EP0880196B1 - Source monopulse compacte pour une antenne à optique focalisante - Google Patents

Source monopulse compacte pour une antenne à optique focalisante Download PDF

Info

Publication number
EP0880196B1
EP0880196B1 EP98401179A EP98401179A EP0880196B1 EP 0880196 B1 EP0880196 B1 EP 0880196B1 EP 98401179 A EP98401179 A EP 98401179A EP 98401179 A EP98401179 A EP 98401179A EP 0880196 B1 EP0880196 B1 EP 0880196B1
Authority
EP
European Patent Office
Prior art keywords
source according
waveguides
source
transmission
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98401179A
Other languages
German (de)
English (en)
Other versions
EP0880196A1 (fr
Inventor
Thierry Dousset
Xavier Delestre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP0880196A1 publication Critical patent/EP0880196A1/fr
Application granted granted Critical
Publication of EP0880196B1 publication Critical patent/EP0880196B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements

Definitions

  • the present invention relates to a primary source to at least two-way, so-called monopulse, compact for an optical antenna focusing, for example Cassegrain type or lens, connected to a circuit microwave transmission and reception made for example in microstrip technology. It applies in particular to radars millimeters equipping motor vehicles. More generally, she applies to millimeter radars requiring a high level integration and a low cost of implementation.
  • a so-called monopulse source has for example two paths and simultaneously generates two radiation patterns, a diagram sum and a difference diagram.
  • This source must present compatible radio characteristics of adaptation performance and radiation of a complete focusing antenna. These features particularly the adaptation frequency band, the formation of the diagram of the difference path in the plane of the electric field E and the openings and the relative level of channel radiation patterns sum and difference.
  • a solution for realizing a primary source satisfying some previous criteria is to use an excited pyramidal horn by a magic tee folded in the plane of the electric field E. Next access used, this magic tee allows to generate in the cornet the transverse mode electric TE01, even mode, or TM11 magnetic transverse mode, mode odd, respectively forming the sum and difference diagrams.
  • this solution has a deep space requirement important and requires, for its realization, the manufacture and assembly of several pieces of high precision leading to the use of methods expensive machining processes such as wire electro-erosion or electroforming.
  • Another solution is to make a printed source on the same substrate as the microwave transmission circuit.
  • this source must consist of a network of radiating elements of "Patch” fed for example by a hybrid ring.
  • This solution has the advantage of not requiring any mechanical parts and have a minimum footprint in depth but does not meet the requirements of requirements for electromagnetic shielding and protection against environmental constraints for the components of the transmission and microwave reception.
  • the radiating elements of "Patch” have a frequency selective operation and are therefore very sensitive to the characteristics of the substrate such as in particular its dielectric constant or its thickness, as well as etching tolerances.
  • the object of the invention is to overcome the aforementioned drawbacks and allow in particular to achieve a source meeting the criteria outlined previously.
  • the subject of the invention is a monopulse source antenna for focusing optics, as defined by claim 1.
  • the main advantages of the invention are that it also applies well to an antenna with folded optics that a direct optics antenna, that it allows an access of the source by a microstrip line, that it allows to modify the directivity of the radiation patterns in the plane magnetic H and in the electrical plane E, it allows low leakage radio, that it allows to dispose the active components of the circuit transmission and reception near the source, that it is simple to implement and is economical.
  • FIG. 1a shows an example of an antenna with folded optics powered by a primary source 1 called monopulse, that is to say a source two-way, a sum channel ⁇ and a difference channel ⁇ .
  • the antenna comprises in particular a main reflector 2, for example of the type parabolic, and a subreflector 3.
  • the primary source 1 is arranged behind the main reflector 2 and radiates through a hole 4 made in this last.
  • the subreflector 3 is arranged opposite the source primary 1.
  • the rays 5 emitted from the primary source 1 are reflected on the subreflector 3 and then on the main reflector 2. After reflection on the latter, the radii 5 'are emitted in parallel at the antenna output.
  • the invention applies for a folded optical antenna, but it can also be applied for example for a direct optical antenna as shown in Figure 1b.
  • the latter includes dielectric lens 11 which focuses to infinity the rays 5 emitted by the source 4.
  • FIG. 2 shows an exemplary embodiment according to the art prior.
  • Primary source 1 uses a rectangular waveguide 26 prolonged by a pyramidal cone 27.
  • the sum and difference paths of a tee magic 28 are fed through guide-microstrip transitions 21, 22.
  • Transmitting and receiving circuits 23, in technology microstrip, are in turn implanted on a dielectric substrate 24, itself for example disposed on a metal sole 25.
  • the waveguide is excited by the magic tee 28 folded in the plane of the electric field E.
  • this magic tee can generate in the cornet the TE10 transverse electric mode, even mode, or transverse mode Magnetic TM11, odd mode, respectively forming the diagrams of radiation sum and difference.
  • the access of the way difference of the tee magic can be obtained, via an elbow made in the plane of the field electric E, in the same plane as the access of the way sum.
  • This source can then be connected to the transmission and reception circuit 23 by via two microstrip-guide transitions 21, 22.
  • This solution unfortunately has a large footprint in depth, the order for example of 35 mm in millimetric band, and requires, as previously mentioned, the manufacture and assembly of several pieces of high precision, such as for example a magic tee 28 and transitions microstrip-guide 21, 22, which leads to the use of machining methods expensive. These methods are, for example, wire EDM or electro-forming.
  • FIG. 3 shows another known example of embodiment.
  • the source is printed on the same substrate as the transmission and reception. It comprises in particular a hybrid ring 31 balanced type 4 ⁇ / 4 and a network of two pairs of elements or "patches" 32, 33.
  • the ring 31 feeds the radiating elements by two outputs 34, 35 one of which is elongated by a quarter wavelength ⁇ / 4 relative to each other so as to feed in phase or opposition of phase the two pairs of radiating elements 32, 33 according to the input 36, 37 of the ring that is excited.
  • the radiation pattern of the sum track is thus formed when the two pairs are excited in phase and the radiation pattern of the difference way is thus formed when the two pairs are excited in phase opposition.
  • this embodiment has the advantage of not require no mechanical parts and present a clutter minimal in depth but it does not meet the shielding requirements electromagnetic and protective vis-à-vis the environmental constraints for the components of the microwave transmission and reception circuit.
  • the radiating "patches" 32, 33 exhibit an operation selective in frequency and are therefore very sensitive to the characteristics of the substrate such as in particular its dielectric constant or its thickness as well as engraving tolerances.
  • FIGS. 4, 5 and 6 show an exemplary embodiment possible of a primary source according to the invention.
  • This source has two radiating waveguides 41, 42 machined in the metal sole 25 supporting the microwave transmission and reception circuit of the antenna, this circuit being for example in microstrip technology and / or MMIC according to the Anglo-Saxon expression "Monolithic Microwave Integrated Circuit".
  • the transmission and reception circuit is for example arranged on a substrate dielectric 24, itself mounted on the metal soleplate 25.
  • the lines microstrip are for example screen printed or etched on the substrate.
  • the long side of the waveguides 41, 42 is for example sized for allow the propagation of the transverse electric mode TE01 and to obtain in the magnetic plane H, the desired directivity of the radiated diagram in sum way.
  • the distance between the two waveguides 41, 42 is example determined to obtain in the plane of the electric field E, the desired directivity of the diagram radiated in sum channel.
  • the ground plane metal of the microstrip circuit is removed at right of the two waveguides 41, 42 so as to let the radiation. Etching 60, 61 of the ground plane on the substrate dielectric then bypasses the end of the guides.
  • Each waveguide is for example excited by a transition 44, 45 with the transmission circuit and reception, for example in microstrip technology, the transition being constituted for example by an engraved pattern 44, 45 on the same substrate as the one supporting the microstrip circuit, and by a short circuit microwave 43 closing the waveguide.
  • the significant mismatch of the radiating mouth 46 of each guide 41, 42 is compensated by a section change placed at a given distance from this mouthpiece, each waveguide extending into a waveguide reduced 47, 48 from this section change.
  • Section reduction is for example performed on the long side of the guide, in a factor of two for example.
  • Each transition 44, 45 with the microstrip circuit is positioned in the section change plan.
  • a transition 44, 45 is adapted by the microwave short-circuit 43 closing the waveguide reduced 47, 48 and placed at a distance substantially equal to a quarter of the wavelength ⁇ / 4 of the signal transmitted by the microstrip circuit.
  • Each transition 44, 45 is for example powered by a microstrip line 49, 50 passing under a tunnel 51, 52 made in the wall of the reduced waveguide.
  • Each transition 44, 45 is then for example connected to a hybrid ring 53 of the type 4 ⁇ / 4 of which one of the outputs 55 is extended by a quarter of wavelength ⁇ / 4 with respect to the other 54.
  • These links 49, 54, 50, 55 allow to feed in phase or in phase opposition the two radiating elements according to the inlet 56, 57 of the ring 53 which is excited and thus make it possible to form the diagrams of the sum and difference channels, the difference diagram being for example obtained in the plane of the field E.
  • the two inputs 56, 57 of the hybrid ring are connected to the remainder of the transmission and reception circuit 23.
  • Each radiating element aforementioned is in fact constituted by a mouth 46 of waveguide and a transition 44, 45 with the microstrip circuit. Active components of the circuit transmission and reception may be placed near the source, this which allows in particular to limit the microwave losses.
  • the protection of the transmission and reception circuit microwave against parasitic electromagnetic radiation outside the operating band of the radar is ensured by the presence of waveguides that act as a high-pass filter.
  • the section of the waveguides 41, 42, 47, 48 is for example oblong instead of being rectangular, this notably avoids the use of expensive machining methods such as wire electro-erosion.
  • the oblong sections can, they simply be realized by a means economical machining such as milling.
  • the architecture of a source according to the invention allows it to present a wide band passing through, in particular through the use of a non-excitation element selective, making the manufacturing tolerances of the parts less sensitive mechanical and microstrip circuits, and thus further contributes to reducing manufacturing costs.
  • Short-circuit 43 for adapting transitions 44, 45 and the guides reduced section 47, 48 can be machined in the same room. it in particular to reduce the number of workpieces.
  • This piece can be assembled and positioned relative to the metal sole 25, and therefore in particular with respect to the microstrip circuit and the waveguides 41, 42 by any method, such as, for example, screwing, brazing or collage.
  • this room 43, 47, 48 may be electrically connected by at least one point, but preferably by several, to the metal sole 25 supporting the circuit in technology microstrip.
  • metallized holes can be made in the dielectric substrate giving for example on the periphery of the guides 41, 42 machined in the metal sole 25.
  • the metal soleplate 25 in which the radiating guides 41, 42 are made may for example be an integral part of the housing containing the transmit and receive circuit, which makes the realization even more compact and also reduces the number of workpieces.
  • Figures 7a and 7b show a possible embodiment of a primary source according to the invention for obtaining a diagram of particular radiation of the sum and / or the difference of the source, for example to get a better adaptation to the characteristics of focusing optics.
  • false slots 71, 72 are added to the vicinity of the waveguides 41, 42 machined in the metal soleplate 25. These false slots 71, 72 are holes that do not completely cross the sole 25. These false slots, which have for example the same section transversal waveguides, are actually traps that are excited by coupling thanks to the proximity of the waveguides. The energy captured by coupling with these waveguides 41, 42 is radiated.
  • This surface 73, as well as the false slots 71, 72 are for example obtained during of the same machining operation as the waveguides 41, 42 of the soleplate 25.
  • the decrease in the thickness of the sole 25 begins substantially at right 74 waveguides 41, 42 and false slots 71, 72.
  • FIGS. 4, 5, 6 and 7 describe an exemplary embodiment of a monopulse two-way primary source.
  • the invention can nevertheless be applied for three-way sources, for example with a sum channel and a path difference in the plane of the electric field E and a path difference in the plane of the magnetic field H.
  • This source is then by example obtained by combining four radiating elements powered by four hybrid rings, each radiating element being for example consisting of a waveguide mouth 46 and a transition with the microstrip circuit as previously described.
  • the invention can also be applied for the realization a primary source illuminating a multi-beam antenna.
  • This source is for example formed by several radiating elements, such as those mentioned above, placed in the focal plane of a type reflector system Cassegrain or in the focal plane of a dielectric lens, each element beam generating a beam whose inclination depends on the position of the elementary source with respect to the focus.
  • the invention allows a very good protection circuits against environmental constraints, such as for example moisture or corrosion, partially or completely filling guides radiating by a dielectric material.
  • environmental constraints such as for example moisture or corrosion
  • Such protection is particularly advantageous for radars equipping automobiles and which are likely to suffer the aforementioned constraints.
  • a source produced according to the invention occupies a small space e depth, this may for example be of the order of 5 mm in millimetric band, this congestion ranging from the outer end of the short-circuit microwave 43 to the output 46 of a waveguide 41, 42.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

La présente invention concerne une source primaire à au moins deux voies, dite monopulse, compacte pour une antenne à optique focalisante, par exemple de type Cassegrain ou à lentille, reliée à un circuit d'émission et de réception hyperfréquence réalisé par exemple en technologie à microruban. Elle s'applique notamment aux radars millimétriques équipant des véhicules automobiles. Plus généralement, elle s'applique à des radars millimétriques nécessitant un haut niveau d'intégration et un faible coût de réalisation.
Une source dite monopulse présente par exemple deux voies et génère simultanément deux diagrammes de rayonnement, un diagramme somme et un diagramme différence. Cette source doit présenter des caractéristiques radioélectriques compatibles des performances d'adaptation et de rayonnement d'une antenne focalisante complète. Ces caractéristiques concement notamment la bande de fréquence d'adaptation, la formation du diagramme de la voie différence dans le plan du champ électrique E et les ouvertures et le niveau relatif des diagrammes de rayonnement des voies somme et différence.
Dans certaines applications, telles qu'une application à des véhicules automobiles par exemple, la source doit en outre répondre notamment à des critères techniques, technologiques et économiques d'ordre général et aussi particuliers. Ces critères sont par exemple les suivant :
  • facilité de connexion et d'implantation au plus près du circuit d'émission et de réception hyperfréquence, ce dernier étant réalisé en technologie en micro-ruban, dite microstrip, de manière à minimiser les longueurs de lignes dont les pertes importantes dans la bande millimétrique, de l'ordre par exemple de 80 dB, peuvent limiter rapidement les performances du système ;
  • blindage du circuit d'émission et de réception hyperfréquence vis-à-vis des contraintes électromagnétiques externes en dehors de la bande de fonctionnement du système ;
  • faible encombrement en profondeur de la source primaire, par exemple inférieur à 5 mm ;
  • étanchéité et éventuellement herméticité du circuit d'émission et de réception vis-à-vis des contraintes d'environnement extérieures, l'ensemble constitué du circuit d'émission et de réception et de la source primaire pouvant constituer un macro-composant ;
  • réalisation par des moyens de fabrication classiques et présentation d'un fonctionnement tolérant vis-à-vis des dispersions dimensionnelles obtenues avec ces moyens de fabrication dans le cadre d'une production de masse à très faible coût.
Une solution pour réaliser une source primaire satisfaisant à certains critères précédents, consiste à utiliser un cornet pyramidal excité par un té magique replié dans le plan du champ électrique E. Suivant l'accès utilisé, ce té magique permet de générer dans le cornet le mode transverse électrique TE01, mode pair, ou le mode transverse magnétique TM11, mode impair, formant respectivement les diagrammes somme et différence. Cependant cette solution présente un encombrement en profondeur important et nécessite, pour sa réalisation, la fabrication et l'assemblage de plusieurs pièces de grande précision conduisant à l'emploi de méthodes d'usinage onéreuses telles que l'électro-érosion à fils ou l'électro-formage.
Une autre solution consiste à réaliser une source imprimée sur le même substrat que le circuit d'émission hyperfréquence. Pour former les diagrammes de rayonnement présentant la directivité souhaitée, cette source doit être constituée d'un réseau d'éléments rayonnants de type « patch » alimentés par exemple par un anneau hybride. Cette solution présente l'avantage de ne nécessiter aucune pièce mécanique et de présenter un encombrement minimal en profondeur mais ne répond pas aux exigences de blindage électromagnétique et de protection vis-à-vis des contraintes d'environnement pour les composants du circuit d'émission et de réception hyperfréquence. Par ailleurs, les éléments rayonnants de type « patch » présentent un fonctionnement sélectif en fréquence et sont donc très sensibles aux caractéristiques du substrat telles que notamment sa constante diélectrique ou son épaisseur, ainsi qu'aux tolérances de gravure.
Le but de l'invention est de pallier les inconvénients précités et de permettre notamment de réaliser une source répondant aux critères exposés précédemment. A cet effet, l'invention a pour objet une source monopulse pour antenne à optique focalisante, comme définie par la revendication 1.
L'invention a pour principaux avantages qu'elle s'applique aussi bien à une antenne à optique repliée qu'à une antenne à optique directe, qu'elle permet un accès de la source par une ligne microstrip, qu'elle permet de modifier la directivité des diagrammes de rayonnement dans le plan magnétique H et dans le plan électrique E, qu'elle permet de faibles fuites radioélectriques, qu'elle permet de disposer les composants actifs du circuit d'émission et de réception à proximité de la source, qu'elle est simple à mettre en oeuvre et qu'elle est économique.
D'autres caractéristiques et avantages de l'invention apparaítront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
  • la figure 1a, un exemple d'antenne à optique repliée alimentée par une source primaire monopulse ;
  • la figure 1b, un exemple d'antenne à optique directe alimentée par une source primaire monopulse ;
  • la figure 2, un exemple de réalisation selon l'art antérieur d'une source primaire ;
  • la figures 3, un autre exemple selon l'art antérieur d'une source primaire ;
  • la figure 4, un mode de réalisation possible d'un exemple de source selon l'invention, par une vue de face suivant F', en regard de la semelle métallique;
  • la figure 5, une vue en coupe suivant F de la figure 4 ;
  • la figure 6, un détail de la figure 4 au niveau des éléments rayonnant ;
  • les figures 7a et 7b, un mode de réalisation possible de source selon l'invention où l'usinage de la semelle métallique modifie le diagramme de rayonnement, la figure 7b étant une vue en coupe de la figure 7a selon AA..
La figure 1a présente un exemple d'antenne à optique repliée alimentée par une source primaire 1 dite monopulse, c'est-à-dire une source à deux voies, une voie somme Σ et une voie différence Δ. L'antenne comporte notamment un réflecteur principal 2, par exemple de type parabolique, et un sous-réflecteur 3. La source primaire 1 est disposée derrière le réflecteur principal 2 et rayonne à travers un trou 4 réalisé dans ce dernier. Le sous-réflecteur 3 est disposé en regard de la source primaire 1. Les rayons 5 émis depuis la source primaire 1 se réfléchissent sur le sous-réflecteur 3 puis sur le réflecteur principal 2. Après réflexion sur ce dernier, les rayons 5' sont émis parallèlement en sortie d'antenne.
L'invention s'applique pour une antenne à optique repliée, mais elle peut aussi s'appliquer par exemple pour une antenne à optique directe telle qu'illustrée par la figure 1b. Cette dernière comporte par exemple une lentille diélectrique 11 qui focalise à l'infini les rayons 5 émis par la source 4.
La figure 2 présente un exemple de réalisation selon l'art antérieur. La source primaire 1 utilise un guide d'onde rectangulaire 26 prolongé par un cornet pyramidal 27. Les voies somme et différence d'un té magique 28 sont alimentées par l'intermédiaire de transitions guide-microstrip 21, 22. Les circuits d'émission et de réception 23, en technologie microstrip, sont quant à eux implantés sur un substrat diélectrique 24, lui-même par exemple disposé sur une semelle métallique 25. Le guide d'onde est excité par le té magique 28 replié dans le plan du champ électrique E. Suivant l'accès utilisé, ce té magique permet de générer dans le cornet le mode transverse électrique TE10, mode pair, ou le mode transverse magnétique TM11, mode impair, formant respectivement les diagrammes de rayonnement somme et différence. L'accès de la voie différence du té magique peut être obtenu, via un coude réalisé dans le plan du champ électrique E, dans le même plan que l'accès de la voie somme. Cette source peut alors être connectée au circuit d'émission et de réception 23 par l'intermédiaire de deux transitions microstrip-guide 21, 22. Cette solution présente malheureusement un encombrement important en profondeur, de l'ordre par exemple de 35 mm en bande millimétrique, et nécessite, comme indiqué précédemment, la fabrication et l'assemblage de plusieurs pièces de grande précision, telles que par exemple un té magique 28 et les transitions microstrip-guide 21, 22, ce qui conduit à l'emploi de méthodes d'usinage onéreuses. Ces méthodes sont par exemple l'électro-érosion à fils ou l'électro-formage.
La figure 3 présente un autre exemple connu de réalisation. La source est imprimée sur le même substrat que le circuit d'émission et de réception. Elle comporte notamment un anneau hybride 31 équilibré de type 4λ/4 et un réseau de deux paires d'éléments ou « patches » rayonnants 32, 33. Pour former les diagrammes de rayonnement présentant la directivité souhaitée, l'anneau 31 alimente les éléments rayonnants par deux sorties 34, 35 dont l'une est allongée d'un quart de longueur d'onde λ/4 par rapport à l'autre de manière à alimenter en phase ou en opposition de phase les deux paires d'éléments rayonnant 32, 33 suivant l'entrée 36, 37 de l'anneau qui est excitée. Le diagramme de rayonnement de la voie somme est ainsi formé lorsque les deux paires sont excitées en phase et le diagramme de rayonnement de la voie différence est ainsi formé lorsque les deux paires sont excitées en opposition de phase. Comme il a été indiqué précédemment, cet exemple de réalisation présente l'avantage de ne nécessiter aucune pièce mécanique et de présenter un encombrement minimal en profondeur mais il ne répond pas aux exigences de blindage électromagnétique et de protection vis-à-vis des contraintes d'environnement pour les composants du circuit d'émission et de réception hyperfréquence. Par ailleurs, les « patches » rayonnant 32, 33 présentent un fonctionnement sélectif en fréquence et sont donc très sensibles aux caractéristiques du substrat telles que notamment sa constante diélectrique ou son épaisseur ainsi qu'aux tolérances de gravure.
Les figures 4, 5 et 6 présentent un exemple de réalisation possible d'une source primaire selon l'invention. Cette source comporte deux guides d'onde rayonnant 41, 42 usinés dans la semelle métallique 25 supportant le circuit d'émission et de réception hyperfréquence de l'antenne, ce circuit étant par exemple en technologie microstrip et/ou MMIC selon l'expression anglo-saxonne « Monolithic Microwave Integrated Circuit ». Le circuit d'émission et de réception est par exemple disposé sur un substrat diélectrique 24, lui-même monté sur la semelle métallique 25. Les lignes microstrip sont par exemple sérigraphiées ou gravées sur le substrat. Le grand côté des guides d'onde 41, 42 est par exemple dimensionné pour permettre la propagation du mode transverse électrique TE01 et pour obtenir dans le plan magnétique H, la directivité souhaitée du diagramme rayonné en voie somme. La distance entre les deux guides d'onde 41, 42 est par exemple déterminée pour obtenir dans le plan du champ électrique E, la directivité souhaitée du diagramme rayonné en voie somme. Avantageusement, il est possible de modifier la directivité des diagrammes de rayonnement dans le plan du champ magnétique H en jouant sur la dimension du grand côté des guides d'onde 41, 42 et il est possible de modifier cette directivité dans le plan du champ électrique E en jouant sur la distance séparant ces deux guides.
Le métal du plan de masse du circuit microstrip est supprimé au droit des deux guides d'onde 41, 42 de façon à laisser passer les rayonnements. La gravure 60, 61 du plan de masse sur le substrat diélectrique contourne alors l'extrémité des guides. Chaque guide d'onde est par exemple excité par une transition 44, 45 avec le circuit d'émission et de réception, par exemple en technologie microstrip, la transition étant constituée par exemple par un motif gravé 44, 45 sur le même substrat que celui supportant le circuit microstrip, et par un court-circuit hyperfréquence 43 fermant le guide d'onde. La désadaptation importante de l'embouchure rayonnante 46 de chaque guide 41,42 est compensée par un changement de section placé à une distance donnée de cette embouchure, chaque guide d'onde se prolongeant en un guide d'onde réduit 47, 48 à partir de ce changement de section. La réduction de section est par exemple réalisée sur le grand côté du guide, dans un facteur deux par exemple. Chaque transition 44, 45 avec le circuit microstrip est positionnée dans le plan de changement de section. Une transition 44, 45 est adaptée par le court-circuit hyperfréquence 43 fermant le guide d'onde réduit 47, 48 et placé à une distance sensiblement égale au quart de la longueur d'onde λ/4 du signal transmis par le circuit microstrip. Chaque transition 44, 45 est par exemple alimentée par une ligne microstrip 49, 50 passant sous un tunnel 51, 52 effectué dans la paroi du guide d'onde réduit. Chaque transition 44, 45 est alors par exemple reliée à un anneau hybride 53 équilibré de type 4λ/4 dont l'une des sorties 55 est allongée d'un quart de longueur d'onde λ/4 par rapport à l'autre 54. Ces liaisons 49, 54, 50, 55 permettent d'alimenter en phase ou en opposition de phase les deux éléments rayonnant suivant l'entrée 56, 57 de l'anneau 53 qui est excitée et permettent ainsi de former les diagrammes des voies somme et différence, le diagramme différence étant par exemple obtenu dans le plan du champ électrique E. Les deux entrées 56, 57 de l'anneau hybride sont reliées au reste du circuit 23 d'émission et de réception. Chaque élément rayonnant précités est en fait constitué d'une embouchure 46 de guide d'onde et d'une transition 44, 45 avec le circuit microstrip. Les composants actifs du circuit d'émission et de réception peuvent être placés à proximité de la source, ce qui permet notamment de limiter les pertes hyperfréquence. Avantageusement, la protection du circuit d'émission et de réception hyperfréquence contre les rayonnements électromagnétiques parasites extérieurs et situés en dehors de la bande de fonctionnement du radar, est assurée par la présence des guides d'onde qui jouent le rôle de filtre passe-haut.
La section des guides d'onde 41, 42, 47, 48 est par exemple oblongue au lieu d'être rectangulaire, cela évite notamment l'utilisation de méthodes d'usinage onéreuses telles que l'électro-érosion à fils. Les sections oblongues peuvent, elles, être simplement réalisées par un moyen d'usinage économique tel que le fraisage. Par ailleurs , l'architecture d'une source selon l'invention permet à celle-ci de présenter une large bande passante, grâce notamment à l'utilisation d'un élément d'excitation non sélectif, ce qui rend moins sensibles les tolérances de fabrication des pièces mécaniques et du circuit microstrip, et donc contribue encore à réduire les coûts de fabrication.
Le court-circuit 43 d'adaptation des transitions 44, 45 et les guides de section réduite 47, 48 peuvent être usinés dans une même pièce. Cela permet notamment de réduire le nombre de pièces à usiner. Cette pièce peut être assemblée et positionnée par rapport à la semelle métallique 25, et donc notamment par rapport au circuit microstrip et aux guides d'onde 41, 42 par un procédé quelconque, telle que par exemple le vissage, le brasage ou le collage. Afin de limiter les fuites hyperfréquence, cette pièce 43, 47, 48 peut être reliée électriquement par au moins un point, mais de préférence par plusieurs, à la semelle métallique 25 supportant le circuit en technologie microstrip. A cet effet, des trous métallisés peuvent être réalisés dans le substrat diélectrique donnant par exemple sur la périphérie des guides d'onde 41, 42 usinés dans la semelle métallique 25.
La semelle métallique 25 dans laquelle les guides rayonnant 41, 42 sont réalisés peut par exemple faire partie intégrante du boítier contenant le circuit d'émission et de réception, ce qui rend encore la réalisation plus compacte et réduit aussi le nombre de pièces à usiner.
Les figures 7a et 7b présente un mode de réalisation possible d'une source primaire selon l'invention permettant d'obtenir un diagramme de rayonnement particulier des voies somme et/ou différence de la source, par exemple pour obtenir une meilleure adaptation aux caractéristiques de l'optique focalisante. A cet effet, des fausses fentes 71, 72 sont ajoutées au voisinage des guides d'onde 41, 42 usinés dans la semelle métallique 25. Ces fausses fentes 71, 72 sont des trous qui ne traversent pas en totalité la semelle 25. Ces fausses fentes, qui ont par exemple la même section transversale que les guides d'onde, sont en fait des pièges qui sont excités par couplage grâce à la proximité des guides d'ondes. L'énergie captée par couplage avec ces guides d'onde 41, 42 est rayonnée. De la sorte il y a l'équivalent de quatre sources rayonnantes, dont on peut par exemple contrôler la phase en jouant sur la position des pièges et de leur profondeur. Cela permet en particulier d'obtenir un diagramme de rayonnement plus directif, ce qui évite les pertes d'énergie, notamment dans le cas d'application à une optique focalisante. En effet, un diagramme plus directif évite qu'une partie du rayonnement ne soit pas intercepté par la lentille, ce qui diminue donc les pertes précitées qui sont appelées généralement pertes par « spill-over ». Les fausses fentes 71, 72 ont notamment pour effet de supprimer la coïncidence des centres de phase des plans des champs électrique et magnétique. Selon l'invention, pour faire coïncider de nouveau ces centres de phase, l'épaisseur de la semelle est diminuée au niveau des guides d'onde et des fausses fentes. Pour celai, une surface 73 est par exemple réalisée, par lamage, à l'intérieur de la semelle 25. Cette surface 73, ainsi que les fausses fentes 71, 72 sont par exemple obtenus au cours de la même opération d'usinage que les guides d'onde 41, 42 de la semelle métallique 25. De préférence, pour mieux assurer la coïncidence des centres de phase, la diminution de l'épaisseur de la semelle 25 commence sensiblement au droit 74 des guides d'onde 41, 42 et des fausses fentes 71, 72.
Les figures 4, 5, 6 et 7 décrivent un exemple de réalisation d'une source primaire monopulse à deux voies. L'invention peut néanmoins être appliquée pour des sources à trois voies, par exemple avec une voie somme et une voie différence dans le plan du champ électrique E et une voie différence dans le plan du champ magnétique H. Cette source est alors par exemple obtenue en associant quatre éléments rayonnant alimentés par quatre anneaux hybrides, chaque élément rayonnant étant par exemple constitué d'une embouchure 46 de guide d'onde et d'une transition avec le circuit microstrip comme décrit précédemment.
L'invention peut par ailleurs être appliquée pour la réalisation d'une source primaire éclairant une antenne multi-faisceaux. Cette source est par exemple formée par plusieurs éléments rayonnants, tels que ceux précités, placés dans le plan focal d'un système à réflecteurs de type Cassegrain ou dans le plan focal d'une lentille diélectrique, chaque élément rayonnant générant un faisceau dont l'inclinaison dépend de la position de la source élémentaire par rapport au foyer.
Avantageusement, l'invention permet une très bonne protection des circuits contre les contraintes d'environnement, telles que par exemple l'humidité ou la corrosion, en remplissant partiellement ou totalement les guides rayonnant par un matériau diélectrique. Une telle protection est notamment avantageuse pour des radars équipant des automobiles et qui sont susceptibles de subir les contraintes précitées.
Enfin, une source réalisée selon l'invention occupe un faible encombrement e en profondeur, celui-ci peut par exemple être de l'ordre de 5 mm en bande millimétrique, cet encombrement allant de l'extrémité extérieure du court-circuit hyperfréquence 43 à la sortie 46 d'un guide d'onde 41, 42.

Claims (15)

  1. Source monopulse pour antenne à optique focalisante, la source comportant au moins deux guides d'onde (41, 42) usinés dans la semelle métallique (25) supportant le circuit d'émission et de réception hyperfréquence (23, 49, 50, 53, 54, 55, 56, 57) de l'antenne (2, 3, 11), chaque guide d'onde (41, 42) se prolongeant en un guide d'onde de section réduite (47, 48), chaque guide d'onde (41, 42) étant excité par un court-circuit hyperfréquence (43) fermant le guide d'onde de section réduite (47, 48) et par une transition (44, 45) avec le circuit d'émission et de réception, chaque transition (44, 45) étant positionnée dans le plan de changement de section du guide.
  2. Source selon la revendication 1, caractérisée en ce que le circuit d'émission et de réception est disposé sur un substrat diélectrique (24) lui-même monté sur la semelle métallique (25).
  3. Source selon la revendication 2, caractérisée en ce que le circuit d'émission et de réception comportant des lignes en technologie microstrip, celle-ci sont sérigraphiées sur le substrat diélectrique (24).
  4. Source selon les revendications 2 ou 3, caractérisée en ce que les transitions (44, 45) sont constituées par des motifs gravés sur le même substrat (24) que celui supportant le circuit d'émission et de réception.
  5. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que chaque transition (44, 45) est alimentée par une ligne microstrip (49, 50) passant sous un tunnel (51, 52) effectué dans la paroi du guide d'onde.
  6. Source selon la revendication 5, caractérisé en ce que les lignes (49, 50) sont reliées à un anneau hybride (53) permettant d'alimenter les transitions en phase ou en opposition de phase, pour former les diagrammes somme ou différence suivant l'entrée (56, 57) de l'anneau qui est excitée.
  7. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que la section des guides d'onde (41, 42, 47, 48) est oblongue.
  8. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que le court-circuit (43) d'adaptation des transitions (44, 45) et les guides de section réduite (47, 48) sont usinés dans une même pièce.
  9. Source selon les revendications 2 et 8, caractérisée en ce que des trous métallisés (58) sont réalisés dans le substrat diélectrique (24) pour relier électriquement la pièce à la semelle métallique(25).
  10. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que la semelle métallique (25) fait partie intégrante du boítier contenant le circuit d'émission et de réception.
  11. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que les guides d'onde (41, 42, 47, 48) sont remplis de matériau diélectrique.
  12. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que des fausses fentes (71, 72), rayonnant par couplage avec les guides d'onde (41, 42) sont ajoutées au voisinage de ces derniers.
  13. Source selon la revendication 12, caractérisée en ce que les fausses fentes (71, 72) ont sensiblement la même section transversale que les guides d'onde (41, 42).
  14. Source selon l'une quelconque des revendications 12 ou 13, caractérisée en ce que l'épaisseur de la semelle (25) est réduite au niveau des guides d'onde (41, 42) et des fausses fentes (71, 72).
  15. Source selon la revendication 14, caractérisée en ce que la réduction de l'épaisseur de la semelle (25) commence sensiblement au droit (74) des guides d'onde (41, 42) et des fausses fentes (71, 72).
EP98401179A 1997-05-23 1998-05-15 Source monopulse compacte pour une antenne à optique focalisante Expired - Lifetime EP0880196B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9706327A FR2763748B1 (fr) 1997-05-23 1997-05-23 Source monopulse compacte pour une antenne a optique focalisante
FR9706327 1997-05-23

Publications (2)

Publication Number Publication Date
EP0880196A1 EP0880196A1 (fr) 1998-11-25
EP0880196B1 true EP0880196B1 (fr) 2005-02-23

Family

ID=9507175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98401179A Expired - Lifetime EP0880196B1 (fr) 1997-05-23 1998-05-15 Source monopulse compacte pour une antenne à optique focalisante

Country Status (6)

Country Link
US (1) US6211813B1 (fr)
EP (1) EP0880196B1 (fr)
JP (1) JP4188456B2 (fr)
DE (1) DE69829093T2 (fr)
ES (1) ES2236877T3 (fr)
FR (1) FR2763748B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790228B1 (fr) 1999-02-26 2001-05-11 Thomson Csf Dispositif de commande d'un systeme de regulation d'allure pour vehicule automobile
FR2798196B1 (fr) 1999-09-07 2001-11-30 Thomson Csf Procede et dispositif pour l'alignement d'un radar automobile
DE10012080C1 (de) * 2000-03-14 2001-10-31 Daimler Chrysler Ag Antennenarray und Verfahren zum Betrieb eines Antennenarrays
RU2556300C1 (ru) * 2014-05-23 2015-07-10 Публичное акционерное общество "Радиофизика" Способ изготовления рупорного излучателя и пуансон, применяемый при осуществлении способа
WO2019226201A2 (fr) * 2017-12-20 2019-11-28 Optisys, LLC Réseau d'antennes de poursuite intégré polarisé linéairement
CN113517524B (zh) * 2021-05-01 2023-06-13 厦门大学 一种基于对称馈电的e面波导十字型功分器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1537063A (fr) * 1967-07-10 1968-09-02 Labo Cent Telecommunicat Perfectionnements aux cornets multimodes
DE3217945A1 (de) * 1982-05-13 1984-02-02 ANT Nachrichtentechnik GmbH, 7150 Backnang Uebergang von einem hohlleiter auf eine mikrostreifenleitung
SE456203B (sv) * 1983-09-14 1988-09-12 Ericsson Telefon Ab L M Monopulsmatare for sendning och mottagning av radarsignaler inom tva fran varandra skilda frekvensband
US4721959A (en) * 1984-12-07 1988-01-26 Alpha Industries, Inc. Monopulse comparator formed in a milled channel plate structure
US4904966A (en) * 1987-09-24 1990-02-27 The United States Of America As Represented By The Secretary Of The Navy Suspended substrate elliptic rat-race coupler
US5202648A (en) * 1991-12-09 1993-04-13 The Boeing Company Hermetic waveguide-to-microstrip transition module
JPH0629720A (ja) * 1992-07-08 1994-02-04 Sharp Corp マイクロ波コンバータ
DE4323387A1 (de) * 1993-07-13 1995-01-19 Deutsche Aerospace Monopuls-Kleinradar
JP2605654B2 (ja) * 1995-03-31 1997-04-30 日本電気株式会社 複合マイクロ波回路モジュール及びその製造方法
US5614874A (en) * 1995-12-06 1997-03-25 The Boeing Company Package integrated planar monopulse comparator

Also Published As

Publication number Publication date
JPH1197927A (ja) 1999-04-09
FR2763748A1 (fr) 1998-11-27
ES2236877T3 (es) 2005-07-16
JP4188456B2 (ja) 2008-11-26
DE69829093T2 (de) 2005-12-29
FR2763748B1 (fr) 1999-08-27
DE69829093D1 (de) 2005-03-31
US6211813B1 (en) 2001-04-03
EP0880196A1 (fr) 1998-11-25

Similar Documents

Publication Publication Date Title
EP1325537B1 (fr) Perfectionnement aux sources d'emission / reception d'ondes electromagnetiques pour antenne a multireflecteurs
EP1865575B1 (fr) Antenne cylindrique à balayage électronique
EP1445829B1 (fr) Réflecteur secondaire pour antenne hyperfréquence de type cassegrain
EP1563567A1 (fr) Composant electronique en boitier pour applications a des frequences millimetriques
EP0274074B1 (fr) Source d'illumination pour antenne de télécommunications
EP0012055B1 (fr) Source primaire monopulse imprimée et antenne comportant une telle source
EP2807702B1 (fr) Formateur multi-faisceaux à deux dimensions, antenne comportant un tel formateur multi-faisceaux et système de télécommunication par satellite comportant une telle antenne
EP2047564B1 (fr) Dispositif de transduction orthomode à compacité optimisée dans le plan de maille, pour une antenne
FR2886773A1 (fr) Antenne dispersive en frequence appliquee notamment a un radar meteorologique
EP3189557B1 (fr) Antenne à diagramme de rayonnement mécaniquement reconfigurable
EP3086409B1 (fr) Module structural d'antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
EP3109941B1 (fr) Antenne micro onde à double réflecteur
EP2223377A1 (fr) Dispositif d'amplification de puissance radiale a compensation de dispersion de phase des voies amplificatrices
EP0880196B1 (fr) Source monopulse compacte pour une antenne à optique focalisante
EP3843202A1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
FR2850793A1 (fr) Transition entre un circuit micro-ruban et un guide d'onde et unite exterieure d'emission reception incorporant la transition
FR2801729A1 (fr) Reflecteur hyperfrequence actif a balayage electronique
FR2558307A1 (fr) Dispositif d'excitation d'un guide d'onde en mode circulaire et aerien comportant un tel dispositif
EP0881706A1 (fr) Source à deux voies pour antenne à optique focalisante
FR3105612A1 (fr) Antenne à cavité résonante compacte
FR2594260A1 (fr) Source primaire hyperfrequence pour antenne a balayage conique et antenne l'incorporant.
FR2739226A1 (fr) Source hyperfrequence multimode directive et son application a une antenne radar monopulse
EP3264531A1 (fr) Antenne micro onde à double réflecteur
FR2861899A1 (fr) Antenne-source constituee par une ouverture rayonnante compo rtant un insert
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990510

AKX Designation fees paid

Free format text: AT BE CH CY DE ES FR GB IT LI SE

RBV Designated contracting states (corrected)

Designated state(s): BE DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69829093

Country of ref document: DE

Date of ref document: 20050331

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050418

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2236877

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69829093

Country of ref document: DE

Owner name: FRANCE BREVETS, FR

Free format text: FORMER OWNER: THALES, NEUILLY SUR SEINE, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170518 AND 20170524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170427

Year of fee payment: 20

Ref country code: DE

Payment date: 20170509

Year of fee payment: 20

Ref country code: GB

Payment date: 20170510

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170424

Year of fee payment: 20

Ref country code: SE

Payment date: 20170511

Year of fee payment: 20

Ref country code: ES

Payment date: 20170608

Year of fee payment: 20

Ref country code: IT

Payment date: 20170522

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: FRANCE BREVETS, FR

Effective date: 20171206

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: FRANCE BREVETS; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: THALES

Effective date: 20171214

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180315 AND 20180326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69829093

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180514

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20180515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180514

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: DIDI (HK) SCIENCE AND TECHNOLOGY LIMITED, HK

Effective date: 20180802

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200319 AND 20200325

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: BEIJING VOYAGER TECHNOLOGY CO., LTD.; CN

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: DIDI (HK) SCIENCE AND TECHNOLOGY LIMITED

Effective date: 20200409

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180516