention.
  • the ceramic substrate 24 was fixed on a metal base.
  • the housing being constituted by the metallized ceramic substrate (on its two faces) and the metal cover.
  • the access 30 with transition by electromagnetic coupling is carried out in exactly the same way; the demetallized zone 34 formed in the rear metallization 28 takes the place of the opening 32 which does not exist since the base does not exist.
  • the waveguide arrives exactly opposite this demetallization.
  • the microstrip line is carried by an MMIC chip (the same or another than chip 22) instead of being carried by a substrate ceramic as is the case in FIGS. 1 and 2.
  • the MMIC chip which thus serves as an electromagnetic transition is fixed to a metal base of the housing, a part of the chip projecting opposite an opening formed in the base, an opening which itself faces a waveguide.
  • the free end of the microstrip line carried by the MMIC chip then comes opposite the opening in the base to constitute an electromagnetic transition without contact through this opening.
  • an electromagnetic coupling transition which uses the housing cover as a reflector to effect the transition.
  • transitions without reflector
  • a reflector is then not necessarily necessary and this embodiment would be particularly suitable for cases where the cover of the housing is made of plastic.
  • components according to the invention can realize complete electronic systems on inexpensive printed circuit substrates (resin-based substrates) grouping low-frequency components (integrated circuit chips or other components operating at low frequency), and components operating up to about 25 GHz.
  • These components are connected to components in a millimeter package according to the invention by microstrip connections, and the components in a millimeter package are connected to antennas by non-contact electromagnetic coupling transitions and by waveguides.

Abstract

L'invention concerne les composants électroniques en boîtier millimétrique pour applications à des hautes fréquences supérieures à 45 GHz. Selon l'invention, pour faciliter la conception d'un système comportant des puces MMIC travaillant à ces fréquences, on propose d'utiliser des boîtiers contenant une ou plusieurs puces (22), ces boîtiers permettant de travailler à ces fréquences et comportant deux types d'accès : un accès (30) à transition par couplage électromagnétique sans contact permettant une connexion avec une antenne à la haute fréquence de travail F par l'intermédiaire d'un guide d'onde ; et un accès (40) à transition de type microstrip ou ligne coaxiale permettant une connexion à fréquence sous-harmonique F/N (de préférence N=6 ou 4 ou à la rigueur 3) de la fréquence de travail. Application : systèmes radars.

Description

COMPOSANT ELECTRONIQUE EN BOÎTIER POUR APPLICATIONS A DES FREQUENCES MILLIMETRIQUES
L'invention concerne les circuits électroniques travaillant à des fréquences très élevées, supérieures à 45 GHz, dites également "fréquences millimétriques".
Ces circuits électroniques sont utilisés pour des applications de type radar dans lesquels on émet une onde électromagnétique à une fréquence millimétrique et on reçoit sur une antenne une onde réfléchie par un obstacle, pour extraire de cette onde des informations de distance, d'une part, et de vitesse relative, d'autre part, entre cet obstacle et la source qui a émis l'onde.
Les circuits à fréquence millimétrique peuvent également être utilisés pour des applications de communications à courte distance et très haut débit. Quelle que soit l'application, le traitement électronique des signaux à fréquence millimétrique comprend une partie de traitement à basse fréquence pouvant être mise en œuvre par des circuits intégrés en silicium montés sur des circuits imprimés. Cette partie peut être réalisée par des technologies très largement répandues et à faible coût, avec des connexions simples à réaliser entre éléments de circuits sur une même puce de circuit intégré ou entre différentes puces de circuit-intégré. Le traitement comprend aussi une partie à très haute fréquence (supérieure à 45 GHz), ne pouvant être mise en oeuvre que par des composants et des circuits intégrés en matériaux semiconducteurs autres que du silicium (arséniure de gallium GaAs et ses dérivés notamment, ou encore SiGe). Ces circuits intégrés sont appelés MMIC pour "microwave monolithic integrated circuits". Cette partie haute fréquence pose des problèmes de réalisation difficiles et s'avère en général très coûteuse.
En effet, pour des fonctions relativement complexes, on est obligé d'utiliser un nombre important de puces de circuit intégré MMIC, la quantité d'éléments de circuit qu'on peut mettre dans une même puce étant beaucoup plus limitée pour les circuits MMIC que pour les circuits basse-fréquence au silicium. D'autre part, ces puces sont montées sur un substrat comportant des interconnexions difficiles à réaliser compte-tenu des fréquences très élevées auxquelles on travaille. La conception des interconnexions est difficile, et le coût de réalisation est élevé en raison de la très grande précision de dimensionnement qui est indispensable pour assurer la transmission des signaux à fréquence millimétrique. Ceci est d'autant plus vrai qu'il y a plus de puces MMIC dans le système. Or, l'augmentation de la complexité des fonctions qu'on souhaite réaliser entraîne une augmentation du nombre de puces.
Le montage des puces sur un substrat hybride (montage en général avec câblage filaire pour relier les puces au substrat hybride) est lui- même très coûteux lorsque les puces sont nombreuses.
La présente invention a pour but la réduction du coût des systèmes électroniques fonctionnant à des fréquences millimétriques supérieures à 45 GHz (et de préférence supérieures à 60 GHz) et comportant des puces MMIC. Pour permettre cette réduction de coût, l'invention propose d'utiliser, pour réaliser le système, un type de composant nouveau. Ce composant électronique est un composant monté en boîtier individuel et destiné à être connecté à d'autres composants d'un système électronique, par exemple sur une carte de circuit imprimé regroupant plusieurs composants ; le composant comprend au moins une puce de circuit-intégré MMIC travaillant autour d'une fréquence principale millimétrique F supérieure à 45 GHz. Le boîtier comporte au moins deux accès pour la communication de signaux électriques entre l'intérieur et l'extérieur du boîtier, le premier accès étant un accès à transition par couplage électromagnétique (transition sans contact électrique matériel) permettant la transmission de la fréquence de travail principale supérieure à 45 GHz, et le deuxième accès étant un accès à transition de type micro-strip (appelé aussi micro-ruban) ou coaxiale permettant la transmission d'une fréquence de travail F/N sous-harmonique de la fréquence principale F. La fréquence sous-harmonique est de préférence l'une des quatre fréquences suivantes : F/6 ou F/4 ou F/3 (dans des cas limites elle pourrait être de F/2).
Dans le cas d'une fréquence de travail à 77 GHz, la fréquence sous-harmonique est donc de 1/6 ou 1/4 ou 1/3 de 77GHz. Le boîtier est de préférence pourvu d'un capot conducteur placé à une distance du premier accès telle qu'il établisse, à proximité de cet accès, un court-circuit électromagnétique à la fréquence de travail principale, ce court-circuit formant un réflecteur d'ondé favorisant la transmission sans contact de cette fréquence par le premier accès.
La hauteur du capot conducteur au dessus du premier accès est de préférence égale au quart de la longueur d'onde de la fréquence de travail principale, pour réaliser ce rôle de court-circuit et de réflecteur. Cette hauteur peut aussi être un multiple impair du quart de la longueur d'onde. La ou les puces MMIC présentes dans le boîtier comporteront de préférence des moyens de multiplication dans un rapport N pour passer de la fréquence sous-harmonique à la fréquence de travail principale. Elle pourrait aussi dans certains cas comporter des moyens de division de fréquence dans le rapport N. Le composant a donc pour particularité qu'il comporte un accès sans contact matériel, dédié au passage de signaux à la fréquence principale et un accès avec contact dédié au passage de signaux à la fréquence sous- harmonique.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente un composant en boîtier millimétrique selon l'invention ; - la figure 2 représente un composant selon l'invention associé à une antenne radar.
Un exemple typique d'application dans laquelle on peut utiliser le composant selon l'invention est une application de radar, dans laquelle on veut d'une part émettre par une première antenne une fréquence millimétrique supérieure à 45 GHz, dans cet exemple une fréquence de 77 GHz, et d'autre part recevoir, par plusieurs antennes différentes, l'onde électromagnétique réfléchie par un obstacle. Il s'agit donc d'un radar multifaisceau. La présence de plusieurs antennes de réception permet d'observer la présence d'obstacles dans un champ angulaire plus large et permet d'autre part de localiser avec plus de précision l'obstacle détecté.
Selon l'invention, on propose de placer les puces MMIC individuellement dans des boîtiers fermés, dits boîtiers millimétriques, capables de travailler à des fréquences supérieures à 45 GHz, et possédant des accès extérieurs pour permettre une liaison par couplage électromagnétique sans contact à la fréquence de travail, ici 77 GHz, avec des antennes d'émission ou de réception ou avec des guides d'onde menant à ces antennes La transmission par couplage électromagnétique à ces très hautes fréquences est assurée en utilisant les propriétés de propagation libre des signaux électromagnétiques à l'intérieur du boîtier et surtout entre l'intérieur et l'extérieur. Ce boîtier comprend notamment un capot conducteur (capot métallique ou métallisé) qui enferme les lignes de propagation des signaux issus de la puce ou allant vers la puce. Le capot conducteur est situé au dessus de l'accès extérieur sans contact, à une distance telle qu'il constitue (à la fréquence principale de travail pour laquelle le composant est conçu) un court-circuit électromagnétique favorisant la transmission de signal en propagation libre par cet accès. Les accès à la fréquence de travail F de plus de 45 GHz sont des transitions par couplage électromagnétique dans l'air (ou dans un gaz ou dans le vide), et notamment des éléments conducteurs capables de rayonner vers un guide d'onde placé en regard de ces éléments, ou capables de recevoir un rayonnement électromagnétique en sortie d'un guide d'onde devant lequel ils sont placés. Le boîtier dans lequel sont enfermées les puces MMIC comporte une partie non conductrice en regard de ces éléments conducteurs de manière à laisser passer l'énergie électromagnétique entre le guide et les éléments conducteurs.
Le boîtier possède de préférence, en plus d'un ou plusieurs accès extérieurs sans contact capables d'un couplage efficace à plus de 45 GHz, des accès non capables de travailler efficacement à une fréquence supérieure à 45 GHz mais conçus pour travailler à une fréquence sous- harmonique de la fréquence de travail. Et les puces contenues dans ces composants comportent alors de préférence les moyens de multiplication de fréquence nécessaires pour passer de la fréquence sous-harmonique à la fréquence principale.
Les accès incapables de travailler à 77 GHz mais capables de travailler au-dessus de 10 GHz, voire jusqu'à 25 GHz ou un peu plus, sont réalisés au moyen de lignes micro-ruban (aussi appelées microstrip) ou des lignes coaxiales. La connexion du composant avec d'autres composants placés sur un même substrat se fera facilement du fait que les fréquences transportées sont beaucoup plus faibles que la fréquence millimétrique de travail. La figure 1 représente en coupe un composant selon l'invention.
Dans cet exemple, on ne voit qu'une puce MMIC dans le boîtier du composant mais il peut y en avoir deux ou même exceptionnellement trois.
Le boîtier est conducteur, par exemple métallique ou partiellement métallique ; il comporte de préférence une embase métallique 20, servant de substrat sur lequel est directement reportée la face arrière de la puce MMIC 22, un substrat céramique double face 24 servant aux interconnexions à l'intérieur du boîtier et vers l'extérieur du boîtier, et un capot métallique ou métallisé 25 recouvrant l'embase pour enfermer, entre l'embase et le capot, la ou les puces et le substrat de céramique. La puce MMIC 22 étant soudée directement sur l'embase, le substrat céramique 24 comporte une ouverture dans laquelle vient s'insérer la puce. Le substrat céramique 24 est de préférence un substrat métallisé sur ses deux faces : métallisation 26 sur la face avant pour constituer des lignes de transmsission, et métallisation 28 sur la face arrière pour constituer un plan de masse. Les dimensions des différentes parties diélectriques et conductrices sont telles que le composant fonctionne correctement à la fréquence de travail considérée (77 GHz). Les métallisations 26 et 28 servent d'une part à établir des interconnexions entre puces et d'autre part à établir les accès extérieurs du boîtier, aussi bien les accès capables de travailler à 77 GHz que les accès destinés à transmettre une fréquence sous-harmonique de 77 GHz.
Sur l'exemple de la figure 1 , l'accès 30 capable de transmettre la fréquence de 77 GHz comprend une transition par couplage électromagnétique sans contact permettant de faire passer le signal à la fréquence de 77GHz sans contact d'un guide d'ondes vers la puce ou réciproquement. Cette transition par couplage électromagnétique se fait de préférence par l'intermédiaire d'une ouverture 32 dans le boîtier, et plus précisément dans l'embase métallique 20. Cette ouverture 32 communique avec un guide d'onde non représenté sur la figure 1. Cette ouverture est fermée physiquement, mais pas électromagnétiquement, par le substrat céramique 24. Elle vient en regard d'une zone démétallisée 34 ménagée dans la métallisation 28 de face arrière du substrat de céramique. Sur la métallisation 26 de face avant, constituant une ligne microstrip allant de la puce MMIC 22 vers l'accès 30, on a prévu que l'extrémité 36 de la ligne microstrip aboutisse exactement en regard du centre de l'ouverture 32 de l'embase 20. Cette extrémité 36, associée à la zone démétallisée 34 qui est entourée par la métallisation 28 formant plan de masse, forme un élément rayonnant donc une antenne communiquant par exemple avec un guide d'onde placé devant l'ouverture 32, couplant directement par voie électromagnétique le guide d'onde avec la ligne microstrip. Au dessus de l'extrémité 36 de la ligne microstrip, la surface conductrice du capot est située à une distance en rapport avec la longueur d'onde de la fréquence de travail principale des sigaux transmis par cette ligne, cette distance étant telle que le capot constitue un court-circuit électromagnétique et donc un réflecteur pour l'antenne rayonnée par l'extrémité 36 de la ligne microstrip. Par exemple la hauteur H du capot au dessus de la métallisation du substrat de céramique 24, est égale au quart de la longueur d'onde correspondant à cette fréquence ou très proche de cette valeur. Elle peut aussi être un multiple impair du quart de la longueur d'onde. A l'autre extrémité de la ligne microstrip, un câblage filaire 38 est établi entre la puce et la ligne. Le couplage ainsi établi fonctionne à 77 GHz pourvu que les dimensions des zones métallisées et non métallisées, l'épaisseur du substrat céramique et la largeur de l'ouverture dans le substrat céramique, soient correctement choisies, en rapport avec la longueur d'onde correspondant à la fréquence principale de 77 GHz.
Dans l'application principale envisagée, le guide d'onde est connecté à une antenne de réception (ou d'émission) de l'onde radar réfléchie, et l'extrémité 36 de la ligne microstrip joue le rôle d'élément de réception d'une onde électromagnétique entrante dans le boîtier. L'autre accès représenté sur la figure 1, est un accès direct 40 par ligne microstrip, ne permettant pas une communication à 77 GHz mais permettant une communication à une fréquence sous harmonique qui est de préférence F/6 mais qui peut être également F/4 ou F/3, voire même F/2 dans certains cas. La ligne microstrip correspondant à cet accès est constituée dans la métallisation supérieure 26 du substrat 24 de céramique métallisée. La métallisation inférieure 28 joue le rôle de plan de masse. Le passage de la ligne de l'intérieur jusqu'à l'extérieur du boîtier se fait à travers une interruption locale du capot conducteur 25, en isolant la ligne microstrip du capot, par exemple grâce à une rondelle isolante 42 interposée entre la ligne et le bord du capot, ou par une encoche dans le capot.
Du côté de cet accès 40 à fréquence sous-harmonique, la puce MMIC est également reliée à la ligne microstrip par un câblage filaire 44.
La connexion du composant à l'extérieur peut être faite par l'accès 40 avec un autre composant semblable monté sur le même substrat hybride, ou avec un composant différent monté sur le même substrat hybride ou monté sur un circuit imprimé classique. Cette connexion peut se faire directement à partir de la surface supérieure de métallisation 26 qui sort du boîtier ; par exemple un fil peut être soudé sur cette surface supérieure ; ou bien elle peut se faire par N'intermédiaire d'une broche de connexion 46 soudée sur cette partie externe de la métallisation 26 et faisant alors partie intégrante du composant.
On comprend donc que dans un système électronique utilisant ce composant, on montera sur un substrat commun non pas des puces individuelles mais des composants du type qu'on vient de décrire, simplifiant ainsi notablement la conception et la fabrication du système.
La figure 2 représente l'utilisation du composant de la figure 1 dans un système électronique de radar. On y reconnaît l'ensemble (embase 20, puce 22, capot 25) du composant de la figure 1. Celui-ci est monté directement en contact avec une plaque métallique 50 qui est une plaque de guidage d'onde : dans cette plaque est aménagé un guide d'onde 52 dont l'extrémité de sortie vient juste en regard de l'ouverture 32 de l'embase 20, donc en regard de l'extrémité conductrice 36 qui permet un couplage électromagnétique entre le guide d'onde et le boîtier. L'autre extrémité du guide d'onde, extrémité d'entrée dans cette application, arrive en regard du centre d'émission d'une antenne parabolique de réception radar 62 usinée dans une plaque métallique 60 placée contre la plaque de guidage d'onde 50. La plaque de guidage d'onde 50 peut comporter plusieurs guides d'onde, par exemple un deuxième guide 54 débouchant sur une deuxième antenne 64 usinée dans la même plaque d'antenne 60 ; ce guide dirige l'onde électromagnétique reçue de la deuxième antenne vers un deuxième composant en boîtier millimétrique, non représenté, similaire au composant de la figure 1 et monté comme lui sur la plaque 50 formant un substrat commun à plusieurs composants selon l'invention.
Dans les réalisations des figures 1 et 2, on a considéré que le substrat de céramique 24 était fixé sur une embase métallique. On pourrait envisager qu'il n'y ait pas d'embase métallique, le boîtier étant constitué par le substrat de céramique métallisée (sur ses deux faces) et le capot métallique. Dans ce cas, l'accès 30 à transition par couplage électromagnétique est réalisé exactement de la même manière ; la zone démétallisée 34 ménagée dans la métallisation arrière 28 tient lieu de l'ouverture 32 qui n'existe pas puisque l'embase n'existe pas. Le guide d'onde arrive exactement en regard de cette démétallisation.
Dans une réalisation différente, on peut prévoir que la ligne microruban, dont une extrémité libre sert de transition électromagnétique sans contact, est portée par une puce MMIC (la même ou une autre que la puce 22) au lieu d'être portée par un substrat céramique comme c'est le cas sur les figures 1 et 2. Dans ce cas, la puce MMIC qui sert ainsi de transition électromagnétique est fixée sur une embase métallique du boîtier, une partie de la puce débordant en regard d'une ouverture ménagée dans l'embase, ouverture qui elle-même est en regard d'un guide d'onde. L'extrémité libre de ligne micro-ruban portée par la puce MMIC vient alors en regard de l'ouverture dans l'embase pour constituer une transition électromagnétique sans contact à travers cette ouverture.
Dans ce qui précède, on a proposé une transition par couplage électromagnétique qui utilise le couvercle du boîtier comme réflecteur pour réaliser la transition. Mais on peut envisager aussi d'autres types de transition par couplage, par exemple des transitions sans réflecteur, utilisant la géométrie des différents éléments du boîtier pour favoriser le couplage électromagnétique. Par exemple, une transition qui utilise un couplage électromagnétique entre une ligne microstrip en face supérieure du substrat 24 (ou de la puce 22) et une ligne à fente (démétallisation 34 en forme de fente) sur la face inférieure. Un réflecteur n'est alors pas forcément nécessaire et cette réalisation serait adaptée en particulier aux cas où le couvercle du boîtier serait en matière plastique.
On peut, à l'aide de composants selon l'invention réaliser des systèmes électroniques complets sur des substrats de circuits imprimés peu coûteux (substrats à base de résine) regroupant des composants basse - fréquence (puces de circuit-intégré ou autres composants fonctionnant à basse fréquence), et des composants fonctionnant jusqu'à environ 25 GHz. Ces composants sont reliés à des composants en boîtier millimétrique selon l'invention par des connexions microstrip, et les composants en boîtier millimétrique sont connectés à des antennes par des transitions à couplage électromagnétique sans contact et par des guides d'onde.

Claims

REVENDICATIONS
1. Composant électronique monté en boîtier individuel et destiné à être connecté à d'autres composants d'un système électronique, ce composant étant caractérisé en ce qu'il comprend au moins une puce de circuit-intégré (22) travaillant autour d'une fréquence principale millimétrique F supérieure à 45 GHz, et en ce que le boîtier comporte au moins deux accès (30 et 40) pour la communication de signaux électriques entre l'intérieur et l'extérieur du boîtier, le premier accès (30) étant un accès à transition par couplage électromagnétique sans contact permettant la transmission de signaux à la fréquence de travail principale supérieure à 45 GHz, et le deuxième accès (40) étant un accès à transition de type microruban ou coaxiale permettant la transmission d'une fréquence de travail F/N sous-harmonique de la fréquence principale F.
2. Composant selon la revendication 1, caractérisé en ce que le boîtier est pourvu d'un capot conducteur (25) placé à une distance du premier accès telle qu'il établisse, au dessus de cet accès, un court-circuit électromagnétique à la fréquence de travail principale, formant ainsi un réflecteur d'onde favorisant la transmission de cette fréquence à travers le premier accès.
3. Composant selon la revendication 2, caractérisé en ce que le capot conducteur est à une hauteur égale au quart de la longueur d'onde, ou un multiple impair du quart de la longueur d'onde de la fréquence de travail, au dessus de l'accès.
4. Composant selon l'une des revendications 1 à 3, caractérisé en ce que l'une des puces présentes dans le boîtier comporte des moyens de multiplication de fréquence dans un rapport N pour passer de la fréquence sous-harmonique à la fréquence de travail principale.
5. Composant selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend un substrat de céramique (24) dont une première face métallisée est gravée pour constituer une ligne micro-ruban (26) ayant une extrémité libre (36) et dont une autre face est également métallisée pour constituer un plan de masse, le plan de masse étant interrompu en regard de l'extrémité libre, pour permettre un couplage électromagnétique sans contact entre l'extérieur et l'intérieur du boîtier par l'extrémité de ligne.
6. Composant selon la revendication 5, caractérisé en ce que le capot conducteur est à une hauteur égale au quart de la longueur d'onde, ou un multiple impair du quart de la longueur d'onde de la fréquence de travail, au dessus de l'extrémité libre de la ligne micro-ruban.
7. Composant selon l'une des revendications 5 et 6, caractérisé en ce qu'il comporte une embase métallique (20) ouverte en regard de l'extrémité (36) de ligne micro-ruban.
8. Composant selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte une ou plusieurs puces MMIC fixées sur une embase, l'une des puces comportant une ligne micro-ruban dont une extrémité libre sert de transition électromagnétique sans contact, cette puce débordant au dessus d'une ouverture dans l'embase de manière que l'extrémité libre de la ligne soit située en regard de l'ouverture, afin de constituer une transition électromagnétique sans contact à travers cette ouverture.
EP03799522A 2002-11-22 2003-11-18 Composant electronique en boitier pour applications a des frequences millimetriques Withdrawn EP1563567A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0214684A FR2847723B1 (fr) 2002-11-22 2002-11-22 Composant electronique en boitier pour applications a des frequences millimetriques
FR0214684 2002-11-22
PCT/EP2003/050846 WO2004049496A1 (fr) 2002-11-22 2003-11-18 Composant electronique en boitier pour applications a des frequences millimetriques

Publications (1)

Publication Number Publication Date
EP1563567A1 true EP1563567A1 (fr) 2005-08-17

Family

ID=32241535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03799522A Withdrawn EP1563567A1 (fr) 2002-11-22 2003-11-18 Composant electronique en boitier pour applications a des frequences millimetriques

Country Status (9)

Country Link
US (1) US7388450B2 (fr)
EP (1) EP1563567A1 (fr)
JP (1) JP2006507740A (fr)
KR (1) KR20050059339A (fr)
CN (1) CN100517861C (fr)
AU (1) AU2003300245A1 (fr)
FR (1) FR2847723B1 (fr)
HK (1) HK1086950A1 (fr)
WO (1) WO2004049496A1 (fr)

Families Citing this family (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658535B2 (ja) * 2004-07-28 2011-03-23 京セラ株式会社 高周波モジュール
FR2879830B1 (fr) 2004-12-20 2007-03-02 United Monolithic Semiconduct Composant electronique miniature pour applications hyperfrequences
EP1784063A1 (fr) * 2005-11-08 2007-05-09 Alcatel Lucent Carte de circuit avec composants électroniques montés et méthode de fabrication d'une telle carte de circuit
EP2284881B1 (fr) * 2008-05-12 2021-02-17 Mitsubishi Electric Corporation Module haute fréquence avec un boîtier et plusieurs circuits haute fréquence
CN102414911A (zh) * 2009-04-28 2012-04-11 三菱电机株式会社 波导变换部的连接构造、其制造方法、以及使用该连接构造的天线装置
US8901719B2 (en) * 2009-05-08 2014-12-02 Optis Cellular Technology, Llc Transition from a chip to a waveguide port
US8912858B2 (en) * 2009-09-08 2014-12-16 Siklu Communication ltd. Interfacing between an integrated circuit and a waveguide through a cavity located in a soft laminate
DE102010063167B4 (de) * 2010-12-15 2022-02-24 Endress+Hauser SE+Co. KG Mit hochfrequenten Mikrowellen arbeitendes Füllstandsmessgerät
US9059329B2 (en) * 2011-08-22 2015-06-16 Monolithic Power Systems, Inc. Power device with integrated Schottky diode and method for making the same
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
CN103151340B (zh) * 2013-02-08 2016-04-20 日月光半导体制造股份有限公司 天线封装模块及其制造方法
JPWO2014156223A1 (ja) * 2013-03-28 2017-02-16 株式会社日立国際電気 高周波回路装置
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
JP5959497B2 (ja) * 2013-12-25 2016-08-02 株式会社東芝 半導体パッケージ
JP2015126025A (ja) * 2013-12-25 2015-07-06 株式会社東芝 半導体パッケージ
KR20150075347A (ko) * 2013-12-25 2015-07-03 가부시끼가이샤 도시바 반도체 패키지, 반도체 모듈 및 반도체 디바이스
JP5921586B2 (ja) * 2014-02-07 2016-05-24 株式会社東芝 ミリ波帯用半導体パッケージおよびミリ波帯用半導体装置
JP2015149649A (ja) 2014-02-07 2015-08-20 株式会社東芝 ミリ波帯用半導体パッケージおよびミリ波帯用半導体装置
JP2015149650A (ja) 2014-02-07 2015-08-20 株式会社東芝 ミリ波帯用半導体パッケージおよびミリ波帯用半導体装置
US9583811B2 (en) * 2014-08-07 2017-02-28 Infineon Technologies Ag Transition between a plastic waveguide and a semiconductor chip, where the semiconductor chip is embedded and encapsulated within a mold compound
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
JP6005228B1 (ja) * 2015-08-27 2016-10-12 株式会社フジクラ 変換器
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
KR102228555B1 (ko) 2019-02-07 2021-03-16 국방과학연구소 반도체 칩 패키지 및 반도체 칩 패키징 방법
CN114497948B (zh) * 2022-01-26 2023-05-16 中国电子科技集团公司第十三研究所 一种毫米波转换结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982250A (en) * 1997-11-26 1999-11-09 Twr Inc. Millimeter-wave LTCC package
DE69938271T2 (de) * 1998-05-29 2009-03-19 Kyocera Corp. Hochfrequenzmodul
US6040739A (en) * 1998-09-02 2000-03-21 Trw Inc. Waveguide to microstrip backshort with external spring compression
US6384691B1 (en) * 2000-03-15 2002-05-07 Tlc Precision Wafer Technology, Inc. Millimeter wave low phase noise signal source module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004049496A1 *

Also Published As

Publication number Publication date
FR2847723A1 (fr) 2004-05-28
CN100517861C (zh) 2009-07-22
AU2003300245A1 (en) 2004-06-18
US7388450B2 (en) 2008-06-17
WO2004049496A1 (fr) 2004-06-10
KR20050059339A (ko) 2005-06-17
CN1714467A (zh) 2005-12-28
US20060097818A1 (en) 2006-05-11
FR2847723B1 (fr) 2006-02-03
HK1086950A1 (en) 2006-09-29
JP2006507740A (ja) 2006-03-02

Similar Documents

Publication Publication Date Title
EP1563567A1 (fr) Composant electronique en boitier pour applications a des frequences millimetriques
EP1825558B1 (fr) Composant electronique miniature pour applications hyperfrequences
WO2010127949A1 (fr) Composant miniature hyperfrequences pour montage en surface
US5545924A (en) Three dimensional package for monolithic microwave/millimeterwave integrated circuits
EP0210903B1 (fr) Dispositif de couplage entre un guide d'onde métallique, un guide d'onde diélectrique et un composant semiconducteur, et mélangeur utilisant ce dispositif de couplage
EP0627765B1 (fr) Dispositif semiconducteur incluant un élément semiconducteur du type "FLIP-CHIP"
EP0766342A1 (fr) Elément d'antenne à hyperfréquences
JP2008244289A (ja) 電磁シールド構造
EP1466384A1 (fr) Dispositif pour la reception et/ou l emission d ondes e lectromagnetiques a diversite de rayonnement
FR2873236A1 (fr) Dispositif rayonnant omnidirectionnel large bande
EP0880196B1 (fr) Source monopulse compacte pour une antenne à optique focalisante
WO2009156489A1 (fr) Bloc frontal avec antenne integree
FR2935198A1 (fr) Element rayonnant compact a faibles pertes
EP3537541B1 (fr) Découplage électromagnétique
EP3537540B1 (fr) Découplage électromagnétique
FR2960347A1 (fr) Element rayonnant comprenant un dispositif de filtrage, notamment pour un reseau formant une antenne active a balayage electronique
EP0881706A1 (fr) Source à deux voies pour antenne à optique focalisante
FR2745119A1 (fr) Boitier d'encapsulation de circuit integre pour applications hyperfrequences et son procede de fabrication
FR2943464A1 (fr) Element rayonnant bas cout, notamment pour antenne active a balayage electronique
FR2714541A1 (fr) Procédé d'interconnexion de fonctions hyperfréquence.
FR2664448A1 (fr) Dispositif emetteur-recepteur incluant un circuit integre comprenant un circulateur/duplexeur de frequences.
FR2936610A1 (fr) Module d'emission et de reception de signaux hyperfrequences en bande x sur circuit multicouche et antenne active

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20081211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100827