EP1533116B1 - Temperiervorrichtung für Druckmaschinen - Google Patents

Temperiervorrichtung für Druckmaschinen Download PDF

Info

Publication number
EP1533116B1
EP1533116B1 EP04027325A EP04027325A EP1533116B1 EP 1533116 B1 EP1533116 B1 EP 1533116B1 EP 04027325 A EP04027325 A EP 04027325A EP 04027325 A EP04027325 A EP 04027325A EP 1533116 B1 EP1533116 B1 EP 1533116B1
Authority
EP
European Patent Office
Prior art keywords
cooling
heat exchanger
water
path
process water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04027325A
Other languages
English (en)
French (fr)
Other versions
EP1533116A1 (de
Inventor
Thomas Haas
Nicholas Cruz
Steve Barberi
Lou J. Barberi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technotrans SE
Original Assignee
Technotrans SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technotrans SE filed Critical Technotrans SE
Publication of EP1533116A1 publication Critical patent/EP1533116A1/de
Application granted granted Critical
Publication of EP1533116B1 publication Critical patent/EP1533116B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/08Cylinders
    • B41F13/22Means for cooling or heating forme or impression cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0054Devices for controlling dampening

Definitions

  • the invention relates to a tempering device for printing presses, with a compression refrigeration system with a condenser and an evaporator in which circulates a refrigerant, a free cooling circuit in which a coolant, in particular water circulates, a process water circuit in which a coolant for pressure rollers or a dampening solution for the Offset pressure circulates, and heat exchange means for cooling the process water circuit using the compression refrigeration system and / or the free-cooling circuit.
  • Temperature control systems for printing machines are known in various embodiments. As a rule, these are cooling systems, since the operation of a printing press inevitably causes a certain amount of heating, which can impair the print quality.
  • the cooling can be done by water cooling the friction rollers using a continuous line system or - in offset printing - by a cooled dampening solution, which is applied to the rollers. Occasionally, cooled air is also blown onto certain parts or assemblies of the presses.
  • Indirectly cooled systems are usually water cooled.
  • the process water in an integrated water / water heat exchanger is cooled by the cooling water of an external source.
  • the process water is also cooled by mixing with the cooling water of the external source. Since a separation of the circuits is inevitably not possible, this procedure is not suitable for cooling dampening solution.
  • Directly cooled systems with a water-cooled condenser in the refrigeration circuit usually draw their cooling water from central cooling water systems. These are often systems with free coolers or evaporative coolers.
  • the temperature level of the cooling water of these external cooling systems is always low enough to ensure sufficient cooling of the water-cooled condenser of the refrigeration system. Also, in most cases, the temperature level is sufficient to provide sufficient cooling to other peripherals on printing machines such as air cabinets or drying cabinets.
  • the temperature level of this cooling water is not always low enough to use this by means of a water / water heat exchanger for direct cooling of the process water for cooling the distributor rollers in the printing press, appropriate systems are currently not used.
  • the conventional systems have the particular disadvantage that they require a high energy input and have correspondingly high operating costs.
  • the invention is therefore based on the object to provide a cooling device for printing presses, which manage with significantly lower energy consumption and allow effective temperature control of different tempering, without causing a mixing of the cooling water and the Temperierwasserströme.
  • a tempering of the above is characterized in that a three-media heat exchanger is provided, in which the process water circuit is brought into heat exchange both with the compression circuit and with the free cooling circuit.
  • a three-medium heat exchanger is to be understood as meaning a heat exchanger which is flowed through in separate chambers by the compression refrigeration cycle and the free cooling circuit, while the process water or tempering medium cycle passes through both chambers in a separate line system.
  • the two chambers of the three-media heat exchanger form a spatial unit, that is, for example, a common housing with a dividing wall or represent separate units.
  • the circle referred to as a free-cooling circuit may, for example, have a water cooler, which is flowed through by a fan of outside air. But it can also be another source of relatively cool water.
  • the free cooling circuit can run parallel to the three-media heat exchanger, the condenser heat exchanger of the compression refrigeration system and used to condense the circulating in the compression refrigeration cycle refrigerant.
  • the chamber of the three-medium heat exchanger through which the compression refrigeration cycle flows preferably forms the evaporator of the compression refrigeration cycle.
  • a temperature control device of the described type does not require any additional cooling by the compression refrigeration system, such as the ambient temperature of the air used for cooling the cooling water, or the temperature of another cooling water source has a value sufficiently below the process water temperature. If the cooling water temperature is too high for the pure direct cooling of the process water, the cooling water flow is split. He may in this case either pre-cool the process water to a certain extent, as long as the cooling water flow temperature is below the process water temperature, or cool the water-cooled condenser evaporator of the compression refrigeration system, which now has to be switched on.
  • the free cooling circuit can only be used solely for cooling the condenser-evaporator of the compression refrigeration system.
  • the process water first passes through that of the two chambers of the three-media heat exchanger, which is flowed through by the cooling water of the free cooling circuit, so that the mentioned effect of precooling can be used, provided that the temperature conditions are suitable.
  • a particular advantage of the inventive solution is that the process water is not only with the compression refrigeration cycle, but also with the free cooler cycle via heat exchangers in heat exchange, that is not about the free cooler circuit is used directly as a process water circuit.
  • the process water circuit can be formed by a dampening solution for the offset pressure, while the free cooling circuit contains water, for example, water with antifreeze.
  • Each circuit may have piping systems of materials which are particularly suitable for the transported medium, for example stainless steel in the case of corrosive media.
  • the single figure shows a possible embodiment of the invention.
  • a three-media heat exchanger is designated 10.
  • This three-media heat exchanger 10 has a first chamber 12 and a second chamber 14, which are combined in the illustrated embodiment into a spatial unit within a common housing and separated only by a partition wall 16.
  • the two chambers can also form separate units.
  • In the first chamber 12 enters an inlet line 18 of a process water circuit, and from the chamber 12 exits on the other hand, an outlet line 20 of this process water circuit.
  • the two lines 18,20 are connected inside the two chambers with raw coils 22, in which the process water flows through the two chambers 12,14.
  • the inlet line 18 and the outlet line 20 are connected outside of the three-media heat exchanger with a printing press, not shown.
  • the coil is outside the water-air cooler 28 in a flow line 36 a free cooler circuit, the return line 38 on the other hand enters the water-air cooler 28 and is connected to the coil 32.
  • the supply line 36 further includes a three-way valve 40 into which at the same time a coming from the return line 38 bypass line 42 occurs.
  • a three-way valve 40 which has a servomotor 44 and can be controlled in a manner not shown by means of an electronic control function of the flow temperature of the cooling water, a portion of the cooling water can be fed directly from the return line 38 in the flow line, if, for example, in the Water-air cooler 28 cooled cooling water is too cold for the need.
  • a pump 46 Downstream of the three-way valve 40 is a pump 46, and then to this a three-way valve 48 with actuator 50th
  • From this three-way valve 48 from the cooling water can be passed depending on the valve position on the one hand to the left in the drawing to the inlet 24 of the left chamber 12 of the three-media heat exchanger 10.
  • the cooling water can also flow to the right to a condenser heat exchanger of a compression refrigeration system, which will be discussed later.
  • the outlet 26 of the left chamber 12 of the three-medium heat exchanger 10 and an unspecified outlet of the condenser heat exchanger 50 are combined to the return line 38 at a point 52.
  • the three-way valve 48 is controlled so that, depending on the desired mode of operation, the cooling water is directed to one side or the other or distributed proportionately.
  • the process water circuit in the left chamber 12 of the three-media heat exchanger 10 alone can be cooled.
  • This compression refrigeration cycle 54 includes a compressor 56, the aforementioned condenser heat exchanger 50, an expansion valve 58 and an evaporator formed by the second chamber 14 of the three-media heat exchanger.
  • the said four elements are connected together in a closed circuit, as is customary in refrigerators.
  • a temperature sensor 62 detects the temperature in the conduit between the evaporator 14 and the compressor 56 and outputs signals used to control the expansion valve 58.
  • the mode of action of the temperature control device will be described below.
  • a water-air cooler of the type shown, it will depend primarily on the outside temperature, whether the cooling of the printing press can be achieved only with the help of the cooling water of the free cooling circuit or the Kompressionskarlte Vietnamese must be switched on. If the outside temperature is sufficiently low, then only the cooling water circuit for cooling must be used by the three-way valve 48 is opened to the left and the cooling water flows through the left chamber 12 of the three-media heat exchanger 10 in a closed circle. If the temperature is too low, then already heated cooling water from the return line 38 can be mixed into the supply line via the three-way valve 40.
  • the process water first passes through the left chamber 12 in the drawing, in which a heat exchange with the cooling water of the free cooling circuit takes place, and then the chamber 14, which is formed by the evaporator of the Kompressionskarltekieris.
  • cooling water of the free cooling circuit is also no longer suitable for precooling the process water, it can at least be used in the condenser heat exchanger 50 of the compression refrigeration cycle, which now carries out the cooling of the process water via the right-hand chamber 14 of the three-media heat exchanger alone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)

Description

  • Die Erfindung betrifft eine Temperiervorrichtung für Druckmaschinen, mit einer Kompressionskälteanlage mit einem Kondensator und einem Verdampfer, in der ein Kältemittel zirkuliert, einem Freikühlerkreis, in dem ein Kühlmittel, insbesondere Wasser zirkuliert, einem Prozeßwasserkreislauf, in dem ein Kühlmittel für Druckwalzen oder ein Feuchtmittel für den Offset-Druck zirkuliert, und Wärmetauschermitteln zur Kühlung des Prozeßwasserkreislaufs mithilfe der Kompressionskälteanlage und/oder des Freikühlerkreises.
  • Temperiersysteme für Druckmaschinen sind in verschiedenen Ausführungsformen bekannt. In der Regel handelt es sich um Kühlsysteme, da beim Betrieb einer Druckmaschine zwangsläufig eine gewisse Erwärmung auftritt, die die Druckqualität beeinträchtigen kann. Die Kühlung kann erfolgen durch Wasserkühlung der Reiberrollen mithilfe eines diese durchlaufenden Leitungssystems oder - beim Offset-Druck - durch ein gekühltes Feuchtmittel, das auf die Walzen aufgebracht wird. Gelegentlich wird auch gekühlte Luft auf bestimmte Teile oder Baugruppen der Druckmaschinen aufgeblasen.
  • Für diese Systeme werden Kälteanlagen benötigt, die einen relativ hohen Energieverbrauch haben. Bekannt sind Systeme, die entweder direkt oder indirekt durch Kälteanlagen, das heißt Kompressionskälteanlagen gekühlt werden. Direkt gekühlte Systeme funktionieren in den meisten Fällen durch die direkte Kühlung des Prozeßmediums, in den meisten Fällen Wasser oder eine Mischung aus Wasser und Glykol, durch verdampfendes Kältemittel in dem als Wärmetauscher ausgebildeten Verdampfer einer Kompressionskälteanlage. Die direkt gekühlten Systeme haben entweder einen integrierten luft- oder wassergekühlten Kondensator oder einen externen luftgekühlten Kondensator.
  • Indirekt gekühlte Systeme sind gewöhnlich wassergekühlt. In diesen Systemen wird das Prozeßwasser in einem integrierten Wasser/Wasser-Wärmetauscher durch das Kühlwasser einer externen Quelle gekühlt. In einigen Fällen wird das Prozeßwasser auch durch Mischung mit dem Kühlwasser der externen Quelle gekühlt. Da eine Trennung der Kreisläufe zwangsläufig nicht möglich ist, eignet sich diese Verfahrensweise nicht für die Kühlung von Feuchtmittel.
  • Direkt gekühlte Systeme mit einem wassergekühlten Kondensator im Kältekreis beziehen ihr Kühlwasser üblicherweise von zentralen Kühlwassersystemen. Dies sind häufig Systeme mit Freikühlern oder Verdampfungskühlern. Das Temperaturniveau des Kühlwassers dieser externen Kühlsysteme ist immer niedrig genug, um eine ausreichende Kühlung des wassergekühlten Kondensators der Kälteanlage zu gewährleisten. Ebenfalls ist das Temperaturniveau in den meisten Fällen ausreichend, um andere Peripheriegeräte an Druckmaschinen wie Luftversorgungsschränke oder Trockenschränke ausreichend mit Kühlung zu versorgen. Da das Temperaturniveau dieses Kühlwasser aber nicht immer niedrig genug ist, um dieses mittels eines Wasser/Wasser-Wärmetauscher zur direkten Kühlung des Prozeßwassers zur Kühlung der Reiberwalzen in der Druckmaschine zu verwenden, werden entsprechende Systeme derzeitig nicht eingesetzt.
  • Die herkömmlichen Systeme haben insbesondere den Nachteil, dass sie einen hohen Energieeinsatz erfordern und entsprechend hohe Betriebskosten aufweisen.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Kühlvorrichtung für Druckmaschinen zu schaffen, die mit erheblich geringerem Energieeinsatz auskommen und eine wirksame Temperierung unterschiedlicher Temperiermedien ermöglichen, ohne dass es zu einer Vermischung der Kühlwasser- und der Temperierwasserströme kommt.
  • Zur Lösung dieser Aufgabe ist eine Temperiervorrichtung der obigen dadurch gekennzeichnet, dass ein Dreimedien-Wärmetauscher vorgesehen ist, in dem der Prozeßwasserkreislauf sowohl mit dem Kompressionskältekreis als auch mit dem Freikühlerkreislauf in Wärmeaustausch gebracht wird.
  • Unter einem Dreimedien-Wärmetauscher soll ein Wärmetauscher verstanden werden, der in getrennten Kammern von dem Kompressionskältekreislauf und dem Freikühlerkreislauf durchströmt wird, während der Prozeßwasser- oder Temperiermedienkreislauf beide Kammern in einem getrennten Leitungssystem durchläuft.
  • Es kommt dabei nicht darauf an, ob die beiden Kammern des Dreimedien-Wärmetauschers eine räumliche Einheit, also etwa ein gemeinsames Gehäuse mit Trennwand bilden oder gesonderte Einheiten darstellen.
  • Mit einem Dreimedien-Wärmetauscher der genannten Art ist es möglich, bei ausreichend niedrigen Außentemperaturen die Kühlung allein mithilfe des Freikühlerkreislaufs vorzunehmen, während bei hohen Außentemperaturen zusätzlich oder allein der Kompressionskältekreislauf zur Kühlung des Prozeßwassers eingesetzt wird.
  • Der als Freikühlerkreis bezeichnete Kreis kann beispielsweise einen Wasserkühler aufweisen, der mithilfe eines Gebläses von Außenluft durchströmt wird. Es kann sich aber auch um eine andere, relativ kühles Wasser abgebende Quelle handeln.
  • Der Freikühlerkreislauf kann parallel zu dem Dreimedien-Wärmetauscher den Kondensator-Wärmetauscher der Kompressionskälteanlage durchlaufen und zum Kondensieren des im Kompressionskältekreislauf umlaufenden Kältemittels eingesetzt werden.
  • Die von dem Kompressionskältekreislauf durchströmte Kammer des Dreimedien-Wärmetauschers bildet vorzugsweise den Verdampfer des Kompressionskältekreislaufs.
  • Eine Temperiervorrichtung der beschriebenen Art benötigt beispielsweise solange keine zusätzliche Kühlung durch die Kompressionskälteanlage, wie die Umgebungstemperatur der Luft, die zur Kühlung des Kühlwassers verwendet wird, oder auch die Temperatur einer anderen Kühlwasserquelle einen Wert ausreichend unterhalb der Prozeßwassertemperatur aufweist. Ist die Kühlwassertemperatur zu hoch für die reine direkte Kühlung des Prozeßwassers, so wird der Kühlwasserstrom aufgeteilt. Er kann in diesem Fall entweder das Prozeßwasser in einem gewissen Maße vorkühlen, solange die Kühlwasservorlauftemperatur unter der Prozeßwassertemperatur liegt, oder den wassergekühlten Kondensator-Verdampfer der Kompressionskälteanlage kühlen, die jetzt zugeschaltet werden muß.
  • Ist die Kühlwassertemperatur des Freikühlerkreises selbst zum Vorkühlen des Prozeßwassers zu hoch, so kann der Freikühlerkreis nur noch allein für die Kühlung des Kondensator-Verdampfers der Kompressionskälteanlage eingesetzt werden.
  • Vorzugsweise durchläuft das Prozeßwasser zunächst diejenige der beiden Kammern des Dreimedien-Wärmetauschers, die von dem Kühlwasser des Freikühlerkreises durchströmt wird, damit der erwähnte Effekt der Vorkühlung genutzt werden kann, sofern die Temperaturbedingungen geeignet sind.
  • Ein besonderer Vorteil der erfmdungsgemäßen Lösung liegt darin, daß das Prozeßwasser nicht nur mit dem Kompressionskältekreislauf, sondern auch mit dem Freikühlerkreislauf über Wärmetauscher in Wärmeaustausch steht, dass also nicht etwa der Freikühlerkreislauf unmittelbar als Prozeßwasserkreislauf benutzt wird. Auf diese Weise können in den einzelnen Kreisläufen unterschiedliche Medien zirkulieren. So kann beispielsweise der Prozeßwasserkreislauf durch ein Feuchtmittel für den Offset-Druck gebildet werden, während der Freikühlerkreislauf Wasser, beispielsweise auch Wasser mit Frostschutzmittel enthält. Jeder Kreislauf kann Leitungssysteme aus Materialien aufweisen, die für das transportierte Medium besonders geeignet sind, beispielsweise nicht rostender Stahl im Fall von korrosiven Medien.
  • Im folgenden werden bevorzugte Ausführungsbeispiele der Erfindung anhand der beigefügten Zeichnung näher erläutert.
  • Die einzige Figur zeigt ein mögliches Ausführungsbeispiel der Erfindung.
  • In der Zeichnung ist ein Dreimedien-Wärmetauscher mit 10 bezeichnet. Dieser Dreimedien-Wärmetauscher 10 weist eine erste Kammer 12 und eine zweite Kammer 14 auf, die bei der dargestellten Ausführungsform zu einer räumlichen Einheit innerhalb eines gemeinsamen Gehäuses zusammengefaßt und lediglich durch eine Trennwand 16 getrennt sind. Die beiden Kammern können jedoch auch getrennte Einheiten bilden. In die erste Kammer 12 tritt eine Eintrittsleitung 18 eines Prozeßwasserkreises ein, und aus der Kammer 12 tritt andererseits eine Austrittsleitung 20 dieses Prozeßwasserkreises aus. Die beiden Leitungen 18,20 sind im Inneren der beiden Kammern mit Rohschlangen 22 verbunden, in denen das Prozeßwasser die beiden Kammern 12,14 durchströmt.
  • Die Eintrittsleitung 18 und die Austrittsleitung 20 sind außerhalb des Dreimedien-Wärmetauschers mit einer nicht dargestellten Druckmaschine verbunden.
  • Mit der ersten, links in der Zeichnung liegenden Kammer 12 des Dreimedien-Wärmetauschers 10 sind Einlaß 24 und Auslaß 26 eines Freikühlerkreislaufs verbunden, der als Kühlquelle einen Wasser-Luft-Kühler 28 mit einem Gebläse 30 aufweist. Der Wasser-Luft-Kühler 28 wird von einer Rohrschlange 32 durchlaufen, auf deren Rohren in Abstand liegende, parallele Blechplatten 34 befestigt sind, durch die Wärmeübertragungsflächen der Rohre vergrößert werden.
  • Die Rohrschlange geht außerhalb des Wasser-Luft-Kühlers 28 über in eine Vorlaufleitung 36 eines Freikühlerkreises, dessen Rücklaufleitung 38 andererseits in den Wasser-Luft-Kühler 28 eintritt und mit der Rohrschlange 32 verbunden ist.
  • Die Vorlaufleitung 36 enthält im weiteren Verlauf ein Dreiwegeventil 40, in das zugleich eine von der Rücklaufleitung 38 kommende Bypassleitung 42 eintritt. Mithilfe des Dreiwegeventils 40, das einen Stellmotor 44 aufweist und in nicht gezeigter Weise mithilfe einer elektronischen Steuerung in Abhängigkeit von der Vorlauftemperatur des Kühlwassers gesteuert werden kann, kann ein Teil des Kühlwassers unmittelbar von der Rücklaufleitung 38 in die Vorlaufleitung eingespeist werden, wenn beispielsweise das im Wasser-Luft-Kühler 28 gekühlte Kühlwasser für den Bedarf zu kalt ist.
  • Stromabwärts des Dreiwegeventils 40 befindet sich eine Pumpe 46, und anschließend an diese ein Dreiwegeventil 48 mit Stellmotor 50.
  • Von diesem Dreiwegeventil 48 aus kann das Kühlwasser je nach Ventilstellung einerseits nach links in der Zeichnung zu dem Einlaß 24 der linken Kammer 12 des Dreimedien-Wärmetauschers 10 geleitet werden. Andererseits kann das Kühlwasser auch nach rechts zu einem Kondensator-Wärmetauscher einer Kompressionskälteanlage fließen, auf die später eingegangen werden soll. Der Auslaß 26 der linken Kammer 12 des Dreimedien-Wärmetauschers 10 und ein nicht bezeichneter Auslaß des Kondensator-Wärmetauschers 50 sind zu der Rücklaufleitung 38 in einem Punkt 52 zusammengefaßt.
  • Das Dreiwegeventil 48 ist so steuerbar, dass je nach gewünschter Betriebsart das Kühlwasser ganz zur einen oder anderen Seite geleitet oder anteilig verteilt wird. Wenn die Temperatur im Freikühlerkreis ausreichend niedrig ist, kann der Prozeßwasserkreis in der linken Kammer 12 des Dreimedien-Wärmetauschers 10 allein gekühlt werden.
  • Dies wird jedoch bei hohen Außentemperaturen und damit zu hohen Kühlwassertemperaturen nicht möglich sein. Daher muß in diesen Fällen ein Kompressionskältekreis 54 zugeschaltet werden.
  • Dieser Kompressionskältekreislauf 54 umfaßt einen Kompressor 56, den bereits erwähnten Kondensator-Wärmetauscher 50, ein Expansionsventil 58 und einen Verdampfer, der gebildet wird durch die zweite Kammer 14 des Dreimedien-Wärmetauschers. Die genannten vier Elemente sind in einem geschlossenen Kreis miteinander verbunden, wie es bei Kältemaschinen üblich ist. Ein Temperatursensor 62 ermittelt die Temperatur in der Leitung zwischen dem Verdampfer 14 und dem Kompressor 56 und gibt Signale ab, die für die Steuerung des Expansionsventil 58 verwendet werden.
  • Die Wirkungsweise der erfindungsgemäßen Temperiervorrichtung soll anschliessend beschrieben werden. Bei Verwendung eines Wasser-Luft-Kühlers der dargestellten Art wird es in erster Linie auf die Außentemperatur ankommen, ob die Kühlung der Druckmaschine allein mithilfe des Kühlwassers des Freikühlerkreises erreicht werden kann oder der Kompressionskältekreis zugeschaltet werden muß. Ist die Außentemperatur ausreichend niedrig, so muß lediglich der Kühlwasserkreis für die Kühlung genutzt werden, indem das Dreiwegeventil 48 zur linken Seite geöffnet wird und das Kühlwasser in einem geschlossenen Kreis die linke Kammer 12 des Dreimedien-Wärmetauschers 10 durchströmt. Ist die Temperatur dabei zu niedrig, so kann über das Dreiwegeventil 40 bereits erwärmtes Kühlwasser aus der Rücklaufleitung 38 in die Vorlaufleitung eingemischt werden.
  • Steigt die Außentemperatur an und die Kühlwirkung des Freikühlerkreises nicht mehr ausreichend, so kann unter Umständen der Freikühlerkreis noch zur Vorkühlung des Prozeßwassers benutzt werden.
  • Aus diesem Grunde durchläuft das Prozeßwasser zunächst die linke Kammer 12 in der Zeichnung, in der ein Wärmeaustausch mit dem Kühlwasser des Freikühlerkreises stattfindet, und anschließend die Kammer 14, die durch den Verdampfer des Kompressionskältekreises gebildet wird.
  • Ist das Kühlwasser des Freikühlerkreises auch nicht mehr zur Vorkühlung des Prozeßwasser geeignet, so kann es zumindest noch in dem Kondensator-Wärmetauscher 50 des Kompressionskältekreislaufs verwendet werden, der nunmehr allein über die rechte Kammer 14 des Dreimedien-Wärmetauschers die Kühlung des Prozeßwassers vornimmt.

Claims (5)

  1. Temperiervorrichtung für Druckmaschinen,
    mit einer Kompressionskälteanlage mit einem Kondensator (50) und einem Verdampfer (10, 14), in der ein Kältemittel zirkuliert,
    einem Freikühlerkreis, in dem ein Kühlmittel, insbesondere Wasser zirkuliert,
    einem Prozeßwasserkreislauf, in dem ein Kühlmittel für Druckwalzen oder ein Feuchtmittel für den Offset-Druck zirkuliert und
    Wärmetauschermittel zur Kühlung des Prozeßwasserkreislaufs mithilfe der Kompressionskälteanlage und/oder des Freikühlerkreises,
    dadurch gekennzeichnet, dass ein Dreimedien-Wärmetauscher (10) vorgesehen ist, in dem der Prozeßwasserkreislauf sowohl mit dem Kompressionskältekreis als auch mit dem Freikühlerkreislauf in Wärmeaustausch gebracht wird.
  2. Temperiervorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Dreimedien-Wärmetauscher (10) zwei getrennte Kammern (12,14) aufweist, die von dem Kompressionskältekreis einerseits und dem Freikühlerkreis andererseits durchströmt werden und dass der Prozeßwasserkreislauf beide Kammern in einem getrennten Leitungssystem durchläuft.
  3. Temperiervorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Prozeßwasserkreislauf zunächst die Kammer (12), die mit dem Freikühlerkreis verbunden ist, und sodann die Kammer (14) durchläuft, die durch den Verdampfer des Kompressionskältekreislaufs gebildet wird.
  4. Temperiervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Freikühlerkreis parallel zu dem Dreimedien-Wärmetauscher (10) den Kondensator-Wärmetauscher (50) der Kompressionskälteanlage durchläuft.
  5. Temperiervorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die von dem Kompressionskältekreis durchlaufende Kammer (14) des Dreimedien-Wärmetauschers (10) den Verdampfer der Kompressionskälteanlage bildet.
EP04027325A 2003-11-21 2004-11-17 Temperiervorrichtung für Druckmaschinen Not-in-force EP1533116B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10354454 2003-11-21
DE10354454A DE10354454B4 (de) 2003-11-21 2003-11-21 Temperiervorrichtung für Druckmaschinen

Publications (2)

Publication Number Publication Date
EP1533116A1 EP1533116A1 (de) 2005-05-25
EP1533116B1 true EP1533116B1 (de) 2009-09-23

Family

ID=34428843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04027325A Not-in-force EP1533116B1 (de) 2003-11-21 2004-11-17 Temperiervorrichtung für Druckmaschinen

Country Status (3)

Country Link
US (1) US7159518B2 (de)
EP (1) EP1533116B1 (de)
DE (2) DE10354454B4 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005005303A1 (de) * 2005-01-05 2006-07-13 Koenig & Bauer Ag Systeme zur Temperierung von Bauteilen einer Druckmaschine
DE102005015954B4 (de) * 2005-04-07 2007-01-04 Technotrans Ag Druckmaschine mit Temperiervorrichtung
WO2008076120A1 (en) * 2006-12-21 2008-06-26 Carrier Corporation Free-cooling limitation control for air conditioning systems
CN101918776B (zh) * 2006-12-27 2012-07-11 开利公司 控制运行于自由冷却模式下的空调系统的方法和系统
CN101611278B (zh) * 2006-12-28 2012-06-27 开利公司 控制具有冷却模式和自由冷却模式的空调系统的方法和系统
DE102007008172B4 (de) 2007-02-19 2009-01-15 Technotrans Ag Temperiervorrichtung für eine Druckmaschine
DE102007052145A1 (de) * 2007-10-31 2009-05-14 Technotrans Ag Wärmetauscher für Teile einer Druckmaschine
DE102007053080A1 (de) * 2007-11-07 2009-05-20 Technotrans Ag Temperiersystem für Druckmaschinen mit mehreren Temperaturniveaus
DE102008009996A1 (de) * 2008-02-19 2009-08-20 Baldwin Germany Gmbh Druckmaschinentemperiersystem
EP2182309A1 (de) * 2008-10-28 2010-05-05 Siemens Aktiengesellschaft Anordnung zur Kühlung einer elektrischen Maschine
US20100242532A1 (en) * 2009-03-24 2010-09-30 Johnson Controls Technology Company Free cooling refrigeration system
EP2464924B1 (de) * 2009-08-14 2018-10-24 Johnson Controls Technology Company Kühlsystem mit freier kühlung
SG10201507946QA (en) 2010-06-23 2015-10-29 Inertech Ip Llc Space-saving high-density modular data center and an energy-efficient cooling system
JP5751857B2 (ja) * 2011-02-22 2015-07-22 キヤノン株式会社 記録装置
JP2014509726A (ja) 2011-03-02 2014-04-21 イナーテック アイピー エルエルシー 空間を節約する高密度モジュール型データポッドシステムおよびエネルギー効率の高い冷却システム
DE102012103850B3 (de) * 2012-05-02 2013-07-25 Windmöller & Hölscher Kg Vorrichtung zur Einstellung eines Betriebsparameters einer Farbe für einen Druckprozess einer Rotationsdruckmaschine sowie Verfahren hierzu
DE102013003919A1 (de) * 2013-03-07 2014-09-11 Peter Wolf Verfahren zur optimalen Wärmeenergierückgewinnung aus Abwärmequellen
WO2016057854A1 (en) 2014-10-08 2016-04-14 Inertech Ip Llc Systems and methods for cooling electrical equipment
CN105196698B (zh) * 2015-11-03 2018-01-02 江苏利特尔绿色包装股份有限公司 印刷机组冷却辊恒温控制箱
EP3430327A1 (de) 2016-03-16 2019-01-23 Inertech IP LLC System und verfahren mit fluidkühlern und kältemaschinen zur serienmässigen wärmeabfuhr und anpassung der kühlung
IT201700013362A1 (it) * 2017-02-07 2018-08-07 Schneider Electric It Corp Cooling System with reduced Pressure Drop
CN107618260B (zh) * 2017-11-14 2023-07-21 武汉红金龙印务股份有限公司 一种适用于印刷工艺的冷却系统
CN111267470A (zh) * 2020-03-06 2020-06-12 陈美奇 一种印刷设备用印刷辊冷却装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH655690B (de) * 1982-05-19 1986-05-15
DE4442072B4 (de) * 1994-11-25 2005-11-10 Technotrans Ag Anordnung zur Temperierung eines Feuchtmittels und eines Kühlfluids für ausgewählte Walzen einer Druckmaschine
US5626102A (en) * 1996-03-14 1997-05-06 Nir; Ari Heat recovery system for a boiler and a boiler provided therewith
DE29608045U1 (de) * 1996-05-03 1996-07-25 Technotrans GmbH, 48336 Sassenberg Anordnung zur Temperierung eines Feuchtmittels und/oder ausgewählter Walzen einer Druckmaschine
FR2751402B1 (fr) * 1996-07-19 1998-10-09 Packinox Sa Installation d'echange thermique entre au moins trois fluides
DE29716582U1 (de) * 1997-09-15 1997-11-06 Technotrans GmbH, 48336 Sassenberg Temperierungsanordnung bei Druckmaschinen
DE10101134B4 (de) * 2001-01-12 2008-11-06 Hell Gravure Systems Gmbh & Co. Kg Graviersystem mit einer Kühlungseinrichtung zur Kühlung des Graviersystems
DE10123489B4 (de) * 2001-05-15 2009-04-02 Goss Contiweb B.V. Vorrichtung zum Kühlen einer Materialbahn

Also Published As

Publication number Publication date
DE10354454A1 (de) 2005-06-30
US20050150410A1 (en) 2005-07-14
DE10354454B4 (de) 2009-11-26
DE502004010104D1 (de) 2009-11-05
EP1533116A1 (de) 2005-05-25
US7159518B2 (en) 2007-01-09

Similar Documents

Publication Publication Date Title
EP1533116B1 (de) Temperiervorrichtung für Druckmaschinen
DE2609958C2 (de) Verfahren zur Wärmerückgewinnung von Wärme aus Abluft und Erwärmung von Zuluft
DE69807895T2 (de) Verfahren und vorrichtung zur anwendung eines doppelkreiselverdichters in einer kühlereinheit
DE102005061599A1 (de) Modulares Kühlsystem und Kälteerzeugungseinrichtung für ein solches Kühlsystem
EP2527147B1 (de) Temperiersystem für Druckmaschinen mit mehreren Temperaturniveaus
EP3417213B1 (de) Kältegerät mit mehreren lagerkammern
DE29716582U1 (de) Temperierungsanordnung bei Druckmaschinen
DE2606072A1 (de) Verfahren und anlage zur steuerung der temperatur in mehreren raeumen, die wechselseitig unterschiedlichen und sich veraendernden waermebedarf haben, wobei einige der raeume normalerweise einen kuehlbedarf haben
DE2922179C2 (de) Einrichtung zum Temperieren der durch eine Horde beim Hordendarren landwirtschaftlicher Güter hindurchgeführten Trockungsluft
DE29608045U1 (de) Anordnung zur Temperierung eines Feuchtmittels und/oder ausgewählter Walzen einer Druckmaschine
DE102009011747A1 (de) Vorrichtung zur Wärmerückgewinnung in einer Wärmeaustauscheranlage mit Energieeinkoppelung in Lüftungsgeräten
DE10245257A1 (de) Wärmemanagementvorrichtung für ein Kraftfahrzeug
EP2326505B1 (de) Druckeinheit sowie vorrichtungen und verfahren zur temperierung einer druckeinheit
EP0467189B1 (de) Kaltwassersatz mit Leistungsanpassung
DE3341853A1 (de) Fluid-kuehlvorrichtung fuer klimaanlagen
DE112004002404B4 (de) Wärmetauschvorrichtung
DE10244256A1 (de) Heizanlage und/oder Kühlanlage mit mindestens einer Wärmequelle
DE2839638A1 (de) Trockenkuehlsystem fuer kraftwerkanlagen
EP1010954A1 (de) Verfahren und Vorrichtung zum Abkühlen eines Gasstromes
EP2397805B1 (de) Vorrichtung zur Rückkühlung von Wärmeträgern und Arbeitsstoffen aus der Kältetechnik und Flüssigkeitskühlern sowie Kälterückgewinnung in der Lüftungstechnik
WO2001065188A1 (de) Vorrichtung zum erzeugen von kaltwasser für raumkühlung
DE102018116609A1 (de) Verfahren zum Betrieb eines integralen Heiz-/Klimatisierungs- und Kühlsystems sowie integrales Heiz-/Klimatisierungs- und Kühlsystem mit primärem und sekundärem Kältekreislauf
DE2757721A1 (de) Verfahren zur temperatureinstellung von medien
EP1958771B1 (de) Temperiervorrichtung für eine Druckmaschine
DE102011056869A1 (de) Vorrichtung zur Klimatisierung eines Kraftfahrzeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004010104

Country of ref document: DE

Date of ref document: 20091105

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121031

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131117

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004010104

Country of ref document: DE

Representative=s name: MUELLER-BORE & PARTNER PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010104

Country of ref document: DE

Owner name: TECHNOTRANS SE, DE

Free format text: FORMER OWNER: TECHNOTRANS AG, 48336 SASSENBERG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181128

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010104

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603