EP1542488A1 - Verfahren un vorrichtung zur Zuweisung von Kanaladaptierten Pilotsignalen - Google Patents

Verfahren un vorrichtung zur Zuweisung von Kanaladaptierten Pilotsignalen Download PDF

Info

Publication number
EP1542488A1
EP1542488A1 EP03104661A EP03104661A EP1542488A1 EP 1542488 A1 EP1542488 A1 EP 1542488A1 EP 03104661 A EP03104661 A EP 03104661A EP 03104661 A EP03104661 A EP 03104661A EP 1542488 A1 EP1542488 A1 EP 1542488A1
Authority
EP
European Patent Office
Prior art keywords
node
pilot
space
resource
radio conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03104661A
Other languages
English (en)
French (fr)
Inventor
Johan NYSTRÖM
Pal Frenger
Erik Dahlman
Svante Signell
Göran KLANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34486385&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1542488(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to EP03104661A priority Critical patent/EP1542488A1/de
Priority to TW093134921A priority patent/TWI386092B/zh
Priority to PCT/EP2004/053192 priority patent/WO2005060298A1/en
Priority to JP2006543533A priority patent/JP4673316B2/ja
Priority to DE602004020669T priority patent/DE602004020669D1/de
Priority to CN2004800365931A priority patent/CN1891007B/zh
Priority to ZA200604187A priority patent/ZA200604187B/xx
Priority to US10/582,478 priority patent/US7904093B2/en
Priority to AT04804625T priority patent/ATE429134T1/de
Priority to EP04804625A priority patent/EP1695587B1/de
Publication of EP1542488A1 publication Critical patent/EP1542488A1/de
Priority to US12/926,511 priority patent/US8843144B2/en
Priority to US14/465,418 priority patent/US9935749B2/en
Priority to US15/943,216 priority patent/US10560236B2/en
Priority to US16/751,480 priority patent/US11265126B2/en
Priority to US17/679,778 priority patent/US12010057B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates generally to wireless multi-carrier communications systems and in particular to resource allocation and pilot signals of such systems.
  • the base station In a cellular multi-user, multi-carrier wireless communications system, the base station must accommodate many users that each experiences different channel characteristics due to fading in time and frequency. Furthermore, different users travel at different speeds and thus experience different Doppler shifts. In most wireless systems, e.g. GSM (Global System for Mobile communications), WCDMA (Wideband Code Division Multiple Access), WLAN (Wireless Local Area Network), special well known training sequences or pilot signals are transmitted so that the receiver can estimate the channel parameters sufficiently well for detection of the data signal.
  • GSM Global System for Mobile communications
  • WCDMA Wideband Code Division Multiple Access
  • WLAN Wireless Local Area Network
  • DVB/DAB Digital Video Broadcasting/Digital Audio Broadcasting
  • DVB/DAB Digital Video Broadcasting/Digital Audio Broadcasting
  • Such systems must design their pilot structure according to the worst-case scenario so that detection becomes possible even under the worst possible conditions.
  • Such a pilot structure gives rise to a substantial pilot overhead, and is indeed necessary in these worst-case scenarios.
  • the worst case which typically is the case most of the time
  • the pilot structure is unnecessarily extensive, giving an unnecessary pilot overhead for most users.
  • the pilot overhead can indeed be substantial. This reduces data capacity in the own cell and furthermore increases the interference to the neighbouring cells (so called "pilot pollution").
  • WLAN i.e. IEEE 802.11a, IEEE 802.11g
  • IEEE 802.11a IEEE 802.11a
  • IEEE 802.11g Another example of a multi-carrier system.
  • Such a system is designed for a limited geographical area in which the users are stationary or slowly moving. The design is not intended for conditions in which the user is moving quickly or for handling mobility in a multi-cellular environment.
  • pilot structures are either not at all suitable for considerably changing radio conditions or that they are designed for worst cases which in turn results in vast pilot overhead and "pilot pollution".
  • An objective of the present invention is to provide methods and devices for multi-user multi-carrier wireless communications system, which are capable to provide all users with sufficient pilots without causing unnecessary pilot overhead and pilot pollution.
  • a further objective of the present invention is to provide such methods and devices, which are easy to implement within present and planned wireless systems.
  • a set of different pilot structures are designed for use in different environments and/or different general radio characteristics that are expected to occur in the cell.
  • the radio conditions for a user are estimated, either from direct measurements or from knowledge about the cell characteristics, possibly combined with position information.
  • Each user is then assigned an area in resource space for its communication, which has a suitable pilot configuration.
  • the entire resource space is provided with different pilot structures in different parts in advance and allocation of resources to the users are then performed in order to match estimated radio conditions to the provided pilot structure.
  • allocation is performed first, and then the actual pilot structure is adapted within the allocated resource space area to suit the environmental conditions.
  • the radio resource space can have different dimensions.
  • frequency is one dimension.
  • Other dimensions that could be utilised within the present invention are time, code, antenna and/or spatial dimensions. One or several of these dimensions span the radio resource space, in which the present invention is applied.
  • pilot structure By adapting the pilot structure to the environment or set of environments likely to occur in the cell and allocating these pilots to the users most likely to benefit from them, an overall efficiency is achieved.
  • the amount of pilot overhead is then connected to the actual environments being accommodated. Difficult environments require more overhead than simpler ones and hence pilot pollution is reduced on the average.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Fig. 1 illustrates a multi-user multi-carrier wireless communications system 10, in this particular embodiment intended to be an OFDM system.
  • Nonexclusive examples of other communications systems, in which the present invention is advantageously applicable, are EFDMA (Interleaved Frequency Division Multiple Access) systems, non-orthogonal or bi-orthogonal multi-carrier systems.
  • a base station or access point 20 communicates with two mobile stations or user equipments 30A, 30B.
  • User equipment 30A is located at a relatively large distance from the access point 20, but the speed 32A (illustrated as an arrow) of the user equipment 30A is small.
  • User equipment 30b is located closer to the access point 20, but has a high speed 32B (also illustrated as an arrow).
  • the user equipment 30A may have a relatively high need for repetitive pilots in the frequency dimension, since the propagation conditions for the different carriers may differ considerably over the bandwidth in case of multi-path propagation with large delay spread.
  • the radio conditions are probably quite slowly varying with time due to the small speed of user equipment 30A.
  • the user equipment 30B is close to the access point, and a pilot on one frequency can probably be used for channel estimations for many neighbouring carriers.
  • the radio conditions are probably changing rapidly in time, whereby frequent pilots in time dimension are required.
  • Fig. 2A is a diagram of a time-frequency space. This can represent a limited portion of the entire available radio resource space 100 in these two dimensions. Data is transmitted in quantities limited in time and frequency. These data quantities correspond to the small squares 104 in the diagram. Selected ones 102 of these data quantities contain pilot data and are illustrated in the diagram with hatching. The pilot structure is in this embodiment dispersed over the time-frequency space relatively uniformly. With this distribution, one data quantity out of 11 is occupied by pilot data.
  • the useful data transmission rate is thereby reduced by 1/11.
  • the users of the user equipments 30A and 30B (Fig. 1) have allocated radio resources within the available radio resource space 100.
  • User equipment 30A is allocated the resource sub-space indicated by 108A, while user equipment 30B is allocated the resource sub-space indicated by 108B. Both users are experiencing the same pilot density and the uniform distribution between the frequency and time dimensions.
  • User 30B moves fast.
  • the time between two consecutive pilot messages in time dimension is 11 time slots, and even if information from neighbouring frequencies are used for channel estimation in the meantime, at least 4 time slots will pass between two consecutive updates.
  • the speed of user 30B is so high that this pilot structure is not sufficient for an acceptable quality of service.
  • Fig. 3A illustrates a radio resource space in three dimensions, time, frequency and code.
  • each data quantity will instead correspond to a small cube 104.
  • Generalisation can be performed to higher order spaces, comprising e.g. antenna or space dimensions.
  • any radio resource space in at least two dimensions, of which one is frequency, can be used with the present invention.
  • Fig. 3B illustrates a pilot pattern in a frequency-code space for a specified time.
  • 16 different codes are available and also 16 different frequencies.
  • the illustrated pilot pattern leads to that the pilots are transmitted on all frequencies during the specified time duration, however, spread out in the code dimension.
  • One code in each frequency is occupied by a pilot, whereas the remaining 15 codes are used for data transmission.
  • the antenna or spatial dimensions could also be part of the resource space.
  • different frequency bands are allocated to different beams of a multi-sector or fixed beam site.
  • the spatial dimension is part of the description since different pilot patterns may be deployed for the different beams that overlap in the spatial domain.
  • the pilots allocated to different users can change dynamically when the user for example moves between sectors and the sectors have different frequency bands allocated to them.
  • antenna or spatial dimension can also be used as additional dimensions in a total resource space.
  • the flow diagram of Fig. 4 illustrates the main steps of an embodiment of a method according to the present invention.
  • the procedure starts in step 200.
  • a number of pilot configurations are provided, which are believed to suit different radio conditions appearing in the cell in question. At least two such pilot configurations are available, i.e. they can be handled by both sides of the transmission connection.
  • the transmitter manages the sending of pilots according to this configurations and the receiver is capable of performing channel estimation based on the at least two pilot configurations.
  • an estimation of the radio conditions at the receiver is obtained. This estimation can be provided in many different ways. The actual radio conditions can be measured and evaluated. Another possibility is to assume an estimate from knowledge about the characteristics in the cell and possibly based on e.g. location and/or speed of the receiver relative the transmitter.
  • step 206 a user is allocated resources in resource space, which have a pilot configuration that is matched to the estimated radio conditions. This matching can be performed in different manners, described more in detail further below.
  • step 202 preferably is performed once, and the provided pilot structures can then be used for any future allocation of users, or re-allocation of existing users.
  • Fig. 5A The basic setup in Fig. 5A is assumed as follows. During a certain time period and seen over all frequency resources, the available radio resources constitute a grid of basic resources that can be used for data, control signalling or pilot signals or other signals as discussed earlier. The resolution in frequency dimension is one OFDM carrier and in time it is one OFDM symbol. Pilot symbols are as above depicted with hatched boxes.
  • the transmitter side determines a number of different pilot patterns and assigns these pilot patterns to different parts of the entire radio resource space.
  • the pilot patterns may for example be periodically recurring with some period or pseudo-randomly designed. This means that different parts of the radio resource space have a denser or at least differing pilot pattern than other parts. Each pilot pattern is intended to accommodate users experiencing different channel characteristics.
  • the entire radio resource space illustrated is divided into four rectangular parts, 110A-D.
  • the resource space part 110A has a pilot pattern, having a dense occurrence in time dimension (every second OFDM symbol at certain carriers), but a more dispersed behaviour in the frequency dimension (only every sixth OFDM carrier).
  • the resource space part 110B has a very diluted pilot pattern, having only one pilot in 36 resource units, evenly spread in time and frequency dimensions.
  • the resource space part 110C is the opposite of part 110A, with a dense pilot pattern in frequency dimension, but sparse in time dimension.
  • resource space part 110D has a very dense pilot structure in both dimensions, comprising a pilot symbol in every fourth resource unit.
  • the users are now allocated to the different parts of the radio resource space dependent on their estimated radio conditions.
  • the user is assigned resources in the resource space where pilots with the appropriate density can be utilised for channel estimation.
  • pilot structures suitable for typically four combinations of Doppler and delay spread.
  • the pilot structure is intended for a large Doppler and low delay spread.
  • the pilot structure is intended for a low Doppler and low delay spread.
  • the pilot structure is intended for a low Doppler and high delay spread.
  • the pilot structure is intended for a high Doppler and high delay spread.
  • a first user having radio conditions demanding a high density of pilots in both dimensions is allocated to the resource sub-space 108A within the part 110D.
  • a second user only having need for dense pilot in the time dimension is allocated resources in a resource sub-space 108B within the part 110A.
  • a third user with very favourable radio conditions is allocated to a resource sub-space 108C in part 110B.
  • two more users, having high demands on pilot density are given resources in two sub-spaces 108D and 108E, respectively in part 110D.
  • each user has achieved a pilot pattern that is suited to its individual needs. It is beneficial, e.g. to assign resources for mobiles with certain fast varying channel or Doppler conditions in the dense parts of the pilot pattern and users with more slowly varying conditions in the less dense parts.
  • the base station does not need to transmit all pilots at all times. Only pilots that in fact can be utilised by any user needs to be transmitted. If a pilot resource at time of transmission cannot be utilised by any data symbol that some user need to detect with the help of said pilot, then the pilot need not be transmitted. In such a way, the overall pilot pollution is reduced, and so is the average transmission power.
  • Fig. 5B a further embodiment of the present invention is illustrated. Assume the same situation as was present in Fig. 5A. Three users are occupying all resources in the densest part 110D. If yet another user with need for a very dense pilot configuration appears, the pre-defined pilot configuration plan of Fig. 5A becomes insufficient. However, the new user can be allocated to a free resource sub-space 108F, preferably in connection with the part 110D. This sub-space 108F had originally a pilot pattern according to part 110C, but when allocating the user, the pilot pattern is adjusted to match the demands put by the new user. In such a way, the original pre-determined division into different parts in the resource space can be adapted to the actual need. However, if a good initial configuration is used, most cases are covered and the frequency of adjustments is low.
  • Fig. 7A a flow diagram corresponding to the situation in Fig. 5A is illustrated.
  • the resource space is in step 203 provided with at least two different pre-determined pilot configurations at different parts of the resource space.
  • Step 204 is unchanged compared to Fig. 4.
  • step 207 the matching of the radio conditions and pilot structures is performed by selecting a suitable resource space.
  • step 205 it is determined whether there is any available resources in parts that are suitable for the particular estimated radio conditions for the user to be allocated. If there are resources with suitable pilot structures available, the procedure continues to step 207, as in Fig. 7A. If no resource space with appropriate pilot structure is available, any free resource space is allocated in step 209, however, preferably in the vicinity of the part having a suitable pilot pattern, In step 210, the pilot configuration is adapted within the selected resource sub-space to match the estimated radio conditions.
  • step 206 in Fig. 4 is described in more detail.
  • step 208 an area is selected as a resource sub-space for the user.
  • step 210 the pilot configuration in the selected area is adapted to the need connected to the estimated radio conditions of the user. Note the similarities between Fig. 7B and Fig. 8.
  • the present invention can be implemented for wireless communication between any nodes in a communications system.
  • Such nodes can be e.g. user equipment, mobile station, base station, access point or relay.
  • nodes can be e.g. user equipment, mobile station, base station, access point or relay.
  • the most straightforward situation with communication between a base station and a user equipment will be discussed as an example. The scope of the claims should, however, not be affected by this example.
  • Multi-carrier communication is typically most applied in downlink connections.
  • Fig. 9A a wireless communications system according to an embodiment of the present invention is illustrated.
  • a base station 20 communicates with a mobile terminal 30 via an uplink 24 and a downlink 22 connection.
  • the base station 20 comprises a downlink control unit 25, which is enlarged in the lower part of Fig. 9A.
  • the downlink control unit 25 is responsible for allocating resources for communication on the downlink 22 between the base station 20 and the mobile terminal 30 and comprises in turn a pilot manager 26 and a radio condition processor 28.
  • the mobile terminal or user equipment 30 also comprises a downlink control unit 35, also enlarged in the lower part of Fig. 9A.
  • the downlink control unit 35 comprises a channel estimator 36 and a measurement unit 38 for radio conditions.
  • the radio conditions measurement unit 38 measures the actual radio conditions at the user equipment 30. Such measurements can comprise e.g. Doppler shift and signal strength as well as power delay profile, channel impulse response, time and frequency selectivity measurements and interference levels. The results of the measurements are transferred to the radio conditions processor 28 of the base station 20, preferably by the uplink communication link 24.
  • the radio conditions processor 28 evaluates the measured conditions and translates it to estimated radio conditions for the user equipment 30. In other words, the radio conditions processor 28 obtains data associated with estimated radio conditions for the user equipment 30.
  • the estimated radio conditions could e.g. comprise two flags, one indicating low or high Doppler shift and one indicating small or large delay spread.
  • the estimated radio conditions are forwarded to the pilot manager 26, which performs the actual selection and/or adjustment of resource sub-spaces.
  • the pilot manager 26 thus provides access to the use of the different pilot configurations.
  • the pilot manager selects in which part of the multi-carrier space the allocated resource sub-space will be placed.
  • the pilot manager 26 comprises functionalities for selecting a multi-carrier sub-space for allocation and functionalities to adapt the pilot pattern of that selected sub-space according to the estimated radio conditions.
  • the pilot manager has decided what pilot pattern to apply, the user equipment 30 has to be informed about the selection, in order to be able to perform the right channel estimation upon reception of the data.
  • the pilot manager 26 thus comprises means for transferring suitable data to the channel estimator 36.
  • the downlink control unit 25 here also comprises a position estimator 29.
  • the position estimator 29 provides an estimation of the position of the user equipment 30 and preferably also the velocity. This can be performed in any manner, e.g. according to prior art methods, and is not further discussed here.
  • the position is forwarded to the radio condition processor 28.
  • the radio condition processor 28 has access to knowledge about the different environments within the cell. A cell could e.g. cover a first area having generally slowly moving user equipments, and a second area, were the average speed is considerably higher.
  • the position estimation could reveal the location of the user equipment, i.e. if it is situated in the high- or low-speed area. From such information, the radio condition processor 28 can conclude what radio conditions that should be assumed for the user equipment. Such estimation then forms the base on which the pilot pattern is selected.
  • the downlink control unit 35 here additionally comprises a radio conditions processor 39.
  • the estimated radio conditions are reported to the base station 20, e.g. in the form of data representing coherence bandwidth and coherence time, respectively.
  • the radio conditions processor 39 can also select an appropriate pilot pattern and transmit a request to use such a pattern to the base station 20.
  • the base station 20 can in such a case either follow the recommendation or overrule it and make an own decision.
  • Fig. 10 illustrates one possible configuration for uplink communication.
  • the base station 20 comprises an uplink control unit 45, in turn comprising a radio conditions measurement unit 21, a radio conditions processor 28 and a pilot manager 26.
  • the operations of the units are similar to the ones in the downlink case, but adapted for uplink communication instead, i.e. it is the radio conditions of the received signals from the user equipment 30 that are of importance.
  • the pilot manager 26 decides which pilot pattern that is appropriate to apply, and transmits a request to an uplink control unit 55 in the user equipment 30.
  • the uplink control unit 55 simply applies the proposed pilot pattern on its uplink traffic.
  • the uplink control unit 35 of the base station 20 also comprises a channel estimator 27 in order to be able to detect the data sent on the uplink. This channel estimator 27 is also informed about the pilot structure to use.
  • Fig. 11 illustrates yet another embodiment of the present invention, in which one makes use of the possibilities to vary the intensity to reduce pilot pollution.
  • all or some of the pilot data is marked to be transmitted with a lower (or zero) intensity. If a user equipment using the pilot signals is close to the base station, the transmission power does not have to be equally high to obtain a reasonable channel estimation compared with user equipments situated further away from the base station, In such a way, it is also possible to vary the pilot intensity throughout the resource space.
  • Such intensity configurations can as above be performed either in advance or as adjustment procedures.
  • the pilot symbols can also be transmitted with different power for different classes of users and depending on path loss.
  • the power levels can either be dynamically varying between zero and a given number P max or be defined in advance. Note that a power level equal to zero is equivalent to no pilots for this slot, enabling the use of this slot for other purposes, such as data. If the power is dynamically varying, the power levels have to be signalled to the receiver for appropriate treatment.
  • pilot patterns When there are several possible pilot patterns to use in a system, the receiver has to be informed about which one is actually used. If a numbered set of pre-determined pilot patterns are used, the identification number of the pilot pattern is sufficient. However, more elaborate systems can use different pilot patterns for different cells and the numbering of patterns can be difficult to manage. In such a case, a solution is to transfer a complete description of the pilot pattern to be used. For regular pilot patterns, the amount of data that is needed to uniquely define the patterns is quite limited.
  • a pilot pattern is illustrated within a resource sub-space in frequency and time dimensions.
  • the resource sub-space is reported anyway, and is typically defined by frequency and time "coordinates" and the number of frequency DF and time DT slots that are comprised in the sub-space.
  • the pilot pattern is then easily characterised by only three vectors in the (two-dimensional) resource space.
  • a first vector V0 defines the "distance" in frequency and time, respectively, between a well-defined position in the sub-space, e.g. the lower left corner as illustrated in the picture, and any pilot data within the pattern.
  • a second vector V1 defines a "relative distance” between the two closest pilots in the pattern.
  • a third vector V2 defines a "relative distance" between the second closest pilots, that is not aligned with the first vector V1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
EP03104661A 2003-12-12 2003-12-12 Verfahren un vorrichtung zur Zuweisung von Kanaladaptierten Pilotsignalen Withdrawn EP1542488A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
EP03104661A EP1542488A1 (de) 2003-12-12 2003-12-12 Verfahren un vorrichtung zur Zuweisung von Kanaladaptierten Pilotsignalen
TW093134921A TWI386092B (zh) 2003-12-12 2004-11-15 適宜於使用者需求之分配式導引結構
EP04804625A EP1695587B1 (de) 2003-12-12 2004-12-01 Verfahren und vorrichtung zum zuteilen eines an die kanaleigenschaften angepassten pilotsignals
CN2004800365931A CN1891007B (zh) 2003-12-12 2004-12-01 分配适合信道特性的导频信号的方法及设备
AT04804625T ATE429134T1 (de) 2003-12-12 2004-12-01 Verfahren und vorrichtung zum zuteilen eines an die kanaleigenschaften angepassten pilotsignals
JP2006543533A JP4673316B2 (ja) 2003-12-12 2004-12-01 無線通信方法、ノード、マルチユーザ・マルチキャリア通信システムおよびユーザ装置
DE602004020669T DE602004020669D1 (de) 2003-12-12 2004-12-01 Verfahren und vorrichtung zum zuteilen eines an die kanaleigenschaften angepassten pilotsignals
PCT/EP2004/053192 WO2005060298A1 (en) 2003-12-12 2004-12-01 Method and apparatus for allocating a pilot signal adapted to the channel characteristics
ZA200604187A ZA200604187B (en) 2003-12-12 2004-12-01 Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US10/582,478 US7904093B2 (en) 2003-12-12 2004-12-01 Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US12/926,511 US8843144B2 (en) 2003-12-12 2010-11-23 Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US14/465,418 US9935749B2 (en) 2003-12-12 2014-08-21 Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US15/943,216 US10560236B2 (en) 2003-12-12 2018-04-02 Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US16/751,480 US11265126B2 (en) 2003-12-12 2020-01-24 Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US17/679,778 US12010057B2 (en) 2003-12-12 2022-02-24 Method and apparatus for allocating a pilot signal adapted to the channel characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03104661A EP1542488A1 (de) 2003-12-12 2003-12-12 Verfahren un vorrichtung zur Zuweisung von Kanaladaptierten Pilotsignalen

Publications (1)

Publication Number Publication Date
EP1542488A1 true EP1542488A1 (de) 2005-06-15

Family

ID=34486385

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03104661A Withdrawn EP1542488A1 (de) 2003-12-12 2003-12-12 Verfahren un vorrichtung zur Zuweisung von Kanaladaptierten Pilotsignalen
EP04804625A Active EP1695587B1 (de) 2003-12-12 2004-12-01 Verfahren und vorrichtung zum zuteilen eines an die kanaleigenschaften angepassten pilotsignals

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04804625A Active EP1695587B1 (de) 2003-12-12 2004-12-01 Verfahren und vorrichtung zum zuteilen eines an die kanaleigenschaften angepassten pilotsignals

Country Status (9)

Country Link
US (6) US7904093B2 (de)
EP (2) EP1542488A1 (de)
JP (1) JP4673316B2 (de)
CN (1) CN1891007B (de)
AT (1) ATE429134T1 (de)
DE (1) DE602004020669D1 (de)
TW (1) TWI386092B (de)
WO (1) WO2005060298A1 (de)
ZA (1) ZA200604187B (de)

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599171B1 (ko) 2004-08-17 2006-07-12 삼성전자주식회사 화상처리장치의 제어방법
WO2007042898A1 (en) 2005-10-07 2007-04-19 Nokia Corporation Apparatus, method and computer program product providing common pilot channel for soft frequency reuse
EP1777905A1 (de) * 2005-10-20 2007-04-25 Siemens Aktiengesellschaft Verfahren zur Datenübertragung in einem Funkkommunikationssystem
WO2007051190A1 (en) * 2005-10-27 2007-05-03 Qualcomm Incorporated Allocation of pilot pattern adapted to channel characteristics for an ofdm system
EP1793521A1 (de) * 2005-11-30 2007-06-06 Fujitsu Limited Variable Verteilung von allgemeinen Pilotsymbolen in OFDM
EP1811734A1 (de) * 2006-01-19 2007-07-25 Samsung Electronics Co., Ltd. Verfahren und Vorrichtung zur Steuerung von Übertragung und Empfang definierter Pilotsignale gemäß MCS-Ebene in einem drahtlosen Kommunikationssystem
WO2007098456A2 (en) * 2006-02-21 2007-08-30 Qualcomm Incorporated Spatial pilot structure for multi-antenna wireless communication
WO2008039294A2 (en) * 2006-09-22 2008-04-03 Lucent Technologies Inc. Method for resource allocation in a wireless communication system
EP1965551A2 (de) * 2007-02-27 2008-09-03 Industrial Technology Research Institute Verfahren und Vorrichtungen zur Pilotsignalzuweisung in einem drahtlosen Kommunikationssystem
EP1991016A1 (de) * 2006-01-27 2008-11-12 Fujitsu Limited Basisstation, drahtloses kommunikationssystem und pilotmuster-entscheidungsverfahren
EP1998482A1 (de) * 2006-03-20 2008-12-03 NTT DoCoMo, Inc. Basisstation, mobilstation und verfahren zur steuerung der übertragung eines ausbreitungswegmesssignals
WO2008147052A1 (en) 2007-05-28 2008-12-04 Samsung Electronics Co., Ltd. Ofdm transmission/reception device for transmitting and receiving ofdm symbols having a variable data transmission rate and method thereof
EP2015490A1 (de) * 2006-04-28 2009-01-14 NEC Corporation Pilotsignal-übertragungsverfahren, funkkommunikationssystem und vorrichtung und programm dafür
WO2009028729A2 (en) * 2007-08-31 2009-03-05 Panasonic Corporation Communication apparatus and method
EP2115984A2 (de) * 2007-03-08 2009-11-11 Telefonaktiebolaget Lm Ericsson (publ) Adaptives pilotsymbolzuweisungsverfahren und gerät
US7623442B2 (en) 2000-09-13 2009-11-24 Qualcomm Incorporated Signaling method in an OFDM multiple access system
EP2129018A1 (de) * 2006-12-28 2009-12-02 Sharp Kabushiki Kaisha Funkübertragungseinrichtung, steuereinrichtung, funkkommunikationssystem und kommunikationsverfahren
WO2009099810A3 (en) * 2008-01-30 2010-01-07 Qualcomm Incorporated Method and apparatus for mitigating pilot pollution in a wireless network
CN100586217C (zh) * 2006-04-17 2010-01-27 大唐移动通信设备有限公司 一种确保在第一网络中的双模终端测量第二网络信号的方法
US7720164B2 (en) 2007-02-26 2010-05-18 Telefonaktiebolaget L M Ericsson (Publ) Transmission scheme for uplink access in a FDMA system
GB2468721A (en) * 2009-03-20 2010-09-22 Toshiba Res Europ Ltd Determining the position of OFDM pilot subcarriers based upon channel covariance matrix
JP2010283863A (ja) * 2010-07-30 2010-12-16 Fujitsu Ltd 無線基地局、無線通信方法および無線通信システム
CN102083210A (zh) * 2010-03-22 2011-06-01 大唐移动通信设备有限公司 一种传输导频配置信息的方法及装置
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8077595B2 (en) 2006-02-21 2011-12-13 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
US8174995B2 (en) 2006-08-21 2012-05-08 Qualcom, Incorporated Method and apparatus for flexible pilot pattern
WO2013028629A3 (en) * 2011-08-19 2013-04-18 Qualcomm Incorporated Beacons for wireless communication
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
TWI412251B (zh) * 2008-06-11 2013-10-11 Ind Tech Res Inst 以參考訊號為基礎用於無線通訊裝置之方法及該無線裝置
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
CN101292487B (zh) * 2005-08-22 2013-11-27 高通股份有限公司 以有效方式传输导频的方法和设备
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
JP2013255266A (ja) * 2013-08-05 2013-12-19 Fujitsu Ltd 移動端末
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8670704B2 (en) 2007-03-16 2014-03-11 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
US8689025B2 (en) 2006-02-21 2014-04-01 Qualcomm Incorporated Reduced terminal power consumption via use of active hold state
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8718158B2 (en) 1999-11-09 2014-05-06 Tq Delta, Llc System and method for scrambling the phase of the carriers in a multicarrier communications system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8978103B2 (en) 2006-08-21 2015-03-10 Qualcomm Incorporated Method and apparatus for interworking authorization of dual stack operation
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
EP2198535A4 (de) * 2007-10-08 2016-04-06 Samsung Electronics Co Ltd Vorrichtung und verfahren zur kanalschätzung in einem drahtlosen kommunikationssystem
CN103338099B (zh) * 2007-08-02 2016-06-29 富士通株式会社 移动通信系统和移动通信系统中的通信方法
CN105827364A (zh) * 2011-03-25 2016-08-03 北京新岸线移动多媒体技术有限公司 无线通信系统中导频的配置方法及装置
US9461736B2 (en) 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
US9485067B2 (en) 2007-08-02 2016-11-01 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
CN102083210B (zh) * 2010-03-22 2016-12-14 电信科学技术研究院 一种传输导频配置信息的方法及装置
US9544116B2 (en) 2014-02-14 2017-01-10 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
US9548967B2 (en) 2006-08-21 2017-01-17 Qualcomm Incorporated Method and apparatus for interworking authorization of dual stack operation
WO2017063716A1 (en) * 2015-10-16 2017-04-20 Huawei Technologies Co., Ltd. Secure paring method for mimo systems
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
EP3429119A1 (de) * 2003-08-12 2019-01-16 Godo Kaisha IP Bridge 1 Funkkommunikationsvorrichtung und pilotsymbolübertragungsverfahren
US10375701B2 (en) 2016-02-29 2019-08-06 British Telecommunications Public Limited Company Controlling adaptive reference signal patterns
US10382179B2 (en) 2016-02-29 2019-08-13 British Telecommunications Public Limited Company Adapting reference signal density
EP2656673B1 (de) * 2010-12-20 2019-09-18 Guangdong OPPO Mobile Telecommunications Corp., Ltd. Mobilitätsbasiertes funkressourcenzuweisung
US10491350B2 (en) 2016-02-29 2019-11-26 British Telecommunications Public Limited Company Adaptive reference signal patterns
US11848730B2 (en) 2021-12-16 2023-12-19 Qualcomm Incorporated Methods for feedback of metrics associated with reduced capability antenna modules in millimeter wave systems

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
EP1542488A1 (de) * 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Verfahren un vorrichtung zur Zuweisung von Kanaladaptierten Pilotsignalen
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
WO2005081439A1 (en) 2004-02-13 2005-09-01 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
US8923785B2 (en) 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
KR100594086B1 (ko) * 2005-01-04 2006-06-30 삼성전자주식회사 채널 추정을 위한 적응적 파일럿 할당 방법 및 장치
WO2006107037A1 (ja) * 2005-04-04 2006-10-12 Nec Corporation Ofdm通信システム、そのフィードバック情報生成方法、および通信装置
CN101218770B (zh) * 2005-07-08 2015-07-15 富士通株式会社 无线资源分配方法、通信装置
CN1801680A (zh) * 2005-08-23 2006-07-12 华为技术有限公司 基于交织频分多址的导频复用方法及其装置
US20100150056A1 (en) * 2005-09-30 2010-06-17 Matsushita Electric Industrial Co., Ltd. Wireless communication mobile station apparatus and rach data transmitting method
CN1964225B (zh) * 2005-11-11 2013-03-13 上海贝尔阿尔卡特股份有限公司 一种无线接入控制方法、中继站和基站
KR100736088B1 (ko) * 2005-11-22 2007-07-06 삼성전자주식회사 무선 네트워크 장치 및 이를 위한 자원 할당 방법
US8396141B2 (en) * 2005-11-29 2013-03-12 Telefonaktiebolaget L M Ericsson (Publ) Efficient cell selection
JP2007159066A (ja) * 2005-12-08 2007-06-21 Sanyo Electric Co Ltd 無線通信装置及び無線通信制御方法
WO2007108392A1 (ja) 2006-03-17 2007-09-27 Matsushita Electric Industrial Co., Ltd. 無線通信基地局装置およびパイロット配置方法
JP4740778B2 (ja) * 2006-03-27 2011-08-03 富士通東芝モバイルコミュニケーションズ株式会社 Ofdm無線通信システムおよび送信装置、受信装置
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US7903691B2 (en) 2006-04-24 2011-03-08 Electronics And Telecommunications Research Institute Method of generating pilot pattern for adaptive channel estimation in OFDMA systems, method of transmitting/receiving using the pilot pattern and apparatus thereof
CN100455095C (zh) * 2006-04-27 2009-01-21 华为技术有限公司 一种导频污染检测方法
CN1960354B (zh) * 2006-04-27 2012-04-11 北京泰美世纪科技有限公司 多载波系统中连续导频编码的发送和接收方法及装置
JP4447575B2 (ja) * 2006-05-01 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ 送信装置及び送信方法
JP4748678B2 (ja) * 2006-05-18 2011-08-17 Kddi株式会社 パイロット信号配置を適応的に変更する無線装置、プログラム及び通信方法
EP2037608A1 (de) * 2006-06-05 2009-03-18 Sharp Kabushiki Kaisha Kommunikationseinrichtung und funkkommunikationssystem
US8040844B2 (en) * 2006-11-20 2011-10-18 Telecom Ventures, L.L.C. Wireless communications apparatus and methods employing opportunistic frequency band use
JP4957212B2 (ja) 2006-11-29 2012-06-20 富士通株式会社 無線フレーム可変制御による最適な無線通信方法及び,これを適用する無線通信システム
JP5045127B2 (ja) * 2007-01-31 2012-10-10 富士通モバイルコミュニケーションズ株式会社 無線通信システム
KR100961744B1 (ko) * 2007-02-05 2010-06-07 삼성전자주식회사 광대역 무선통신시스템에서 상향링크 스케줄링 장치 및방법
JP5006106B2 (ja) * 2007-05-25 2012-08-22 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局装置、ユーザ装置及び方法
CN101316115B (zh) * 2007-05-31 2015-02-18 电信科学技术研究院 导频序列信号的检测方法、设备及系统
BRPI0811833B1 (pt) 2007-07-02 2020-12-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V aparelho e método para armazenamento e leitura de um arquivo tendo um container de dados de mídia e um container de metadados
US7782757B2 (en) * 2007-10-03 2010-08-24 Industrial Technology Research Institute Adaptive pilot design for mobile system
CN104767602B (zh) 2007-11-05 2018-03-16 苹果公司 通信系统以及用于操作用户设备及通信站的方法
CN101227261B (zh) * 2008-02-04 2013-02-27 中兴通讯股份有限公司 一种物理混合重传指示信道资源的分配方法
US8537790B2 (en) * 2008-03-10 2013-09-17 Motorola Mobility Llc Hierarchical pilot structure in wireless communication systems
US8165026B2 (en) * 2008-03-25 2012-04-24 Qualcomm Incorporated Method and apparatus to report and manage cells in a multi carrier system
US8406279B2 (en) * 2008-04-09 2013-03-26 Industrial Technology Research Institute System and method for pilot design for data transmitted in wireless networks
US8687589B2 (en) * 2008-08-13 2014-04-01 Qualcomm Incorporated Neighbor cell search on a secondary carrier
US8428018B2 (en) 2008-09-26 2013-04-23 Lg Electronics Inc. Method of transmitting reference signals in a wireless communication having multiple antennas
US8711672B2 (en) * 2008-12-30 2014-04-29 Acer Incorporated Wireless communication system using pilot allocation, method and pilot pattern thereof
JP5077249B2 (ja) 2009-01-15 2012-11-21 富士通株式会社 無線基地局、無線リソース割り当て方法、無線通信システム
CN101800570B (zh) * 2009-02-05 2013-11-06 中兴通讯股份有限公司 一种获取信道质量指示信息的方法
US20100227612A1 (en) * 2009-03-09 2010-09-09 Qualcomm Incorporated Cell detection for mobile location with grouping diversity
CN101873699B (zh) * 2009-04-27 2013-02-20 电信科学技术研究院 分配高速共享控制信道的方法、系统和装置
JP5251776B2 (ja) 2009-07-27 2013-07-31 ソニー株式会社 基地局、通信システム、移動端末および中継装置
US8688132B2 (en) * 2009-09-07 2014-04-01 Telefonaktiebolaget L M Ericsson (Publ) Sensing wireless transmissions from a licensed user of a licensed spectral resource
US20110103500A1 (en) * 2009-10-30 2011-05-05 Qualcomm Incorporated Methods and apparatus for estimating a sparse channel
EP2580930A4 (de) * 2010-06-09 2015-12-02 Entropic Communications Inc Präambelreduzierungsverfahren und -vorrichtung
CN103354478A (zh) 2011-03-31 2013-10-16 北京新岸线移动多媒体技术有限公司 一种用于实现链路自适应的方法、网络设备和终端设备
EP2715993B1 (de) * 2011-05-30 2016-07-06 Telefonaktiebolaget LM Ericsson (publ) Primärkanalschätzung
EP2715994B1 (de) * 2011-05-30 2016-07-06 Telefonaktiebolaget LM Ericsson (publ) Pilotenverschiebung
WO2012167417A1 (en) * 2011-06-07 2012-12-13 Renesas Mobile Corporation Method and apparatus for establishing a time-frequency reference signal pattern configuration in a carrier extension or carrier segment
JP5809041B2 (ja) * 2011-12-16 2015-11-10 京セラ株式会社 無線通信装置および無線通信システム
US10003998B2 (en) * 2012-05-04 2018-06-19 Qualcomm Incorporated Systems and methods for reduced overhead in wireless communication systems
JP5482844B2 (ja) * 2012-08-02 2014-05-07 富士通株式会社 移動無線通信システムにおけるパイロット配置方法及びこれを適用する送受信装置
CN103687010B (zh) * 2012-08-30 2017-07-04 电信科学技术研究院 一种传输参考信号的方法、装置及系统
US9191256B2 (en) * 2012-12-03 2015-11-17 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems
KR102194924B1 (ko) * 2012-12-04 2020-12-24 엘지전자 주식회사 무선 통신 시스템에서 코히런스 시간 변화에 따른 참조 신호의 패턴 변경 방법 및 이를 위한 장치
EP2957048B1 (de) * 2013-02-12 2019-10-23 LG Electronics Inc. Verfahren zur übertragung eines referenzsignals von einer basisstation an eine benutzervorrichtung in einem drahtlosen kommunikationssystem und vorrichtung dafür
US10826663B2 (en) 2013-03-13 2020-11-03 Huawei Technologies Co., Ltd. System and method for determining a pilot signal
JP2013169019A (ja) * 2013-06-05 2013-08-29 Fujitsu Ltd 無線通信システム、通信方法及び基地局装置
WO2015044424A1 (en) * 2013-09-30 2015-04-02 Volvo Car Corporation Method to introduce complementing training symbols into a 802.11p ofdm frame in vehicular communications
EP3072344A4 (de) 2013-11-19 2017-08-02 Intel IP Corporation Verfahren, vorrichtung und computerlesbares medium zur mehrfachnutzerplanung in drahtlosen lans
US9544914B2 (en) 2013-11-19 2017-01-10 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
CN106063146A (zh) 2013-11-19 2016-10-26 英特尔Ip公司 用于具有改进的接收器性能的ul mu‑mimo hew的hew站和方法
US9961678B2 (en) 2013-11-19 2018-05-01 Intel IP Corporation Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation
US9325463B2 (en) 2013-11-19 2016-04-26 Intel IP Corporation High-efficiency WLAN (HEW) master station and methods to increase information bits for HEW communication
CN104735792B (zh) * 2013-12-23 2018-10-02 华为技术有限公司 导频资源分配方法及装置
CN106134123B (zh) 2014-03-31 2019-07-16 索尼公司 用于网络中的导频时隙跳频的方法和设备及计算机可读介质
CN106465351B (zh) * 2014-05-26 2019-11-26 华为技术有限公司 一种配置导频的方法及装置
WO2016010578A1 (en) * 2014-07-18 2016-01-21 Intel IP Corporation Method, apparatus, and computer readable medium for transmitting pilots in wireless local area networks
US9967070B2 (en) * 2014-10-31 2018-05-08 Qualcomm Incorporated Pilot reconfiguration and retransmission in wireless networks
JP7016697B2 (ja) * 2015-04-30 2022-02-07 株式会社半導体エネルギー研究所 電子機器
WO2017005295A1 (en) * 2015-07-06 2017-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for data transmission in wireless systems
CN106452700B (zh) * 2015-08-06 2020-02-18 电信科学技术研究院 一种进行数据传输的方法和设备
WO2017105299A1 (en) * 2015-12-14 2017-06-22 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for pilot sequence allocation
AU2016391189A1 (en) 2016-02-02 2018-08-16 Nec Corporation Method and apparatus for communication based on short transmission time intervals in wireless communication system
JP6915721B2 (ja) * 2016-02-02 2021-08-04 日本電気株式会社 ユーザ装置及び基地局による方法
CN108702271B (zh) 2016-02-26 2021-02-23 杜塞尔多夫华为技术有限公司 发送和接收设备处理合成导频信号
BR112019019115A2 (pt) * 2017-03-16 2020-04-14 Huawei Tech Co Ltd dispositivo de comunicação móvel, estação base, método de envio de informação de mobilidade, método de recepção de informação de mobilidade e meio de armazenamento legível por computador não transitório
CN108199989B (zh) * 2018-01-16 2020-04-14 南方科技大学 调度方法及装置、大规模多天线系统和存储介质
CN110138519A (zh) * 2018-02-02 2019-08-16 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
EP3843345A4 (de) * 2018-08-20 2021-09-08 Beijing Xiaomi Mobile Software Co., Ltd. Verfahren und gerät zur kanalschätzung, vorrichtung, basisstation und speichermedium
US11070245B1 (en) * 2020-08-21 2021-07-20 Huawei Technologies Co., Ltd. System and method for single-carrier multiple access transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0862343A2 (de) * 1997-02-19 1998-09-02 Lucent Technologies Inc. Mehrstufige sektorisierte Kodemultiplexvielfachzugriff-Übertragung
US6452936B1 (en) * 1997-11-17 2002-09-17 Oki Electric Industry Co., Ltd. Spread-spectrum communication apparatus with adaptive frame configuration
US20030072395A1 (en) * 2001-10-17 2003-04-17 Ming Jia Method and apparatus for channel quality measurements
US20030215021A1 (en) * 2002-03-12 2003-11-20 Kabushiki Kaisha Toshiba Adaptive communication

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710282B1 (fr) 1993-09-25 1997-01-24 Behr Gmbh & Co Procédé et dispositif d'élargissement de tubes métalliques de section ovale par étirage.
EP0785645A1 (de) * 1996-01-16 1997-07-23 ALCATEL BELL Naamloze Vennootschap Verfahren und Modem zur adaptiven Zuteilung des Referenzträgers in einem Mehrträgersystem
US5835847A (en) * 1996-04-02 1998-11-10 Qualcomm Incorporated Pilot signal strength control for a low earth orbiting satellite communications system
US5956642A (en) 1996-11-25 1999-09-21 Telefonaktiebolaget L M Ericsson Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
KR100263176B1 (ko) * 1997-09-18 2000-08-01 윤종용 주파수간 하드 핸드오프를 위한 파일럿 신호 발생 장치 및방법, 이를 이용한 하드 핸드오프 방법
US5887528A (en) 1998-01-06 1999-03-30 Lummis; Robert C. Phone stand system
JP2000151548A (ja) 1998-11-05 2000-05-30 Matsushita Electric Ind Co Ltd Ofdm通信装置
KR100294711B1 (ko) * 1999-03-15 2001-07-12 서평원 최적의 파일럿 심볼을 이용한 프레임 동기 방법
JP3796076B2 (ja) * 1999-09-07 2006-07-12 松下電器産業株式会社 Ofdm通信装置
EP2262157A3 (de) 2000-07-05 2011-03-23 Sony Deutschland Gmbh Pilotsmusterentwurf für ein STTD-Schema in einem OFDM-System
US6898441B1 (en) 2000-09-12 2005-05-24 Lucent Technologies Inc. Communication system having a flexible transmit configuration
US6947748B2 (en) * 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
KR100754633B1 (ko) * 2000-12-27 2007-09-05 삼성전자주식회사 이동통신 시스템에서 패킷 데이터 서비스를 위한 송수신장치 및 방법
US7164669B2 (en) 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
DE10102709B4 (de) * 2001-01-22 2014-02-06 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Synchronisation auf eine Pilotsequenz eines CDMA-Signals
US20020127982A1 (en) * 2001-03-07 2002-09-12 Nokia Mobile Phones Ltd Mobile station receiver operable for both single and multi-carrier reception
US20020136287A1 (en) * 2001-03-20 2002-09-26 Heath Robert W. Method, system and apparatus for displaying the quality of data transmissions in a wireless communication system
JP2003087218A (ja) * 2001-06-29 2003-03-20 Matsushita Electric Ind Co Ltd マルチキャリア送信装置、マルチキャリア受信装置およびマルチキャリア無線通信方法
JP3654349B2 (ja) 2001-07-09 2005-06-02 ソニー株式会社 コンテンツ嗜好度算出方法およびコンテンツ受信装置
JP3665598B2 (ja) 2001-09-26 2005-06-29 株式会社東芝 マルチキャリア通信装置
US7248559B2 (en) * 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7126996B2 (en) * 2001-12-28 2006-10-24 Motorola, Inc. Adaptive transmission method
KR100790114B1 (ko) 2002-03-16 2007-12-31 삼성전자주식회사 직교주파수 분할다중 접속 시스템에서 적응적 파일럿반송파 할당 방법 및 장치
CA2428576C (en) 2002-05-16 2008-10-07 Ntt Docomo, Inc. Transmitter for multi-carrier transmission and multi-carrier transmitting method
US7436757B1 (en) * 2002-06-21 2008-10-14 Nortel Networks Limited Scattered pilot and filtering for channel estimation
KR100933155B1 (ko) * 2002-09-30 2009-12-21 삼성전자주식회사 주파수분할다중접속 이동통신시스템에서 가상 셀의 자원할당장치 및 방법
US6888056B2 (en) * 2002-10-16 2005-05-03 Brant Leonard Piano string coil lifting and setting apparatus
BR0315664A (pt) * 2002-10-25 2005-08-30 Qualcomm Inc Detecção e demodulação de dados para sistemas de comunicação sem fio
BR0215922A (pt) * 2002-11-07 2005-08-09 Ericsson Telefon Ab L M Método para comunicar quadros de dados digitais por sinais modulados em ofdm, transmissor, e, receptor
US6947530B1 (en) * 2002-11-13 2005-09-20 Advanced Micro Devices, Inc. Adaptive pilot tone location in a transmission system
KR100507519B1 (ko) * 2002-12-13 2005-08-17 한국전자통신연구원 Ofdma 기반 셀룰러 시스템의 하향링크를 위한 신호구성 방법 및 장치
US7218948B2 (en) * 2003-02-24 2007-05-15 Qualcomm Incorporated Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators
US7092731B2 (en) * 2003-03-06 2006-08-15 Lucent Technologies Inc. Method for improving capacity of a reverse link channel in a wireless network
US20050043052A1 (en) * 2003-08-20 2005-02-24 Whinnett Nicholas W. Method of operation of a communication device and corresponding communication device
KR100594597B1 (ko) * 2003-10-24 2006-06-30 한국전자통신연구원 이동통신시스템에서의 하향링크 신호 구성 방법 및 그장치와, 이를 이용한 동기화 및 셀 탐색 방법과 그 장치
US6985535B2 (en) * 2003-10-31 2006-01-10 Motorola, Inc. Channel condition estimation for pilot coefficient selection
EP1542488A1 (de) * 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Verfahren un vorrichtung zur Zuweisung von Kanaladaptierten Pilotsignalen
KR100507541B1 (ko) * 2003-12-19 2005-08-09 삼성전자주식회사 직교주파수분할다중접속 시스템에서의 데이터 및 파일롯할당 방법 과 그를 이용한 송신 방법 및 그 장치, 수신방법과 그 장치
KR100534594B1 (ko) * 2003-12-27 2005-12-07 한국전자통신연구원 다중반송파 코드분할다중접속 시스템에서 적응형 하향링크패킷 전송방법
US8085875B2 (en) * 2004-07-16 2011-12-27 Qualcomm Incorporated Incremental pilot insertion for channnel and interference estimation
KR101137329B1 (ko) * 2005-06-15 2012-04-19 엘지전자 주식회사 다중 반송파 시스템에서의 부반송파 할당 방법 및 그 장치
US7643578B2 (en) * 2005-07-20 2010-01-05 Broadcom Corporation Angle estimation for modulated signal
US7773690B2 (en) * 2005-07-20 2010-08-10 Broadcom Corporation Angle estimation for space-time block code (STBC) modulated signal
US8396141B2 (en) * 2005-11-29 2013-03-12 Telefonaktiebolaget L M Ericsson (Publ) Efficient cell selection
US7532675B2 (en) * 2005-12-23 2009-05-12 Intel Corporation Techniques to time vary pilot locations in wireless networks
EP2045940B1 (de) * 2006-07-25 2017-10-11 Fujitsu Limited Störungsrauschschätzverfahren in einem mehrträger-kommunikationssystem und störungsrausch-schätzeinrichtung
US8879602B2 (en) * 2009-07-24 2014-11-04 At&T Mobility Ii Llc Asymmetrical receivers for wireless communication
US10637705B1 (en) * 2017-05-25 2020-04-28 Genghiscomm Holdings, LLC Peak-to-average-power reduction for OFDM multiple access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0862343A2 (de) * 1997-02-19 1998-09-02 Lucent Technologies Inc. Mehrstufige sektorisierte Kodemultiplexvielfachzugriff-Übertragung
US6452936B1 (en) * 1997-11-17 2002-09-17 Oki Electric Industry Co., Ltd. Spread-spectrum communication apparatus with adaptive frame configuration
US20030072395A1 (en) * 2001-10-17 2003-04-17 Ming Jia Method and apparatus for channel quality measurements
US20030215021A1 (en) * 2002-03-12 2003-11-20 Kabushiki Kaisha Toshiba Adaptive communication

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187240B2 (en) 1999-11-09 2019-01-22 Tq Delta, Llc System and method for scrambling the phase of the carriers in a multicarrier communications system
US8929470B2 (en) 1999-11-09 2015-01-06 Tq Delta, Llc System and method for scrambling the phase of the carriers in a multicarrier communications system
US9014243B2 (en) 1999-11-09 2015-04-21 Tq Delta, Llc System and method for scrambling using a bit scrambler and a phase scrambler
US8718158B2 (en) 1999-11-09 2014-05-06 Tq Delta, Llc System and method for scrambling the phase of the carriers in a multicarrier communications system
US9485128B2 (en) 1999-11-09 2016-11-01 Tq Delta, Llc System and method for scrambling using a bit scrambler and a phase scrambler
US9755876B2 (en) 1999-11-09 2017-09-05 Tq Delta, Llc System and method for scrambling the phase of the carriers in a multicarrier communications system
US11032035B2 (en) 2000-09-13 2021-06-08 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7990844B2 (en) 2000-09-13 2011-08-02 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7916624B2 (en) 2000-09-13 2011-03-29 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7924699B2 (en) 2000-09-13 2011-04-12 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8295154B2 (en) 2000-09-13 2012-10-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8223627B2 (en) 2000-09-13 2012-07-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7623442B2 (en) 2000-09-13 2009-11-24 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7990843B2 (en) 2000-09-13 2011-08-02 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8014271B2 (en) 2000-09-13 2011-09-06 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8218425B2 (en) 2000-09-13 2012-07-10 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8098568B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8098569B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US8199634B2 (en) 2000-09-13 2012-06-12 Qualcomm Incorporated Signaling method in an OFDM multiple access system
EP2560315B1 (de) * 2003-08-12 2020-04-15 Godo Kaisha IP Bridge 1 Funkkommunikationsvorrichtung und Pilotsymbolübertragungsverfahren
EP3429119A1 (de) * 2003-08-12 2019-01-16 Godo Kaisha IP Bridge 1 Funkkommunikationsvorrichtung und pilotsymbolübertragungsverfahren
US10476645B2 (en) 2003-08-12 2019-11-12 Godo Kaisha Ip Bridge 1 Receiving apparatus, receiving method and integrated circuit
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US10237892B2 (en) 2004-07-21 2019-03-19 Qualcomm Incorporated Efficient signaling over access channel
US10517114B2 (en) 2004-07-21 2019-12-24 Qualcomm Incorporated Efficient signaling over access channel
US11039468B2 (en) 2004-07-21 2021-06-15 Qualcomm Incorporated Efficient signaling over access channel
US10849156B2 (en) 2004-07-21 2020-11-24 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
KR100599171B1 (ko) 2004-08-17 2006-07-12 삼성전자주식회사 화상처리장치의 제어방법
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8547951B2 (en) 2005-03-16 2013-10-01 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9693339B2 (en) 2005-08-08 2017-06-27 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
CN101292487B (zh) * 2005-08-22 2013-11-27 高通股份有限公司 以有效方式传输导频的方法和设备
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8787347B2 (en) 2005-08-24 2014-07-22 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
EP3528393A1 (de) * 2005-10-07 2019-08-21 Nokia Technologies Oy Vorrichtung, verfahren und computerprogrammprodukt zur bereitstellung eines gemeinsamen pilotkanals zur weichfrequenzwiederverwendung
CN101305529B (zh) * 2005-10-07 2013-04-03 诺基亚公司 为软频率重用提供公共导频信道的装置和方法
EP1943746A4 (de) * 2005-10-07 2013-06-05 Nokia Corp Vorrichtung, verfahren und computerprogrammprodukt zur bereitstellung eines gemeinsamen pilotkanals für soft-frequenzwiederverwendung
WO2007042898A1 (en) 2005-10-07 2007-04-19 Nokia Corporation Apparatus, method and computer program product providing common pilot channel for soft frequency reuse
KR100966507B1 (ko) * 2005-10-07 2010-06-29 노키아 코포레이션 소프트 주파수 재사용을 위한 공통 파일럿 채널을 제공하는장치, 방법 및 컴퓨터 프로그램 생성물
US10979981B2 (en) 2005-10-07 2021-04-13 Nokia Technologies Oy Apparatus, method and computer program product providing common pilot channel for soft frequency reuse
EP1943746A1 (de) * 2005-10-07 2008-07-16 Nokia Corporation Vorrichtung, verfahren und computerprogrammprodukt zur bereitstellung eines gemeinsamen pilotkanals für soft-frequenzwiederverwendung
EP1777905A1 (de) * 2005-10-20 2007-04-25 Siemens Aktiengesellschaft Verfahren zur Datenübertragung in einem Funkkommunikationssystem
WO2007045582A1 (de) * 2005-10-20 2007-04-26 Nokia Siemens Networks Gmbh & Co. Kg Verfahren zur datenübertragung in einem funkkommunikationssystem
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
EP2247054A1 (de) * 2005-10-27 2010-11-03 Qualcomm Incorporated Auf Kanaleigenschaften basierende Auswahl von Pilotmuster für ein mimo-ofdm System
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
CN101341709B (zh) * 2005-10-27 2015-04-15 高通股份有限公司 用于正交频分无线通信系统的导频信号传输
AU2006305703B2 (en) * 2005-10-27 2011-07-21 Qualcomm Incorporated Allocation of pilot pattern adapted to channel characteristics for an OFDM system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
WO2007051190A1 (en) * 2005-10-27 2007-05-03 Qualcomm Incorporated Allocation of pilot pattern adapted to channel characteristics for an ofdm system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8681764B2 (en) 2005-11-18 2014-03-25 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
EP1793521A1 (de) * 2005-11-30 2007-06-06 Fujitsu Limited Variable Verteilung von allgemeinen Pilotsymbolen in OFDM
US7710910B2 (en) 2005-11-30 2010-05-04 Fujitsu Limited Wireless base station and wireless communication method
JP2007150971A (ja) * 2005-11-30 2007-06-14 Fujitsu Ltd 無線基地局及び無線通信方法
CN1976489B (zh) * 2005-11-30 2011-10-26 富士通株式会社 无线基站
CN102255846A (zh) * 2005-11-30 2011-11-23 富士通株式会社 移动通信系统以及无线基站
CN102255846B (zh) * 2005-11-30 2014-11-12 富士通株式会社 移动通信系统以及无线基站
US8705496B2 (en) 2006-01-19 2014-04-22 Samsung Electronics Co., Ltd Method and apparatus for controlling transmission and reception of dedicated pilots according to MCS level in a wireless communication system
EP1811734A1 (de) * 2006-01-19 2007-07-25 Samsung Electronics Co., Ltd. Verfahren und Vorrichtung zur Steuerung von Übertragung und Empfang definierter Pilotsignale gemäß MCS-Ebene in einem drahtlosen Kommunikationssystem
EP1991016A4 (de) * 2006-01-27 2013-05-01 Fujitsu Ltd Basisstation, drahtloses kommunikationssystem und pilotmuster-entscheidungsverfahren
EP1991016A1 (de) * 2006-01-27 2008-11-12 Fujitsu Limited Basisstation, drahtloses kommunikationssystem und pilotmuster-entscheidungsverfahren
US8472424B2 (en) 2006-02-21 2013-06-25 Qualcomm Incorporated Method and apparatus for supporting multiple multiplexing schemes for wireless communication
US8498192B2 (en) 2006-02-21 2013-07-30 Qualcomm Incorporated Spatial pilot structure for multi-antenna wireless communication
WO2007098456A2 (en) * 2006-02-21 2007-08-30 Qualcomm Incorporated Spatial pilot structure for multi-antenna wireless communication
US8077595B2 (en) 2006-02-21 2011-12-13 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
RU2449486C2 (ru) * 2006-02-21 2012-04-27 Квэлкомм Инкорпорейтед Структура пространственного пилот-сигнала для беспроводной связи с множеством антенн
US8689025B2 (en) 2006-02-21 2014-04-01 Qualcomm Incorporated Reduced terminal power consumption via use of active hold state
WO2007098456A3 (en) * 2006-02-21 2007-11-01 Qualcomm Inc Spatial pilot structure for multi-antenna wireless communication
US9461736B2 (en) 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
US8913479B2 (en) 2006-02-21 2014-12-16 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
US8493958B2 (en) 2006-02-21 2013-07-23 Qualcomm Incorporated Flexible payload control in data-optimized communication systems
US8396152B2 (en) 2006-02-21 2013-03-12 Qualcomm Incorporated Feedback channel design for multiple-input multiple-output communication systems
EP1998482A1 (de) * 2006-03-20 2008-12-03 NTT DoCoMo, Inc. Basisstation, mobilstation und verfahren zur steuerung der übertragung eines ausbreitungswegmesssignals
EP1998482A4 (de) * 2006-03-20 2012-12-26 Ntt Docomo Inc Basisstation, mobilstation und verfahren zur steuerung der übertragung eines ausbreitungswegmesssignals
CN100586217C (zh) * 2006-04-17 2010-01-27 大唐移动通信设备有限公司 一种确保在第一网络中的双模终端测量第二网络信号的方法
EP2015490A1 (de) * 2006-04-28 2009-01-14 NEC Corporation Pilotsignal-übertragungsverfahren, funkkommunikationssystem und vorrichtung und programm dafür
EP2015490A4 (de) * 2006-04-28 2014-01-22 Nec Corp Pilotsignal-übertragungsverfahren, funkkommunikationssystem und vorrichtung und programm dafür
US8174995B2 (en) 2006-08-21 2012-05-08 Qualcom, Incorporated Method and apparatus for flexible pilot pattern
US8978103B2 (en) 2006-08-21 2015-03-10 Qualcomm Incorporated Method and apparatus for interworking authorization of dual stack operation
US9548967B2 (en) 2006-08-21 2017-01-17 Qualcomm Incorporated Method and apparatus for interworking authorization of dual stack operation
WO2008039294A3 (en) * 2006-09-22 2008-05-08 Lucent Technologies Inc Method for resource allocation in a wireless communication system
CN101529815B (zh) * 2006-09-22 2013-12-25 卢森特技术有限公司 无线通信系统中的资源分配方法
CN101529815A (zh) * 2006-09-22 2009-09-09 卢森特技术有限公司 无线通信系统中的资源分配方法
WO2008039294A2 (en) * 2006-09-22 2008-04-03 Lucent Technologies Inc. Method for resource allocation in a wireless communication system
EP2129018A4 (de) * 2006-12-28 2014-08-20 Sharp Kk Funkübertragungseinrichtung, steuereinrichtung, funkkommunikationssystem und kommunikationsverfahren
EP2129018A1 (de) * 2006-12-28 2009-12-02 Sharp Kabushiki Kaisha Funkübertragungseinrichtung, steuereinrichtung, funkkommunikationssystem und kommunikationsverfahren
US7720164B2 (en) 2007-02-26 2010-05-18 Telefonaktiebolaget L M Ericsson (Publ) Transmission scheme for uplink access in a FDMA system
EP1965551A2 (de) * 2007-02-27 2008-09-03 Industrial Technology Research Institute Verfahren und Vorrichtungen zur Pilotsignalzuweisung in einem drahtlosen Kommunikationssystem
EP1965551A3 (de) * 2007-02-27 2013-03-20 Industrial Technology Research Institute Verfahren und Vorrichtungen zur Pilotsignalzuweisung in einem drahtlosen Kommunikationssystem
EP2115984A2 (de) * 2007-03-08 2009-11-11 Telefonaktiebolaget Lm Ericsson (publ) Adaptives pilotsymbolzuweisungsverfahren und gerät
EP2115984A4 (de) * 2007-03-08 2014-05-07 Ericsson Telefon Ab L M Adaptives pilotsymbolzuweisungsverfahren und gerät
US8670704B2 (en) 2007-03-16 2014-03-11 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
EP2239898B1 (de) * 2007-03-16 2016-03-09 Qualcomm Incorporated Pilotübertragung mittels Relaisstationen in einem Mulithop-Relaiskommunikationssystem
US10218541B2 (en) 2007-05-28 2019-02-26 Samsung Electronics Co., Ltd. OFDM transmission/reception device for transmitting and receiving OFDM symbols having a variable data transmission rate and method thereof
EP2151109A1 (de) * 2007-05-28 2010-02-10 Samsung Electronics Co., Ltd. Ofdm-sende/empfangs-vorrichtung zum senden und empfangen von ofdm-symbolen mit variabler datenübertragungsrate und entsprechendes verfahren
US8848506B2 (en) 2007-05-28 2014-09-30 Samsung Electronics Co., Ltd. OFDM transmission/reception device for transmitting and receiving OFDM symbols having a variable data transmission rate and method thereof
EP2151109A4 (de) * 2007-05-28 2014-04-30 Samsung Electronics Co Ltd Ofdm-sende/empfangs-vorrichtung zum senden und empfangen von ofdm-symbolen mit variabler datenübertragungsrate und entsprechendes verfahren
US10693681B2 (en) 2007-05-28 2020-06-23 Samsung Electronics Co., Ltd. OFDM transmission/reception device for transmitting and receiving OFDM symbols having a variable data transmission rate and method thereof
WO2008147052A1 (en) 2007-05-28 2008-12-04 Samsung Electronics Co., Ltd. Ofdm transmission/reception device for transmitting and receiving ofdm symbols having a variable data transmission rate and method thereof
US9912496B2 (en) 2007-05-28 2018-03-06 Samsung Electronics Co., Ltd. OFDM transmission/reception device for transmitting and receiving OFDM symbols having a variable data transmission rate and method thereof
US9485067B2 (en) 2007-08-02 2016-11-01 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
EP2209250B1 (de) * 2007-08-02 2018-03-14 Fujitsu Limited Pilotenstruktur für mobile Rundfunkvermittlungssysteme
CN103338099B (zh) * 2007-08-02 2016-06-29 富士通株式会社 移动通信系统和移动通信系统中的通信方法
WO2009028729A3 (en) * 2007-08-31 2009-04-30 Panasonic Corp Communication apparatus and method
US8325784B2 (en) 2007-08-31 2012-12-04 Panasonic Corporation Communication apparatus, communication method, and integrated circuit
CN101796788B (zh) * 2007-08-31 2016-11-16 松下电器产业株式会社 通信装置和通信方法
WO2009028729A2 (en) * 2007-08-31 2009-03-05 Panasonic Corporation Communication apparatus and method
EP2198535A4 (de) * 2007-10-08 2016-04-06 Samsung Electronics Co Ltd Vorrichtung und verfahren zur kanalschätzung in einem drahtlosen kommunikationssystem
WO2009099810A3 (en) * 2008-01-30 2010-01-07 Qualcomm Incorporated Method and apparatus for mitigating pilot pollution in a wireless network
US8897269B2 (en) 2008-01-30 2014-11-25 Qualcomm Incorporated Method and apparatus for mitigating pilot pollution in a wireless network
US9485068B2 (en) 2008-01-30 2016-11-01 Qualcomm Incorporated Method and apparatus for mitigating pilot pollution in a wireless network
RU2469510C2 (ru) * 2008-01-30 2012-12-10 Квэлкомм Инкорпорейтед Способ и устройство для уменьшения загрязнения контрольными сигналами в беспроводной сети
EP2512193A1 (de) 2008-01-30 2012-10-17 Qualcomm Incorporated Verfahren und Vorrichtung zur Abschwächung von Pilotstörungen in einem drahtlosen Netzwerk
TWI412251B (zh) * 2008-06-11 2013-10-11 Ind Tech Res Inst 以參考訊號為基礎用於無線通訊裝置之方法及該無線裝置
GB2468721A (en) * 2009-03-20 2010-09-22 Toshiba Res Europ Ltd Determining the position of OFDM pilot subcarriers based upon channel covariance matrix
CN102083210B (zh) * 2010-03-22 2016-12-14 电信科学技术研究院 一种传输导频配置信息的方法及装置
CN102083210A (zh) * 2010-03-22 2011-06-01 大唐移动通信设备有限公司 一种传输导频配置信息的方法及装置
JP2010283863A (ja) * 2010-07-30 2010-12-16 Fujitsu Ltd 無線基地局、無線通信方法および無線通信システム
EP3589054A1 (de) * 2010-12-20 2020-01-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Mobilitätsbasiertes funkressourcenzuweisung
EP2656673B1 (de) * 2010-12-20 2019-09-18 Guangdong OPPO Mobile Telecommunications Corp., Ltd. Mobilitätsbasiertes funkressourcenzuweisung
EP3589055A1 (de) * 2010-12-20 2020-01-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Mobilitätsbasiertes funkressourcenzuweisung
CN105827364A (zh) * 2011-03-25 2016-08-03 北京新岸线移动多媒体技术有限公司 无线通信系统中导频的配置方法及装置
US9301266B2 (en) 2011-08-19 2016-03-29 Qualcomm Incorporated Beacons for wireless communication
WO2013028629A3 (en) * 2011-08-19 2013-04-18 Qualcomm Incorporated Beacons for wireless communication
US9961653B2 (en) 2011-08-19 2018-05-01 Qualcomm Incorporated Beacons for wireless communication
EP2852220A1 (de) * 2011-08-19 2015-03-25 Qualcomm Incorporated Baken für die drahtlose Kommunikation
JP2013255266A (ja) * 2013-08-05 2013-12-19 Fujitsu Ltd 移動端末
US9544116B2 (en) 2014-02-14 2017-01-10 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
WO2017063716A1 (en) * 2015-10-16 2017-04-20 Huawei Technologies Co., Ltd. Secure paring method for mimo systems
US10491350B2 (en) 2016-02-29 2019-11-26 British Telecommunications Public Limited Company Adaptive reference signal patterns
US10375701B2 (en) 2016-02-29 2019-08-06 British Telecommunications Public Limited Company Controlling adaptive reference signal patterns
US10382179B2 (en) 2016-02-29 2019-08-13 British Telecommunications Public Limited Company Adapting reference signal density
US11848730B2 (en) 2021-12-16 2023-12-19 Qualcomm Incorporated Methods for feedback of metrics associated with reduced capability antenna modules in millimeter wave systems

Also Published As

Publication number Publication date
TWI386092B (zh) 2013-02-11
EP1695587A1 (de) 2006-08-30
JP2007514352A (ja) 2007-05-31
US9935749B2 (en) 2018-04-03
US20140362805A1 (en) 2014-12-11
CN1891007B (zh) 2011-09-28
US20200162218A1 (en) 2020-05-21
US20110075625A1 (en) 2011-03-31
US20180227097A1 (en) 2018-08-09
EP1695587B1 (de) 2009-04-15
ZA200604187B (en) 2007-12-27
WO2005060298A1 (en) 2005-06-30
US11265126B2 (en) 2022-03-01
JP4673316B2 (ja) 2011-04-20
CN1891007A (zh) 2007-01-03
US8843144B2 (en) 2014-09-23
TW200534720A (en) 2005-10-16
US12010057B2 (en) 2024-06-11
US20220182203A1 (en) 2022-06-09
DE602004020669D1 (de) 2009-05-28
ATE429134T1 (de) 2009-05-15
US20070104174A1 (en) 2007-05-10
US10560236B2 (en) 2020-02-11
US7904093B2 (en) 2011-03-08

Similar Documents

Publication Publication Date Title
US12010057B2 (en) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
US5726978A (en) Adaptive channel allocation in a frequency division multiplexed system
KR101370002B1 (ko) 다중 홉 중계 방식의 무선통신 시스템에서 스케줄링 장치및 방법
KR100998187B1 (ko) 다중 홉 중계방식을 사용하는 광대역 무선통신시스템에서 중계 방식 선택 장치 및 방법
US9001717B2 (en) Method and apparatus of transmitting and receiving signal in a distributed antenna system
US5956642A (en) Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system
EP1931089B1 (de) Funkkommunikationsgerät und Funkkommunikationsverfahren
US20060135075A1 (en) Method and system for dynamic hybrid multiple access in an OFDM-based wireless network
US20110098072A1 (en) Apparatus and method for cooperative transmission/reception in wireless communication system
US8249609B2 (en) Radio resource allocation method and radio station
US20120170542A1 (en) Allocation of uplink reference signals in a mobile communication system
CN108632984B (zh) 公共控制信道的配置及接收方法、装置
CN108307506B (zh) 配置随机接入资源的方法和装置及随机接入方法和装置
KR20080090918A (ko) 직교 주파수 분할 다중 접속 방식의 분산 안테나시스템에서 부반송파 할당을 위한 서브 셀 선택 장치 및방법
JP4348298B2 (ja) 無線リソースの管理方法
KR101880972B1 (ko) 무선 통신시스템의 다층 클러스터링 장치 및 방법
EP2104391B1 (de) Sende-/Empfangsvorrichtung und Verfahren zum Senden und Empfangen von Datenpaketen in einem mobilen Kommunikationsnetzwerk
JP2006527959A (ja) Ofdmaシステムおよび方法
KR20140107956A (ko) 새로운 반송파 형식에서의 간섭 측정 방법 및 장치
KR20060056210A (ko) 직교 주파수 분할 다중 접속 통신 시스템에서 핸드오버서비스 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051216