RU2449486C2 - Структура пространственного пилот-сигнала для беспроводной связи с множеством антенн - Google Patents
Структура пространственного пилот-сигнала для беспроводной связи с множеством антенн Download PDFInfo
- Publication number
- RU2449486C2 RU2449486C2 RU2008137608/07A RU2008137608A RU2449486C2 RU 2449486 C2 RU2449486 C2 RU 2449486C2 RU 2008137608/07 A RU2008137608/07 A RU 2008137608/07A RU 2008137608 A RU2008137608 A RU 2008137608A RU 2449486 C2 RU2449486 C2 RU 2449486C2
- Authority
- RU
- Russia
- Prior art keywords
- level
- pilot signal
- subbands
- pilot
- levels
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 39
- 230000005540 biological transmission Effects 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims description 41
- 230000008569 process Effects 0.000 claims description 7
- 239000010410 layer Substances 0.000 claims 7
- 239000002356 single layer Substances 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 33
- 239000000126 substance Substances 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 235000015429 Mirabilis expansa Nutrition 0.000 description 5
- 244000294411 Mirabilis expansa Species 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 235000013536 miso Nutrition 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1438—Negotiation of transmission parameters prior to communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/063—Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0025—Transmission of mode-switching indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0028—Formatting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0226—Channel estimation using sounding signals sounding signals per se
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
- H04L27/26132—Structure of the reference signals using repetition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0016—Time-frequency-code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0026—Division using four or more dimensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0042—Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/004—Orthogonal
- H04J13/0044—OVSF [orthogonal variable spreading factor]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1671—Details of the supervisory signal the supervisory signal being transmitted together with control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/02—Channels characterised by the type of signal
- H04L5/023—Multiplexing of multicarrier modulation signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Communication Control (AREA)
- Radio Relay Systems (AREA)
Abstract
Изобретение относится к технике связи и может использовать пространственный пилот-сигнал для поддержки приемников MIMO в системе связи с множеством антенн и множеством уровней передачи. Технический результат состоит в повышении эффективности передачи пилот-сигналов. Для этого пилот-сигнал первого уровня для передачи одного уровня повторяется по поддиапазонам в первом символе OFDM, и пилот-сигнал первого уровня также повторяется со смещением от первого символа OFDM в смежном втором символе OFDM. Также могут передаваться дополнительные уровни передачи, каждый из которых включает в себя отдельный пилот-сигнал, сформированный и повторяющийся в первом символе и повторяющийся со смещением от отдельного пилот-сигнала в смежном втором символе. Затем первый и второй символы OFDM передаются и принимаются для характеристики каналов приема. 5 н. и 30 з.п. ф-лы, 9 ил.
Description
Настоящая заявка на патент испрашивает приоритет предварительной заявки № 60/775443, озаглавленной "Система и способ беспроводной связи" и предварительной заявки № 60/775693, озаглавленной "Система и способ системы связи стандарта DO", которые поданы 21 февраля 2006 года, переуступлены заявителю настоящей заявки и явно включены в настоящий документ по ссылке.
Область техники
Настоящее раскрытие имеет отношение к связи вообще и, в частности, к способам передачи для системы беспроводной связи.
Уровень техники
Системы беспроводной связи широко развертываются для обеспечения различных услуг связи, таких как передача голоса, видео, пакетных данных, обмен сообщениями, широковещание и т.д. Эти системы могут являться системами множественного доступа, которые способны поддерживать множество пользователей посредством совместного использования доступных системных ресурсов. Примеры таких систем множественного доступа включают в себя системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением каналов (TDMA), системы множественного доступа с частотным разделением каналов (FDMA), системы множественного доступа с ортогональным частотным разделением каналов (OFDMA) и системы множественного доступа с частотным разделением каналов с одной несущей (SC-FDMA).
Система множественного доступа может использовать одну или более схем мультиплексирования, таких как мультиплексирование с кодовым разделением (CDM), мультиплексирование с временным разделением (TDM) и т.д. Система может быть развернута и может обслуживать существующие терминалы. Может являться желательным улучшить производительность системы, сохраняя при этом обратную совместимость для существующих терминалов. Например, может являться желательным использовать пространственные методы, такие как технология с множеством входов и множеством выходов (MIMO) и множественный доступ с пространственным разделением (SDMA), для улучшения пропускной способности и/или надежности посредством использования дополнительных пространственных размерностей, обеспечиваемых при помощи множества антенн.
Система связи с множеством антенн поддерживает передачу с множеством входов и множеством выходов (MIMO) от множества (T) передающих антенн на множество (R) приемных антенн. Канал системы MIMO, сформированный с помощью T передающих антенн и R приемных антенн, состоит из S пространственных каналов, где S≤min{T, R}. S пространственных каналов могут использоваться для параллельной передачи данных для достижения более высокой общей пропускной способности и/или достижения большей надежности посредством избыточности.
Точная оценка беспроводного канала между передатчиком и приемником обычно необходима в приемнике для того, чтобы восстановить данные, отправленные через беспроводной канал. Оценка канала обычно выполняется посредством передачи пилот-сигнала от передатчика и измерения пилот-сигнала в приемнике. Пилот-сигнал составляется из символов, которые априорно известны и передатчику, и приемнику. Приемник может, таким образом, оценить характеристику канала на основе принятых символов и известных символов.
Система с множеством антенн поддерживает приемники системы MIMO (которые являются приемниками, оборудованными множеством антенн). Приемники системы MIMO обычно требуют различных оценок канала и, таким образом, имеют различные требования для пилот-сигнала, как описано ниже. Поскольку передача пилот-сигналов представляет собой дополнительные затраты в системе с множеством антенн, желательно в возможной степени минимизировать передачу пилот-сигналов. Однако передача пилот-сигналов должна быть такой, чтобы приемники системы MIMO могли получить оценки канала достаточного качества.
Поэтому в области техники имеется потребность в способах передачи для эффективной передачи пилот-сигнала в системе с множеством антенн, которая может поддерживать пространственные способы при поддержке обратной совместимости для существующих терминалов.
Сущность изобретения
Здесь описываются способы передачи пространственного пилот-сигнала для поддержки приемников MIMO в системе связи с множеством антенн и множеством уровней передачи. В соответствии с одним вариантом воплощения настоящего изобретения описывается способ передачи пилот-сигнала в системе беспроводной связи. Способ включает в себя формирование пилот-сигнала первого уровня для передачи одного уровня. Пилот-сигнал первого уровня повторяется по поддиапазонам в первом символе OFDM, и пилот-сигнал первого уровня также повторяется со смещением от первого символа OFDM в смежном втором символе OFDM. Затем первый и второй символы OFDM передаются.
В соответствии с другим вариантом воплощения настоящего изобретения описывается устройство в системе беспроводной связи. Устройство включает в себя генератор пилот-сигналов для формирования по меньшей мере одного пилот-сигнала на основе множества уровней передачи, и каждый из по меньшей мере одного пилот-сигнала повторяется по поддиапазонам первого символа OFDM. По меньшей мере один пилот-сигнал также повторяется и смещается относительно других из по меньшей мере одного пилот-сигнала первого символа OFDM по поддиапазонам смежного второго символа OFDM. Устройство дополнительно включает в себя множество блоков передатчика, выполненных с возможностью передавать каждый из первого и второго символов OFDM в передаче соответствующего количества уровней через множество передающих антенн.
В соответствии с дополнительным вариантом воплощения настоящего изобретения описывается способ выполнения оценки канала в системе беспроводной связи. Способ содержит этап, на котором принимают через множество приемных антенн принимаемые символы, каждый из которых включает в себя пилот-сигнал первого уровня, и смежные принятые символы включают в себя пилот-сигналы первого уровня, смещенные в поддиапазонах относительно друг друга. Способ дополнительно содержит этап, на котором обрабатывают принятые символы на основе пилот-сигнала первого уровня для получения оценок множества каналов между множеством передающих антенн и множеством приемных антенн.
В соответствии с еще одним дополнительным вариантом воплощения настоящего изобретения описывается устройство в системе беспроводной связи. Устройство содержит множество блоков приемника, выполненных с возможностью выдавать принятые символы, каждый из которых включает в себя пилот-сигнал первого уровня, и смежные принятые символы включают в себя пилот-сигналы первого уровня, смещенные в поддиапазонах относительно друг друга. Устройство дополнительно содержит блок оценки канала, выполненный с возможностью обрабатывать принятые символы на основе пилот-сигнала первого уровня для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
Краткое описание чертежей
Фиг.1 показывает систему связи с высокоскоростной передачей пакетных данных (HRPD).
Фиг.2 показывает структуру интервала с одной несущей, которая поддерживает мультиплексирование CDM.
Фиг.3 показывает структуру интервала с одной несущей, которая поддерживает мультиплексирование OFDM.
Фиг.4 показывает блок-схему передатчика и приемников в системе связи с высокоскоростной передачей пакетных данных (HRPD).
Фиг.5 показывает структуру интервала с множеством несущих, которая поддерживает мультиплексирование OFDM по унаследованному и не унаследованному каналу.
Фиг.6 показывает структуру поддиапазона для системы связи с высокоскоростной передачей пакетных данных (HRPD), поддерживающей мультиплексирование OFDM.
Фиг.7A-7D показывают пространственную структуру пилот-сигнала для системы связи с высокоскоростной передачей пакетных данных (HRPD), которая поддерживает мультиплексирование OFDM.
Фиг.8 показывает блок-схему передатчика в системе связи с высокоскоростной передачей пакетных данных (HRPD), которая поддерживает мультиплексирование OFDM.
Фиг.9 показывает блок-схему приемника в системе связи с высокоскоростной передачей пакетных данных (HRPD), которая поддерживает мультиплексирование OFDM.
Подробное описание
Описанные здесь способы передачи могут использоваться для различных систем беспроводной связи, таких как системы CDMA, TDMA, FDMA, OFDMA и SC-FDMA. Термины "системы" и "сети" часто используются взаимозаменяемо. Система CDMA может реализовать беспроводную технологию, такую как cdma2000, универсальный наземный беспроводной доступ (UTRA), технология Evolved UTRA (E-UTRA) и т.д. Технология cdma2000 охватывает стандарты IS-2000, IS-95 и IS-856. Технология UTRA включает в себя широкополосный доступ CDMA (W-CDMA) и передачу с низкой скоростью элементарных сигналов (LCR). Система TDMA может реализовать беспроводную технологию, такую как глобальная система мобильной связи (GSM). Система OFDMA может реализовать беспроводную технологию, такую как технология LTE (Long Term Evolution), стандарт IEEE 802.20, технология Flash-OFDM® и т.д. Технологии UTRA, E-UTRA, GSM и LTE описаны в документах организации, называемой "Проект партнерства по созданию сетей третьего поколения" (3GPP). Технология cdma2000 описана в документах организации, называемой "Проект-2 партнерства по созданию сетей третьего поколения" (3GPP2). Эти различные беспроводные технологии и стандарты известны в области техники.
Для ясности различные аспекты способов описываются ниже для системы с высокоскоростной передачей пакетных данных (HRPD), которая реализует технологию IS-856. Технология HRPD также называется эволюционным стандартом для передачи данных (EV-DO), стандартом для передачи данных (DO), высокоскоростной передачей данных (HDR) и т.д. Термины HRPD и EV-DO часто используются взаимозаменяемо. В настоящее время версии (Rev) 0, A и B технологии HRPD стандартизированы, версии 0 и A технологии HRPD введены в действие, и версия C технологии HRPD находится в разработке. Версии 0 и A технологии HRPD охватывают высокоскоростную передачу пакетных данных с одной несущей (1xHRPD). Версия B технологии HRPD охватывает высокоскоростную передачу пакетных данных с множеством несущих и является обратно совместимой с версиями 0 и A технологии HRPD. Описанные здесь способы могут быть включены в любую версию технологии HRPD. Для ясности в большей части последующего описания используется термин HRPD.
Фиг.1 показывает систему 100 связи технологии HRPD с множеством точек 110 доступа и множеством терминалов 120. Точка доступа в общем случае является стационарной станцией, которая взаимодействует с терминалами и может также называться базовой станцией, узлом B и т.д. Каждая точка 110 доступа обеспечивает охват связи для конкретной географической области и поддерживает связь для терминалов, расположенных в пределах зоны охвата. Точки 110 доступа могут быть соединены с системным контроллером 130, который обеспечивает координацию и управление для этих точек доступа. Системный контроллер 130 может включать в себя такие сетевые объекты, как контроллер базовых станций (BSC), функция управления пакетами (PCF), узел обслуживания пакетных данных (PDSN) и т.д.
Терминалы 120 могут быть рассредоточены повсюду в системе, и каждый терминал может являться стационарным или мобильным. Терминал также может называться терминалом доступа, мобильной станцией, пользовательским оборудованием, абонентским блоком, станцией и т.д. Терминал может являться сотовым телефоном, карманным компьютером (PDA), беспроводным устройством, карманным устройством, беспроводным модемом, переносным компьютером и т.д. Терминал может поддерживать любые версии технологии HRPD. В технологии HRPD терминал может осуществлять прием по прямой линии связи от одной точки доступа в любой заданный момент и может осуществлять отправку по обратной линии связи одной или более точкам доступа. Прямой линией связи (или нисходящей линией связи) называется линия связи от точек доступа до терминалов, и обратной линией связи (или восходящей линией связи) называется линия связи от терминалов до точек доступа.
Фиг.2 показывает структуру 200 интервала с одной несущей, которая поддерживает мультиплексирование CDM на прямой линии связи в технологии HRPD. Время передачи делится на интервалы. Каждый интервал имеет продолжительность 1,667 миллисекунд (мс) и охватывает 2048 элементарных сигналов ("чипов"). Каждый элементарный сигнал имеет продолжительность 813,8 наносекунд (нс) для скорости 1,2288 миллионов элементарных сигналов в секунду (Мчип/с). Каждый интервал делится на две идентичных половины интервала. Каждая половина интервала включает в себя (i) служебный сегмент, состоящий из пилотного сегмента в центре половины интервала и двух сегментов управления доступом к среде (MAC) с обеих сторон пилотного сегмента, и (ii) два сегмента информационных данных с обеих сторон служебного сегмента. Сегменты информационных данных также могут называться сегментами информационного канала, сегментами данных, полями данных и т.д. Пилотный сегмент переносит пилотный сигнал и имеет продолжительность 96 элементарных сигналов. Каждый сегмент MAC несет служебные сигналы (например, информацию обратного управления мощностью (RРC)) и имеет продолжительность 64 элементарных сигнала. Каждый сегмент информационных данных несет информационные данные (например, данные одноадресной передачи для конкретных терминалов, данные широковещательной передачи и т.д.) и имеет продолжительность 400 элементарных сигналов.
Версии 0, A и B технологии HRPD используют мультиплексирование CDM для данных, отправляемых в сегментах информационных данных. Сегмент информационных данных может переносить данные с мультиплексированием CDM для одного или более терминалов, обслуживаемых точкой доступа. Информационные данные для каждого терминала могут быть обработаны на основе параметров кодирования и модуляции, определенных посредством информации обратной связи канала, принятой от этого терминала, для формирования символов данных. Символы данных для одного или более терминалов могут быть демультиплексированы и покрыты функциями или кодами Уолша с 16 элементарными сигналами для формирования данных с мультиплексированием CDM для сегмента информационных данных. Таким образом, данные мультиплексирования CDM формируются во временной области с использованием функций Уолша. Сегмент информационных данных с мультиплексированием CDM представляет собой сегмент информационных данных, переносящий данные с мультиплексированием CDM.
Может являться желательным использовать мультиплексирование OFDM и/или мультиплексирование с частотным разделением с одной несущей (SC-FDM) для данных, передаваемых в сегментах информационных данных. Мультиплексирование OFDM и SC-FDM делят доступную ширину полосы на несколько ортогональных поднесущих, которые также называются тонами и т.д. Каждая поднесущая может быть модулирована с помощью данных. Обычно символы модуляции отправляют в частотной области с мультиплексированием OFDM и во временной области с мультиплексированием SC-FDM. Мультиплексирование OFDM и SC-FDM имеют некоторые желательные характеристики, такие как способность легко противодействовать межсимвольным помехам (ISI), вызываемым частотно-избирательным замиранием. Мультиплексирование OFDM также может эффективно поддерживать технологии MIMO и SDMA, которые могут быть применены независимо на каждой поднесущей и могут, таким образом, обеспечить хорошие рабочие характеристики в частотно-избирательном канале. Для ясности ниже описывается использование мультиплексирования OFDM для передачи данных.
Может являться желательным поддерживать мультиплексирование OFDM, при этом поддерживая обратную совместимость с версиями 0, A и B технологии HRPD. В технологии HRPD пилотные сегменты и сегменты MAC всегда могут быть демодулированы всеми активными терминалами, тогда как сегменты информационных данных могут быть демодулированы только обслуживаемыми терминалами. Следовательно, обратная совместимость может быть достигнута посредством сохранения пилотных сегментов и сегментов MAC и модификации сегментов информационных данных. Данные мультиплексирования OFDM могут быть переданы в сигнале HRPD посредством замены данных мультиплексирования CDM в заданном сегменте информационных данных, состоящем из 400 элементарных сигналов, на один или более символов OFDM, имеющих общую продолжительность 400 элементарных сигналов или меньше.
Фиг.3 показывает структуру 300 интервала с одной несущей, которая поддерживает мультиплексирование OFDM в технологии HRPD. Для простоты на фиг.3A показана только одна половина интервала. Половина интервала включает в себя (i) служебный сегмент, состоящий из пилотного сегмента с длиной 96 элементарных сигналов в центре половины интервала и двух сегментов MAC с длиной 64 элементарных сигнала с обеих сторон пилотного сегмента, и (ii) два сегмента информационных данных с обеих сторон служебного сегмента. Обычно каждый сегмент информационных данных может переносить один или более символов OFDM. В примере, показанном на фиг.3A, каждый сегмент информационных данных несет два символа OFDM, и каждый символ OFDM имеет продолжительность 200 элементарных сигналов и передается в одном периоде символа OFDM из 200 элементарных сигналов.
Фиг.4 показывает подробный вид точки 110 доступа системы 100 связи HRPD с множеством антенн с двумя терминалами 120a и 120b. Для простоты точка 110 доступа имеет две передающих антенны, терминал 120a системы с множеством входов и одним выходом MISO имеет одну приемную антенну, и терминал 120b MIMO имеет две приемных антенны.
Канал MISO, образованный двумя антеннами в точке 110 доступа и одной антенной в терминале 120a MISO, может быть характеризован вектором-строкой h 1×2 характеристики канала с размерностью 1×2. Канал MIMO, образованный двумя антеннами в точке 110 доступа и двумя антеннами в терминале системы 120b MIMO, может быть характеризован матрицей H 2×2 характеристики канала с размерностью 2×2. Точка 110 доступа передает пилот-сигнал от этих двух передающих антенн, чтобы дать возможность терминалам MISO и MIMO оценить свои соответствующие каналы MISO и MIMO. Генератор 112 пилот-сигналов в точке 110 доступа может формировать составной пилот-сигнал.
Точка 110 доступа может параллельно передавать данные от обеих передающих антенн на приемник MIMO для улучшения пропускной способности. Приведенное выше описание предназначено для системы с размерностью 2×2, в которой точка доступа имеет две передающие антенны, и терминалы имеют по крайней мере две приемные антенны. В общем случае система с множеством антенн может включать в себя передатчики и приемники с любым количеством антенн, поэтому T и R могут являться любыми целочисленными значениями.
Фиг.5 показывает структуру 400 интервала с множеством несущих, которая поддерживает мультиплексирование OFDM в технологии HRPD. В версии B технологии HRPD несколько сигналов 1xHRPD могут быть мультиплексированы в частотной области для приема сигнала HRPD с множеством несущих, который заполняет заданное спектральное распределение и передается на первой передающей антенне. В примере, показанном на фиг.5, один сигнал 1xHRРD проиллюстрирован как сконфигурированный в виде унаследованного канала, содержащего пилотные сегменты и сегменты MAC, которые всегда могут быть демодулированы всеми активными терминалами, тогда как сегменты информационных данных могут быть демодулированы только обслуживаемыми терминалами. Следовательно, обратная совместимость может быть достигнута посредством сохранения пилотных сегментов и сегментов MAC. Также на фиг.5 показаны три сигнала 1xHRPD, сконфигурированных как не унаследованные каналы, передаваемые на соответствующих второй, третьей и четвертой передающих антеннах, которые не требуют служебных сегментов, поскольку символы OFDM содержат периодические составные пилотные сигналы, встроенные в поддиапазоны или тоны. Как указано, генератор 112 пилотных сигналов, показанный на фиг.4, формирует составные пилот-сигналы для передачи в символах OFDM. Приемный терминал 120b MIMO (фиг.4) принимает известный составной пилот-сигнал в символах OFDM и может вывести оценку характеристики канала MIMO.
Система с множеством антенн может использовать множество несущих для передачи данных и пилот-сигналов. Множество несущих могут быть обеспечены посредством мультиплексирования OFDM, каких-либо других способов модуляции с множеством несущих или какой-либо другой структуры. Мультиплексирование OFDM эффективно делит полную ширину полосы пропускания системы (W МГц) на множество (K) ортогональных частотных поддиапазонов. Эти поддиапазоны также называются тонами, поднесущими и частотными каналами. С помощью мультиплексирования OFDM каждый поддиапазон привязывается к соответствующей поднесущей, которая может быть модулирована с помощью данных. Система мультиплексирования OFDM с множеством антенн может использовать только подмножество из всех K поддиапазонов для передачи данных и пилот-сигналов, а оставшиеся поддиапазоны могут служить защитными поддиапазонами, чтобы дать возможность системе отвечать требованиям спектральной маски. Для простоты следующее описание предполагает, что все K поддиапазонов пригодны для использования для передачи данных и/или пилот-сигналов.
Фиг.6 показывает структуру 500 поддиапазона, которая может использоваться для передачи пилот-сигналов в системе мультиплексирования OFDM с множеством антенн. Передаваемый символ передается на каждом из P пилотных поддиапазонов, которые являются поддиапазонами, используемыми для передачи пилот-сигналов, где обычно K>P. Для улучшенной производительности и упрощенной обработки приемника P пилотных поддиапазонов могут быть однородно распределены по всем K поддиапазонам таким образом, что последовательные пилотные поддиапазоны отделены друг от друга K/P поддиапазонами. Оставшиеся K-P поддиапазонов могут использоваться для передачи данных и называются поддиапазонами данных.
Фиг.7A-7D показывают иллюстративную схему передачи пилот-сигналов для системы мультиплексирования OFDM с множеством антенн. Настоящий вариант воплощения использует пространственные тоны пилот-сигнала, которые формируются по-разному в зависимости от количества уровней или лучей, которые формируются системой мультиплексирования OFDM с множеством антенн. В частности, поскольку уровень может быть сформирован лучом, получающимся в результате комбинации антенн, точная характеристика канала не может основываться исключительно на пилот-сигнале от антенны, а должна основываться на пилот-сигнале, сформированном для конкретного уровня или луча. В соответствии со схемой передачи пространственных пилот-сигналов на фиг.7A-7D потребление мощности для пилот-сигналов на каждый уровень увеличивается по мере уменьшения количества пространственных уровней.
Фиг.7A иллюстрирует передачу одного уровня в половине интервала символов 1-4 OFDM. Как показано, для каждого символа OFDM, такого как символ 1 OFDM, тон пространственного пилот-сигнала одного уровня повторяется и занимает один тон на каждые 19 тонов данных. Для символа OFDM из 180 тонов будет иметься 9 тонов пространственного пилот-сигнала одного уровня. В частности, для символа 1 OFDM и символа 3 OFDM тон пространственного пилот-сигнала одного уровня показан начинающимся в тоне один и повторяющимся каждые 20 тонов, и для символа 2 OFDM и символа 4 OFDM тон пространственного пилот-сигнала одного уровня показан начинающимся с половинным смещением от смежных символов в тоне одиннадцать и повторяющимся каждые 20 тонов. В соответствии с этим, затраты полосы пропускания для поддержки тона пространственного пилот-сигнала одного уровня составляют один из двадцати, или 5 процентов на каждый символ OFDM для передачи одного уровня. В смежном символе OFDM, таком как символ 2 OFDM, тоны пространственного пилот-сигнала одного уровня смещены относительно тонов пространственного пилот-сигнала с одним уровнем смежного символа. Также следует отметить, что один символ OFDM может усилить позицию смещения тона пространственного пилот-сигнала одного уровня смежного символа OFDM для дополнительного определения характеристики канала, не основываясь на дополнительных выделенных тонах пространственного пилот-сигнала.
Фиг.7B иллюстрирует передачу двух уровней в половине интервала символов 1-4 OFDM. Как показано, для каждого символа OFDM, такого как символ 1 OFDM, тон пространственного пилот-сигнала первого уровня повторяется и занимает один тон на каждые 19 тонов данных, и тон пространственного пилот-сигнала второго уровня смещен относительно первого и также повторяется и занимает один тон на каждые 19 тонов данных. Для символа OFDM из 180 тонов будет иметься 18 тонов пространственного пилот-сигнала первого уровня и второго уровня. В частности, для символа 1 OFDM и символа 3 OFDM тоны пространственного пилот-сигнала первого уровня и второго уровня показаны начинающимися в тоне один и повторяющимися каждые 10 тонов, и для символа 2 OFDM и символа 4 OFDM тоны пространственного пилот-сигнала первого уровня и второго уровня показаны начинающимися с половинным смещением относительно смежных символов в тоне одиннадцать и повторяющимися каждых 10 тонов. В соответствии с этим, затраты полосы пропускания для поддержки тонов пространственного пилот-сигнала первого уровня и второго уровня составляют один из 10, или 10 процентов на каждый символ OFDM для передачи с двумя уровнями.
Фиг.7C иллюстрирует передачу трех уровней по половине интервала символов 1-4 OFDM. Как показано, для каждого символа OFDM тон пространственного пилот-сигнала первого уровня повторяется и занимает один тон на каждые 29 тонов данных, тон пространственного пилот-сигнала второго уровня повторяется и занимает один тон на каждые 29 тонов данных, и тон пространственного пилот-сигнала третьего уровня повторяется и занимает один тон на каждые 29 тонов данных. Тоны пространственного пилот-сигнала первого уровня, второго уровня и третьего уровня расположены ступенчато по символам 1-4 OFDM и повторяются таким образом, что тоны пространственного пилот-сигнала первого уровня, второго уровня и третьего уровня повторяются каждые 10 тонов и занимают один тон на каждые 9 тонов данных. Для символа OFDM из 180 тонов будет иметься 18 тонов пространственного пилот-сигнала первого уровня, второго уровня и третьего уровня. В соответствии с этим, затраты полосы пропускания для поддержки тонов пространственного пилот-сигнала первого уровня, второго уровня и третьего уровня составляют один из 10, или 10 процентов на каждый символ OFDM для передачи с тремя уровнями.
Фиг.7D иллюстрирует передачу четырех уровней в половине интервала символов 1-4 OFDM. Как показано, для каждого символа OFDM тон пространственного пилот-сигнала первого уровня повторяется и занимает один тон на каждые 19 тонов данных, тон пространственного пилот-сигнала второго уровня повторяется и занимает один тон на каждые 19 тонов данных, тон пространственного пилот-сигнала третьего уровня повторяется и занимает один тон на каждые 19 тонов данных, и тон пространственного пилот-сигнала четвертого уровня повторяется и занимает один тон на каждые 19 тонов данных. Тоны пространственного пилот-сигнала первого уровня, второго уровня, третьего уровня и четвертого уровня расположены ступенчато в символах 1-4 OFDM и повторяются таким образом, что тоны пространственного пилот-сигнала первого уровня, второго уровня, третьего уровня и четвертого уровня повторяются каждые 5 тонов и занимают один тон на каждые 4 тона данных. Для символов OFDM из 180 тонов будет иметься 36 тонов пространственного пилот-сигнала первого уровня, второго уровня, третьего уровня и четвертого уровня. В соответствии с этим, затраты полосы пропускания для поддержки тонов пространственного пилот-сигнала первого уровня, второго уровня, третьего уровня и четвертого уровня составляют один из 5, или 20 процентов на каждый символ OFDM для передачи четырех уровней.
Поскольку тоны пространственных пилот-сигналов различных уровней передаются по разным наборам из P пилотных поддиапазонов в разных периодах символа, эта ступенчатая схема пилот-сигналов позволяет приемникам MIMO получать наблюдения пилот-сигналов для большего количества поддиапазонов, чем их специальные поддиапазоны, без увеличения количества поддиапазонов, используемых для передачи пилот-сигналов в каком-либо периоде символа. Для всех схем передачи пилот-сигналов приемники MIMO могут выводить оценки частотной характеристики для канала на основе своих принятых символов и с использованием различных методов оценки канала.
Фиг.8 показывает блок-схему варианта воплощения пространственного процессора 830 передачи и блоки 832 передатчика в точке доступа 110. Пространственный процессор 830 передачи включает в себя генератор 910 пилот-сигналов, пространственный процессор 920 данных и T мультиплексоров (Mux) 930a-930t для T передающих антенн.
Генератор 910 пилот-сигналов формирует T составных пилот-сигналов для терминалов MIMO. Тоны составных пространственных пилот-сигналов для поддиапазонов формируются в соответствии с описанными выше пространственными передачами с уровнями.
Пространственный процессор 920 данных принимает символы данных от процессора 820 данных передачи и выполняет пространственную обработку над этими символами данных. Например, пространственный процессор 920 данных может демультиплексировать символы данных в T подпотоков для T передающих антенн. Пространственный процессор 920 данных может выполнять или не выполнять дополнительную пространственную обработку над этими подпотоками в зависимости от структуры системы. Каждый мультиплексор 930 принимает соответствующий подпоток символов данных от пространственного процессора 920 данных и символы передачи для своей соответствующей передающей антенны, мультиплексирует символы данных с символами передачи и выдает выходной поток символов.
Каждый блок 832 передатчика принимает и обрабатывает соответствующий выходной поток символов. В пределах каждого блока 832 передатчика блок 942 обратного быстрого преобразования Фурье (ОБПФ, IFFT) преобразует каждый набор из K выходных символов для всех K поддиапазонов во временную область с использованием K-точечного обратного быстрого преобразования Фурье (IFFT) и выдает преобразованный символ, который содержит K элементарных сигналов во временной области. Генератор 944 циклического префикса повторяет часть каждого преобразованного символа для формирования символа OFDM, который содержит K+C элементарных сигналов, где C - количество повторенных элементарных сигналов. Повторяющаяся часть называется циклическим префиксом и используется для противодействия разбросу задержек в беспроводном канале. Радиочастотный (RF) блок 946 передатчика (РЧБП) преобразует поток символов OFDM в один или более аналоговых сигналов и затем усиливает, фильтрует и преобразует с повышением частоты аналоговый сигнал(ы) для формирования модулированного сигнала, который передается от соответствующей антенны 834. Генератор 944 циклического префикса и/или радиочастотный блок 946 передатчика также могут обеспечить циклическую задержку для своей передающей антенны.
Фиг.9 показывает блок-схему терминала 120b MIMO в системе мультиплексирования OFDM с множеством антенн. В терминале 120b MIMO R антенн 852a-852r принимают T модулированных сигналов, и каждая антенна 852 выдает принятый сигнал соответствующему блоку 854 приемника. Каждый блок 854 приемника выполняет обработку, комплементарную обработке, выполненной блоками передатчика, и выдает (1) принятые символы данных пространственному процессору 860y приема и (2) принятые пилотные символы блоку 884y оценки канала в контроллере 880y. Блок 884y оценки канала выполняет оценку канала для приемника MIMO и выдает оценку характеристики канала MIMO. Пространственный процессор 860y приема выполняет пространственную обработку над R принятыми потоками символов данных от R блоков 854a-854r приемника с помощью оценки характеристики канала MIMO и выдает обнаруженные символы. Процессор 870y данных приема осуществляет символьное преобразование, обратное чередование и декодирование обнаруженных символов и выдает декодированные данные. Контроллер 880y управляет работой различных процессоров в терминале 120b MIMO, и блок 882y памяти хранит данные и/или программные коды, используемые контроллером 880y.
Специалистам в данной области техники должно быть понятно, что информация и сигналы могут быть представлены с использованием любых из множества различных технологий и методов. Например, данные, команды, информация, сигналы, биты, символы и элементарные сигналы, которые могут упоминаться в изложенном выше описании, могут быть представлены напряжениями, токами, электромагнитными волнами, магнитными полями или частицами, оптическими полями или частицами или любой их комбинацией.
Специалистам также должно быть понятно, что различные иллюстративные логические блоки, модули, схемы и этапы алгоритмов, описанные здесь в связи с раскрытием, могут быть реализованы как электронное аппаратное оборудование, программное обеспечение или их комбинация. Чтобы ясно проиллюстрировать эту взаимозаменяемость аппаратного оборудования и программного обеспечения, различные иллюстративные компоненты, блоки, модули, схемы и этапы были описаны выше в общих чертах в терминах их функциональных возможностей. Реализованы ли такие функциональные возможности как аппаратное оборудование или программное обеспечение, зависит от конкретного приложения и конструктивных ограничений, налагаемых на систему в целом. Специалисты могут реализовать описанные функциональные возможности различными способами для каждого конкретного приложения, но такие реализации не должны рассматриваться как вызывающие отход от объема настоящего раскрытия.
Различные иллюстративные логические блоки, модули и схемы, описанные здесь в связи с раскрытием, могут быть реализованы или выполнены с помощью процессора общего назначения, процессора цифровых сигналов (DSP), специализированной интегральной схемы (ASIC), программируемой вентильной матрицы (FPGA) или другого программируемого логического устройства, схемы на дискретных компонентах или транзисторной логической схемы, отдельных компонентов аппаратных средств или любой их комбинации, выполненной с возможностью выполнять описанные здесь функции. Процессором общего назначения может являться микропроцессор, но альтернативно процессором может являться любой традиционный процессор, контроллер, микроконтроллер или конечный автомат. Процессор также может быть реализован как комбинация вычислительных устройств, например, комбинация процессора цифровых сигналов (DSP) и микропроцессора, множество микропроцессоров, один или более микропроцессоров вместе с ядром процессора цифровых сигналов (DSP) или любая другая такая конфигурация.
Этапы способа или алгоритма, описанные здесь в связи с раскрытием, могут быть воплощены непосредственно в аппаратных средствах, в программном модуле, исполняемом посредством процессора, или в их комбинации. Программный модуль может постоянно находиться в оперативном запоминающем устройстве (ОЗУ), флэш-памяти, постоянном запоминающем устройстве (ПЗУ), стираемом программируемом постоянном запоминающем устройстве (СППЗУ), электрически стираемом программируемом постоянном запоминающем устройстве (ЭСППЗУ), регистрах, жестком диске, съемном диске, компакт-диске, предназначенном только для чтения (CD-ROM), или любом другом носителе данных, известном в области техники. Иллюстративный носитель данных соединен с процессором так, что процессор может считывать информацию с носителя данных и записывать информацию на него. Альтернативно, носитель данных может являться неотъемлемой частью процессора. Процессор и носитель данных могут постоянно находиться в специализированной интегральной схеме (ASIC). Специализированная интегральная схема может постоянно находиться в пользовательском терминале. Альтернативно, процессор и носитель данных могут постоянно находиться в пользовательском терминале как отдельные компоненты.
Предшествующее описание раскрытия предоставлено для того, чтобы дать возможность любому специалисту в области техники осуществить или использовать раскрытие. Различные модификации раскрытия могут быть очевидны специалистам в области техники, и определенные здесь общие принципы могут быть применены к другим вариантам без отступления от сущности или объема раскрытия. Таким образом, раскрытие не подразумевается ограниченным описанными здесь примерами, а должно соответствовать самому широкому объему, совместимому с раскрытыми здесь принципами и новыми признаками.
Claims (35)
1. Способ передачи пилот-сигнала в системе беспроводной связи, содержащий этапы, на которых:
формируют пилот-сигнал первого уровня для передачи одного уровня;
повторяют пилот-сигнал первого уровня по несмежным поддиапазонам первого символа OFDM;
повторяют со смещением от пилот-сигнала первого уровня первого символа OFDM пилот-сигнал первого уровня по несмежным поддиапазонам смежного второго символа OFDM; и
передают первый и второй символы OFDM в передаче одного уровня, при этом первый и второй OFDM символы расположены в структуре, которая поддерживает обратную совместимость.
формируют пилот-сигнал первого уровня для передачи одного уровня;
повторяют пилот-сигнал первого уровня по несмежным поддиапазонам первого символа OFDM;
повторяют со смещением от пилот-сигнала первого уровня первого символа OFDM пилот-сигнал первого уровня по несмежным поддиапазонам смежного второго символа OFDM; и
передают первый и второй символы OFDM в передаче одного уровня, при этом первый и второй OFDM символы расположены в структуре, которая поддерживает обратную совместимость.
2. Способ по п.1, дополнительно содержащий этапы, на которых:
формируют пилот-сигнал второго уровня для передачи двух уровней;
повторяют со смещением от пилот-сигнала первого уровня пилот-сигнал второго уровня по поддиапазонам первого символа OFDM;
повторяют со смещением от пилот-сигнала второго уровня первого символа OFDM пилот-сигнал второго уровня по поддиапазонам смежного второго символа OFDM; и
передают первый и второй символы OFDM в передаче двух уровней.
формируют пилот-сигнал второго уровня для передачи двух уровней;
повторяют со смещением от пилот-сигнала первого уровня пилот-сигнал второго уровня по поддиапазонам первого символа OFDM;
повторяют со смещением от пилот-сигнала второго уровня первого символа OFDM пилот-сигнал второго уровня по поддиапазонам смежного второго символа OFDM; и
передают первый и второй символы OFDM в передаче двух уровней.
3. Способ по п.2, дополнительно содержащий этапы, на которых:
формируют пилот-сигнал третьего уровня для передачи трех уровней;
повторяют со смещением от пилот-сигналов первого и второго уровней пилот-сигнал третьего уровня по поддиапазонам первого символа OFDM;
повторяют со смещением от пилот-сигнала третьего уровня первого символа OFDM пилот-сигнал третьего уровня по поддиапазонам смежного второго символа OFDM; и
передают первый и второй символы OFDM в передаче трех уровней.
формируют пилот-сигнал третьего уровня для передачи трех уровней;
повторяют со смещением от пилот-сигналов первого и второго уровней пилот-сигнал третьего уровня по поддиапазонам первого символа OFDM;
повторяют со смещением от пилот-сигнала третьего уровня первого символа OFDM пилот-сигнал третьего уровня по поддиапазонам смежного второго символа OFDM; и
передают первый и второй символы OFDM в передаче трех уровней.
4. Способ по п.3, дополнительно содержащий этапы, на которых:
формируют пилот-сигнал четвертого уровня для передачи четырех уровней;
повторяют со смещением от пилот-сигналов первого, второго и третьего уровней пилот-сигнал четвертого уровня по поддиапазонам первого символа OFDM;
повторяют со смещением от пилот-сигнала четвертого уровня первого символа OFDM пилот-сигнал четвертого уровня по поддиапазонам смежного второго символа OFDM; и
передают первый и второй символы OFDM в передаче четырех уровней.
формируют пилот-сигнал четвертого уровня для передачи четырех уровней;
повторяют со смещением от пилот-сигналов первого, второго и третьего уровней пилот-сигнал четвертого уровня по поддиапазонам первого символа OFDM;
повторяют со смещением от пилот-сигнала четвертого уровня первого символа OFDM пилот-сигнал четвертого уровня по поддиапазонам смежного второго символа OFDM; и
передают первый и второй символы OFDM в передаче четырех уровней.
5. Способ по п.2, в котором пилот-сигналы первого и второго уровней попеременно располагаются в одних и тех же поддиапазонах по первому и второму символам OFDM.
6. Способ по п.3, в котором пилот-сигналы первого, второго и третьего уровней попеременно располагаются в одних и тех же поддиапазонах по первому, второму и третьему символам OFDM, смежным по меньшей мере с одним символом OFDM из первого и второго символов OFDM.
7. Способ по п.6, в котором пилот-сигналы первого, второго, третьего и четвертого уровней попеременно размещаются в одних и тех же поддиапазонах по первому, второму, третьему и четвертому символам OFDM, смежным по меньшей мере с одним символом OFDM из первого, второго и третьего символов OFDM.
8. Способ по п.1, в котором пилот-сигнал первого уровня занимает приблизительно 5% поддиапазонов каждого из первого и второго символов OFDM.
9. Способ по п.2, в котором пилот-сигналы первого и второго уровней занимают приблизительно 10% поддиапазонов каждого из первого и второго символов OFDM.
10. Способ по п.3, в котором пилот-сигналы первого, второго и третьего уровней занимают приблизительно 10% поддиапазонов каждого из первого и второго символов OFDM.
11. Способ по п.4, в котором пилот-сигналы первого, второго, третьего и четвертого уровней занимают приблизительно 20% поддиапазонов каждого из первого и второго символов OFDM.
12. Устройство передачи пилот-сигнала в системе беспроводной связи, содержащее:
генератор пилот-сигналов, выполненный с возможностью формировать по меньшей мере один пилот-сигнал на основе нескольких уровней передачи, каждый из по меньшей мере одного пилот-сигнала повторяется по несмежным поддиапазонам первого символа OFDM и затем повторяется со смещением относительно других из по меньшей мере одного пилот-сигнала первого символа OFDM по поддиапазонам смежного второго символа OFDM; и
множество передающих блоков, выполненных с возможностью передавать каждый из первого и второго символов OFDM в передаче соответствующего количества уровней через множество передающих антенн, при этом первый и второй OFDM символы расположены в структуре, которая поддерживает обратную совместимость.
генератор пилот-сигналов, выполненный с возможностью формировать по меньшей мере один пилот-сигнал на основе нескольких уровней передачи, каждый из по меньшей мере одного пилот-сигнала повторяется по несмежным поддиапазонам первого символа OFDM и затем повторяется со смещением относительно других из по меньшей мере одного пилот-сигнала первого символа OFDM по поддиапазонам смежного второго символа OFDM; и
множество передающих блоков, выполненных с возможностью передавать каждый из первого и второго символов OFDM в передаче соответствующего количества уровней через множество передающих антенн, при этом первый и второй OFDM символы расположены в структуре, которая поддерживает обратную совместимость.
13. Устройство по п.12, в котором по меньшей мере один пилот-сигнал включает в себя пилот-сигнал первого уровня для передачи одного уровня, причем пилот-сигнал первого уровня смещен по поддиапазонам первого и второго символов OFDM.
14. Устройство по п.12, в котором по меньшей мере один пилот-сигнал включает в себя пилот-сигнал первого уровня и пилот-сигнал второго уровня для передачи двух уровней, причем пилот-сигналы первого и второго уровней смещены по поддиапазонам первого и второго символов OFDM.
15. Устройство по п.12, в котором по меньшей мере один пилот-сигнал включает в себя пилот-сигнал первого уровня, пилот-сигнал второго уровня и пилот-сигнал третьего уровня для передачи трех уровней, причем пилот-сигналы первого, второго и третьего уровней смещены по поддиапазонам первого и второго символов OFDM.
16. Устройство по п.12, в котором по меньшей мере один пилот-сигнал включает в себя пилот-сигнал первого уровня, пилот-сигнал второго уровня, пилот-сигнал третьего уровня и пилот-сигнал четвертого уровня для передачи четырех уровней, причем пилот-сигналы первого, второго, третьего и четвертого уровней смещены по поддиапазонам первого и второго символов OFDM.
17. Устройство по п.14, в котором пилот-сигналы первого и второго уровней расположены попеременно в одних и тех же поддиапазонах по первому и второму символам OFDM.
18. Устройство по п.15, в котором пилот-сигналы первого, второго и третьего уровней расположены попеременно в одних и тех же поддиапазонах по первому, второму и третьему символам OFDM, смежным по меньшей мере с одним символом OFDM из первого и второго символов OFDM.
19. Устройство по п.16, в котором пилот-сигналы первого, второго, третьего и четвертого уровней размещены попеременно в одних и тех же поддиапазонах по первому, второму, третьему и четвертому символам OFDM, смежным по меньшей мере с одним символом OFDM из первого, второго и третьего символов OFDM.
20. Устройство по п.13, в котором пилот-сигнал первого уровня занимает приблизительно 5% поддиапазонов каждого из первого и второго символов OFDM.
21. Устройство по п.14, в котором пилот-сигналы первого и второго уровней занимают приблизительно 10% поддиапазонов каждого из первого и второго символов OFDM.
22. Устройство по п.15, в котором пилот-сигналы первого, второго и третьего уровней занимают приблизительно 10% поддиапазонов каждого из первого и второго символов OFDM.
23. Устройство по п.16, в котором пилот-сигналы первого, второго, третьего и четвертого уровней занимают приблизительно 20% поддиапазонов каждого из первого и второго символов OFDM.
24. Устройство передачи пилот-сигнала в системе беспроводной связи, содержащее:
средство для формирования пилот-сигнала первого уровня для передачи одного уровня;
средство для повторения пилот-сигнала первого уровня по несмежным поддиапазонам первого символа OFDM;
средство для повторения со смещением от пилот-сигнала первого уровня первого символа OFDM пилот-сигнала первого уровня по несмежным поддиапазонам смежного второго символа OFDM; и
средство для передачи первого и второго символов OFDM в передаче с одним уровнем, при этом первый и второй OFDM символы расположены в структуре, которая поддерживает обратную совместимость.
средство для формирования пилот-сигнала первого уровня для передачи одного уровня;
средство для повторения пилот-сигнала первого уровня по несмежным поддиапазонам первого символа OFDM;
средство для повторения со смещением от пилот-сигнала первого уровня первого символа OFDM пилот-сигнала первого уровня по несмежным поддиапазонам смежного второго символа OFDM; и
средство для передачи первого и второго символов OFDM в передаче с одним уровнем, при этом первый и второй OFDM символы расположены в структуре, которая поддерживает обратную совместимость.
25. Устройство по п.24, дополнительно содержащее:
средство для формирования пилот-сигнала второго уровня для передачи двух уровней;
средство для повторения со смещением от пилот-сигнала первого уровня пилот-сигнала второго уровня по поддиапазонам первого символа OFDM;
средство для повторения со смещением от пилот-сигнала второго уровня первого символа OFDM пилот-сигнала второго уровня по поддиапазонам смежного второго символа OFDM; и
средство для передачи первого и второго символов OFDM в передаче двух уровней.
средство для формирования пилот-сигнала второго уровня для передачи двух уровней;
средство для повторения со смещением от пилот-сигнала первого уровня пилот-сигнала второго уровня по поддиапазонам первого символа OFDM;
средство для повторения со смещением от пилот-сигнала второго уровня первого символа OFDM пилот-сигнала второго уровня по поддиапазонам смежного второго символа OFDM; и
средство для передачи первого и второго символов OFDM в передаче двух уровней.
26. Устройство по п.25, дополнительно содержащее:
средство для формирования пилот-сигнала третьего уровня для передачи трех уровней;
средство для повторения со смещением от пилот-сигналов первого и второго уровней пилот-сигнала третьего уровня по поддиапазонам первого символа OFDM;
средство для повторения со смещением от пилот-сигнала третьего уровня первого символа OFDM пилот-сигнала третьего уровня по поддиапазонам смежного второго символа OFDM; и
средство для передачи первого и второго символов OFDM в передаче трех уровней.
средство для формирования пилот-сигнала третьего уровня для передачи трех уровней;
средство для повторения со смещением от пилот-сигналов первого и второго уровней пилот-сигнала третьего уровня по поддиапазонам первого символа OFDM;
средство для повторения со смещением от пилот-сигнала третьего уровня первого символа OFDM пилот-сигнала третьего уровня по поддиапазонам смежного второго символа OFDM; и
средство для передачи первого и второго символов OFDM в передаче трех уровней.
27. Устройство по п.26, дополнительно содержащее:
средство для формирования пилот-сигнала четвертого уровня для передачи четырех уровней;
средство для повторения со смещением от пилот-сигналов первого, второго и третьего уровней пилот-сигнала четвертого уровня по поддиапазонам первого символа OFDM;
средство для повторения со смещением от пилот-сигнала четвертого уровня первого символа OFDM пилот-сигнала четвертого уровня по поддиапазонам смежного второго символа OFDM; и
средство для передачи первого и второго символов OFDM в передаче четырех уровней.
средство для формирования пилот-сигнала четвертого уровня для передачи четырех уровней;
средство для повторения со смещением от пилот-сигналов первого, второго и третьего уровней пилот-сигнала четвертого уровня по поддиапазонам первого символа OFDM;
средство для повторения со смещением от пилот-сигнала четвертого уровня первого символа OFDM пилот-сигнала четвертого уровня по поддиапазонам смежного второго символа OFDM; и
средство для передачи первого и второго символов OFDM в передаче четырех уровней.
28. Способ выполнения оценки канала в системе беспроводной связи, содержащий этапы, на которых:
получают через множество приемных антенн принятые символы, каждый из которых включает в себя пилот-сигнал первого уровня, и смежные принятые символы включают в себя пилот-сигналы первого уровня, повторяющиеся в несмежных поддиапазонах, при этом пилот-сигнал первого уровня смещен в смежном одном из принятых символов; и
обрабатывают принятые символы на основе пилот-сигнала первого уровня для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн, при этом принятые символы расположены в структуре, которая поддерживает обратную совместимость.
получают через множество приемных антенн принятые символы, каждый из которых включает в себя пилот-сигнал первого уровня, и смежные принятые символы включают в себя пилот-сигналы первого уровня, повторяющиеся в несмежных поддиапазонах, при этом пилот-сигнал первого уровня смещен в смежном одном из принятых символов; и
обрабатывают принятые символы на основе пилот-сигнала первого уровня для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн, при этом принятые символы расположены в структуре, которая поддерживает обратную совместимость.
29. Способ по п.28, дополнительно содержащий этапы, на которых:
получают через множество приемных антенн принятые символы, каждый из которых дополнительно включает в себя пилот-сигнал второго уровня, и смежные принятые символы включают в себя пилот-сигналы второго уровня, смещенные в поддиапазонах относительно друг друга; и
обрабатывают принятые символы на основе пилот-сигнала первого и второго уровней для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
получают через множество приемных антенн принятые символы, каждый из которых дополнительно включает в себя пилот-сигнал второго уровня, и смежные принятые символы включают в себя пилот-сигналы второго уровня, смещенные в поддиапазонах относительно друг друга; и
обрабатывают принятые символы на основе пилот-сигнала первого и второго уровней для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
30. Способ по п.29, дополнительно содержащий этапы, на которых:
получают через множество приемных антенн принятые символы, каждый из которых дополнительно включает в себя пилот-сигнал третьего уровня, и смежные принятые символы включают в себя пилот-сигналы третьего уровня, смещенные в поддиапазонах относительно друг друга; и
обрабатывают принятые символы на основе пилот-сигнала первого, второго и третьего уровней для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
получают через множество приемных антенн принятые символы, каждый из которых дополнительно включает в себя пилот-сигнал третьего уровня, и смежные принятые символы включают в себя пилот-сигналы третьего уровня, смещенные в поддиапазонах относительно друг друга; и
обрабатывают принятые символы на основе пилот-сигнала первого, второго и третьего уровней для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
31. Способ по п.30, дополнительно содержащий этапы, на которых:
получают через множество приемных антенн принятые символы, каждый из которых дополнительно включает в себя пилот-сигнал четвертого уровня, и смежные принятые символы включают в себя пилот-сигналы четвертого уровня, смещенные в поддиапазонах относительно друг друга; и
обрабатывают принятые символы на основе пилот-сигнала первого, второго, третьего и четвертого уровней для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
получают через множество приемных антенн принятые символы, каждый из которых дополнительно включает в себя пилот-сигнал четвертого уровня, и смежные принятые символы включают в себя пилот-сигналы четвертого уровня, смещенные в поддиапазонах относительно друг друга; и
обрабатывают принятые символы на основе пилот-сигнала первого, второго, третьего и четвертого уровней для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
32. Устройство оценки канала в системе беспроводной связи, содержащее:
множество блоков приемника, выполненных с возможностью выдавать принятые символы, каждый из которых включает в себя пилот-сигнал первого уровня, и смежные принятые символы включают в себя пилот-сигналы первого уровня, повторяющиеся в несмежных поддиапазонах, при этом пилот-сигнал первого уровня смещен в смежном одном из принятых символов; и
блок оценки канала, выполненный с возможностью обрабатывать принятые символы на основе пилот-сигнала первого уровня для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн, при этом принятые символы расположены в структуре, которая поддерживает обратную совместимость.
множество блоков приемника, выполненных с возможностью выдавать принятые символы, каждый из которых включает в себя пилот-сигнал первого уровня, и смежные принятые символы включают в себя пилот-сигналы первого уровня, повторяющиеся в несмежных поддиапазонах, при этом пилот-сигнал первого уровня смещен в смежном одном из принятых символов; и
блок оценки канала, выполненный с возможностью обрабатывать принятые символы на основе пилот-сигнала первого уровня для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн, при этом принятые символы расположены в структуре, которая поддерживает обратную совместимость.
33. Устройство по п.32, в котором каждый из принятых символов дополнительно включает в себя пилот-сигнал второго уровня, и смежные принятые символы включают в себя пилот-сигналы второго уровня, смещенные в поддиапазонах относительно друг друга, и в котором пилот-сигналы первого и второго уровней обрабатываются для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
34. Устройство по п.33, в котором каждый из принятых символов дополнительно включает в себя пилот-сигнал третьего уровня, и смежные принятые символы включают в себя пилот-сигналы второго уровня, смещенные в поддиапазонах относительно друг друга, и в котором пилот-сигналы первого, второго и третьего уровней обрабатываются для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
35. Устройство по п.34, в котором каждый из принятых символов дополнительно включает в себя пилот-сигнал четвертого уровня, и смежные принятые символы включают в себя пилот-сигналы второго уровня, смещенные в поддиапазонах относительно друг друга, и в котором пилот-сигналы первого, второго, третьего и четвертого уровней обрабатываются для получения оценки множества каналов между множеством передающих антенн и множеством приемных антенн.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77544306P | 2006-02-21 | 2006-02-21 | |
US77569306P | 2006-02-21 | 2006-02-21 | |
US60/775,693 | 2006-02-21 | ||
US60/775,443 | 2006-02-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2008137608A RU2008137608A (ru) | 2010-03-27 |
RU2449486C2 true RU2449486C2 (ru) | 2012-04-27 |
Family
ID=38101754
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008137581/09A RU2437225C2 (ru) | 2006-02-21 | 2007-02-20 | Структура канала обратной связи для систем связи с множеством входов и множеством выходов |
RU2008137608/07A RU2449486C2 (ru) | 2006-02-21 | 2007-02-20 | Структура пространственного пилот-сигнала для беспроводной связи с множеством антенн |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008137581/09A RU2437225C2 (ru) | 2006-02-21 | 2007-02-20 | Структура канала обратной связи для систем связи с множеством входов и множеством выходов |
Country Status (12)
Country | Link |
---|---|
US (4) | US8472424B2 (ru) |
EP (5) | EP1989809B1 (ru) |
JP (5) | JP5113085B2 (ru) |
KR (4) | KR101119455B1 (ru) |
CN (1) | CN105024794B (ru) |
AT (2) | ATE495598T1 (ru) |
BR (2) | BRPI0708089A2 (ru) |
CA (2) | CA2641934A1 (ru) |
DE (1) | DE602007011900D1 (ru) |
RU (2) | RU2437225C2 (ru) |
TW (6) | TWI340567B (ru) |
WO (4) | WO2007098456A2 (ru) |
Families Citing this family (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006102771A1 (en) * | 2005-03-30 | 2006-10-05 | Nortel Networks Limited | Methods and systems for ofdm using code division multiplexing |
US9461736B2 (en) * | 2006-02-21 | 2016-10-04 | Qualcomm Incorporated | Method and apparatus for sub-slot packets in wireless communication |
US8689025B2 (en) | 2006-02-21 | 2014-04-01 | Qualcomm Incorporated | Reduced terminal power consumption via use of active hold state |
US8077595B2 (en) | 2006-02-21 | 2011-12-13 | Qualcomm Incorporated | Flexible time-frequency multiplexing structure for wireless communication |
KR101119455B1 (ko) * | 2006-02-21 | 2012-03-20 | 퀄컴 인코포레이티드 | Ofdm 및 cdma 방식을 지원하는 방법 및 장치 |
US7760617B2 (en) * | 2006-03-24 | 2010-07-20 | Lg Electronics Inc. | Method and structure of configuring preamble to support transmission of data symbol in a wireless communication system |
WO2007111448A2 (en) * | 2006-03-24 | 2007-10-04 | Lg Electronics Inc. | Methods for generating a transmission slot having ofdm variable duration symbol and mobile terminal using these methods |
WO2008013398A1 (en) * | 2006-07-28 | 2008-01-31 | Samsung Electronics Co., Ltd. | Method and apparatus for positioning pilot in an ofdma mobile communication system |
CN101809929B (zh) | 2007-01-04 | 2016-11-23 | 诺基亚技术有限公司 | 对控制信道的时间频率资源的分配 |
US7720164B2 (en) * | 2007-02-26 | 2010-05-18 | Telefonaktiebolaget L M Ericsson (Publ) | Transmission scheme for uplink access in a FDMA system |
US20080233966A1 (en) * | 2007-03-22 | 2008-09-25 | Comsys Communication & Signal Processing Ltd. | Resource allocation apparatus and method in an orthogonal frequency division multiple access communication system |
KR101445335B1 (ko) * | 2007-05-28 | 2014-09-29 | 삼성전자주식회사 | 가변적인 데이터 송신율을 가지는 ofdm 심볼을송수신하는 ofdm 송신/수신 장치 및 그 방법 |
US7649831B2 (en) * | 2007-05-30 | 2010-01-19 | Samsung Electronics Co., Ltd. | Multi-user MIMO feedback and transmission in a wireless communication system |
US8908632B2 (en) * | 2007-06-08 | 2014-12-09 | Samsung Electronics Co., Ltd. | Methods and apparatus for channel interleaving in OFDM systems |
US8605687B2 (en) * | 2007-07-05 | 2013-12-10 | Qualcomm Incorporated | Method for channel estimation in a point-to-point communication network |
EP2023553B1 (en) | 2007-08-07 | 2016-10-05 | Samsung Electronics Co., Ltd. | Method and apparatus for performing random access procedure in a mobile communication system |
KR101520667B1 (ko) * | 2007-09-10 | 2015-05-18 | 엘지전자 주식회사 | 다중 안테나 시스템에서의 파일럿 부반송파 할당 방법 |
KR20100071983A (ko) * | 2007-09-11 | 2010-06-29 | 몬도바이오테크 래보래토리즈 아게 | 항―hiv제로서의 rgd-펩티드 및/또는 부갑상선 호르몬(1-34)의 용도 |
KR101407045B1 (ko) * | 2007-10-26 | 2014-06-12 | 삼성전자주식회사 | 파일롯 배치 방법, 기록 매체 및 전송 장치 |
RU2458470C2 (ru) * | 2007-11-02 | 2012-08-10 | Нокиа Сименс Нетуоркс Ой | Способ и устройство для размещения пилот-сигналов |
US8798665B2 (en) * | 2007-11-15 | 2014-08-05 | Qualcomm Incorporated | Beacon-based control channels |
US9326253B2 (en) | 2007-11-15 | 2016-04-26 | Qualcomm Incorporated | Wireless communication channel blanking |
US8761032B2 (en) * | 2007-11-16 | 2014-06-24 | Qualcomm Incorporated | Random reuse based control channels |
CN101442349B (zh) * | 2007-11-21 | 2013-02-20 | 三星电子株式会社 | 多用户mimo码本子集选择方法 |
KR101541910B1 (ko) * | 2007-11-29 | 2015-08-04 | 엘지전자 주식회사 | 무선통신 시스템에서 ack/nack 신호 전송방법 |
KR101533457B1 (ko) * | 2007-11-29 | 2015-07-03 | 엘지전자 주식회사 | 무선통신 시스템에서 제어신호 전송방법 |
KR101467570B1 (ko) * | 2007-11-29 | 2014-12-01 | 엘지전자 주식회사 | 무선통신 시스템에서 무선자원 할당방법 |
US8098767B2 (en) * | 2007-12-20 | 2012-01-17 | Qualcomm Incorporated | Receiver adjustment between pilot bursts |
US8363746B2 (en) * | 2008-01-25 | 2013-01-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Method to modify the frequency hopping scheme by extending the validity of the reference signals |
US9009573B2 (en) * | 2008-02-01 | 2015-04-14 | Qualcomm Incorporated | Method and apparatus for facilitating concatenated codes for beacon channels |
JP5308455B2 (ja) * | 2008-02-01 | 2013-10-09 | アップル インコーポレイテッド | 空間多重化に基づいた複数アンテナによるブロードキャスト/マルチキャスト送信のシステム及び方法 |
US8855257B2 (en) | 2008-02-11 | 2014-10-07 | Intel Mobile Communications GmbH | Adaptation techniques in MIMO |
US8699529B2 (en) | 2008-03-28 | 2014-04-15 | Qualcomm Incorporated | Broadband pilot channel estimation using a reduced order FFT and a hardware interpolator |
US8238304B2 (en) * | 2008-03-31 | 2012-08-07 | Qualcomm Incorporated | Apparatus and method for channel resource description |
US8149936B2 (en) * | 2008-04-01 | 2012-04-03 | Qualcomm Incorporated | Apparatus and methods for tile and assignment processing |
US8675537B2 (en) * | 2008-04-07 | 2014-03-18 | Qualcomm Incorporated | Method and apparatus for using MBSFN subframes to send unicast information |
US9107239B2 (en) | 2008-04-07 | 2015-08-11 | Qualcomm Incorporated | Systems and methods to define control channels using reserved resource blocks |
CN101557371B (zh) * | 2008-04-10 | 2012-12-12 | 上海贝尔阿尔卡特股份有限公司 | 多载波mimo系统的基站中为移动终端确定导频图案的方法 |
US8724717B2 (en) * | 2008-04-10 | 2014-05-13 | Mediatek Inc. | Pilot pattern design for high-rank MIMO OFDMA systems |
US20090257342A1 (en) * | 2008-04-10 | 2009-10-15 | Media Tek Inc. | Resource block based pilot pattern design for 1/2 - stream mimo ofdma systems |
US8488694B2 (en) * | 2008-05-06 | 2013-07-16 | Industrial Technology Research Institute | System and method for pilot design |
CN101640915A (zh) * | 2008-07-30 | 2010-02-03 | 华为技术有限公司 | 一种切换入支持多输入多输出技术系统的方法及装置 |
CN102177665B (zh) * | 2008-08-12 | 2015-04-22 | 黑莓有限公司 | 在无线通信网络中实现下行链路透明中继的方法、设备及系统 |
US8331310B2 (en) * | 2008-08-22 | 2012-12-11 | Qualcomm Incorporated | Systems and methods employing multiple input multiple output (MIMO) techniques |
US8693442B2 (en) * | 2008-09-22 | 2014-04-08 | Blackberry Limited | Multi-site MIMO cooperation in cellular network |
US8315657B2 (en) * | 2008-09-22 | 2012-11-20 | Futurewei Technologies, Inc. | System and method for enabling coordinated beam switching and scheduling |
US8619544B2 (en) * | 2008-09-23 | 2013-12-31 | Qualcomm Incorporated | Apparatus and method for facilitating transmit diversity for communications |
US8428018B2 (en) | 2008-09-26 | 2013-04-23 | Lg Electronics Inc. | Method of transmitting reference signals in a wireless communication having multiple antennas |
CN102257748B (zh) | 2008-10-22 | 2014-10-15 | 中兴通讯(美国)公司 | 反向链路确认信令 |
US8654715B2 (en) * | 2008-10-24 | 2014-02-18 | Qualcomm Incorporated | Systems and methods providing mobile transmit diversity |
US8654705B2 (en) * | 2008-10-24 | 2014-02-18 | Qualcomm Incorporated | System and method for supporting multiple reverse link data streams |
US8670717B2 (en) * | 2008-11-27 | 2014-03-11 | Futurewei Technologies, Inc. | System and method for enabling coordinated beam switching and scheduling |
US8787186B2 (en) * | 2008-12-12 | 2014-07-22 | Blackberry Limited | Mobility in a distributed antenna system |
US8175095B2 (en) * | 2008-12-19 | 2012-05-08 | L3 Communications Integrated Systems, L.P. | Systems and methods for sending data packets between multiple FPGA devices |
KR101534169B1 (ko) | 2008-12-23 | 2015-07-07 | 삼성전자 주식회사 | 주파수 도약 모드로 동작 중인 무선 통신 시스템의 주파수 할당 방법 및 이를 위한 장치 |
KR101470503B1 (ko) | 2008-12-30 | 2014-12-08 | 삼성전자주식회사 | 다중 입출력 통신 시스템을 위한 채널 정보 피드백 방법 및장치 |
US8811300B2 (en) | 2008-12-31 | 2014-08-19 | Mediatek Inc. | Physical structure and sequence design of midamble in OFDMA systems |
US8503420B2 (en) * | 2008-12-31 | 2013-08-06 | Mediatek Inc. | Physical structure and design of sounding channel in OFDMA systems |
KR101598910B1 (ko) * | 2009-01-07 | 2016-03-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 시분할 이중화 방식의 프레임 구조를 이용하여 신호를 송수신하는 방법 및 장치 |
US9100256B2 (en) * | 2009-01-15 | 2015-08-04 | Arndt Mueller | Systems and methods for determining the number of channel estimation symbols based on the channel coherence bandwidth |
CN101783712B (zh) * | 2009-01-19 | 2014-06-04 | 华为技术有限公司 | Lte版本识别的方法、用户终端和网络节点 |
US8649456B2 (en) | 2009-03-12 | 2014-02-11 | Futurewei Technologies, Inc. | System and method for channel information feedback in a wireless communications system |
US8675627B2 (en) * | 2009-03-23 | 2014-03-18 | Futurewei Technologies, Inc. | Adaptive precoding codebooks for wireless communications |
CN101877689B (zh) | 2009-04-28 | 2012-10-17 | 华为技术有限公司 | 数据发送处理方法与装置、数据接收处理方法与装置 |
WO2010124456A1 (zh) | 2009-04-28 | 2010-11-04 | 华为技术有限公司 | 数据发送处理方法与装置、数据接收处理方法与装置 |
CN102439931B (zh) * | 2009-04-28 | 2014-11-05 | 华为技术有限公司 | 数据发送处理方法与装置、数据接收处理方法与装置 |
US9713067B2 (en) * | 2009-05-08 | 2017-07-18 | Zte (Usa) Inc. | Reverse link signaling techniques for wireless communication systems |
US20110007721A1 (en) * | 2009-07-10 | 2011-01-13 | Qualcomm Incorporated | Method for directional association |
US8331483B2 (en) * | 2009-08-06 | 2012-12-11 | Lg Electronics Inc. | Method for transmitting feedback information via a spatial rank index (SRI) channel |
US8532042B2 (en) | 2009-09-02 | 2013-09-10 | Samsung Electronics Co., Ltd. | Codebook for multiple input multiple output communication and communication device using the codebook |
WO2011037649A1 (en) | 2009-09-22 | 2011-03-31 | Qualcomm Incorporated | Method and apparatuses for returning the transmission of the uplink to a source cell during a baton handover |
KR20120115293A (ko) * | 2009-12-01 | 2012-10-17 | 스파이더클라우드 와이어리스, 인크. | 자기-구성 통신 시스템에서의 핸드오프 |
US8831077B2 (en) * | 2010-07-01 | 2014-09-09 | Texas Instruments Incorporated | Communication on a pilot wire |
CN102594739B (zh) * | 2011-01-07 | 2017-03-15 | 上海贝尔股份有限公司 | 信道估计方法、导频信息选择方法、用户设备和基站 |
GB2491840B (en) * | 2011-06-13 | 2015-09-16 | Neul Ltd | Inter-device communication |
GB201114079D0 (en) | 2011-06-13 | 2011-09-28 | Neul Ltd | Mobile base station |
US8665811B2 (en) * | 2011-08-15 | 2014-03-04 | Motorola Mobility Llc | Reference signal for a control channel in wireless communication network |
US9301266B2 (en) * | 2011-08-19 | 2016-03-29 | Qualcomm Incorporated | Beacons for wireless communication |
EP2639989A1 (en) * | 2012-03-16 | 2013-09-18 | Panasonic Corporation | Search space for ePDCCH control information in an OFDM-based mobile communication system |
CN102629895A (zh) * | 2012-04-27 | 2012-08-08 | 中国科学技术大学 | 一种改善数据流间公平性的多播酉预编码方法 |
RU2607466C2 (ru) * | 2012-05-09 | 2017-01-10 | Телефонактиеболагет Л М Эрикссон (Пабл) | Усовершенствованный канал управления в системе высокоскоростного пакетного доступа |
CN103581869B (zh) * | 2012-08-03 | 2018-11-09 | 中兴通讯股份有限公司 | 控制信息处理方法及装置 |
EP2929639B1 (en) * | 2012-12-04 | 2017-12-27 | LG Electronics Inc. | Method for changing pattern of reference signals according to rank variation in wireless communication system, and an apparatus therefor |
US9871565B2 (en) | 2013-03-01 | 2018-01-16 | Sony Corporation | MIMO communication method, transmitting device, and receiving device |
US10009209B2 (en) | 2013-03-28 | 2018-06-26 | Huawei Technologies Co., Ltd. | System and method for generalized multi-carrier frequency division multiplexing |
KR20150121185A (ko) * | 2013-04-04 | 2015-10-28 | 후지쯔 가부시끼가이샤 | 이동국, 기지국 및 통신 제어 방법 |
US10772092B2 (en) | 2013-12-23 | 2020-09-08 | Qualcomm Incorporated | Mixed numerology OFDM design |
US10412145B2 (en) | 2014-06-27 | 2019-09-10 | Agora Lab, Inc. | Systems and methods for optimization of transmission of real-time data via network labeling |
US9654250B2 (en) * | 2014-11-10 | 2017-05-16 | Futurewei Technologies, Inc. | Adding operations, administration, and maintenance (OAM) information in 66-bit code |
MX370399B (es) * | 2015-05-08 | 2019-12-11 | Newracom Inc | Transmision piloto y recepcion para acceso multiple de division de frecuencia ortogonal. |
US11212147B2 (en) | 2015-10-23 | 2021-12-28 | Huawei Technologies Co., Ltd. | Systems and methods for configuring carriers using overlapping sets of candidate numerologies |
US10356800B2 (en) | 2016-05-09 | 2019-07-16 | Qualcomm Incorporated | Scalable numerology with symbol boundary alignment for uniform and non-uniform symbol duration in wireless communication |
JP6666468B2 (ja) | 2016-05-13 | 2020-03-13 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 複数ヌメロロジを有するマルチサブキャリアシステム |
AU2016416207B2 (en) * | 2016-07-28 | 2021-07-29 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Pilot signal transmission method, terminal equipment, and network equipment |
US10715392B2 (en) | 2016-09-29 | 2020-07-14 | Qualcomm Incorporated | Adaptive scalable numerology for high speed train scenarios |
US20180160405A1 (en) * | 2016-12-02 | 2018-06-07 | Qualcomm Incorporated | Rate matching and signaling |
CN106941463A (zh) * | 2017-02-28 | 2017-07-11 | 北京交通大学 | 一种单比特量化mimo系统信道估计方法及系统 |
CN110383923B (zh) | 2017-06-16 | 2023-01-31 | Lg 电子株式会社 | 发送和接收物理上行链路控制信道的方法及其装置 |
US10756860B2 (en) | 2018-11-05 | 2020-08-25 | XCOM Labs, Inc. | Distributed multiple-input multiple-output downlink configuration |
US10659112B1 (en) | 2018-11-05 | 2020-05-19 | XCOM Labs, Inc. | User equipment assisted multiple-input multiple-output downlink configuration |
US10812216B2 (en) | 2018-11-05 | 2020-10-20 | XCOM Labs, Inc. | Cooperative multiple-input multiple-output downlink scheduling |
US10432272B1 (en) | 2018-11-05 | 2019-10-01 | XCOM Labs, Inc. | Variable multiple-input multiple-output downlink user equipment |
US11290172B2 (en) | 2018-11-27 | 2022-03-29 | XCOM Labs, Inc. | Non-coherent cooperative multiple-input multiple-output communications |
US10756795B2 (en) | 2018-12-18 | 2020-08-25 | XCOM Labs, Inc. | User equipment with cellular link and peer-to-peer link |
US11063645B2 (en) | 2018-12-18 | 2021-07-13 | XCOM Labs, Inc. | Methods of wirelessly communicating with a group of devices |
US11330649B2 (en) | 2019-01-25 | 2022-05-10 | XCOM Labs, Inc. | Methods and systems of multi-link peer-to-peer communications |
US10756767B1 (en) | 2019-02-05 | 2020-08-25 | XCOM Labs, Inc. | User equipment for wirelessly communicating cellular signal with another user equipment |
US11375408B2 (en) | 2019-03-06 | 2022-06-28 | XCOM Labs, Inc. | Local breakout architecture |
US10756782B1 (en) | 2019-04-26 | 2020-08-25 | XCOM Labs, Inc. | Uplink active set management for multiple-input multiple-output communications |
US11032841B2 (en) | 2019-04-26 | 2021-06-08 | XCOM Labs, Inc. | Downlink active set management for multiple-input multiple-output communications |
US10735057B1 (en) | 2019-04-29 | 2020-08-04 | XCOM Labs, Inc. | Uplink user equipment selection |
US10686502B1 (en) | 2019-04-29 | 2020-06-16 | XCOM Labs, Inc. | Downlink user equipment selection |
US11411778B2 (en) | 2019-07-12 | 2022-08-09 | XCOM Labs, Inc. | Time-division duplex multiple input multiple output calibration |
RU200964U1 (ru) * | 2019-12-17 | 2020-11-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) | Корректор межсимвольных искажений цифровых сигналов |
US11411779B2 (en) | 2020-03-31 | 2022-08-09 | XCOM Labs, Inc. | Reference signal channel estimation |
CA3175361A1 (en) | 2020-04-15 | 2021-10-21 | Tamer Adel Kadous | Wireless network multipoint association and diversity |
CA3178604A1 (en) | 2020-05-26 | 2021-12-02 | XCOM Labs, Inc. | Interference-aware beamforming |
KR20230091910A (ko) | 2020-10-19 | 2023-06-23 | 엑스콤 랩스 인코퍼레이티드 | 무선 통신 시스템에서의 참조 신호 |
WO2022093988A1 (en) | 2020-10-30 | 2022-05-05 | XCOM Labs, Inc. | Clustering and/or rate selection in multiple-input multiple-output communication systems |
US11751170B2 (en) * | 2021-07-19 | 2023-09-05 | Sprint Spectrum Llc | Dynamically reassigning a high-noise frequency segment from a first access node to a second access node |
US11800398B2 (en) | 2021-10-27 | 2023-10-24 | T-Mobile Usa, Inc. | Predicting an attribute of an immature wireless telecommunication network, such as a 5G network |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2004117217A (ru) * | 2001-11-08 | 2005-03-27 | Квэлкомм Инкорпорейтед (US) | Оценка мощности с использованием взвешенной суммы символов пилот-сигнала и не пилот-сигнала |
EP1542488A1 (en) * | 2003-12-12 | 2005-06-15 | Telefonaktiebolaget LM Ericsson (publ) | Method and apparatus for allocating a pilot signal adapted to the channel characteristics |
Family Cites Families (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6282712B1 (en) * | 1995-03-10 | 2001-08-28 | Microsoft Corporation | Automatic software installation on heterogeneous networked computer systems |
EP0765096B1 (en) | 1995-09-20 | 2007-02-21 | Ntt Mobile Communications Network Inc. | Access method, mobile station and base station for CDMA mobile communication system |
US5732076A (en) * | 1995-10-26 | 1998-03-24 | Omnipoint Corporation | Coexisting communication systems |
US6473419B1 (en) | 1998-03-26 | 2002-10-29 | Nokia Corporation | State apparatus, and associated methods, for controlling packet data communications in a radio communication system |
BR9906378B1 (pt) | 1998-04-25 | 2014-11-11 | Samsung Electronics Co Ltd | processo para controle de potência de transmissão de enlaces de rádio entre uma estação base e uma estação móvel em um sistema de comunicação móvel de acesso múltiplo por divisão de código |
KR100601598B1 (ko) * | 1998-06-15 | 2006-07-14 | 삼성전자주식회사 | 기록 방지 정보를 저장하는 기록 매체와 기록 방지 방법 |
JP2000270024A (ja) | 1999-03-19 | 2000-09-29 | Nippon Telegr & Teleph Corp <Ntt> | インターネット電話におけるフレームパケット化サイズ能力交換方法,インターネット電話利用端末装置,およびインターネット電話のプログラムを記録した記録媒体 |
GB9910449D0 (en) | 1999-05-07 | 1999-07-07 | Koninkl Philips Electronics Nv | Radio communication system |
KR100316777B1 (ko) | 1999-08-24 | 2001-12-12 | 윤종용 | 차세대 이동 통신 시스템에서의 폐쇄 루프 전송 안테나 다이버시티 방법 및 이를 위한 기지국 장치 및 이동국 장치 |
US6980569B1 (en) * | 1999-10-18 | 2005-12-27 | Siemens Communications, Inc. | Apparatus and method for optimizing packet length in ToL networks |
KR100717394B1 (ko) * | 1999-11-23 | 2007-05-11 | 삼성전자주식회사 | 부호분할다중접속 이동통신시스템의 부가채널 해제 방법 |
EP1119153A1 (en) * | 2000-01-19 | 2001-07-25 | Lucent Technologies Inc. | Method and device for robust fallback in data communication systems |
US6473467B1 (en) | 2000-03-22 | 2002-10-29 | Qualcomm Incorporated | Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system |
US6912214B2 (en) | 2000-04-07 | 2005-06-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Optimized packet-resource management |
US6694469B1 (en) | 2000-04-14 | 2004-02-17 | Qualcomm Incorporated | Method and an apparatus for a quick retransmission of signals in a communication system |
US7088701B1 (en) | 2000-04-14 | 2006-08-08 | Qualcomm, Inc. | Method and apparatus for adaptive transmission control in a high data rate communication system |
EP1424793B1 (en) | 2000-06-21 | 2005-12-07 | Samsung Electronics Co., Ltd. | Apparatus and method for gating transmission of a data rate control channel in an hdr mobile communication system |
ES2701182T3 (es) | 2000-07-12 | 2019-02-21 | Qualcomm Inc | Procedimiento y aparato para generar señales piloto en un sistema MIMO |
US6940785B2 (en) * | 2000-08-01 | 2005-09-06 | Hourpower Watches, Llc | Watch |
US7042869B1 (en) * | 2000-09-01 | 2006-05-09 | Qualcomm, Inc. | Method and apparatus for gated ACK/NAK channel in a communication system |
US6963534B1 (en) | 2000-10-05 | 2005-11-08 | International Business Machines Corporation | Methodology for improving the performance of asynchronous data traffic over TDD/TDMA wireless networks |
US7154846B2 (en) * | 2000-10-24 | 2006-12-26 | Nortel Networks Limited | Shared channel structure, ARQ systems and methods |
US7099629B1 (en) | 2000-11-06 | 2006-08-29 | Qualcomm, Incorporated | Method and apparatus for adaptive transmission control in a high data rate communication system |
US7209462B2 (en) * | 2001-04-06 | 2007-04-24 | Motorola, Inc. | Apparatus and method for supporting common channel packet data service in a CDMA2000 RAN |
JP2002320260A (ja) | 2001-04-19 | 2002-10-31 | Toshiba Corp | 移動通信端末 |
JP3695355B2 (ja) | 2001-06-15 | 2005-09-14 | ソニー株式会社 | 携帯通信機器及びチャネル捕捉方法 |
CN1547861A (zh) | 2001-06-27 | 2004-11-17 | ���˹���Ѷ��� | 无线通信系统中控制信息的传递 |
CA2354285A1 (en) * | 2001-07-27 | 2003-01-27 | Ramesh Mantha | Method, system and apparatus for transmitting interleaved data between stations |
US20030040315A1 (en) * | 2001-08-20 | 2003-02-27 | Farideh Khaleghi | Reduced state transition delay and signaling overhead for mobile station state transitions |
JP4171261B2 (ja) | 2001-08-27 | 2008-10-22 | 松下電器産業株式会社 | 無線通信装置及び無線通信方法 |
US7248559B2 (en) | 2001-10-17 | 2007-07-24 | Nortel Networks Limited | Scattered pilot pattern and channel estimation method for MIMO-OFDM systems |
US6788687B2 (en) | 2001-10-30 | 2004-09-07 | Qualcomm Incorporated | Method and apparatus for scheduling packet data transmissions in a wireless communication system |
US7164649B2 (en) | 2001-11-02 | 2007-01-16 | Qualcomm, Incorporated | Adaptive rate control for OFDM communication system |
US6822952B2 (en) * | 2001-11-26 | 2004-11-23 | Qualcomm Incorporated | Maintaining packet data connectivity in a wireless communications network |
US6717924B2 (en) * | 2002-01-08 | 2004-04-06 | Qualcomm Incorporated | Control-hold mode |
US7043249B2 (en) * | 2002-01-08 | 2006-05-09 | Motorola, Inc. | Packet data serving node initiated updates for a mobile communications system |
KR100465208B1 (ko) * | 2002-04-02 | 2005-01-13 | 조광선 | Ad-hoc 네트워크 병용 무선이동통신 시스템,통신장치, 및 통신방법 |
KR100896682B1 (ko) | 2002-04-09 | 2009-05-14 | 삼성전자주식회사 | 송/수신 다중 안테나를 포함하는 이동 통신 장치 및 방법 |
US7170876B2 (en) * | 2002-04-30 | 2007-01-30 | Qualcomm, Inc. | Outer-loop scheduling design for communication systems with channel quality feedback mechanisms |
ES2279951T3 (es) | 2002-05-10 | 2007-09-01 | Interdigital Technology Corporation | Metodo y aparato para reducir errores en enlaces de transmision. |
EP1367760B1 (en) * | 2002-05-27 | 2009-11-18 | Nokia Corporation | Transmit/receive diversity wireless communication |
US6987780B2 (en) * | 2002-06-10 | 2006-01-17 | Qualcomm, Incorporated | RLP retransmission for CDMA communication systems |
US7095709B2 (en) * | 2002-06-24 | 2006-08-22 | Qualcomm, Incorporated | Diversity transmission modes for MIMO OFDM communication systems |
US7551546B2 (en) * | 2002-06-27 | 2009-06-23 | Nortel Networks Limited | Dual-mode shared OFDM methods/transmitters, receivers and systems |
US7283541B2 (en) * | 2002-07-30 | 2007-10-16 | At&T Corp. | Method of sizing packets for routing over a communication network for VoIP calls on a per call basis |
US7050405B2 (en) | 2002-08-23 | 2006-05-23 | Qualcomm Incorporated | Method and system for a data transmission in a communication system |
JP4505409B2 (ja) * | 2002-08-23 | 2010-07-21 | クゥアルコム・インコーポレイテッド | 通信システムにおけるデータ伝送のための方法およびシステム |
US7139274B2 (en) * | 2002-08-23 | 2006-11-21 | Qualcomm, Incorporated | Method and system for a data transmission in a communication system |
US7881261B2 (en) | 2002-09-26 | 2011-02-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for efficient dormant handoff of mobile stations having multiple packet data service instances |
US7002900B2 (en) * | 2002-10-25 | 2006-02-21 | Qualcomm Incorporated | Transmit diversity processing for a multi-antenna communication system |
US8208364B2 (en) | 2002-10-25 | 2012-06-26 | Qualcomm Incorporated | MIMO system with multiple spatial multiplexing modes |
JP2004158901A (ja) | 2002-11-01 | 2004-06-03 | Kddi Corp | Ofdm及びmc−cdmaを用いる送信装置、システム及び方法 |
US7062283B2 (en) * | 2002-11-13 | 2006-06-13 | Manageable Networks, Inc. | Cellular telephone system with multiple call paths |
US8179833B2 (en) * | 2002-12-06 | 2012-05-15 | Qualcomm Incorporated | Hybrid TDM/OFDM/CDM reverse link transmission |
DE60323541D1 (de) | 2002-12-16 | 2008-10-23 | Research In Motion Ltd | Verfahren und vorrichtung zur senkung des energieverbrauches in einem cdma-kommunikationsgerät |
WO2004057894A1 (en) | 2002-12-19 | 2004-07-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive control method for operating communications environments |
US8218573B2 (en) * | 2003-01-21 | 2012-07-10 | Qualcomm Incorporated | Power boosting in a wireless communication system |
US7058367B1 (en) * | 2003-01-31 | 2006-06-06 | At&T Corp. | Rate-adaptive methods for communicating over multiple input/multiple output wireless systems |
US7466675B2 (en) * | 2003-02-14 | 2008-12-16 | Motorola, Inc. | Method and apparatus for supporting a reduced resource dormant state for packet data |
MXPA05009798A (es) | 2003-03-13 | 2005-12-05 | Qualcomm Inc | Metodo y sistema para transmision de datos en un sistema de comunicacion. |
EP1618748B1 (en) * | 2003-04-23 | 2016-04-13 | QUALCOMM Incorporated | Methods and apparatus of enhancing performance in wireless communication systems |
US7181666B2 (en) | 2003-04-29 | 2007-02-20 | Qualcomm, Incorporated | Method, apparatus, and system for user-multiplexing in multiple access systems with retransmission |
US7177297B2 (en) | 2003-05-12 | 2007-02-13 | Qualcomm Incorporated | Fast frequency hopping with a code division multiplexed pilot in an OFDMA system |
WO2004114549A1 (en) | 2003-06-13 | 2004-12-29 | Nokia Corporation | Enhanced data only code division multiple access (cdma) system |
KR100689382B1 (ko) | 2003-06-20 | 2007-03-02 | 삼성전자주식회사 | 직교분할다중화방식을 기반으로 하는이동통신시스템에서의 송신장치 및 방법 |
US6970437B2 (en) * | 2003-07-15 | 2005-11-29 | Qualcomm Incorporated | Reverse link differentiated services for a multiflow communications system using autonomous allocation |
WO2005015775A1 (en) | 2003-08-11 | 2005-02-17 | Nortel Networks Limited | System and method for embedding ofdm in cdma systems |
GB2405773B (en) | 2003-09-02 | 2006-11-08 | Siemens Ag | A method of controlling provision of audio communication on a network |
US8599764B2 (en) * | 2003-09-02 | 2013-12-03 | Qualcomm Incorporated | Transmission of overhead information for reception of multiple data streams |
US20050063298A1 (en) | 2003-09-02 | 2005-03-24 | Qualcomm Incorporated | Synchronization in a broadcast OFDM system using time division multiplexed pilots |
KR100713403B1 (ko) | 2003-09-30 | 2007-05-04 | 삼성전자주식회사 | 통신 시스템에서 채널 상태에 따른 송신 방식 제어 장치및 방법 |
US8483105B2 (en) * | 2003-10-15 | 2013-07-09 | Qualcomm Incorporated | High speed media access control |
US8462817B2 (en) * | 2003-10-15 | 2013-06-11 | Qualcomm Incorporated | Method, apparatus, and system for multiplexing protocol data units |
US8472473B2 (en) * | 2003-10-15 | 2013-06-25 | Qualcomm Incorporated | Wireless LAN protocol stack |
US8842657B2 (en) | 2003-10-15 | 2014-09-23 | Qualcomm Incorporated | High speed media access control with legacy system interoperability |
US8284752B2 (en) | 2003-10-15 | 2012-10-09 | Qualcomm Incorporated | Method, apparatus, and system for medium access control |
US7298805B2 (en) * | 2003-11-21 | 2007-11-20 | Qualcomm Incorporated | Multi-antenna transmission for spatial division multiple access |
US7012913B2 (en) * | 2003-11-25 | 2006-03-14 | Nokia Corporation | Apparatus, and associated method, for facilitating communication of unfragmented packet-formatted data in a radio communication system |
US7145940B2 (en) | 2003-12-05 | 2006-12-05 | Qualcomm Incorporated | Pilot transmission schemes for a multi-antenna system |
KR100943572B1 (ko) * | 2003-12-23 | 2010-02-24 | 삼성전자주식회사 | 직교 주파수 분할 다중 접속 시스템에서 주파수재사용율을 고려한 적응적 부채널 할당 장치 및 방법 |
US7450489B2 (en) | 2003-12-30 | 2008-11-11 | Intel Corporation | Multiple-antenna communication systems and methods for communicating in wireless local area networks that include single-antenna communication devices |
US8433005B2 (en) | 2004-01-28 | 2013-04-30 | Qualcomm Incorporated | Frame synchronization and initial symbol timing acquisition system and method |
US7072659B2 (en) * | 2004-02-06 | 2006-07-04 | Sbc Knowledge Venturs, L.P. | System for selectively answering a telephone from a remote location |
KR100584446B1 (ko) | 2004-02-11 | 2006-05-26 | 삼성전자주식회사 | 광대역 무선 접속 통신 시스템에서 단말의 동작 모드 제어방법 |
US8077691B2 (en) * | 2004-03-05 | 2011-12-13 | Qualcomm Incorporated | Pilot transmission and channel estimation for MISO and MIMO receivers in a multi-antenna system |
CN103036844B (zh) | 2004-03-15 | 2017-11-24 | 苹果公司 | 用于具有四根发射天线的ofdm系统的导频设计 |
US8958493B2 (en) | 2004-03-31 | 2015-02-17 | Infineon Technologies Ag | Operation for backward-compatible transmission |
KR20050103099A (ko) | 2004-04-24 | 2005-10-27 | 삼성전자주식회사 | 이동통신 시스템에서 방송 서비스 제공 장치 및 방법 |
US7706346B2 (en) * | 2004-05-10 | 2010-04-27 | Alcatel-Lucent Usa Inc. | Hybrid wireless communications system |
KR100651525B1 (ko) | 2004-06-16 | 2006-11-29 | 삼성전자주식회사 | 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템의 데이터 송수신 방법 |
KR100605625B1 (ko) * | 2004-06-17 | 2006-07-31 | 엘지전자 주식회사 | 유엠티에스시스템의 세션해제방법 |
US8027372B2 (en) * | 2004-06-18 | 2011-09-27 | Qualcomm Incorporated | Signal acquisition in a wireless communication system |
US20060013182A1 (en) * | 2004-07-19 | 2006-01-19 | Telefonaktiebolaget Lm Ericsson | Selective multicarrier CDMA network |
US9148256B2 (en) * | 2004-07-21 | 2015-09-29 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
US7567621B2 (en) * | 2004-07-21 | 2009-07-28 | Qualcomm Incorporated | Capacity based rank prediction for MIMO design |
US7418046B2 (en) * | 2004-07-22 | 2008-08-26 | Qualcomm Inc. | Pilot transmission and channel estimation for multiple transmitters |
US7764981B2 (en) * | 2004-07-30 | 2010-07-27 | Nokia Corporation | System and method for managing a wireless connection to reduce power consumption of a mobile terminal |
US7382842B2 (en) * | 2004-08-02 | 2008-06-03 | Beceem Communications Inc. | Method and system for performing channel estimation in a multiple antenna block transmission system |
US8325863B2 (en) * | 2004-10-12 | 2012-12-04 | Qualcomm Incorporated | Data detection and decoding with considerations for channel estimation errors due to guard subbands |
US20060088003A1 (en) * | 2004-10-21 | 2006-04-27 | Motorola, Inc. | Method and computer program for selecting an inactivity timeout interval based on last data direction |
US7440399B2 (en) * | 2004-12-22 | 2008-10-21 | Qualcomm Incorporated | Apparatus and method for efficient transmission of acknowledgments |
US8661322B2 (en) * | 2004-12-22 | 2014-02-25 | Qualcomm Incorporated | Apparatus and method for selective response to incremental redundancy transmissions |
US7623490B2 (en) * | 2004-12-22 | 2009-11-24 | Qualcomm Incorporated | Systems and methods that utilize a capacity-based signal-to-noise ratio to predict and improve mobile communication |
EP1832075B1 (en) * | 2004-12-27 | 2016-03-09 | LG Electronics Inc. | Communicating non-coherent detectable signal in broadband wireless access system |
US8942713B2 (en) | 2005-02-08 | 2015-01-27 | Qualcomm Incorporated | Method and apparatus for allocating resources in a multicast/broadcast communications system |
WO2006086878A1 (en) * | 2005-02-15 | 2006-08-24 | Nortel Networks Limited | Radio access system and method using ofdm and cdma for broadband data transmission |
US8130781B2 (en) * | 2005-02-28 | 2012-03-06 | Intellectual Ventures I Llc | Method and apparatus for providing dynamic selection of carriers |
US8126482B2 (en) * | 2005-03-04 | 2012-02-28 | Qualcomm Incorporated | Multiple paging channels for efficient region paging |
US20060203845A1 (en) * | 2005-03-09 | 2006-09-14 | Pantelis Monogioudis | High-rate wireless communication mehod for packet data |
US7715847B2 (en) * | 2005-03-09 | 2010-05-11 | Qualcomm Incorporated | Use of decremental assignments |
US20060203794A1 (en) * | 2005-03-10 | 2006-09-14 | Qualcomm Incorporated | Systems and methods for beamforming in multi-input multi-output communication systems |
US9461859B2 (en) * | 2005-03-17 | 2016-10-04 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US20060217124A1 (en) | 2005-03-23 | 2006-09-28 | Lucent Technologies, Inc. | Selecting a carrier channel based on channel capability |
US7848463B2 (en) * | 2005-04-07 | 2010-12-07 | Qualcomm Incorporated | Adaptive time-filtering for channel estimation in OFDM system |
US9408220B2 (en) * | 2005-04-19 | 2016-08-02 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US9036538B2 (en) | 2005-04-19 | 2015-05-19 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
US20060240784A1 (en) * | 2005-04-22 | 2006-10-26 | Qualcomm Incorporated | Antenna array calibration for wireless communication systems |
US7961700B2 (en) * | 2005-04-28 | 2011-06-14 | Qualcomm Incorporated | Multi-carrier operation in data transmission systems |
US7680211B1 (en) * | 2005-05-18 | 2010-03-16 | Urbain A. von der Embse | MIMO maximum-likelihood space-time architecture |
US7428269B2 (en) * | 2005-06-01 | 2008-09-23 | Qualcomm Incorporated | CQI and rank prediction for list sphere decoding and ML MIMO receivers |
US8971461B2 (en) * | 2005-06-01 | 2015-03-03 | Qualcomm Incorporated | CQI and rank prediction for list sphere decoding and ML MIMO receivers |
US9179319B2 (en) | 2005-06-16 | 2015-11-03 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US7895504B2 (en) | 2005-06-16 | 2011-02-22 | Qualcomm Incorporated | NAK-to-ACK error detection and recovery |
US8064424B2 (en) * | 2005-07-22 | 2011-11-22 | Qualcomm Incorporated | SDMA for WCDMA |
US20070025345A1 (en) | 2005-07-27 | 2007-02-01 | Bachl Rainer W | Method of increasing the capacity of enhanced data channel on uplink in a wireless communications systems |
US7486658B2 (en) * | 2005-07-29 | 2009-02-03 | Cisco Technology, Inc. | Method and system for media synchronization in QoS-enabled wireless networks |
BRPI0614783B1 (pt) * | 2005-08-05 | 2019-06-25 | Nokia Technologies Oy | Método, equipamento de usuário, elemento de rede e sistema de comunicação |
KR20080033516A (ko) * | 2005-08-12 | 2008-04-16 | 노키아 코포레이션 | 다중 반송파 mimo 시스템에서 파일럿을 배치하기 위한방법, 시스템, 장치 및 컴퓨터 프로그램 제품 |
US8139672B2 (en) * | 2005-09-23 | 2012-03-20 | Qualcomm Incorporated | Method and apparatus for pilot communication in a multi-antenna wireless communication system |
US20070070942A1 (en) * | 2005-09-28 | 2007-03-29 | Motorola, Inc. | Semiactive state for reducing channel establishment delay |
US8077595B2 (en) * | 2006-02-21 | 2011-12-13 | Qualcomm Incorporated | Flexible time-frequency multiplexing structure for wireless communication |
US9461736B2 (en) | 2006-02-21 | 2016-10-04 | Qualcomm Incorporated | Method and apparatus for sub-slot packets in wireless communication |
US8689025B2 (en) * | 2006-02-21 | 2014-04-01 | Qualcomm Incorporated | Reduced terminal power consumption via use of active hold state |
KR101119455B1 (ko) * | 2006-02-21 | 2012-03-20 | 퀄컴 인코포레이티드 | Ofdm 및 cdma 방식을 지원하는 방법 및 장치 |
US7720470B2 (en) * | 2006-06-19 | 2010-05-18 | Intel Corporation | Reference signals for downlink beamforming validation in wireless multicarrier MIMO channel |
-
2007
- 2007-02-20 KR KR1020087022880A patent/KR101119455B1/ko active IP Right Grant
- 2007-02-20 RU RU2008137581/09A patent/RU2437225C2/ru not_active IP Right Cessation
- 2007-02-20 JP JP2008556514A patent/JP5113085B2/ja active Active
- 2007-02-20 AT AT07757236T patent/ATE495598T1/de not_active IP Right Cessation
- 2007-02-20 EP EP07757236A patent/EP1989809B1/en not_active Not-in-force
- 2007-02-20 CN CN201510372298.3A patent/CN105024794B/zh active Active
- 2007-02-20 US US11/676,952 patent/US8472424B2/en active Active
- 2007-02-20 US US11/676,981 patent/US8396152B2/en active Active
- 2007-02-20 CA CA002641934A patent/CA2641934A1/en not_active Abandoned
- 2007-02-20 KR KR1020087022923A patent/KR101010548B1/ko not_active IP Right Cessation
- 2007-02-20 EP EP07757235A patent/EP1989848A2/en not_active Withdrawn
- 2007-02-20 KR KR1020087022987A patent/KR101026976B1/ko not_active IP Right Cessation
- 2007-02-20 BR BRPI0708089-1A patent/BRPI0708089A2/pt not_active IP Right Cessation
- 2007-02-20 EP EP07757228A patent/EP1987622B1/en active Active
- 2007-02-20 US US11/676,925 patent/US8493958B2/en active Active
- 2007-02-20 RU RU2008137608/07A patent/RU2449486C2/ru not_active IP Right Cessation
- 2007-02-20 US US11/677,000 patent/US8498192B2/en not_active Expired - Fee Related
- 2007-02-20 WO PCT/US2007/062453 patent/WO2007098456A2/en active Application Filing
- 2007-02-20 JP JP2008556517A patent/JP4824779B2/ja not_active Expired - Fee Related
- 2007-02-20 JP JP2008556516A patent/JP2009527997A/ja active Pending
- 2007-02-20 CA CA2641935A patent/CA2641935C/en not_active Expired - Fee Related
- 2007-02-20 WO PCT/US2007/062454 patent/WO2007098457A1/en active Application Filing
- 2007-02-20 BR BRPI0708106-5A patent/BRPI0708106A2/pt not_active Application Discontinuation
- 2007-02-20 AT AT07757228T patent/ATE553560T1/de active
- 2007-02-20 DE DE602007011900T patent/DE602007011900D1/de active Active
- 2007-02-20 WO PCT/US2007/062443 patent/WO2007098450A2/en active Application Filing
- 2007-02-21 WO PCT/US2007/062455 patent/WO2007098458A2/en active Application Filing
- 2007-02-21 JP JP2008556518A patent/JP2009527999A/ja not_active Withdrawn
- 2007-02-21 KR KR1020087022936A patent/KR101128310B1/ko active IP Right Grant
- 2007-02-21 EP EP11159766.2A patent/EP2346203A3/en not_active Withdrawn
- 2007-02-21 EP EP07757237.8A patent/EP1987623B1/en active Active
- 2007-02-26 TW TW096106551A patent/TWI340567B/zh not_active IP Right Cessation
- 2007-02-26 TW TW096106482A patent/TWI355171B/zh active
- 2007-02-26 TW TW096106486A patent/TWI383612B/zh not_active IP Right Cessation
- 2007-02-26 TW TW096106485A patent/TW200803260A/zh unknown
- 2007-02-26 TW TW096106487A patent/TWI363504B/zh not_active IP Right Cessation
- 2007-02-26 TW TW096106490A patent/TW200742306A/zh unknown
-
2012
- 2012-07-06 JP JP2012152324A patent/JP5639122B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2004117217A (ru) * | 2001-11-08 | 2005-03-27 | Квэлкомм Инкорпорейтед (US) | Оценка мощности с использованием взвешенной суммы символов пилот-сигнала и не пилот-сигнала |
EP1542488A1 (en) * | 2003-12-12 | 2005-06-15 | Telefonaktiebolaget LM Ericsson (publ) | Method and apparatus for allocating a pilot signal adapted to the channel characteristics |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2449486C2 (ru) | Структура пространственного пилот-сигнала для беспроводной связи с множеством антенн | |
US8654696B2 (en) | Radio communication base station apparatus and pilot transmitting method | |
EP1908200B1 (en) | Sdma for wcdma with increased capacity by use of multiple scrambling codes | |
KR101200969B1 (ko) | 무선 통신 시스템들을 위한 포착 파일럿들 | |
US8582592B2 (en) | Wireless resource allocation methods and apparatus | |
US8077595B2 (en) | Flexible time-frequency multiplexing structure for wireless communication | |
RU2369030C2 (ru) | Система модуляции с множеством несущих с разнесением циклических задержек | |
KR100899744B1 (ko) | 이동통신 시스템에서 제어 채널 메시지를 송수신하는 장치 및 방법 | |
KR101892688B1 (ko) | 다중 안테나를 위한 제어 채널 검색 방법 및 장치 | |
JP2009505566A (ja) | パイロット信号を送信するための方法および装置 | |
JP2004503181A (ja) | Ofdmシステムのためのリアルタイムサービスと非リアルタイムサービスの多重化 | |
JPWO2007129620A1 (ja) | 無線通信基地局装置および無線通信基地局装置における送信方法 | |
JP2011530203A (ja) | 反復重複のあるシンボルのリソース・ブロック・マッピング | |
US8897251B2 (en) | Wireless communication base station apparatus and pilot signal disposing method | |
JP2002190788A (ja) | 無線通信装置および無線通信方法 | |
RU2396715C2 (ru) | Передающее устройство, способ передачи данных, приемное устройство и способ приема данных | |
Frank et al. | Multiple-Access Technology of Choice In 3GPP LTE | |
AU2007237267B2 (en) | Method and apparatus for measuring and reporting channel state information in a high efficiency, high performance communications system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20130221 |